1
|
Seibel E, Um S, Bodawatta KH, Komor AJ, Decker T, Fricke J, Murphy R, Maiah G, Iova B, Maus H, Schirmeister T, Jønsson KA, Poulsen M, Beemelmanns C. Bacteria from the Amycolatopsis genus associated with a toxic bird secrete protective secondary metabolites. Nat Commun 2024; 15:8524. [PMID: 39358325 PMCID: PMC11446937 DOI: 10.1038/s41467-024-52316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Uropygial gland secretions of birds consist of host and bacteria derived compounds and play a major sanitary and feather-protective role. Here we report on our microbiome studies of the New Guinean toxic bird Pachycephala schlegelii and the isolation of a member of the Amycolatopsis genus from the uropygial gland secretions. Bioactivity studies in combination with co-cultures, MALDI imaging and HR-MS/MS-based network analyses unveil the basis of its activity against keratinolytic bacteria and fungal skin pathogens. We trace the protective antimicrobial activity of Amycolatopsis sp. PS_44_ISF1 to the production of rifamycin congeners, ciromicin A and of two yet unreported compound families. We perform NMR and HR-MS/MS studies to determine the relative structures of six members belonging to a yet unreported lipopeptide family of pachycephalamides and of one representative of the demiguisins, a new hexapeptide family. We then use a combination of phylogenomic, transcriptomic and knock-out studies to identify the underlying biosynthetic gene clusters responsible for the production of pachycephalamides and demiguisins. Our metabolomics data allow us to map molecular ion features of the identified metabolites in extracts of P. schlegelii feathers, verifying their presence in the ecological setting where they exert their presumed active role for hosts. Our study shows that members of the Actinomycetota may play a role in avian feather protection.
Collapse
Affiliation(s)
- Elena Seibel
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Soohyun Um
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy Yonsei University, Songdogwahak-ro 85, Incheon, 21983, Republic of Korea
| | - Kasun H Bodawatta
- Natural History Museum of Denmark, Research and Collections University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Anna J Komor
- Department of Biomolecular Chemistry, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Tanya Decker
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Janis Fricke
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Robert Murphy
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Gibson Maiah
- The New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Bulisa Iova
- Papua New Guinea National Museum and Art Gallery, Port Moresby, Papua New Guinea
| | - Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Knud Andreas Jønsson
- Natural History Museum of Denmark, Research and Collections University of Copenhagen, 2100, Copenhagen East, Denmark
- Swedish Museum of Natural History, Department of Bioinformatics and Genetics, P.O. Box 50007, SE-10405, Stockholm, Sweden
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Christine Beemelmanns
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany.
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
- Saarland University, Campus, 66123, Saarbrücken, Germany.
| |
Collapse
|
2
|
Grundmann CO, Guzman J, Vilcinskas A, Pupo MT. The insect microbiome is a vast source of bioactive small molecules. Nat Prod Rep 2024; 41:935-967. [PMID: 38411238 DOI: 10.1039/d3np00054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: September 1964 to June 2023Bacteria and fungi living in symbiosis with insects have been studied over the last sixty years and found to be important sources of bioactive natural products. Not only classic producers of secondary metabolites such as Streptomyces and other members of the phylum Actinobacteria but also numerous bacteria from the phyla Proteobacteria and Firmicutes and an impressive array of fungi (usually pathogenic) serve as the source of a structurally diverse number of small molecules with important biological activities including antimicrobial, cytotoxic, antiparasitic and specific enzyme inhibitors. The insect niche is often the exclusive provider of microbes producing unique types of biologically active compounds such as gerumycins, pederin, dinactin, and formicamycins. However, numerous insects still have not been described taxonomically, and in most cases, the study of their microbiota is completely unexplored. In this review, we present a comprehensive survey of 553 natural products produced by microorganisms isolated from insects by collating and classifying all the data according to the type of compound (rather than the insect or microbial source). The analysis of the correlations among the metadata related to insects, microbial partners, and their produced compounds provides valuable insights into the intricate dynamics between insects and their symbionts as well as the impact of their metabolites on these relationships. Herein, we focus on the chemical structure, biosynthesis, and biological activities of the most relevant compounds.
Collapse
Affiliation(s)
| | - Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University, Giessen, Germany
| | - Mônica Tallarico Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Neuhaus GF, Aron AT, Isemonger EW, Petras D, Waterworth SC, Madonsela LS, Gentry EC, Siwe Noundou X, Kalinski JCJ, Polyzois A, Habiyaremye JC, Redick MA, Kwan JC, Dorrington RA, Dorrestein PC, McPhail KL. Environmental metabolomics characterization of modern stromatolites and annotation of ibhayipeptolides. PLoS One 2024; 19:e0303273. [PMID: 38781236 PMCID: PMC11115249 DOI: 10.1371/journal.pone.0303273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Lithified layers of complex microbial mats known as microbialites are ubiquitous in the fossil record, and modern forms are increasingly identified globally. A key challenge to developing an understanding of microbialite formation and environmental role is how to investigate complex and diverse communities in situ. We selected living, layered microbialites (stromatolites) in a peritidal environment near Schoenmakerskop, Eastern Cape, South Africa to conduct a spatial survey mapping the composition and small molecule production of the microbial communities from environmental samples. Substrate core samples were collected from nine sampling stations ranging from the upper point of the freshwater inflow to the lower marine interface where tidal overtopping takes place. Substrate cores provided material for parallel analyses of microbial community diversity by 16S rRNA gene amplicon sequencing and metabolomics using LC-MS2. Species and metabolite diversities were correlated, and prominent specialized metabolites were targeted for preliminary characterization. A new series of cyclic hexadepsipeptides, named ibhayipeptolides, was most abundant in substrate cores of submerged microbialites. These results demonstrate the detection and identification of metabolites from mass-limited environmental samples and contribute knowledge about microbialite chemistry and biology, which facilitates future targeted studies of specialized metabolite function and biosynthesis.
Collapse
Affiliation(s)
- George F. Neuhaus
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Allegra T. Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA, United States of America
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Eric W. Isemonger
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Daniel Petras
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA, United States of America
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Samantha C. Waterworth
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Luthando S. Madonsela
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Emily C. Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA, United States of America
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Xavier Siwe Noundou
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | | | - Alexandros Polyzois
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Julius C. Habiyaremye
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Margaret A. Redick
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Jason C. Kwan
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI, United States of America
| | | | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA, United States of America
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Kerry L. McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
4
|
Jia J, Lu SE. Comparative Genome Analyses Provide Insight into the Antimicrobial Activity of Endophytic Burkholderia. Microorganisms 2024; 12:100. [PMID: 38257926 PMCID: PMC10821513 DOI: 10.3390/microorganisms12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Endophytic bacteria are endosymbionts that colonize a portion of plants without harming the plant for at least a part of its life cycle. Bacterial endophytes play an essential role in promoting plant growth using multiple mechanisms. The genus Burkholderia is an important member among endophytes and encompasses bacterial species with high genetic versatility and adaptability. In this study, the endophytic characteristics of Burkholderia species are investigated via comparative genomic analyses of several endophytic Burkholderia strains with pathogenic Burkholderia strains. A group of bacterial genes was identified and predicted as the putative endophytic behavior genes of Burkholderia. Multiple antimicrobial biosynthesis genes were observed in these endophytic bacteria; however, certain important pathogenic and virulence genes were absent. The majority of resistome genes were distributed relatively evenly among the endophytic and pathogenic bacteria. All known types of secretion systems were found in the studied bacteria. This includes T3SS and T4SS, which were previously thought to be disproportionately represented in endophytes. Additionally, questionable CRISPR-Cas systems with an orphan CRISPR array were prevalent, suggesting that intact CRISPR-Cas systems may not exist in symbiotes of Burkholderia. This research not only sheds light on the antimicrobial activities that contribute to biocontrol but also expands our understanding of genomic variations in Burkholderia's endophytic and pathogenic bacteria.
Collapse
Affiliation(s)
| | - Shi-En Lu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA;
| |
Collapse
|
5
|
Bai X, Chen H, Ren X, Zhong L, Wang X, Ji X, Zhang Y, Wang Y, Bian X. Heterologous Biosynthesis of Complex Bacterial Natural Products in Burkholderia gladioli. ACS Synth Biol 2023; 12:3072-3081. [PMID: 37708405 DOI: 10.1021/acssynbio.3c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Bacterial natural products (NPs) are an indispensable source of drugs and biopesticides. Heterologous expression is an essential method for discovering bacterial NPs and the efficient biosynthesis of valuable NPs, but the chassis for Gram-negative bacterial NPs remains inadequate. In this study, we built a Burkholderiales mutant Burkholderia gladioli Δgbn::attB by introducing an integrated site (attB) to inactivate the native gladiolin (gbn) biosynthetic gene cluster, which stabilizes large foreign gene clusters and reduces the native metabolite profile. The growth and successful heterologous production of high-value NPs such as phylogenetically close Burkholderiales-derived antitumor polyketides (PKs) rhizoxins, phylogenetically distant Gammaproteobacteria-derived anti-MRSA (methicillin-resistant Staphylococcus aureus) antibiotics WAP-8294As, and Deltaproteobacteria-derived antitumor PKs disorazols demonstrate that this strain is a potential chassis for Gram-negative bacterial NPs. We further improved the yields of WAP-8294As through promoter insertions and precursor pathway overexpression based on heterologous expression in this strain. This study provides a robust bacterial chassis for genome mining, efficient production, and molecular engineering of bacterial NPs.
