1
|
Han Y, Liu YT, Chen L, Sun HF, Zhu GH, Kang DN, Zhou Q, Tang H, Yin YL, Hou J. Hinokiflavone from Platycladi cacumen as a potent broad-spectrum inhibitor of gut microbial Loop-1 β-glucuronidases: Inhibition kinetics and molecular simulation. Chem Biol Interact 2024; 404:111261. [PMID: 39389440 DOI: 10.1016/j.cbi.2024.111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Gut microbial Loop-1 β-glucuronidases (gmGUS) played an important role in irinotecan-induced gastrointestinal toxicity by regulating the level of its active metabolite SN38 through enterohepatic recirculation. gmGUS inhibition has emerged as a promising approach to relieve its dose-limiting intestinal toxicity and improve its medication efficacy. This study aims to investigate the inhibitory effects and mechanisms of Platycladi cacumen and its main constituent hinokiflavone against four different types of Loop-1 gmGUS (EeGUS, SaGUS, CpGUS and EcGUS). Our results showed that the ethanol extract of Platycladi cacumen displayed strong broad-spectrum inhibition against four gmGUS, and hinokiflavone could potently inhibit EeGUS, SaGUS, CpGUS and EcGUS with IC50 values of 0.09 ± 0.01 μM, 0.44 ± 0.01 μM, 0.20 ± 0.01 μM and 0.69 ± 0.10 μM, respectively. Inhibition kinetic analyses demonstrated that hinokiflavone acted as a strong competitive inhibitor of EeGUS with Ki value of 0.13 μM, while it displayed non-competitive inhibition against SaGUS, CpGUS and EcGUS, with the Ki values of 0.43 μM, 0.33 μM and 0.76 μM, respectively. Docking simulations revealed that hinokiflavone could tightly bind with Tyr-485 and Glu-516 in catalytic sites of EeGUS, as well it created strong interactions with amino acids in loop structures of SaGUS (Asn-362), CpGUS (Phe-363, Met-364, Ala-365 and Arg-375) and EcGUS (Leu-361) to interfere the substrate entry into the catalytic pocket. Collectively, these results confirmed that hinokiflavone from Platycladi cacumen is a potent naturally occurring inhibitor of gmGUS with broad efficiency, suggesting hinokiflavone will be helpful for alleviating intestinal toxicity in irinotecan therapy.
Collapse
Affiliation(s)
- Yue Han
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yu-Tong Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lu Chen
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao-Fan Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Guang-Hao Zhu
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong-Ning Kang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qi Zhou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Hui Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Pharmacy School of Shihezi University, Xinjiang, 832003, China
| | - Yu-Ling Yin
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Jie Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
2
|
Hillege LE, Stevens MAM, Kristen PAJ, de Vos-Geelen J, Penders J, Redinbo MR, Smidt ML. The role of gut microbial β-glucuronidases in carcinogenesis and cancer treatment: a scoping review. J Cancer Res Clin Oncol 2024; 150:495. [PMID: 39537966 PMCID: PMC11561038 DOI: 10.1007/s00432-024-06028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION The human gut microbiota influence critical functions including the metabolism of nutrients, xenobiotics, and drugs. Gut microbial β-glucuronidases (GUS) enzymes facilitate the removal of glucuronic acid from various compounds, potentially affecting anti-cancer drug efficacy and reactivating carcinogens. This review aims to comprehensively analyze and summarize studies on the role of gut microbial GUS in cancer and its interaction with anti-cancer treatments. Its goal is to collate and present insights that are directly relevant to patient care and treatment strategies in oncology. METHODS This scoping review followed PRISMA-ScR guidelines and focused on primary research exploring the role of GUS within the gut microbiota related to cancer etiology and anti-cancer treatment. Comprehensive literature searches were conducted in PubMed, Embase, and Web of Science. RESULTS GUS activity was only investigated in colorectal cancer (CRC), revealing increased fecal GUS activity, variations in the gut microbial composition, and GUS-contributing bacterial taxa in CRC patients versus controls. Irinotecan affects gastrointestinal (GI) health by increasing GUS expression and shifting gut microbial composition, particularly by enhancing the presence of GUS-producing bacteria, correlating with irinotecan-induced GI toxicities. GUS inhibitors (GUSi) can mitigate irinotecan's adverse effects, protecting the intestinal barrier and reducing diarrhea. CONCLUSION To our knowledge, this is the first review to comprehensively analyze and summarize studies on the critical role of gut microbial GUS in cancer and anti-cancer treatment, particularly irinotecan. It underscores the potential of GUSi to reduce side effects and enhance treatment efficacy, highlighting the urgent need for further research to integrate GUS targeting into future anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Lars E Hillege
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands.
- Department of Surgery, FHML, Maastricht University Medical Center+, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| | - Milou A M Stevens
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
- Department of Surgery, FHML, Maastricht University Medical Center+, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Paulien A J Kristen
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
- Department of Surgery, FHML, Maastricht University Medical Center+, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Judith de Vos-Geelen
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
- Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - John Penders
- NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Matthew R Redinbo
- Departments of Chemistry, Biochemistry & Biophysics, and Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Marjolein L Smidt
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
- Department of Surgery, FHML, Maastricht University Medical Center+, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
3
|
Zhao Q, Lu Y, Duan J, Du D, Pu Q, Li F. Gut microbiota depletion and FXR inhibition exacerbates zonal hepatotoxicity of sunitinib. Theranostics 2024; 14:7219-7240. [PMID: 39629129 PMCID: PMC11610149 DOI: 10.7150/thno.99926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/11/2024] [Indexed: 12/06/2024] Open
Abstract
Rationale: Sunitinib is a small-molecule tyrosine kinase inhibitor associated with the side-effect of liver injury. The impaired cell type in liver and the hepatotoxicity mechanisms is still unclear. Methods: Spatial metabolomics, transmission electron microscopy, immunofluorescence co-staining, and isolation of bile duct cells and liver sinusoidal endothelial cells (LSECs) were used to evaluate the zonated hepatotoxicity of sunitinib. Farnesoid X receptor (FXR) conditional knockout mice, metagenomics analysis, bacteria clearance, bacterial culture, Parabacteroides distasonis and 3-oxolithocholic acid supplementation were used to evaluate the hepatotoxicity mechanisms of sunitinib. Results: Phenotype analysis found that hepatic autophagy, apoptosis, and mitochondrial injury were observed in vivo or in vitro after sunitinib treatment. By using spatial metabolomics and isolation of bile duct cells and LSECs, the zonated drug toxicity was observed around the portal vein. Hepatocytes, bile duct cells, and LSECs were damaged after sunitinib treatment. FXR inhibition and gut microbiota depletion aggravated sunitinib-induced liver injury. For diurnal variation, sunitinib-induced liver injury was enhanced at night compared with that at day, and FXR and gut microbiota participated in circadian rhythmic hepatotoxicity induced by sunitinib. Conclusions: Our data suggested activation of FXR and Parabacteroides distasonis supplementation may be used to improve sunitinib-induced hepatotoxicity.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Gastroenterology & Hepatology, Laboratory of Hepatointestinal Diseases and Metabolism, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingmei Lu
- Department of Gastroenterology & Hepatology, Laboratory of Hepatointestinal Diseases and Metabolism, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingyi Duan
- Department of Gastroenterology & Hepatology, Laboratory of Hepatointestinal Diseases and Metabolism, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianlun Pu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Li
- Department of Gastroenterology & Hepatology, Laboratory of Hepatointestinal Diseases and Metabolism, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, 610041, China
- Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Xu Y, Du H, Chen Y, Ma C, Zhang Q, Li H, Xie Z, Hong Y. Targeting the gut microbiota to alleviate chemotherapy-induced toxicity in cancer. Crit Rev Microbiol 2024; 50:564-580. [PMID: 37439132 DOI: 10.1080/1040841x.2023.2233605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/22/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
Despite ongoing breakthroughs in novel anticancer therapies, chemotherapy remains a mainstream therapeutic modality in different types of cancer. Unfortunately, chemotherapy-related toxicity (CRT) often leads to dose limitation, and even results in treatment termination. Over the past few years, accumulating evidence has indicated that the gut microbiota is extensively engaged in various toxicities initiated by chemotherapeutic drugs, either directly or indirectly. The gut microbiota can now be targeted to reduce the toxicity of chemotherapy. In the current review, we summarized the clinical relationship between the gut microbiota and CRT, as well as the critical role of the gut microbiota in the occurrence and development of CRT. We then summarized the key mechanisms by which the gut microbiota modulates CRT. Furthermore, currently available strategies to mitigate CRT by targeting the gut microbiota were summarized and discussed. This review offers a novel perspective for the mitigation of diverse chemotherapy-associated toxic reactions in cancer patients and the future development of innovative drugs or functional supplements to alleviate CRT via targeting the gut microbiota.