Collapse
Affiliation(s)
- Xianping Bai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Hanna Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiangmei Ren
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lin Zhong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoqi Ji
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yan Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266100, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
6
|
Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Nat Prod Rep 2023; 40:1550-1582. [PMID: 37114973 PMCID: PMC10510592 DOI: 10.1039/d3np00003f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
Covering: up to fall 2022.Nonribosomal peptide synthetases (NRPSs) are a family of modular, multidomain enzymes that catalyze the biosynthesis of important peptide natural products, including antibiotics, siderophores, and molecules with other biological activity. The NRPS architecture involves an assembly line strategy that tethers amino acid building blocks and the growing peptides to integrated carrier protein domains that migrate between different catalytic domains for peptide bond formation and other chemical modifications. Examination of the structures of individual domains and larger multidomain proteins has identified conserved conformational states within a single module that are adopted by NRPS modules to carry out a coordinated biosynthetic strategy that is shared by diverse systems. In contrast, interactions between modules are much more dynamic and do not yet suggest conserved conformational states between modules. Here we describe the structures of NRPS protein domains and modules and discuss the implications for future natural product discovery.
Collapse
Affiliation(s)
- Ketan D Patel
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Monica R MacDonald
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Syed Fardin Ahmed
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Jitendra Singh
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
7
|
Bhattacharjee A, Sarma S, Sen T, Devi MV, Deka B, Singh AK. Genome mining to identify valuable secondary metabolites and their regulation in Actinobacteria from different niches. Arch Microbiol 2023; 205:127. [PMID: 36944761 DOI: 10.1007/s00203-023-03482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/11/2023] [Indexed: 03/23/2023]
Abstract
Actinobacteria are the largest bacteria group with 18 significant lineages, which are ubiquitously distributed in all the possible terrains. They are known to produce more than 10,000 medically relevant compounds. Despite their ability to make critical secondary metabolites and genome sequences' availability, these two have not been linked with certainty. With this intent, our study aims at understanding the biosynthetic capacity in terms of secondary metabolite production in 528 Actinobacteria species from five different habitats, viz., soil, water, plants, animals, and humans. In our analysis of 9,646 clusters of 59 different classes, we have documented 64,000 SMs, of which more than 74% were of unique type, while 19% were partially conserved and 7% were conserved compounds. In the case of conserved compounds, we found the highest distribution in soil, 79.12%. We found alternate sources of antibiotics, such as viomycin, vancomycin, teicoplanin, fosfomycin, ficellomycin and patulin, and antitumour compounds, such as doxorubicin and tacrolimus in the soil. Also our study reported alternate sources for the toxin cyanobactin in water and plant isolates. We further analysed the clusters to determine their regulatory pathways and reported the prominent presence of the two component system of TetR/AcrR family, as well as other partial domains like CitB superfamily and HTH superfamily, and discussed their role in secondary metabolite production. This information will be helpful in exploring Actinobacteria from other environments and in discovering new chemical moieties of clinical significance.
Collapse
Affiliation(s)
- Abhilash Bhattacharjee
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
- Department of Botany, Dibrugarh Hanumanbax Surajmall Kanoi College, Dibrugarh, 786001, Assam, India
| | - Sangita Sarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Tejosmita Sen
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Moirangthem Veigyabati Devi
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Banani Deka
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Anil Kumar Singh
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India.
| |
Collapse
|
8
|
Rodríguez-Cisneros M, Morales-Ruíz LM, Salazar-Gómez A, Rojas-Rojas FU, Estrada-de los Santos P. Compilation of the Antimicrobial Compounds Produced by Burkholderia Sensu Stricto. Molecules 2023; 28:1646. [PMID: 36838633 PMCID: PMC9958762 DOI: 10.3390/molecules28041646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Due to the increase in multidrug-resistant microorganisms, the investigation of novel or more efficient antimicrobial compounds is essential. The World Health Organization issued a list of priority multidrug-resistant bacteria whose eradication will require new antibiotics. Among them, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae are in the "critical" (most urgent) category. As a result, major investigations are ongoing worldwide to discover new antimicrobial compounds. Burkholderia, specifically Burkholderia sensu stricto, is recognized as an antimicrobial-producing group of species. Highly dissimilar compounds are among the molecules produced by this genus, such as those that are unique to a particular strain (like compound CF66I produced by Burkholderia cepacia CF-66) or antimicrobials found in a number of species, e.g., phenazines or ornibactins. The compounds produced by Burkholderia include N-containing heterocycles, volatile organic compounds, polyenes, polyynes, siderophores, macrolides, bacteriocins, quinolones, and other not classified antimicrobials. Some of them might be candidates not only for antimicrobials for both bacteria and fungi, but also as anticancer or antitumor agents. Therefore, in this review, the wide range of antimicrobial compounds produced by Burkholderia is explored, focusing especially on those compounds that were tested in vitro for antimicrobial activity. In addition, information was gathered regarding novel compounds discovered by genome-guided approaches.
Collapse
Affiliation(s)
- Mariana Rodríguez-Cisneros
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - Leslie Mariana Morales-Ruíz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - Anuar Salazar-Gómez
- Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, León, Guanajuato 37684, Mexico
| | - Fernando Uriel Rojas-Rojas
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, León, Guanajuato 37684, Mexico
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, León, Guanajuato 37684, Mexico
| | - Paulina Estrada-de los Santos
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico
| |
Collapse
|
9
|
Hilker M, Salem H, Fatouros NE. Adaptive Plasticity of Insect Eggs in Response to Environmental Challenges. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:451-469. [PMID: 36266253 DOI: 10.1146/annurev-ento-120120-100746] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Insect eggs are exposed to a plethora of abiotic and biotic threats. Their survival depends on both an innate developmental program and genetically determined protective traits provided by the parents. In addition, there is increasing evidence that (a) parents adjust the egg phenotype to the actual needs, (b) eggs themselves respond to environmental challenges, and (c) egg-associated microbes actively shape the egg phenotype. This review focuses on the phenotypic plasticity of insect eggs and their capability to adjust themselves to their environment. We outline the ways in which the interaction between egg and environment is two-way, with the environment shaping the egg phenotype but also with insect eggs affecting their environment. Specifically, insect eggs affect plant defenses, host biology (in the case of parasitoid eggs), and insect oviposition behavior. We aim to emphasize that the insect egg, although it is a sessile life stage, actively responds to and interacts with its environment.
Collapse
Affiliation(s)
- Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany;
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany;
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
10
|
Büttner H, Pidot SJ, Scherlach K, Hertweck C. Endofungal bacteria boost anthelminthic host protection with the biosurfactant symbiosin. Chem Sci 2022; 14:103-112. [PMID: 36605741 PMCID: PMC9769094 DOI: 10.1039/d2sc04167g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022] Open
Abstract
Effective protection of soil fungi from predators is crucial for their survival in the niche. Thus, fungi have developed efficient defence strategies. We discovered that soil beneficial Mortierella fungi employ a potent cytotoxin (necroxime) against fungivorous nematodes. Interestingly, this anthelminthic agent is produced by bacterial endosymbionts (Candidatus Mycoavidus necroximicus) residing within the fungus. Analysis of the symbiont's genome indicated a rich biosynthetic potential, yet nothing has been known about additional metabolites and their potential synergistic functions. Here we report that two distinct Mortierella endosymbionts produce a novel cyclic lipodepsipeptide (symbiosin), that is clearly of bacterial origin, but has striking similarities to various fungal specialized metabolites. The structure and absolute configuration of symbiosin were fully elucidated. By comparative genomics of symbiosin-positive strains and in silico analyses of the deduced non-ribosomal synthetases, we assigned the (sym) biosynthetic gene cluster and proposed an assembly line model. Bioassays revealed that symbiosin is not only an antibiotic, in particular against mycobacteria, but also exhibits marked synergistic effects with necroxime in anti-nematode tests. By functional analyses and substitution experiments we found that symbiosin is a potent biosurfactant and that this particular property confers a boost in the anthelmintic action, similar to formulations of therapeutics in human medicine. Our findings illustrate that "combination therapies" against parasites already exist in ecological contexts, which may inspire the development of biocontrol agents and therapeutics.
Collapse
Affiliation(s)
- Hannah Büttner
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI)Beutenbergstrasse 11a07745 JenaGermany
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute792 Elizabeth StreetMelbourne3000Australia
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI)Beutenbergstrasse 11a07745 JenaGermany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI)Beutenbergstrasse 11a07745 JenaGermany,Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena07743 JenaGermany
| |
Collapse
|
11
|
Bacterial ectosymbionts in cuticular organs chemically protect a beetle during molting stages. THE ISME JOURNAL 2022; 16:2691-2701. [PMID: 36056153 PMCID: PMC9666510 DOI: 10.1038/s41396-022-01311-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
In invertebrates, the cuticle is the first and major protective barrier against predators and pathogen infections. While immune responses and behavioral defenses are also known to be important for insect protection, the potential of cuticle-associated microbial symbionts to aid in preventing pathogen entry during molting and throughout larval development remains unexplored. Here, we show that bacterial symbionts of the beetle Lagria villosa inhabit unusual dorsal invaginations of the insect cuticle, which remain open to the outer surface and persist throughout larval development. This specialized location enables the release of several symbiont cells and the associated protective compounds during molting. This facilitates ectosymbiont maintenance and extended defense during larval development against antagonistic fungi. One Burkholderia strain, which produces the antifungal compound lagriamide, dominates the community across all life stages, and removal of the community significantly impairs the survival probability of young larvae when exposed to different pathogenic fungi. We localize both the dominant bacterial strain and lagriamide on the surface of eggs, larvae, pupae, and on the inner surface of the molted cuticle (exuvia), supporting extended protection. These results highlight adaptations for effective defense of immature insects by cuticle-associated ectosymbionts, a potentially key advantage for a ground-dwelling insect when confronting pathogenic microbes.
Collapse
|
12
|
Tian P, Huang Q, Peng W, Guo X, Sun L, Jian W, Xie C, Yang X. Complete Genome Sequence of Burkholderia gladioli BK04 with Biocontrol Potential Against Cotton Verticillium Wilt ( Verticillium dahliae). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1052-1055. [PMID: 36161792 DOI: 10.1094/mpmi-06-22-0123-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Peidong Tian
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Qian Huang
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Wanrong Peng
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xueying Guo
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Lixinyu Sun
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Wei Jian
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Chengjian Xie
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xingyong Yang
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
13
|
Clements-Decker T, Kode M, Khan S, Khan W. Underexplored bacteria as reservoirs of novel antimicrobial lipopeptides. Front Chem 2022; 10:1025979. [PMID: 36277345 PMCID: PMC9581180 DOI: 10.3389/fchem.2022.1025979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Natural products derived from microorganisms play a prominent role in drug discovery as potential anti-infective agents. Over the past few decades, lipopeptides produced by particularly Bacillus, Pseudomonas, Streptomyces, Paenibacillus, and cyanobacteria species, have been extensively studied for their antimicrobial potential. Subsequently, daptomycin and polymyxin B were approved by the Food and Drug Administration as lipopeptide antibiotics. Recent studies have however, indicated that Serratia, Brevibacillus, and Burkholderia, as well as predatory bacteria such as Myxococcus, Lysobacter, and Cystobacter, hold promise as relatively underexplored sources of novel classes of lipopeptides. This review will thus highlight the structures and the newly discovered scaffolds of lipopeptide families produced by these bacterial genera, with potential antimicrobial activities. Additionally, insight into the mode of action and biosynthesis of these lipopeptides will be provided and the application of a genome mining approach, to ascertain the biosynthetic gene cluster potential of these bacterial genera (genomes available on the National Center for Biotechnology Information) for their future pharmaceutical exploitation, will be discussed.
Collapse
Affiliation(s)
| | - Megan Kode
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Wesaal Khan,
| |
Collapse
|
14
|
Keller-Costa T, Kozma L, Silva SG, Toscan R, Gonçalves J, Lago-Lestón A, Kyrpides NC, Nunes da Rocha U, Costa R. Metagenomics-resolved genomics provides novel insights into chitin turnover, metabolic specialization, and niche partitioning in the octocoral microbiome. MICROBIOME 2022; 10:151. [PMID: 36138466 PMCID: PMC9502895 DOI: 10.1186/s40168-022-01343-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/03/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND The role of bacterial symbionts that populate octocorals (Cnidaria, Octocorallia) is still poorly understood. To shed light on their metabolic capacities, we examined 66 high-quality metagenome-assembled genomes (MAGs) spanning 30 prokaryotic species, retrieved from microbial metagenomes of three octocoral species and seawater. RESULTS Symbionts of healthy octocorals were affiliated with the taxa Endozoicomonadaceae, Candidatus Thioglobaceae, Metamycoplasmataceae, unclassified Pseudomonadales, Rhodobacteraceae, unclassified Alphaproteobacteria and Ca. Rhabdochlamydiaceae. Phylogenomics inference revealed that the Endozoicomonadaceae symbionts uncovered here represent two species of a novel genus unique to temperate octocorals, here denoted Ca. Gorgonimonas eunicellae and Ca. Gorgonimonas leptogorgiae. Their genomes revealed metabolic capacities to thrive under suboxic conditions and high gene copy numbers of serine-threonine protein kinases, type 3-secretion system, type-4 pili, and ankyrin-repeat proteins, suggesting excellent capabilities to colonize, aggregate, and persist inside their host. Contrarily, MAGs obtained from seawater frequently lacked symbiosis-related genes. All Endozoicomonadaceae symbionts harbored endo-chitinase and chitin-binging protein-encoding genes, indicating that they can hydrolyze the most abundant polysaccharide in the oceans. Other symbionts, including Metamycoplasmataceae and Ca. Thioglobaceae, may assimilate the smaller chitin oligosaccharides resulting from chitin breakdown and engage in chitin deacetylation, respectively, suggesting possibilities for substrate cross-feeding and a role for the coral microbiome in overall chitin turnover. We also observed sharp differences in secondary metabolite production potential between symbiotic lineages. Specific Proteobacteria taxa may specialize in chemical defense and guard other symbionts, including Endozoicomonadaceae, which lack such capacity. CONCLUSION This is the first study to recover MAGs from dominant symbionts of octocorals, including those of so-far unculturable Endozoicomonadaceae, Ca. Thioglobaceae and Metamycoplasmataceae symbionts. We identify a thus-far unanticipated, global role for Endozoicomonadaceae symbionts of corals in the processing of chitin, the most abundant natural polysaccharide in the oceans and major component of the natural zoo- and phytoplankton feed of octocorals. We conclude that niche partitioning, metabolic specialization, and adaptation to low oxygen conditions among prokaryotic symbionts likely contribute to the plasticity and adaptability of the octocoral holobiont in changing marine environments. These findings bear implications not only for our understanding of symbiotic relationships in the marine realm but also for the functioning of benthic ecosystems at large. Video Abstract.
Collapse
Affiliation(s)
- Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Lydia Kozma
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- École Polytechnique Fédérale de Lausanne, Écublens, Switzerland
| | - Sandra G. Silva
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Rodolfo Toscan
- Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jorge Gonçalves
- Centro de Ciências Do Mar, Universidade Do Algarve, Faro, Portugal
| | - Asunción Lago-Lestón
- Centro de Investigación Científica Y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | | | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Centro de Ciências Do Mar, Universidade Do Algarve, Faro, Portugal
| |
Collapse
|
15
|
Silva SG, Paula P, da Silva JP, Mil-Homens D, Teixeira MC, Fialho AM, Costa R, Keller-Costa T. Insights into the Antimicrobial Activities and Metabolomes of Aquimarina ( Flavobacteriaceae, Bacteroidetes) Species from the Rare Marine Biosphere. Mar Drugs 2022; 20:423. [PMID: 35877716 PMCID: PMC9323603 DOI: 10.3390/md20070423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Two novel natural products, the polyketide cuniculene and the peptide antibiotic aquimarin, were recently discovered from the marine bacterial genus Aquimarina. However, the diversity of the secondary metabolite biosynthetic gene clusters (SM-BGCs) in Aquimarina genomes indicates a far greater biosynthetic potential. In this study, nine representative Aquimarina strains were tested for antimicrobial activity against diverse human-pathogenic and marine microorganisms and subjected to metabolomic and genomic profiling. We found an inhibitory activity of most Aquimarina strains against Candida glabrata and marine Vibrio and Alphaproteobacteria species. Aquimarina sp. Aq135 and Aquimarina muelleri crude extracts showed particularly promising antimicrobial activities, amongst others against methicillin-resistant Staphylococcus aureus. The metabolomic and functional genomic profiles of Aquimarina spp. followed similar patterns and were shaped by phylogeny. SM-BGC and metabolomics networks suggest the presence of novel polyketides and peptides, including cyclic depsipeptide-related compounds. Moreover, exploration of the ‘Sponge Microbiome Project’ dataset revealed that Aquimarina spp. possess low-abundance distributions worldwide across multiple marine biotopes. Our study emphasizes the relevance of this member of the microbial rare biosphere as a promising source of novel natural products. We predict that future metabologenomics studies of Aquimarina species will expand the spectrum of known secondary metabolites and bioactivities from marine ecosystems.
Collapse
Affiliation(s)
- Sandra Godinho Silva
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Patrícia Paula
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - José Paulo da Silva
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Dalila Mil-Homens
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Miguel Cacho Teixeira
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Arsénio Mendes Fialho
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Rodrigo Costa
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Tina Keller-Costa
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
16
|
Guidelines for metabolomics-guided transposon mutagenesis for microbial natural product discovery. Methods Enzymol 2022; 665:305-323. [PMID: 35379440 DOI: 10.1016/bs.mie.2021.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is a great discrepancy between the natural product output of cultured microorganisms and their bioinformatically predicted biosynthetic potential, such that most of the molecular diversity contained within microbial reservoirs has yet to be discovered. One of the primary reasons is insufficient expression of natural product biosynthetic gene clusters (BGCs) under standard laboratory conditions. Several methods have been developed to increase production from such "cryptic" BGCs. Among these, we recently implemented mass spectrometry-guided transposon mutagenesis, a forward genetic screen in which mutants that exhibit stimulated biosynthesis of cryptic metabolites, as read out by mass spectrometry, are selected from a transposon mutant library. Herein, we use Burkholderia gladioli as an example and provide guidelines for generating transposon mutant libraries, measuring metabolomic inventories through mass spectrometry, performing comparative metabolomics to prioritize cryptic natural products from the mutant library, and isolating and characterizing novel natural products elicited through mutagenesis. Application of this approach will be useful in both accessing novel natural products from cryptic BGCs and identifying genes involved in their global regulation.