Collapse
Affiliation(s)
- Yaning Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Haiyan Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuchun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Chong Ma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
5
|
Graboski AL, Simpson JB, Pellock SJ, Mehta N, Creekmore BC, Ariyarathna Y, Bhatt AP, Jariwala PB, Sekela JJ, Kowalewski ME, Barker NK, Mordant AL, Borlandelli VB, Overkleeft H, Herring LE, Jin J, I James L, Redinbo MR. Advanced piperazine-containing inhibitors target microbial β-glucuronidases linked to gut toxicity. RSC Chem Biol 2024; 5:853-865. [PMID: 39211470 PMCID: PMC11353122 DOI: 10.1039/d4cb00058g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
The gut microbiome plays critical roles in human homeostasis, disease progression, and pharmacological efficacy through diverse metabolic pathways. Gut bacterial β-glucuronidase (GUS) enzymes reverse host phase 2 metabolism, in turn releasing active hormones and drugs that can be reabsorbed into systemic circulation to affect homeostasis and promote toxic side effects. The FMN-binding and loop 1 gut microbial GUS proteins have been shown to drive drug and toxin reactivation. Here we report the structure-activity relationships of two selective piperazine-containing bacterial GUS inhibitors. We explore the potency and mechanism of action of novel compounds using purified GUS enzymes and co-crystal structures. Our results establish the importance of the piperazine nitrogen placement and nucleophilicity as well as the presence of a cyclohexyl moiety appended to the aromatic core. Using these insights, we synthesized an improved microbial GUS inhibitor, UNC10206581, that potently inhibits both the FMN-binding and loop 1 GUS enzymes in the human gut microbiome, does not inhibit bovine GUS, and is non-toxic within a relevant dosing range. Kinetic analyses demonstrate that UNC10206581 undergoes a slow-binding and substrate-dependent mechanism of inhibition similar to that of the parent scaffolds. Finally, we show that UNC10206581 displays potent activity within the physiologically relevant systems of microbial cultures and human fecal protein lysates examined by metagenomic and metaproteomic methods. Together, these results highlight the discovery of more effective bacterial GUS inhibitors for the alleviation of microbe-mediated homeostatic dysregulation and drug toxicities and potential therapeutic development.
Collapse
Affiliation(s)
- Amanda L Graboski
- Department of Pharmacology, University of North Carolina Chapel Hill North Carolina USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
| | - Samuel J Pellock
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
| | - Naimee Mehta
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Benjamin C Creekmore
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
| | - Yamuna Ariyarathna
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Aadra P Bhatt
- Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Parth B Jariwala
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
| | - Josh J Sekela
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
| | - Mark E Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina Chapel Hill North Carolina USA
| | - Natalie K Barker
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Angie L Mordant
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Valentina B Borlandelli
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University Leiden The Netherlands
| | - Hermen Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University Leiden The Netherlands
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Jian Jin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai New York NY USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
- Department of Biochemistry and Biophysics, University of North Carolina Chapel Hill North Carolina USA
| |
Collapse
|
6
|
Brossier C, Jardou M, Janaszkiewicz A, Firoud D, Petit I, Arnion H, Pinault E, Sauvage FL, Druilhe A, Picard N, Di Meo F, Marquet P, Lawson R. Gut microbiota biotransformation of drug glucuronides leading to gastrointestinal toxicity: Therapeutic potential of bacterial β-glucuronidase inhibition in mycophenolate-induced enteropathy. Life Sci 2024; 351:122792. [PMID: 38857657 DOI: 10.1016/j.lfs.2024.122792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
AIMS Drug-induced enteropathy is often associated with the therapeutic use of certain glucuronidated drugs. One such drug is mycophenolic acid (MPA), a well-established immunosuppressant of which gastrointestinal adverse effects are a major concern. The role of bacterial β-glucuronidase (β-G) from the gut microbiota in MPA-induced enteropathy has recently been discovered. Bacterial β-G hydrolyzes MPAG, the glucuronide metabolite of MPA excreted in the bile, leading to the digestive accumulation of MPA that would favor in turn these adverse events. We therefore hypothesized that taming bacterial β-G activity might reduce MPA digestive exposure and prevent its toxicity. MAIN METHODS By using a multiscale approach, we evaluated the effect of increasing concentrations of MPA on intestinal epithelial cells (Caco-2 cell line) viability, proliferation, and migration. Then, we investigated the inhibitory properties of amoxapine, a previously described bacterial β-G inhibitor, by using molecular dynamics simulations, and evaluated its efficiency in blocking MPAG hydrolysis in an Escherichia coli-based β-G activity assay. The pharmacological effect of amoxapine was evaluated in a mouse model. KEY FINDINGS We observed that MPA impairs intestinal epithelial cell homeostasis. Amoxapine efficiently blocks the hydrolysis of MPAG to MPA and significantly reduces digestive exposure to MPA in mice. As a result, administration of amoxapine in MPA-treated mice significantly attenuated gastrointestinal lesions. SIGNIFICANCE Collectively, these results suggest that the digestive accumulation of MPA is involved in the pathophysiology of MPA-gastrointestinal adverse effects. This study provides a proof-of-concept of the therapeutic potential of bacterial β-G inhibitors in glucuronidated drug-induced enteropathy.