Collapse
|
17
|
Duban M, Cociancich S, Leclère V. Nonribosomal Peptide Synthesis Definitely Working Out of the Rules. Microorganisms 2022; 10:577. [PMID: 35336152 PMCID: PMC8949500 DOI: 10.3390/microorganisms10030577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Nonribosomal peptides are microbial secondary metabolites exhibiting a tremendous structural diversity and a broad range of biological activities useful in the medical and agro-ecological fields. They are built up by huge multimodular enzymes called nonribosomal peptide synthetases. These synthetases are organized in modules constituted of adenylation, thiolation, and condensation core domains. As such, each module governs, according to the collinearity rule, the incorporation of a monomer within the growing peptide. The release of the peptide from the assembly chain is finally performed by a terminal core thioesterase domain. Secondary domains with modifying catalytic activities such as epimerization or methylation are sometimes included in the assembly lines as supplementary domains. This assembly line structure is analyzed by bioinformatics tools to predict the sequence and structure of the final peptides according to the sequence of the corresponding synthetases. However, a constantly expanding literature unravels new examples of nonribosomal synthetases exhibiting very rare domains and noncanonical organizations of domains and modules, leading to several amazing strategies developed by microorganisms to synthesize nonribosomal peptides. In this review, through several examples, we aim at highlighting these noncanonical pathways in order for the readers to perceive their complexity.
Collapse
Affiliation(s)
- Matthieu Duban
- Université de Lille, Université de Liège, UMRT 1158 BioEcoAgro, Métabolites Secondaires d’origine Microbienne, Institut Charles Viollette, F-59000 Lille, France;
| | - Stéphane Cociancich
- CIRAD, UMR PHIM, F-34398 Montpellier, France;
- PHIM, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, F-34398 Montpellier, France
| | - Valérie Leclère
- Université de Lille, Université de Liège, UMRT 1158 BioEcoAgro, Métabolites Secondaires d’origine Microbienne, Institut Charles Viollette, F-59000 Lille, France;
| |
Collapse
|
18
|
Abstract
Beetles are hosts to a remarkable diversity of bacterial symbionts. In this article, we review the role of these partnerships in promoting beetle fitness following a surge of recent studies characterizing symbiont localization and function across the Coleoptera. Symbiont contributions range from the supplementation of essential nutrients and digestive or detoxifying enzymes to the production of bioactive compounds providing defense against natural enemies. Insights on this functional diversity highlight how symbiosis can expand the host's ecological niche, but also constrain its evolutionary potential by promoting specialization. As bacterial localization can differ within and between beetle clades, we discuss how it corresponds to the microbe's beneficial role and outline the molecular and behavioral mechanisms underlying symbiont translocation and transmission by its holometabolous host. In reviewing this literature, we emphasize how the study of symbiosis can inform our understanding of the phenotypic innovations behind the evolutionary success of beetles.
Collapse
Affiliation(s)
- Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany;
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany;
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz 55128, Germany
| |
Collapse
|
19
|
Covington BC, Seyedsayamdost MR. MetEx, a Metabolomics Explorer Application for Natural Product Discovery. ACS Chem Biol 2021; 16:2825-2833. [PMID: 34859662 DOI: 10.1021/acschembio.1c00737] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in next-generation DNA sequencing technologies, bioinformatics, and mass spectrometry-based metabolite detection have ushered in a new era of natural product discovery. Microbial secondary metabolomes are complex, especially when otherwise silent biosynthetic genes are activated, and there is therefore a need for data analysis software to explore and map the resulting multidimensional datasets. To that end, we herein report the Metabolomics Explorer (MetEx), a publicly available web application for the analysis of parallel liquid chromatography-coupled mass spectrometry (LC-MS)-based metabolomics data. MetEx is a highly interactive application that facilitates visualization and analysis of complex metabolomics datasets, consisting of retention time, m/z, and MS intensity features, as a function of hundreds of conditions or elicitors. The software enables prioritization of leads from three-dimensional maps, extraction of two-dimensional slices from various higher order plots, organization of datasets by elicitor chemotypes, customizable library-based dereplication, and automatically scored lead selection. We describe the application of MetEx to the first UPLC-MS-guided high-throughput elicitor screen in which Burkholderia gladioli was challenged with 750 elicitors, and the resulting profiles were interrogated by UPLC-Qtof-MS and subsequently analyzed with the app. We demonstrate the utility of MetEx by reporting elicitors for several cryptic metabolite groups and by uncovering new natural products that remain to be characterized. MetEx is available at https://mo.princeton.edu/MetEx/.
Collapse
Affiliation(s)
- Brett C. Covington
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
20
|
Dose B, Thongkongkaew T, Zopf D, Kim HJ, Bratovanov EV, García‐Altares M, Scherlach K, Kumpfmüller J, Ross C, Hermenau R, Niehs S, Silge A, Hniopek J, Schmitt M, Popp J, Hertweck C. Multimodal Molecular Imaging and Identification of Bacterial Toxins Causing Mushroom Soft Rot and Cavity Disease. Chembiochem 2021; 22:2901-2907. [PMID: 34232540 PMCID: PMC8518961 DOI: 10.1002/cbic.202100330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 12/29/2022]
Abstract
Soft rot disease of edible mushrooms leads to rapid degeneration of fungal tissue and thus severely affects farming productivity worldwide. The bacterial mushroom pathogen Burkholderia gladioli pv. agaricicola has been identified as the cause. Yet, little is known about the molecular basis of the infection, the spatial distribution and the biological role of antifungal agents and toxins involved in this infectious disease. We combine genome mining, metabolic profiling, MALDI-Imaging and UV Raman spectroscopy, to detect, identify and visualize a complex of chemical mediators and toxins produced by the pathogen during the infection process, including toxoflavin, caryoynencin, and sinapigladioside. Furthermore, targeted gene knockouts and in vitro assays link antifungal agents to prevalent symptoms of soft rot, mushroom browning, and impaired mycelium growth. Comparisons of related pathogenic, mutualistic and environmental Burkholderia spp. indicate that the arsenal of antifungal agents may have paved the way for ancestral bacteria to colonize niches where frequent, antagonistic interactions with fungi occur. Our findings not only demonstrate the power of label-free, in vivo detection of polyyne virulence factors by Raman imaging, but may also inspire new approaches to disease control.
Collapse
Affiliation(s)
- Benjamin Dose
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Tawatchai Thongkongkaew
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - David Zopf
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Hak Joong Kim
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Evgeni V. Bratovanov
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - María García‐Altares
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Jana Kumpfmüller
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Claudia Ross
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Ron Hermenau
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Sarah Niehs
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Anja Silge
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
| | - Julian Hniopek
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
| | - Jürgen Popp
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
21
|
Bach E, Passaglia LMP, Jiao J, Gross H. Burkholderia in the genomic era: from taxonomy to the discovery of new antimicrobial secondary metabolites. Crit Rev Microbiol 2021; 48:121-160. [PMID: 34346791 DOI: 10.1080/1040841x.2021.1946009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Species of Burkholderia are highly versatile being found not only abundantly in soil, but also as plants and animals' commensals or pathogens. Their complex multireplicon genomes harbour an impressive number of polyketide synthase (PKS) and nonribosomal peptide-synthetase (NRPS) genes coding for the production of antimicrobial secondary metabolites (SMs), which have been successfully deciphered by genome-guided tools. Moreover, genome metrics supported the split of this genus into Burkholderia sensu stricto (s.s.) and five new other genera. Here, we show that the successful antimicrobial SMs producers belong to Burkholderia s.s. Additionally, we reviewed the occurrence, bioactivities, modes of action, structural, and biosynthetic information of thirty-eight Burkholderia antimicrobial SMs shedding light on their diversity, complexity, and uniqueness as well as the importance of genome-guided strategies to facilitate their discovery. Several Burkholderia NRPS and PKS display unusual features, which are reflected in their structural diversity, important bioactivities, and varied modes of action. Up to now, it is possible to observe a general tendency of Burkholderia SMs being more active against fungi. Although the modes of action and biosynthetic gene clusters of many SMs remain unknown, we highlight the potential of Burkholderia SMs as alternatives to fight against new diseases and antibiotic resistance.
Collapse
Affiliation(s)
- Evelise Bach
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Junjing Jiao
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Rational construction of genome-reduced Burkholderiales chassis facilitates efficient heterologous production of natural products from proteobacteria. Nat Commun 2021; 12:4347. [PMID: 34301933 PMCID: PMC8302735 DOI: 10.1038/s41467-021-24645-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Heterologous expression of biosynthetic gene clusters (BGCs) avails yield improvements and mining of natural products, but it is limited by lacking of more efficient Gram-negative chassis. The proteobacterium Schlegelella brevitalea DSM 7029 exhibits potential for heterologous BGC expression, but its cells undergo early autolysis, hindering further applications. Herein, we rationally construct DC and DT series genome-reduced S. brevitalea mutants by sequential deletions of endogenous BGCs and the nonessential genomic regions, respectively. The DC5 to DC7 mutants affect growth, while the DT series mutants show improved growth characteristics with alleviated cell autolysis. The yield improvements of six proteobacterial natural products and successful identification of chitinimides from Chitinimonas koreensis via heterologous expression in DT mutants demonstrate their superiority to wild-type DSM 7029 and two commonly used Gram-negative chassis Escherichia coli and Pseudomonas putida. Our study expands the panel of Gram-negative chassis and facilitates the discovery of natural products by heterologous expression.
Collapse
|
23
|
Foxfire A, Buhrow AR, Orugunty RS, Smith L. Drug discovery through the isolation of natural products from Burkholderia. Expert Opin Drug Discov 2021; 16:807-822. [PMID: 33467922 PMCID: PMC9844120 DOI: 10.1080/17460441.2021.1877655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Introduction: The increasing threat of antibiotic-resistant pathogens makes it imperative that new antibiotics to combat them are discovered. Burkholderia is a genus of Gram-negative, non-sporulating bacteria. While ubiquitous and capable of growing within plants and groundwater, they are primarily soil-dwelling organisms. These include the more virulent forms of Burkholderia such as Burkholderia mallei, Burkholderia pseudomallei, and the Burkholderia cepacia complex (Bcc).Areas covered: This review provides a synopsis of current research on the natural products isolated from the genus Burkholderia. The authors also cover the research on the drug discovery efforts that have been performed on the natural products derived from Burkholderia.Expert opinion: Though Burkholderia has a small number of pathogenic species, the majority of the genus is avirulent and almost all members of the genus are capable of producing useful antimicrobial products that could potentially lead to the development of novel therapeutics against infectious diseases. The need for discovery of new antibiotics is urgent due to the ever-increasing prevalence of antibiotic-resistant pathogens, coupled with the decline in the discovery of new antibiotics.
Collapse
Affiliation(s)
- Adam Foxfire
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Andrew Riley Buhrow
- Department of Biology, Texas A&M University, College Station, TX 77843,Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77803
| | | | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX 77843,Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77803,Address correspondence to Leif Smith,
| |
Collapse
|
24
|
Mahler L, Niehs SP, Martin K, Weber T, Scherlach K, Hertweck C, Roth M, Rosenbaum MA. Highly parallelized droplet cultivation and prioritization of antibiotic producers from natural microbial communities. eLife 2021; 10:64774. [PMID: 33764297 PMCID: PMC8081529 DOI: 10.7554/elife.64774] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotics from few culturable microorganisms have saved millions of lives since the 20th century. But with resistance formation, these compounds become increasingly ineffective, while the majority of microbial and with that chemical compound diversity remains inaccessible for cultivation and exploration. Culturing recalcitrant bacteria is a stochastic process. But conventional methods are limited to low throughput. By increasing (i) throughput and (ii) sensitivity by miniaturization, we innovate microbiological cultivation to comply with biological stochasticity. Here, we introduce a droplet-based microscale cultivation system, which is directly coupled to a high-throughput screening for antimicrobial activity prior to strain isolation. We demonstrate that highly parallelized in-droplet cultivation starting from single cells results in the cultivation of yet uncultured species and a significantly higher bacterial diversity than standard agar plate cultivation. Strains able to inhibit intact reporter strains were isolated from the system. A variety of antimicrobial compounds were detected for a selected potent antibiotic producer.
Collapse
Affiliation(s)
- Lisa Mahler
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Sarah P Niehs
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Karin Martin
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Thomas Weber
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Kirstin Scherlach
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Christian Hertweck
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.,Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Martin Roth
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
25
|
Genomics-Driven Activation of Silent Biosynthetic Gene Clusters in Burkholderia gladioli by Screening Recombineering System. Molecules 2021; 26:molecules26030700. [PMID: 33572733 PMCID: PMC7866175 DOI: 10.3390/molecules26030700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 01/10/2023] Open
Abstract
The Burkholderia genus possesses ecological and metabolic diversities. A large number of silent biosynthetic gene clusters (BGCs) in the Burkholderia genome remain uncharacterized and represent a promising resource for new natural product discovery. However, exploitation of the metabolomic potential of Burkholderia is limited by the absence of efficient genetic manipulation tools. Here, we screened a bacteriophage recombinase system Redγ-BAS, which was functional for genome modification in the plant pathogen Burkholderia gladioli ATCC 10248. By using this recombineering tool, the constitutive promoters were precisely inserted in the genome, leading to activation of two silent nonribosomal peptide synthetase gene clusters (bgdd and hgdd) and production of corresponding new classes of lipopeptides, burriogladiodins A–H (1–8) and haereogladiodins A–B (9–10). Structure elucidation revealed an unnatural amino acid Z- dehydrobutyrine (Dhb) in 1–8 and an E-Dhb in 9–10. Notably, compounds 2–4 and 9 feature an unusual threonine tag that is longer than the predicted collinearity assembly lines. The structural diversity of burriogladiodins was derived from the relaxed substrate specificity of the fifth adenylation domain as well as chain termination conducted by water or threonine. The recombinase-mediating genome editing system is not only applicable in B. gladioli, but also possesses great potential for mining meaningful silent gene clusters from other Burkholderia species.
Collapse
|
26
|
Dekimpe S, Masschelein J. Beyond peptide bond formation: the versatile role of condensation domains in natural product biosynthesis. Nat Prod Rep 2021; 38:1910-1937. [DOI: 10.1039/d0np00098a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Condensation domains perform highly diverse functions during natural product biosynthesis and are capable of generating remarkable chemical diversity.
Collapse
Affiliation(s)
- Sofie Dekimpe
- Laboratory for Biomolecular Discovery & Engineering
- Department of Biology
- KU Leuven
- Leuven
- Belgium
| | - Joleen Masschelein
- Laboratory for Biomolecular Discovery & Engineering
- Department of Biology
- KU Leuven
- Leuven
- Belgium
| |
Collapse
|
27
|
Jones C, Webster G, Mullins AJ, Jenner M, Bull MJ, Dashti Y, Spilker T, Parkhill J, Connor TR, LiPuma JJ, Challis GL, Mahenthiralingam E. Kill and cure: genomic phylogeny and bioactivity of Burkholderia gladioli bacteria capable of pathogenic and beneficial lifestyles. Microb Genom 2021; 7:mgen000515. [PMID: 33459584 PMCID: PMC8115902 DOI: 10.1099/mgen.0.000515] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/22/2020] [Indexed: 01/22/2023] Open
Abstract
Burkholderia gladioli is a bacterium with a broad ecology spanning disease in humans, animals and plants, but also encompassing multiple beneficial interactions. It is a plant pathogen, a toxin-producing food-poisoning agent, and causes lung infections in people with cystic fibrosis (CF). Contrasting beneficial traits include antifungal production exploited by insects to protect their eggs, plant protective abilities and antibiotic biosynthesis. We explored the genomic diversity and specialized metabolic potential of 206 B. gladioli strains, phylogenomically defining 5 clades. Historical disease pathovars (pv.) B. gladioli pv. allicola and B. gladioli pv. cocovenenans were distinct, while B. gladioli pv. gladioli and B. gladioli pv. agaricicola were indistinguishable; soft-rot disease and CF infection were conserved across all pathovars. Biosynthetic gene clusters (BGCs) for toxoflavin, caryoynencin and enacyloxin were dispersed across B. gladioli, but bongkrekic acid and gladiolin production were clade-specific. Strikingly, 13 % of CF infection strains characterized were bongkrekic acid-positive, uniquely linking this food-poisoning toxin to this aspect of B. gladioli disease. Mapping the population biology and metabolite production of B. gladioli has shed light on its diverse ecology, and by demonstrating that the antibiotic trimethoprim suppresses bongkrekic acid production, a potential therapeutic strategy to minimize poisoning risk in CF has been identified.
Collapse
Affiliation(s)
- Cerith Jones
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Present address: School of Applied Sciences, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, CF37 4BD, UK
| | - Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Alex J. Mullins
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Matthew Jenner
- Department of Chemistry and Warwick Integrative Synthetic Biology Centre, University of Warwick, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Matthew J. Bull
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Present address: Pathogen Genomics Unit, Public Health Wales Microbiology Cardiff, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Yousef Dashti
- Department of Chemistry and Warwick Integrative Synthetic Biology Centre, University of Warwick, CV4 7AL, UK
- Present address: The Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Theodore Spilker
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Present address: Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Thomas R. Connor
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - John J. LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gregory L. Challis
- Department of Chemistry and Warwick Integrative Synthetic Biology Centre, University of Warwick, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| |
Collapse
|
28
|
Niehs SP, Kumpfmüller J, Dose B, Little RF, Ishida K, Flórez LV, Kaltenpoth M, Hertweck C. Insect-Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non-Canonical Polyketide Chain Termination. Angew Chem Int Ed Engl 2020; 59:23122-23126. [PMID: 32588959 PMCID: PMC7756420 DOI: 10.1002/anie.202005711] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Indexed: 12/17/2022]
Abstract
Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol-derived C3 building block. The key role of an A-factor synthase (AfsA)-like offloading domain was corroborated by CRISPR-Cas-mediated gene editing, which facilitated precise excision within a PKS domain.