Collapse
Affiliation(s)
- Clarisse Brossier
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Manon Jardou
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Angelika Janaszkiewicz
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Djouher Firoud
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Isy Petit
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Hélène Arnion
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Emilie Pinault
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - François-Ludovic Sauvage
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Anne Druilhe
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Nicolas Picard
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France; Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, F-87000 Limoges, France
| | - Florent Di Meo
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Pierre Marquet
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France; Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, F-87000 Limoges, France
| | - Roland Lawson
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France.
| |
Collapse
|
7
|
Li G, Xia LJ, Shu YQ, Wan L, Huang Q, Ma XY, Zhang HY, Zheng ZJ, Wang XR, Zhou SY, Gao A, Ren H, Lian XL, Xu D, Tang SQ, Liao XP, Qiu W, Sun J. Mechanisms of gastrointestinal toxicity in neuromyelitis optica spectrum disorder patients treated with mycophenolate mofetil: insights from a mouse model and human study. Microbiol Spectr 2024; 12:e0430723. [PMID: 38916339 PMCID: PMC11302255 DOI: 10.1128/spectrum.04307-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Mycophenolate mofetil (MMF) is commonly utilized for the treatment of neuromyelitis optica spectrum disorders (NMOSD). However, a subset of patients experience significant gastrointestinal (GI) adverse effects following MMF administration. The present study aims to elucidate the underlying mechanisms of MMF-induced GI toxicity in NMOSD. Utilizing a vancomycin-treated mouse model, we compiled a comprehensive data set to investigate the microbiome and metabolome in the GI tract to elucidate the mechanisms of MMF GI toxicity. Furthermore, we enrolled 17 female NMOSD patients receiving MMF, who were stratified into non-diarrhea NMOSD and diarrhea NMOSD (DNM) groups, in addition to 12 healthy controls. The gut microbiota of stool samples was analyzed using 16S rRNA gene sequencing. Vancomycin administration prevented weight loss and tissue injury caused by MMF, affecting colon metabolomes and microbiomes. Bacterial β-glucuronidase from Bacteroidetes and Firmicutes was linked to intestinal tissue damage. The DNM group showed higher alpha diversity and increased levels of Firmicutes and Proteobacteria. The β-glucuronidase produced by Firmicutes may be important in causing gastrointestinal side effects from MMF in NMOSD treatment, providing useful information for future research on MMF. IMPORTANCE Neuromyelitis optica spectrum disorder (NMOSD) patients frequently endure severe consequences like paralysis and blindness. Mycophenolate mofetil (MMF) effectively addresses these issues, but its usage is hindered by gastrointestinal (GI) complications. Through uncovering the intricate interplay among MMF, gut microbiota, and metabolic pathways, this study identifies specific gut bacteria responsible for metabolizing MMF into a potentially harmful form, thus contributing to GI side effects. These findings not only deepen our comprehension of MMF toxicity but also propose potential strategies, such as inhibiting these bacteria, to mitigate these adverse effects. This insight holds broader implications for minimizing complications in NMOSD patients undergoing MMF therapy.
Collapse
Affiliation(s)
- Gong Li
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Li-Juan Xia
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Qing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Wan
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Qiao Huang
- Department of Neurology, Zhaoqing No. 2 People’s Hospital, Zhaoqing, China
| | - Xiao-Yu Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hai-Yi Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zi-Jian Zheng
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xi-Ran Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Shi-Ying Zhou
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ang Gao
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Hao Ren
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xin-Lei Lian
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Dan Xu
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Sheng-Qiu Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Xiao-Ping Liao
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Sun
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Kazimir A, Götze T, Murganić B, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Bipyraloxifene - a modified raloxifene vector against triple-negative breast cancer. RSC Med Chem 2024; 15:1921-1928. [PMID: 38911151 PMCID: PMC11187558 DOI: 10.1039/d4md00051j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/01/2024] [Indexed: 06/25/2024] Open
Abstract
Raloxifene, a selective oestrogen receptor modulator (SERM), has demonstrated efficacy in the prevention and therapy of oestrogen receptor-positive (ER+) breast cancer, with some degree of effectiveness against triple-negative forms. This suggests the presence of oestrogen receptor-independent pathways in raloxifene-mediated anticancer activity. To enhance the potential of raloxifene against the most aggressive breast cancer cells, hybrid molecules combining the drug with a metal chelator moiety have been developed. In this study, we synthetically modified the structure of raloxifene by incorporating a 2,2'-bipyridine (2,2'-bipy) moiety, resulting in [6-methoxy-2-(4-hydroxyphenyl)benzo[b]thiophen-3-yl]-[4-(2,2'-bipyridin-4'-yl-methoxy)phenyl]methanone (bipyraloxifene). We investigated the cytotoxic activity of both raloxifene and bipyraloxifene against ER+ breast adenocarcinomas, glioblastomas, and a triple-negative breast cancer (TNBC) cell line, elucidating their mode of action against TNBC. Bipyraloxifene maintained a mechanism based on caspase-mediated apoptosis but exhibited significantly higher activity and selectivity compared to the original drug, particularly evident in triple-negative stem-like MDA-MB-231 cells.
Collapse
Affiliation(s)
- Aleksandr Kazimir
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University Johannisallee 29 04103 Leipzig Germany
| | - Tom Götze
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University Johannisallee 29 04103 Leipzig Germany
| | - Blagoje Murganić
- Institute of Nuclear Sciences "Vinča", University of Belgrade 12-14 Mike Petrovića Street Belgrade 11351 Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Belgrade University Bul. despota Stefana 142 Belgrade 11060 Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Belgrade University Bul. despota Stefana 142 Belgrade 11060 Serbia
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University Johannisallee 29 04103 Leipzig Germany
| |
Collapse
|
9
|
Simpson JB, Walker ME, Sekela JJ, Ivey SM, Jariwala PB, Storch CM, Kowalewski ME, Graboski AL, Lietzan AD, Walton WG, Davis KA, Cloer EW, Borlandelli V, Hsiao YC, Roberts LR, Perlman DH, Liang X, Overkleeft HS, Bhatt AP, Lu K, Redinbo MR. Gut microbial β-glucuronidases influence endobiotic homeostasis and are modulated by diverse therapeutics. Cell Host Microbe 2024; 32:925-944.e10. [PMID: 38754417 PMCID: PMC11176022 DOI: 10.1016/j.chom.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Hormones and neurotransmitters are essential to homeostasis, and their disruptions are connected to diseases ranging from cancer to anxiety. The differential reactivation of endobiotic glucuronides by gut microbial β-glucuronidase (GUS) enzymes may influence interindividual differences in the onset and treatment of disease. Using multi-omic, in vitro, and in vivo approaches, we show that germ-free mice have reduced levels of active endobiotics and that distinct gut microbial Loop 1 and FMN GUS enzymes drive hormone and neurotransmitter reactivation. We demonstrate that a range of FDA-approved drugs prevent this reactivation by intercepting the catalytic cycle of the enzymes in a conserved fashion. Finally, we find that inhibiting GUS in conventional mice reduces free serotonin and increases its inactive glucuronide in the serum and intestines. Our results illuminate the indispensability of gut microbial enzymes in sustaining endobiotic homeostasis and indicate that therapeutic disruptions of this metabolism promote interindividual response variabilities.
Collapse
Affiliation(s)
- Joshua B Simpson
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Morgan E Walker
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Joshua J Sekela
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Samantha M Ivey
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Parth B Jariwala
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Cameron M Storch
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Mark E Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Amanda L Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Adam D Lietzan
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Kacey A Davis
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Erica W Cloer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valentina Borlandelli
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lee R Roberts
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - David H Perlman
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Xue Liang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Hermen S Overkleeft
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Aadra P Bhatt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Chen L, Hou XD, Zhu GH, Huang J, Guo ZB, Zhang YN, Sun JM, Ma LJ, Zhang SD, Hou J, Ge GB. Discovery of a botanical compound as a broad-spectrum inhibitor against gut microbial β-glucuronidases from the Tibetan medicine Rhodiola crenulata. Int J Biol Macromol 2024; 267:131150. [PMID: 38556236 DOI: 10.1016/j.ijbiomac.2024.131150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Gut microbial β-glucuronidases (gmβ-GUS) played crucial roles in regulating a variety of endogenous substances and xenobiotics on the circulating level, thus had been recognized as key modulators of drug toxicity and human diseases. Inhibition or inactivation of gmβ-GUS enzymes has become a promising therapeutic strategy to alleviate drug-induced intestinal toxicity. Herein, the Rhodiola crenulata extract (RCE) was found with potent and broad-spectrum inhibition on multiple gmβ-GUS enzymes. Subsequently, the anti-gmβ-GUS activities of the major constituents in RCE were tested and the results showed that 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose (PGG) acted as a strong and broad-spectrum inhibitor on multiple gmβ-GUS (including EcGUS, CpGUS, SaGUS, and EeGUS). Inhibition kinetic assays demonstrated that PGG effectively inhibited four gmβ-GUS in a non-competitive manner, with the Ki values ranging from 0.12 μM to 1.29 μM. Docking simulations showed that PGG could tightly bound to the non-catalytic sites of various gmβ-GUS, mainly via hydrogen bonding and aromatic interactions. It was also found that PGG could strongly inhibit the total gmβ-GUS activity in mice feces, with the IC50 value of 1.24 μM. Collectively, our findings revealed that RCE and its constituent PGG could strongly inhibit multiple gmβ-GUS enzymes, suggesting that RCE and PGG could be used for alleviating gmβ-GUS associated enterotoxicity.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xu-Dong Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian Huang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacology and Toxicology Division, Shanghai Institute of Food and Drug Control, Shanghai 201203, China
| | - Zhao-Bin Guo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ya-Ni Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-Ming Sun
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Li-Juan Ma
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shou-De Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jie Hou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
11
|
Verdegaal AA, Goodman AL. Integrating the gut microbiome and pharmacology. Sci Transl Med 2024; 16:eadg8357. [PMID: 38295186 DOI: 10.1126/scitranslmed.adg8357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
The gut microbiome harbors trillions of organisms that contribute to human health and disease. These bacteria can also affect the properties of medical drugs used to treat these diseases, and drugs, in turn, can reshape the microbiome. Research addressing interdependent microbiome-host-drug interactions thus has broad impact. In this Review, we discuss these interactions from the perspective of drug bioavailability, absorption, metabolism, excretion, toxicity, and drug-mediated microbiome modulation. We survey approaches that aim to uncover the mechanisms underlying these effects and opportunities to translate this knowledge into new strategies to improve the development, administration, and monitoring of medical drugs.
Collapse
Affiliation(s)
- Andrew A Verdegaal
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
12
|
Martinelli F, Thiele I. Microbial metabolism marvels: a comprehensive review of microbial drug transformation capabilities. Gut Microbes 2024; 16:2387400. [PMID: 39150897 PMCID: PMC11332652 DOI: 10.1080/19490976.2024.2387400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/18/2024] Open
Abstract
This comprehensive review elucidates the pivotal role of microbes in drug metabolism, synthesizing insights from an exhaustive analysis of over two hundred papers. Employing a structural classification system grounded in drug atom involvement, the review categorizes the microbiome-mediated drug-metabolizing capabilities of over 80 drugs. Additionally, it compiles pharmacodynamic and enzymatic details related to these reactions, striving to include information on encoding genes and specific involved microorganisms. Bridging biochemistry, pharmacology, genetics, and microbiology, this review not only serves to consolidate diverse research fields but also highlights the potential impact of microbial drug metabolism on future drug design and in silico studies. With a visionary outlook, it also lays the groundwork for personalized medicine interventions, emphasizing the importance of interdisciplinary collaboration for advancing drug development and enhancing therapeutic strategies.
Collapse
Affiliation(s)
- Filippo Martinelli
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
| | - Ines Thiele
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
- School of Microbiology, University of Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
13
|
Nenu I, Baldea I, Coadă CA, Crăciun RC, Moldovan R, Tudor D, Petrushev B, Toma VA, Ştefanescu H, Procopeţ B, Spârchez Z, Vodnar D, Lenghel M, Clichici S, Filip GA. Lactobacillus rhamnosus probiotic treatment modulates gut and liver inflammatory pathways in a hepatocellular carcinoma murine model. A preliminary study. Food Chem Toxicol 2024; 183:114314. [PMID: 38052407 DOI: 10.1016/j.fct.2023.114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/18/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a growing global concern with an increasing incidence rate. The intestinal microbiota has been identified as a potential culprit in modulating the effects of antitumoral drugs. We aimed to assess the impact of adding Lactobacillus rhamnosus probiotic to regorafenib in mice with HCC. METHODS Cirrhosis and HCCs were induced in 56 male Swiss mice via diethylnitrosamine injection and carbon tetrachloride administration. Mice were divided into four groups: treated with vehicle (VC), regorafenib (Rego), L. rhamnosus probiotic, and a combination of regorafenib and probiotic (Rego-Pro). After 3 weeks of treatment, liver and intestinal fragments were collected for analysis. RESULTS Regorafenib elevated gut permeability, an effect mitigated by probiotic intervention, which exhibited a notable correlation with reduced inflammation (p < 0.01). iNOS levels were also reduced by adding the probiotic with respect to the mice treated with regorafenib only (p < 0.001). Notably, regorafenib substantially increased IL-6, TNF-a and TLR4 in intestinal fragments (p < 0.01). The administration of the probiotic effectively restored IL-6 to its initial levels (p < 0.001). CONCLUSION Reducing systemic and intestinal inflammation by administering L. rhamnosus probiotic may alleviate tumoral resistance and systemic adverse effects.
Collapse
Affiliation(s)
- Iuliana Nenu
- Department of Functional Sciences, Physiology Discipline, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania.
| | - Ioana Baldea
- Department of Functional Sciences, Physiology Discipline, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | | | - Rareş Călin Crăciun
- Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania.
| | - Remus Moldovan
- Department of Functional Sciences, Physiology Discipline, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Diana Tudor
- Department of Functional Sciences, Physiology Discipline, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Bobe Petrushev
- Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania.
| | - Vlad Alexandru Toma
- Department of Molecular Biology and Biotechnologies, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Department of Experimental Biology and Biochemistry, Institute of Biological Research, Branch of NIRDBS, Cluj-Napoca, Romania; Department of Molecular and Biomolecular Physics, NIRD for Isotopic and Molecular Technologies, Cluj-Napoca, Romania.
| | - Horia Ştefanescu
- Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania.
| | - Bogdan Procopeţ
- Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania.
| | - Zeno Spârchez
- Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania.
| | - Dan Vodnar
- Department of Food Science University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.