Collapse
Affiliation(s)
- Sarah P. Niehs
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Jana Kumpfmüller
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Benjamin Dose
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Rory F. Little
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Keishi Ishida
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Laura V. Flórez
- Department for Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg University MainzHanns-Dieter-Hüsch-Weg 1555128MainzGermany
| | - Martin Kaltenpoth
- Department for Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg University MainzHanns-Dieter-Hüsch-Weg 1555128MainzGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
29
|
Dashti Y, Nakou IT, Mullins AJ, Webster G, Jian X, Mahenthiralingam E, Challis GL. Discovery and Biosynthesis of Bolagladins: Unusual Lipodepsipeptides from Burkholderia gladioli Clinical Isolates*. Angew Chem Int Ed Engl 2020; 59:21553-21561. [PMID: 32780452 PMCID: PMC7756342 DOI: 10.1002/anie.202009110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 01/01/2023]
Abstract
Two Burkholderia gladioli strains isolated from the lungs of cystic fibrosis patients were found to produce unusual lipodepsipeptides containing a unique citrate-derived fatty acid and a rare dehydro-β-alanine residue. The gene cluster responsible for their biosynthesis was identified by bioinformatics and insertional mutagenesis. In-frame deletions and enzyme activity assays were used to investigate the functions of several proteins encoded by the biosynthetic gene cluster, which was found in the genomes of about 45 % of B. gladioli isolates, suggesting that its metabolic products play an important role in the growth and/or survival of the species. The Chrome Azurol S assay indicated that these metabolites bind ferric iron, which suppresses their production when added to the growth medium. Moreover, a gene encoding a TonB-dependent ferric-siderophore receptor is adjacent to the biosynthetic genes, suggesting that these metabolites may function as siderophores in B. gladioli.
Collapse
Affiliation(s)
- Yousef Dashti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Current address: The Centre for Bacterial Cell BiologyBiosciences InstituteMedical SchoolNewcastle UniversityNewcastle upon TyneNE2 4AXUK
| | - Ioanna T. Nakou
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Alex J. Mullins
- Microbiomes, Microbes and Informatics GroupOrganisms and Environment DivisionSchool of BiosciencesCardiff UniversityCardiffCF103 ATUK
| | - Gordon Webster
- Microbiomes, Microbes and Informatics GroupOrganisms and Environment DivisionSchool of BiosciencesCardiff UniversityCardiffCF103 ATUK
| | - Xinyun Jian
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics GroupOrganisms and Environment DivisionSchool of BiosciencesCardiff UniversityCardiffCF103 ATUK
| | - Gregory L. Challis
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
- Department of Biochemistry and Molecular Biology, ARC Centre of Excellence for Innovations in Peptide and Protein ScienceMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
30
|
Dose B, Ross C, Niehs SP, Scherlach K, Bauer JP, Hertweck C. Food‐Poisoning Bacteria Employ a Citrate Synthase and a Type II NRPS To Synthesize Bolaamphiphilic Lipopeptide Antibiotics**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Benjamin Dose
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Claudia Ross
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Sarah P. Niehs
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Johanna P. Bauer
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
- Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
31
|
Dose B, Ross C, Niehs SP, Scherlach K, Bauer JP, Hertweck C. Food-Poisoning Bacteria Employ a Citrate Synthase and a Type II NRPS To Synthesize Bolaamphiphilic Lipopeptide Antibiotics*. Angew Chem Int Ed Engl 2020; 59:21535-21540. [PMID: 32780428 PMCID: PMC7756705 DOI: 10.1002/anie.202009107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 12/21/2022]
Abstract
Mining the genome of the food-spoiling bacterium Burkholderia gladioli pv. cocovenenans revealed five nonribosomal peptide synthetase (NRPS) gene clusters, including an orphan gene locus (bol). Gene inactivation and metabolic profiling linked the bol gene cluster to novel bolaamphiphilic lipopeptides with antimycobacterial activity. A combination of chemical analysis and bioinformatics elucidated the structures of bolagladin A and B, lipocyclopeptides featuring an unusual dehydro-β-alanine enamide linker fused to an unprecedented tricarboxylic fatty acid tail. Through a series of targeted gene deletions, we proved the involvement of a designated citrate synthase (CS), priming ketosynthases III (KS III), a type II NRPS, including a novel desaturase for enamide formation, and a multimodular NRPS in generating the cyclopeptide. Network analyses revealed the evolutionary origin of the CS and identified cryptic CS/NRPS gene loci in various bacterial genomes.
Collapse
Affiliation(s)
- Benjamin Dose
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Claudia Ross
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Sarah P. Niehs
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Johanna P. Bauer
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
32
|
Dashti Y, Nakou IT, Mullins AJ, Webster G, Jian X, Mahenthiralingam E, Challis GL. Discovery and Biosynthesis of Bolagladins: Unusual Lipodepsipeptides from
Burkholderia gladioli
Clinical Isolates**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yousef Dashti
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Current address: The Centre for Bacterial Cell Biology Biosciences Institute Medical School Newcastle University Newcastle upon Tyne NE2 4AX UK
| | - Ioanna T. Nakou
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Alex J. Mullins
- Microbiomes, Microbes and Informatics Group Organisms and Environment Division School of Biosciences Cardiff University Cardiff CF103 AT UK
| | - Gordon Webster
- Microbiomes, Microbes and Informatics Group Organisms and Environment Division School of Biosciences Cardiff University Cardiff CF103 AT UK
| | - Xinyun Jian
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre University of Warwick Coventry CV4 7AL UK
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group Organisms and Environment Division School of Biosciences Cardiff University Cardiff CF103 AT UK
| | - Gregory L. Challis
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre University of Warwick Coventry CV4 7AL UK
- Department of Biochemistry and Molecular Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science Monash University Clayton VIC 3800 Australia
| |
Collapse
|
33
|
Nakou IT, Jenner M, Dashti Y, Romero‐Canelón I, Masschelein J, Mahenthiralingam E, Challis GL. Genomics-Driven Discovery of a Novel Glutarimide Antibiotic from Burkholderia gladioli Reveals an Unusual Polyketide Synthase Chain Release Mechanism. Angew Chem Int Ed Engl 2020; 59:23145-23153. [PMID: 32918852 PMCID: PMC7756379 DOI: 10.1002/anie.202009007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Indexed: 11/07/2022]
Abstract
A gene cluster encoding a cryptic trans‐acyl transferase polyketide synthase (PKS) was identified in the genomes of Burkholderia gladioli BCC0238 and BCC1622, both isolated from the lungs of cystic fibrosis patients. Bioinfomatics analyses indicated the PKS assembles a novel member of the glutarimide class of antibiotics, hitherto only isolated from Streptomyces species. Screening of a range of growth parameters led to the identification of gladiostatin, the metabolic product of the PKS. NMR spectroscopic analysis revealed that gladiostatin, which has promising activity against several human cancer cell lines and inhibits tumor cell migration, contains an unusual 2‐acyl‐4‐hydroxy‐3‐methylbutenolide in addition to the glutarimide pharmacophore. An AfsA‐like domain at the C‐terminus of the PKS was shown to catalyze condensation of 3‐ketothioesters with dihydroxyacetone phosphate, thus indicating it plays a key role in polyketide chain release and butenolide formation.