| | - Manuela Lenghel
- Radiology Department, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Simona Clichici
- Department of Functional Sciences, Physiology Discipline, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Gabriela Adriana Filip
- Department of Functional Sciences, Physiology Discipline, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
14
|
Chu XY, Ho PC. Intestinal Microbiome and Its Impact on Metabolism and Safety of Drugs. ORAL BIOAVAILABILITY AND DRUG DELIVERY 2023:483-500. [DOI: 10.1002/9781119660699.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Zhao Q, Chen Y, Huang W, Zhou H, Zhang W. Drug-microbiota interactions: an emerging priority for precision medicine. Signal Transduct Target Ther 2023; 8:386. [PMID: 37806986 PMCID: PMC10560686 DOI: 10.1038/s41392-023-01619-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Individual variability in drug response (IVDR) can be a major cause of adverse drug reactions (ADRs) and prolonged therapy, resulting in a substantial health and economic burden. Despite extensive research in pharmacogenomics regarding the impact of individual genetic background on pharmacokinetics (PK) and pharmacodynamics (PD), genetic diversity explains only a limited proportion of IVDR. The role of gut microbiota, also known as the second genome, and its metabolites in modulating therapeutic outcomes in human diseases have been highlighted by recent studies. Consequently, the burgeoning field of pharmacomicrobiomics aims to explore the correlation between microbiota variation and IVDR or ADRs. This review presents an up-to-date overview of the intricate interactions between gut microbiota and classical therapeutic agents for human systemic diseases, including cancer, cardiovascular diseases (CVDs), endocrine diseases, and others. We summarise how microbiota, directly and indirectly, modify the absorption, distribution, metabolism, and excretion (ADME) of drugs. Conversely, drugs can also modulate the composition and function of gut microbiota, leading to changes in microbial metabolism and immune response. We also discuss the practical challenges, strategies, and opportunities in this field, emphasizing the critical need to develop an innovative approach to multi-omics, integrate various data types, including human and microbiota genomic data, as well as translate lab data into clinical practice. To sum up, pharmacomicrobiomics represents a promising avenue to address IVDR and improve patient outcomes, and further research in this field is imperative to unlock its full potential for precision medicine.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China.
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, PR China.
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, PR China.
- Central Laboratory of Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Changsha, 410013, PR China.
| |
Collapse
|
16
|
Lietzan AD, Simpson JB, Walton WG, Jariwala PB, Xu Y, Boynton MH, Liu J, Redinbo MR. Microbial β-glucuronidases drive human periodontal disease etiology. SCIENCE ADVANCES 2023; 9:eadg3390. [PMID: 37146137 PMCID: PMC10162664 DOI: 10.1126/sciadv.adg3390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/29/2023] [Indexed: 05/07/2023]
Abstract
Periodontitis is a chronic inflammatory disease associated with persistent oral microbial dysbiosis. The human β-glucuronidase (GUS) degrades constituents of the periodontium and is used as a biomarker for periodontitis severity. However, the human microbiome also encodes GUS enzymes, and the role of these factors in periodontal disease is poorly understood. Here, we define the 53 unique GUSs in the human oral microbiome and examine diverse GUS orthologs from periodontitis-associated pathogens. Oral bacterial GUS enzymes are more efficient polysaccharide degraders and processers of biomarker substrates than the human enzyme, particularly at pHs associated with disease progression. Using a microbial GUS-selective inhibitor, we show that GUS activity is reduced in clinical samples obtained from individuals with untreated periodontitis and that the degree of inhibition correlates with disease severity. Together, these results establish oral GUS activity as a biomarker that captures both host and microbial contributions to periodontitis, facilitating more efficient clinical monitoring and treatment paradigms for this common inflammatory disease.
Collapse
Affiliation(s)
- Adam D. Lietzan
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B. Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William G. Walton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Parth B. Jariwala
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yongmei Xu
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marcella H. Boynton
- Division of General Medicine and Clinical Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- North Carolina Translational and Clinical Sciences Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jian Liu
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew R. Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Meng J, Abu YF, Zhang Y, Zhou Y, Xie Y, Yan Y, Tao J, Ramakrishnan S, Chen C, Roy S. Opioid-induced microbial dysbiosis disrupts irinotecan (CPT-11) metabolism and increases gastrointestinal toxicity in a murine model. Br J Pharmacol 2023; 180:1362-1378. [PMID: 36562107 PMCID: PMC10089971 DOI: 10.1111/bph.16020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Opioids are commonly used for the management of cancer-associated pain and chemotherapy-induced diarrhoea. The chemotherapeutic irinotecan (CPT-11) causes severe gastrointestinal (GI) toxicity due to deconjugation of inactive metabolite SN-38 glucuronide (SN-38G) by bacterial β-glucuronidases to the active 7-ethyl-10-hydroxycamptothecin (SN-38). Opioids are known to cause gut microbial dysbiosis, this study evaluated whether CPT-11 anti-tumour efficacy and GI toxicity are exacerbated by opioid co-administration. EXPERIMENTAL APPROACH Eight-week-old C57BL/6 male mice were co-administration with CPT-11 ± opioid. 16S rRNA sequencing was used for gut microbiome analysis. LC-MS analyses of plasma and intestinal extracts were performed to investigate the pharmacokinetic profile of CPT-11. Histological analysis and quantitative real-time polymerase chain reaction were used to determine the severity of intestinal tissue damage. Human liver microsome In vitro assay was performed to confirm the effects of opioids on CPT-11 metabolism. KEY RESULTS Gut microbiome analysis showed that morphine treatment induced enrichment of β-glucuronidase-producing bacteria in the intestines of CPT-11-treated mice, resulting in SN-38 accumulation and exacerbation of GI toxicity in the small intestine. Oral administration of both antibiotics and glucuronidase inhibitor protected mice against GI toxicity induced with CPT-11 and morphine co-administration, implicating a microbiome-dependent mechanism. Additionally, morphine and loperamide decreased the plasma concentration of SN-38 and compromised CPT-11 anti-tumour efficacy, this seemed to be microbiome independent. CONCLUSION AND IMPLICATIONS Gut microbiota play a significant role in opioid and chemotherapeutic agent drug-drug interactions. Inhibition of gut microbial glucuronidase may also prevent adverse GI effects of CPT-11 in patients on opioids.
Collapse
Affiliation(s)
- Jingjing Meng
- Department of Surgery, University of Miami, Miami, FL 33136
| | - Yaa F. Abu
- Department of Microbiology and Immunology, University of Miami, Miami, FL 33136
| | - Yue Zhang
- Department of Surgery, University of Miami, Miami, FL 33136
| | - Yuyin Zhou
- Department of Food Science and Nutrition, University of Minnesota, MN 55108
| | - Yun Xie
- Department of Food Science and Nutrition, University of Minnesota, MN 55108
| | - Yan Yan
- Department of Surgery, University of Miami, Miami, FL 33136
| | - Junyi Tao
- Department of Surgery, University of Miami, Miami, FL 33136
| | | | - Chi Chen
- Department of Microbiology and Immunology, University of Miami, Miami, FL 33136
| | - Sabita Roy
- Department of Surgery, University of Miami, Miami, FL 33136
| |
Collapse
|
18
|
Woo AYM, Aguilar Ramos MA, Narayan R, Richards-Corke KC, Wang ML, Sandoval-Espinola WJ, Balskus EP. Targeting the human gut microbiome with small-molecule inhibitors. NATURE REVIEWS. CHEMISTRY 2023; 7:319-339. [PMID: 37117817 DOI: 10.1038/s41570-023-00471-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 04/30/2023]
Abstract
The human gut microbiome is a complex microbial community that is strongly linked to both host health and disease. However, the detailed molecular mechanisms underlying the effects of these microorganisms on host biology remain largely uncharacterized. The development of non-lethal, small-molecule inhibitors that target specific gut microbial activities enables a powerful but underutilized approach to studying the gut microbiome and a promising therapeutic strategy. In this Review, we will discuss the challenges of studying this microbial community, the historic use of small-molecule inhibitors in microbial ecology, and recent applications of this strategy. We also discuss the evidence suggesting that host-targeted drugs can affect the growth and metabolism of gut microbes. Finally, we address the issues of developing and implementing microbiome-targeted small-molecule inhibitors and define important future directions for this research.
Collapse
Affiliation(s)
- Amelia Y M Woo
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
| | | | - Rohan Narayan
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
| | | | - Michelle L Wang
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
| | - Walter J Sandoval-Espinola
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, Departamento de Biotecnología, Laboratorio de Biotecnología Microbiana, San Lorenzo, Paraguay
| | - Emily P Balskus
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
19
|
Beliaeva MA, Wilmanns M, Zimmermann M. Decipher enzymes from human microbiota for drug discovery and development. Curr Opin Struct Biol 2023; 80:102567. [PMID: 36963164 DOI: 10.1016/j.sbi.2023.102567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 03/26/2023]
Abstract
The human microbiota plays an important role in human health and contributes to the metabolism of therapeutic drugs affecting their potency. However, the current knowledge on human gut bacterial metabolism is limited and lacks an understanding of the underlying mechanisms of observed drug biotransformations. Despite the complexity of the gut microbial community, genomic and metagenomic sequencing provides insights into the diversity of chemical reactions that can be carried out by the microbiota and poses new challenges to functionally annotate thousands of bacterial enzymes. Here, we outline methods to systematically address the structural and functional space of the human microbiome, highlighting a combination of in silico and in vitro approaches. Systematic knowledge about microbial enzymes could eventually be applied for personalized therapy, the development of prodrugs and modulators of unwanted bacterial activity, and the further discovery of new antibiotics.
Collapse
Affiliation(s)
- Mariia A Beliaeva
- European Molecular Biology Laboratory, Heidelberg, Germany; European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany. https://twitter.com/@MariiaABeliaeva
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany. https://twitter.com/@WilmannsGroup
| | | |
Collapse
|
20
|
Simpson JB, Redinbo MR. Multi-omic analysis of host-microbial interactions central to the gut-brain axis. Mol Omics 2022; 18:896-907. [PMID: 36169030 DOI: 10.1039/d2mo00205a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The gut microbiota impact numerous aspects of human physiology, including the central nervous system (CNS). Emerging work is now focusing on the microbial factors underlying the bi-directional communication network linking host and microbial systems within the gastrointestinal tract to the CNS, the "gut-brain axis". Neurotransmitters are key coordinators of this network, and their dysregulation has been linked to numerous neurological disease states. As the bioavailability of neurotransmitters is modified by gut microbes, it is critical to unravel the influence of the microbiota on neurotransmitters in the context of the gut-brain axis. Here we review foundational studies that defined molecular relationships between the microbiota, neurotransmitters, and the gut-brain axis. We examine links between the gut microbiome, behavior, and neurological diseases, as well as microbial influences on neurotransmitter bioavailability and physiology. Finally, we review multi-omics technologies uniquely applicable to this area, including high-throughput genetics, modern metabolomics, structure-guided metagenomics, targeted proteomics, and chemogenetics. Interdisciplinary studies will continue to drive the discovery of molecular mechanisms linking the gut microbiota to clinical manifestations of neurobiology.
Collapse
Affiliation(s)
- Joshua B Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, USA
- Department of Biochemistry & Biophysics, Department of Microbiology & Immunology, and the Integrated Program in Biological & Genome Sciences, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
21
|
Gao S, Sun R, Singh R, Yu So S, Chan CTY, Savidge T, Hu M. The role of gut microbial β-glucuronidase in drug disposition and development. Drug Discov Today 2022; 27:103316. [PMID: 35820618 PMCID: PMC9717552 DOI: 10.1016/j.drudis.2022.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Gut microbial β-glucuronidase (gmGUS) is involved in the disposition of many endogenous and exogenous compounds. Preclinical studies have shown that inhibiting gmGUS activity affects drug disposition, resulting in reduced toxicity in the gastrointestinal tract (GIT) and enhanced systemic efficacy. Additionally, manipulating gmGUS activity is expected to be effective in preventing/treating local or systemic diseases. Although results from animal studies are promising, challenges remain in developing drugs by targeting gmGUS. Here, we review the role of gmGUS in host health under physiological and pathological conditions, the impact of gmGUS on the disposition of phenolic compounds, models used to study gmGUS activity, and the perspectives and challenges in developing drugs by targeting gmGUS.
Collapse
Affiliation(s)
- Song Gao
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA.
| | - Rongjin Sun
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA
| | - Rashim Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA; Sanarentero LLC, 514 N. Elder Grove Drive, Pearland, TX 77584, USA
| | - Sik Yu So
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX; Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX
| | - Clement T Y Chan
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA; BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX; Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA.
| |
Collapse
|
22
|
Jardou M, Brossier C, Guiyedi K, Faucher Q, Lawson R. Pharmacological hypothesis: A recombinant probiotic for taming bacterial β-glucuronidase in drug-induced enteropathy. Pharmacol Res Perspect 2022; 10:e00998. [PMID: 36082825 PMCID: PMC9460963 DOI: 10.1002/prp2.998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 11/07/2022] Open
Abstract
Advances in pharmacomicrobiomics have shed light on the pathophysiology of drug‐induced enteropathy associated with the therapeutic use of certain non‐steroidal anti‐inflammatory drugs, anticancer chemotherapies and immunosuppressants. The toxicity pathway results from the post‐glucuronidation release and digestive accumulation of an aglycone generated in the context of intestinal dysbiosis characterized by the expansion of β‐glucuronidase‐expressing bacteria. The active aglycone could trigger direct or indirect inflammatory signaling on the gut epithelium. Therefore, taming bacterial β‐glucuronidase (GUS) activity is a druggable target for preventing drug‐induced enteropathy. In face of the limitations of antibiotic strategies that can worsen intestinal dysbiosis and impair immune functions, we hereby propose the use of a recombinant probiotic capable of mimicking repressive conditions of GUS through an inducible plasmid vector.
Collapse
Affiliation(s)
- Manon Jardou
- INSERM, Univ. Limoges, Pharmacology & Transplantation, U1248, Limoges, France
| | - Clarisse Brossier
- INSERM, Univ. Limoges, Pharmacology & Transplantation, U1248, Limoges, France
| | - Kenza Guiyedi
- INSERM, Univ. Limoges, Pharmacology & Transplantation, U1248, Limoges, France
| | - Quentin Faucher
- INSERM, Univ. Limoges, Pharmacology & Transplantation, U1248, Limoges, France
| | - Roland Lawson
- INSERM, Univ. Limoges, Pharmacology & Transplantation, U1248, Limoges, France
| |
Collapse
|
23
|
Wang P, Wu R, Jia Y, Tang P, Wei B, Zhang Q, Wang VYF, Yan R. Inhibition and structure-activity relationship of dietary flavones against three Loop 1-type human gut microbial β-glucuronidases. Int J Biol Macromol 2022; 220:1532-1544. [PMID: 36096258 DOI: 10.1016/j.ijbiomac.2022.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 02/07/2023]
Abstract
Gut microbial β-glucuronidases (GUSs) inhibition is a new approach for managing some diseases and medication therapy. However, the structural and functional complexity of GUSs have posed tremendous challenges to discover specific or broad-spectrum GUSs inhibitors using Escherichia coli GUS (EcoGUS) alone. This study first assessed the effects of twenty-one dietary flavones employing three Loop 1-type GUSs of different taxonomic origins, which were considered to be the main GUSs involved in deglucuronidation of small molecules, on p-nitrophenyl-β-D-glucuronide hydrolysis and a structure-activity relationship is preliminarily proposed based on both in vitro assays and a docking study with representative compounds. EcoGUS and Staphylococcus pasteuri GUS showed largely similar inhibition propensities with potencies positively correlating with the total hydroxyl groups and those at ring B of flavones, while docking results revealed strong interactions developed via ring A and/or C. Streptococcus agalactiae GUS (SagaGUS) exhibited distinct inhibition propensities, displaying late-onset inhibition and steep dose-response profiles with most tested compounds. The α-helix in loop 1 region of SagaGUS which causes spatial hindrance but offers a hydrophobic surface for contacting with the carbonyl group on ring C of flavones is believed to be essential for the allosteric inhibition of SagaGUS. Taken together, the study with a series of flavones revealed varied preferences for GUSs belonging to the same Loop 1-type, highlighting the necessity of adopting multi-GUSs instead of EcoGUS alone for screening broad-spectrum GUSs inhibitors or tailoring the inhibition based on specific GUS structure.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao.