Collapse
Affiliation(s)
- Ioanna T. Nakou
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Matthew Jenner
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
| | - Yousef Dashti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Current Address: The Centre for Bacterial Cell Biology, Biosciences InstituteMedical SchoolNewcastle UniversityNewcastle upon TyneNE2 4AXUK
| | - Isolda Romero‐Canelón
- Institute of Clinical SciencesSchool of PharmacyUniversity of BirminghamBirminghamB15 2TTUK
| | - Joleen Masschelein
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Current Address: Laboratory for Biomolecular Discovery &, EngineeringVIB-KU Leuven Center for MicrobiologyDepartment of BiologyKU Leuven3001LeuvenBelgium
| | - Eshwar Mahenthiralingam
- Organisms and Environment DivisionCardiff School of BiosciencesCardiff UniversityCardiffCF10 3ATUK
| | - Gregory L. Challis
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
- Department of Biochemistry and Molecular BiologyARC Centre of Excellence for Innovations in Peptide and Protein ScienceMonash UniversityVictoria3800Australia
| |
Collapse
|
34
|
Nakou IT, Jenner M, Dashti Y, Romero‐Canelón I, Masschelein J, Mahenthiralingam E, Challis GL. Genomics‐Driven Discovery of a Novel Glutarimide Antibiotic from
Burkholderia gladioli
Reveals an Unusual Polyketide Synthase Chain Release Mechanism. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ioanna T. Nakou
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Matthew Jenner
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre University of Warwick Coventry CV4 7AL UK
| | - Yousef Dashti
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Current Address: The Centre for Bacterial Cell Biology, Biosciences Institute Medical School Newcastle University Newcastle upon Tyne NE2 4AX UK
| | - Isolda Romero‐Canelón
- Institute of Clinical Sciences School of Pharmacy University of Birmingham Birmingham B15 2TT UK
| | - Joleen Masschelein
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Current Address: Laboratory for Biomolecular Discovery &, Engineering VIB-KU Leuven Center for Microbiology Department of Biology KU Leuven 3001 Leuven Belgium
| | - Eshwar Mahenthiralingam
- Organisms and Environment Division Cardiff School of Biosciences Cardiff University Cardiff CF10 3AT UK
| | - Gregory L. Challis
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre University of Warwick Coventry CV4 7AL UK
- Department of Biochemistry and Molecular Biology ARC Centre of Excellence for Innovations in Peptide and Protein Science Monash University Victoria 3800 Australia
| |
Collapse
|
35
|
Yoshimura A, Covington BC, Gallant É, Zhang C, Li A, Seyedsayamdost MR. Unlocking Cryptic Metabolites with Mass Spectrometry-Guided Transposon Mutant Selection. ACS Chem Biol 2020; 15:2766-2774. [PMID: 32808751 DOI: 10.1021/acschembio.0c00558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The products of most secondary metabolite biosynthetic gene clusters (BGCs) have yet to be discovered, in part due to low expression levels in laboratory cultures. Reporter-guided mutant selection (RGMS) has recently been developed for this purpose: a mutant library is generated and screened, using genetic reporters to a chosen BGC, to select transcriptionally active mutants that then enable the characterization of the "cryptic" metabolite. The requirement for genetic reporters limits the approach to a single pathway within genetically tractable microorganisms. Herein, we utilize untargeted metabolomics in conjunction with transposon mutagenesis to provide a global read-out of secondary metabolism across large numbers of mutants. We employ self-organizing map analytics and imaging mass spectrometry to identify and characterize seven cryptic metabolites from mutant libraries of two different Burkholderia species. Applications of the methodologies reported can expand our understanding of the products and regulation of cryptic BGCs across phylogenetically diverse bacteria.
Collapse
Affiliation(s)
- Aya Yoshimura
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Brett C. Covington
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Étienne Gallant
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Chen Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Anran Li
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
36
|
Niehs SP, Kumpfmüller J, Dose B, Little RF, Ishida K, Flórez LV, Kaltenpoth M, Hertweck C. Insect‐Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non‐Canonical Polyketide Chain Termination. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah P. Niehs
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Jana Kumpfmüller
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Benjamin Dose
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Rory F. Little
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Laura V. Flórez
- Department for Evolutionary Ecology Institute of Organismic and Molecular Evolution Johannes Gutenberg University Mainz Hanns-Dieter-Hüsch-Weg 15 55128 Mainz Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology Institute of Organismic and Molecular Evolution Johannes Gutenberg University Mainz Hanns-Dieter-Hüsch-Weg 15 55128 Mainz Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
- Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
37
|
Abstract
Interactions among microbes are key drivers of evolutionary progress and constantly shape ecological niches. Microorganisms rely on chemical communication to interact with each other and surrounding organisms. They synthesize natural products as signaling molecules, antibiotics, or modulators of cellular processes that may be applied in agriculture and medicine. Whereas major insight has been gained into the principles of intraspecies interaction, much less is known about the molecular basis of interspecies interplay. In this review, we summarize recent progress in the understanding of chemically mediated bacterial-fungal interrelations. We discuss pairwise interactions among defined species and systems involving additional organisms as well as complex interactions among microbial communities encountered in the soil or defined as microbiota of higher organisms. Finally, we give examples of how the growing understanding of microbial interactions has contributed to drug discovery and hypothesize what may be future directions in studying and engineering microbiota for agricultural or medicinal purposes.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07745 Jena, Germany
| |
Collapse
|
38
|
Waterworth SC, Flórez LV, Rees ER, Hertweck C, Kaltenpoth M, Kwan JC. Horizontal Gene Transfer to a Defensive Symbiont with a Reduced Genome in a Multipartite Beetle Microbiome. mBio 2020; 11:e02430-19. [PMID: 32098813 PMCID: PMC7042692 DOI: 10.1128/mbio.02430-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Symbiotic mutualisms of bacteria and animals are ubiquitous in nature, running a continuum from facultative to obligate from the perspectives of both partners. The loss of functions required for living independently but not within a host gives rise to reduced genomes in many symbionts. Although the phenomenon of genome reduction can be explained by existing evolutionary models, the initiation of the process is not well understood. Here, we describe the microbiome associated with the eggs of the beetle Lagria villosa, consisting of multiple bacterial symbionts related to Burkholderia gladioli, including a reduced-genome symbiont thought to be the exclusive producer of the defensive compound lagriamide. We show that the putative lagriamide-producing symbiont is the only member of the microbiome undergoing genome reduction and that it has already lost the majority of its primary metabolism and DNA repair pathways. The key step preceding genome reduction in the symbiont was likely the horizontal acquisition of the putative lagriamide lga biosynthetic gene cluster. Unexpectedly, we uncovered evidence of additional horizontal transfers to the symbiont's genome while genome reduction was occurring and despite a current lack of genes needed for homologous recombination. These gene gains may have given the genome-reduced symbiont a selective advantage in the microbiome, especially given the maintenance of the large lga gene cluster despite ongoing genome reduction.IMPORTANCE Associations between microorganisms and an animal, plant, or fungal host can result in increased dependence over time. This process is due partly to the bacterium not needing to produce nutrients that the host provides, leading to loss of genes that it would need to live independently and to a consequent reduction in genome size. It is often thought that genome reduction is aided by genetic isolation-bacteria that live in monocultures in special host organs, or inside host cells, have less access to other bacterial species from which they can obtain genes. Here, we describe exposure of a genome-reduced beetle symbiont to a community of related bacteria with nonreduced genomes. We show that the symbiont has acquired genes from other bacteria despite going through genome reduction, suggesting that isolation has not yet played a major role in this case of genome reduction, with horizontal gene gains still offering a potential route for adaptation.
Collapse
Affiliation(s)
- Samantha C Waterworth
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura V Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenburg University, Mainz, Germany
| | - Evan R Rees
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, Jena, Germany
- Department of Natural Product Chemistry, Friedrich Schiller University, Jena, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenburg University, Mainz, Germany
| | - Jason C Kwan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
39
|
Abstract
Bacteria can migrate in groups of flagella-driven cells over semisolid surfaces. This coordinated form of motility is called swarming behavior. Swarming is associated with enhanced virulence and antibiotic resistance of various human pathogens and may be considered as favorable adaptation to the diverse challenges that microbes face in rapidly changing environments. Consequently, the differentiation of motile swarmer cells is tightly regulated and involves multi-layered signaling networks. Controlling swarming behavior is of major interest for the development of novel anti-infective strategies. In addition, compounds that block swarming represent important tools for more detailed insights into the molecular mechanisms of the coordination of bacterial population behavior. Over the past decades, there has been major progress in the discovery of small-molecule modulators and mechanisms that allow selective inhibition of swarming behavior. Herein, an overview of the achievements in the field and future directions and challenges will be presented.
Collapse
Affiliation(s)
- Sina Rütschlin
- Department of ChemistryKonstanz Research, School Chemical Biology, ZukunftskollegUniversity of Konstanz78457KonstanzGermany
| | - Thomas Böttcher
- Department of ChemistryKonstanz Research, School Chemical Biology, ZukunftskollegUniversity of Konstanz78457KonstanzGermany
| |
Collapse
|
40
|
Kaltenpoth M, Flórez LV. Versatile and Dynamic Symbioses Between Insects and Burkholderia Bacteria. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:145-170. [PMID: 31594411 DOI: 10.1146/annurev-ento-011019-025025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Symbiotic associations with microorganisms represent major sources of ecological and evolutionary innovations in insects. Multiple insect taxa engage in symbioses with bacteria of the genus Burkholderia, a diverse group that is widespread across different environments and whose members can be mutualistic or pathogenic to plants, fungi, and animals. Burkholderia symbionts provide nutritional benefits and resistance against insecticides to stinkbugs, defend Lagria beetle eggs against pathogenic fungi, and may be involved in nitrogen metabolism in ants. In contrast to many other insect symbioses, the known associations with Burkholderia are characterized by environmental symbiont acquisition or mixed-mode transmission, resulting in interesting ecological and evolutionary dynamics of symbiont strain composition. Insect-Burkholderia symbioses present valuable model systems from which to derive insights into general principles governing symbiotic interactions because they are often experimentally and genetically tractable and span a large fraction of the diversity of functions, localizations, and transmission routes represented in insect symbioses.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| | - Laura V Flórez
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| |
Collapse
|
41
|
Götze S, Stallforth P. Structure elucidation of bacterial nonribosomal lipopeptides. Org Biomol Chem 2020; 18:1710-1727. [DOI: 10.1039/c9ob02539a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We provide a summary of the tools, which allow elucidate the structures of nonribosomal lipopetides.
Collapse
Affiliation(s)
- Sebastian Götze
- Department of Paleobiotechnology
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
42
|
Banerji A, Jahne M, Herrmann M, Brinkman N, Keely S. Bringing Community Ecology to Bear on the Issue of Antimicrobial Resistance. Front Microbiol 2019; 10:2626. [PMID: 31803161 PMCID: PMC6872637 DOI: 10.3389/fmicb.2019.02626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global concern, pertaining not only to human health but also to the health of industry and the environment. AMR research has traditionally focused on genetic exchange mechanisms and abiotic environmental constraints, leaving important aspects of microbial ecology unresolved. The genetic and ecological aspects of AMR, however, not only contribute separately to the problem but also are interrelated. For example, mutualistic associations among microbes such as biofilms can both serve as a barrier to antibiotic penetration and a breeding ground for horizontal exchange of antimicrobial resistance genes (ARGs). In this review, we elucidate how species interactions promote and impede the establishment, maintenance, and spread of ARGs and indicate how management initiatives might benefit from leveraging the principles and tools of community ecology to better understand and manipulate the processes underlying AMR.
Collapse
Affiliation(s)
- Aabir Banerji
- Office of Research and Development, Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Cincinnati, OH, United States
| | | | | | | | | |
Collapse
|
43
|
Jiao J, Du J, Frediansyah A, Jahanshah G, Gross H. Structure elucidation and biosynthetic locus of trinickiabactin from the plant pathogenic bacterium Trinickia caryophylli. J Antibiot (Tokyo) 2019; 73:28-34. [DOI: 10.1038/s41429-019-0246-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/17/2019] [Accepted: 09/16/2019] [Indexed: 01/07/2023]
|
44
|
Abstract
Burkholderia bacteria are multifaceted organisms that are ecologically and metabolically diverse. The Burkholderia genus has gained prominence because it includes human pathogens; however, many strains are nonpathogenic and have desirable characteristics such as beneficial plant associations and degradation of pollutants. The diversity of the Burkholderia genus is reflected within the large genomes that feature multiple replicons. Burkholderia genomes encode a plethora of natural products with potential therapeutic relevance and biotechnological applications. This review highlights Burkholderia as an emerging source of natural products. An overview of the taxonomy of the Burkholderia genus, which is currently being revised, is provided. We then present a curated compilation of natural products isolated from Burkholderia sensu lato and analyze their characteristics in terms of biosynthetic class, discovery method, and bioactivity. Finally, we describe and discuss genome characteristics and highlight the biosynthesis of a select number of natural products that are encoded in unusual biosynthetic gene clusters. The availability of >1000 Burkholderia genomes in public databases provides an opportunity to realize the genetic potential of this underexplored taxon for natural product discovery.
Collapse
Affiliation(s)
- Sylvia Kunakom
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S. Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
45
|
Morgan GL, Kretsch AM, Santa Maria KC, Weeks SJ, Li B. Specificity of Nonribosomal Peptide Synthetases in the Biosynthesis of the Pseudomonas virulence factor. Biochemistry 2019; 58:5249-5254. [PMID: 31243997 DOI: 10.1021/acs.biochem.9b00360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Pseudomonas virulence factor (pvf) biosynthetic operon has been implicated in bacterial virulence and signaling. We identified 308 bacterial strains containing pvf homologues that likely produce signaling molecules with distinct structures and biological activities. Several homologues of the nonribosomal peptide synthetase (NRPS), PvfC, were biochemically characterized and shown to activate l-Val or l-Leu. The amino acid selectivity of PvfC and its homologues likely direct pvf signaling activity. We explored the natural diversity of the active site residues present in 92% of the adenylation domains of PvfC homologues and identified key residues for substrate selection and catalysis. Sequence similarity network (SSN) analysis revealed grouping of PvfC homologues that harbor the same active site residues and activate the same amino acids. Our work identified PvfC as a gatekeeper for the structure and bioactivity of the pvf-produced signaling molecules. The combination of active site residue identification and SSN analysis can improve the prediction of aliphatic amino acid substrates for NRPS adenylation domains.
Collapse
Affiliation(s)
- Gina L Morgan
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Ashley M Kretsch
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kevin C Santa Maria
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Savannah J Weeks
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Bo Li
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
46
|
Heise P, Liu Y, Degenkolb T, Vogel H, Schäberle TF, Vilcinskas A. Antibiotic-Producing Beneficial Bacteria in the Gut of the Burying Beetle Nicrophorus vespilloides. Front Microbiol 2019; 10:1178. [PMID: 31244787 PMCID: PMC6563848 DOI: 10.3389/fmicb.2019.01178] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
The increasing prevalence of antibiotic-resistant human pathogens is a growing public concern and there is intense pressure to identify new antibacterial compounds that can be developed into antibiotics with novel mode of action. Evolutionary theory predicts that insects that have evolved to occupy sophisticated ecological niches by feeding and reproducing on carcasses will depend on their gut microbiome to prevent colonization by invading pathogens taken up with the diet. This inspired our hypothesis that the complex interactions between the core microbiome and the more flexible microbial communities dependent on the environment may promote the outsourcing of antibiotic synthesis to beneficial microbes. We tested this hypothesis by cultivating and characterizing bacteria isolated from the gut of the burying beetle Nicrophorus vespilloides, which feeds and reproduces on small vertebrate carcasses buried in the soil to avoid competitors such as fly maggots. The extracts of isolated bacteria were screened for activity against human pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans. More than 400 strains were isolated, among which the crude extract of Serratia marcescens 2MH3-2 displayed promising activity against Staphylococcus aureus. Bioactivity-guided fractionation enabled purification of the primary antimicrobial compound of the extract. By LC-MS and NMR experiments, it was identified as serrawettin W2 (C38H61N5O9), the antibacterial and nematostatic activity of which was corroborated in our study. We postulate that this antibiotic could contribute to the control of both bacteria and phoretic nematodes in the gut, which compete for food when transferred to the carcass. Our study shows that the gut microbiome of N. vespilloides is a promising resource for the screening of antibiotic-producing bacteria.
Collapse
Affiliation(s)
- Philipp Heise
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Yang Liu
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Degenkolb
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Till F Schäberle
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany.,Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany.,German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany.,Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
47
|
Jenner M, Jian X, Dashti Y, Masschelein J, Hobson C, Roberts DM, Jones C, Harris S, Parkhill J, Raja HA, Oberlies NH, Pearce CJ, Mahenthiralingam E, Challis GL. An unusual Burkholderia gladioli double chain-initiating nonribosomal peptide synthetase assembles 'fungal' icosalide antibiotics. Chem Sci 2019; 10:5489-5494. [PMID: 31293732 PMCID: PMC6553374 DOI: 10.1039/c8sc04897e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/22/2019] [Indexed: 11/21/2022] Open
Abstract
Fungus-associated Burkholderia gladioli bacteria use a unique ‘dual-priming’ nonribosomal peptide synthetase to assemble icosalide A1.
Burkholderia is a multi-talented genus of Gram-negative bacteria, which in recent years has become increasingly recognised as a promising source of bioactive natural products. Metabolite profiling of Burkholderia gladioli BCC0238 showed that it produces the asymmetric lipopeptidiolide antibiotic icosalide A1, originally isolated from a fungus. Comparative bioinformatics analysis of several genome-sequenced B. gladioli isolates identified a gene encoding a nonribosomal peptide synthase (NRPS) with an unusual architecture that was predicted to be responsible for icosalide biosynthesis. Inactivation of this gene in B. gladioli BCC0238 abolished icosalide production. PCR analysis and sequencing of total DNA from the original fungal icosalide A1 producer revealed it has a B. gladioli strain associated with it that harbours an NRPS with an identical architecture to that responsible for icosalide A1 assembly in B. gladioli BCC0238. Sequence analysis of the icosalide NRPS indicated that it contains two chain-initiating condensation (CI) domains. One of these is appended to the N-terminus of module 1 – a common architecture for NRPSs involved in lipopeptide assembly. The other is embedded in module 3, immediately downstream of a putative chain-elongating condensation domain. Analysis of the reactions catalysed by a tridomain construct from module 3 of the NRPS using intact protein mass spectrometry showed that the embedded CI domain initiates assembly of a second lipopeptide chain, providing key insights into the mechanism for asymmetric diolide assembly.
Collapse
Affiliation(s)
- Matthew Jenner
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK . .,Warwick Integrative Synthetic Biology Centre , University of Warwick , Coventry CV4 7AL , UK
| | - Xinyun Jian
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Yousef Dashti
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Joleen Masschelein
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Christian Hobson
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Douglas M Roberts
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Cerith Jones
- Organisms and Environment Division , Cardiff School of Biosciences , Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , UK
| | - Simon Harris
- Wellcome Trust Sanger Institute , Wellcome Trust Genome Campus , Hinxton , Cambridge CB10 1SA , UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute , Wellcome Trust Genome Campus , Hinxton , Cambridge CB10 1SA , UK
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry , University , of North Carolina at Greensboro , Greensboro , NC 27402 , USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry , University , of North Carolina at Greensboro , Greensboro , NC 27402 , USA
| | - Cedric J Pearce
- Mycosynthetix , 4905 Pine Cone Drive , Durham , North Carolina 27707 , USA
| | - Eshwar Mahenthiralingam
- Organisms and Environment Division , Cardiff School of Biosciences , Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , UK
| | - Gregory L Challis
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK . .,Warwick Integrative Synthetic Biology Centre , University of Warwick , Coventry CV4 7AL , UK.,Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , Monash University , Victoria 3800 , Australia
| |
Collapse
|
48
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as kadsuraol A from Kadsura longipedunculata.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|