| | - Rongrong Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao.
| | - Yifei Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Puipui Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Bin Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao.
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao.
| | | | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao.
| |
Collapse
|
24
|
Zhou K, Deng N, Yi X, Cai Y, Peng M, Xiao N. Baohe pill decoction for diarrhea induced by high-fat and high-protein diet is associated with the structure of lactase-producing bacterial community. Front Cell Infect Microbiol 2022; 12:1004845. [PMID: 36093186 PMCID: PMC9458856 DOI: 10.3389/fcimb.2022.1004845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 01/30/2023] Open
Abstract
Background This study investigated the effects of Baohe pill decoction on the diversity and community composition of lactase-producing bacteria in the intestinal contents of mice with diarrhea induced by high-fat and high-protein diet, which provided an experimental basis for the study on the therapeutic mechanism of Baohe pill decoction. Materials and methods The Traditional Chinese Medicine Systems Pharmacology (TCMSP), DisGeNET, UniProt, National Center for Biotechnology Information (NCBI), and GeneCards databases were used to collect the potential targets with active ingredients of Baohe pill decoction, diarrhea, and lactase, and then construct correlation networks. Fifteen Kunming mice were randomly divided into the control group (CN), natural recovery group (NR), and Baohe pill decoction treatment group (BHP), with five mice in each group. After constructing a mouse diarrhea model by HFHPD induction, BHP was gavaged with Baohe pill decoction, and the other groups were gavaged with distilled water of equal. The intestinal contents were collected from ileal to jejunal and analyzed using metagenomic sequencing to characterize the intestinal content of lactase-producing bacteria in mice. Results The core active ingredients related to diarrhea in Baohe pill decoction were quercetin, luteolin, kaempferol, forsythin, and wogonin. And there was no intersection between the potential targets with the active ingredient of Baohe pill, lactase, and diarrhea. After the intervention of Baohe pill decoction, the Observed species, Chao1 index, and Operational Taxonomic Units (OTU) number increased in BHP (P > 0.05), while the Pielous evenness and Shannon index decreased (P > 0.05). In Beta diversity, the community structure of the NR was significantly different from CN and BHP (P < 0.05), and the community structure of the CN was not significant difference from BHP (P > 0.05). Compared to NR, the relative abundance of Bifidobacterium and Amycolatopsis increased, while the relative abundance of Lachnoclostridium, Sinorhizobium, Cedecea, and Escherichia decreased in BHP, but none of the significant differences (P > 0.05). Conclusion The therapeutic effect of Baohe pill decoction on diarrhea induced by HFHPD does not appear to involve the body’s lactase gene targets directly, but is associated with the change of the construction of lactase-producing bacterial communities.
Collapse
Affiliation(s)
- Kang Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin Yi
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ying Cai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Maijiao Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Maijiao Peng, ; Nenqun Xiao,
| | - Nenqun Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Maijiao Peng, ; Nenqun Xiao,
| |
Collapse
|
25
|
Ge Y, Ma Y, Zhao M, Wei J, Wu X, Zhang Z, Yang H, Lei H, Wu B. Exploring gabosine and chlorogentisyl alcohol derivatives from a marine-derived fungus as EcGUS inhibitors with informatic assisted approaches. Eur J Med Chem 2022; 242:114699. [PMID: 36001934 DOI: 10.1016/j.ejmech.2022.114699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 11/04/2022]
Abstract
β-Glucuronidase catalyzes the cleavage of glucuronosyl-O-bonds, whose inhibitors reduce the level of toxic substances present in the intestine caused by anti-cancer and anti-inflammatory therapies. Herein, we presented a new tool, Bioactive Fractions Filtering Platform (BFFP), which is able to reliably discern active candidate node from crude extracts. The source code for the BFFP is available on GitHub (https://github.com/BioGavin/msbff). With the assistant of BFFP, 25 gabosine and chlorogentisyl alcohol derivatives including 19 new compounds were isolated from a marine-derived fungus Epicoccum sp. GST-5. Compounds 7, 9-15 possessed an unusual hybrid skeleton of gabosine and chlorogentisyl alcohol units. Compounds 9-12, 16 and 17 possessed a novel three-membered spiral ring skeleton with one/two gabosine and one/two chlorogentisyl alcohol units. Compound 25 represented new gabosine-derived skeleton possessing an unusual 6/6/6/5/6 condensed ring system. All isolates were evaluated for in vitro E. coli β-glucuronidase (EcGUS) inhibitory activity. 14 Compounds demonstrated superior inhibitory activity (IC50 = 0.24-4.61 μM) to that of standard d-saccharic acid 1,4-lactone (DSL, IC50 = 56.74 ± 4.01 μM). Compounds with chlorogentisyl alcohol moiety, such as 17 (IC50 = 0.24 ± 0.02 μM) and 1 (IC50 = 0.74 ± 0.03 μM), exhibited the most potent inhibitory activity. Furthermore, literature based QSAR profiling by applying PCA and OPLS analysis was carried out to analyze the features of compounds against EcGUS, revealing that the introduction of substituents able to form polar interactions with binding sites of receptor would lead to more active structures.
Collapse
Affiliation(s)
- Yichao Ge
- Ocean College, Zhejiang University, Zhoushan, 321000, China.
| | - Yihan Ma
- Ocean College, Zhejiang University, Zhoushan, 321000, China.
| | - Meilu Zhao
- Ocean College, Zhejiang University, Zhoushan, 321000, China.
| | - Jihua Wei
- Ocean College, Zhejiang University, Zhoushan, 321000, China.
| | - Xiaodan Wu
- Center of Analysis, Zhejiang University, Hangzhou, 310058, China.
| | - Zunjing Zhang
- Lishui Hospital of Traditional Chinese Medicine, Lishui, 323000, China.
| | - Han Yang
- Ocean College, Zhejiang University, Zhoushan, 321000, China.
| | - Houxing Lei
- Lishui Hospital of Traditional Chinese Medicine, Lishui, 323000, China.
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan, 321000, China.
| |
Collapse
|
26
|
Walker ME, Simpson JB, Redinbo MR. A structural metagenomics pipeline for examining the gut microbiome. Curr Opin Struct Biol 2022; 75:102416. [PMID: 35841748 PMCID: PMC10039758 DOI: 10.1016/j.sbi.2022.102416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
Metagenomic sequencing data provide a rich resource from which to expand our understanding of differential protein functions involved in human health. Here, we outline a pipeline that combines microbial whole genome sequencing with protein structure data to yield a structural metagenomics-informed atlas of microbial enzyme families of interest. Visualizing metagenomics data through a structural lens facilitates downstream studies including targeted inhibition and probe-based proteomics to define at the molecular level how different enzyme orthologs impact in vivo function. Application of this pipeline to gut microbial enzymes like glucuronidases, TMA lyases, and bile salt hydrolases is expected to pinpoint their involvement in health and disease and may aid in the development of therapeutics that target specific enzymes within the microbiome.
Collapse
Affiliation(s)
- Morgan E Walker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrated Program for Biological and Genome Sciences, And Departments of Biochemistry and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Challa AP, Hu X, Zhang YQ, Hymes J, Wallace BD, Karavadhi S, Sun H, Patnaik S, Hall MD, Shen M. Virtual Screening for the Discovery of Microbiome β-Glucuronidase Inhibitors to Alleviate Cancer Drug Toxicity. J Chem Inf Model 2022; 62:1783-1793. [PMID: 35357819 PMCID: PMC9853918 DOI: 10.1021/acs.jcim.1c01414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite the potency of most first-line anti-cancer drugs, nonadherence to these drug regimens remains high and is attributable to the prevalence of "off-target" drug effects that result in serious adverse events (SAEs) like hair loss, nausea, vomiting, and diarrhea. Some anti-cancer drugs are converted by liver uridine 5'-diphospho-glucuronosyltransferases through homeostatic host metabolism to form drug-glucuronide conjugates. These sugar-conjugated metabolites are generally inactive and can be safely excreted via the biliary system into the gastrointestinal tract. However, β-glucuronidase (βGUS) enzymes expressed by commensal gut bacteria can remove the glucuronic acid moiety, producing the reactivated drug and triggering dose-limiting side effects. Small-molecule βGUS inhibitors may reduce this drug-induced gut toxicity, allowing patients to complete their full course of treatment. Herein, we report the discovery of novel chemical series of βGUS inhibitors by structure-based virtual high-throughput screening (vHTS). We developed homology models for βGUS and applied them to large-scale vHTS against nearly 400,000 compounds within the chemical libraries of the National Center for Advancing Translational Sciences at the National Institutes of Health. From the vHTS results, we cherry-picked 291 compounds via a multifactor prioritization procedure, providing 69 diverse compounds that exhibited positive inhibitory activity in a follow-up βGUS biochemical assay in vitro. Our findings correspond to a hit rate of 24% and could inform the successful downstream development of a therapeutic adjunct that targets the human microbiome to prevent SAEs associated with first-line, standard-of-care anti-cancer drugs.
Collapse
Affiliation(s)
- Anup P. Challa
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA 37212
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA 37203
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA 20850
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA 20850
| | - Ya-Qin Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA 20850
| | - Jeffrey Hymes
- Symberix, Inc., 4819 Emperor Blvd., Suite 400, Durham, NC, USA 27703
| | - Bret D. Wallace
- Symberix, Inc., 4819 Emperor Blvd., Suite 400, Durham, NC, USA 27703
| | - Surendra Karavadhi
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA 20850
| | - Hongmao Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA 20850
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA 20850
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA 20850
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA 20850
| |
Collapse
|
28
|
Wardman JF, Bains RK, Rahfeld P, Withers SG. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat Rev Microbiol 2022; 20:542-556. [PMID: 35347288 DOI: 10.1038/s41579-022-00712-1] [Citation(s) in RCA: 224] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
The 1013-1014 microorganisms present in the human gut (collectively known as the human gut microbiota) dedicate substantial percentages of their genomes to the degradation and uptake of carbohydrates, indicating the importance of this class of molecules. Carbohydrates function not only as a carbon source for these bacteria but also as a means of attachment to the host, and a barrier to infection of the host. In this Review, we focus on the diversity of carbohydrate-active enzymes (CAZymes), how gut microorganisms use them for carbohydrate degradation, the different chemical mechanisms of these CAZymes and the roles that these microorganisms and their CAZymes have in human health and disease. We also highlight examples of how enzymes from this treasure trove have been used in manipulation of the microbiota for improved health and treatment of disease, in remodelling the glycans on biopharmaceuticals and in the potential production of universal O-type donor blood.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rajneesh K Bains
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Rahfeld
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada. .,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
29
|
Zhang J, Walker ME, Sanidad KZ, Zhang H, Liang Y, Zhao E, Chacon-Vargas K, Yeliseyev V, Parsonnet J, Haggerty TD, Wang G, Simpson JB, Jariwala PB, Beaty VV, Yang J, Yang H, Panigrahy A, Minter LM, Kim D, Gibbons JG, Liu L, Li Z, Xiao H, Borlandelli V, Overkleeft HS, Cloer EW, Major MB, Goldfarb D, Cai Z, Redinbo MR, Zhang G. Microbial enzymes induce colitis by reactivating triclosan in the mouse gastrointestinal tract. Nat Commun 2022; 13:136. [PMID: 35013263 PMCID: PMC8748916 DOI: 10.1038/s41467-021-27762-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Emerging research supports that triclosan (TCS), an antimicrobial agent found in thousands of consumer products, exacerbates colitis and colitis-associated colorectal tumorigenesis in animal models. While the intestinal toxicities of TCS require the presence of gut microbiota, the molecular mechanisms involved have not been defined. Here we show that intestinal commensal microbes mediate metabolic activation of TCS in the colon and drive its gut toxicology. Using a range of in vitro, ex vivo, and in vivo approaches, we identify specific microbial β-glucuronidase (GUS) enzymes involved and pinpoint molecular motifs required to metabolically activate TCS in the gut. Finally, we show that targeted inhibition of bacterial GUS enzymes abolishes the colitis-promoting effects of TCS, supporting an essential role of specific microbial proteins in TCS toxicity. Together, our results define a mechanism by which intestinal microbes contribute to the metabolic activation and gut toxicity of TCS, and highlight the importance of considering the contributions of the gut microbiota in evaluating the toxic potential of environmental chemicals.
Collapse
Affiliation(s)
- Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Morgan E Walker
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yanshan Liang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Ermin Zhao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | | | - Vladimir Yeliseyev
- Massachusetts Host-Microbiota Center, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Julie Parsonnet
- Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA, USA
| | - Thomas D Haggerty
- Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA, USA
| | - Guangqiang Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Joshua B Simpson
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Parth B Jariwala
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Violet V Beaty
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jun Yang
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Haixia Yang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Anand Panigrahy
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Lisa M Minter
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, USA
| | - John G Gibbons
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - LinShu Liu
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, USA
| | - Zhengze Li
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Valentina Borlandelli
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Hermen S Overkleeft
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Erica W Cloer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, and Department of Otolaryngology, Washington University, St. Louis, MO, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Institute for Informatics, Washington University, St. Louis, MO, USA
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China.
| | - Matthew R Redinbo
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA.
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
30
|
Simpson JB, Sekela JJ, Graboski AL, Borlandelli VB, Bivins MM, Barker NK, Sorgen AA, Mordant AL, Johnson RL, Bhatt AP, Fodor AA, Herring LE, Overkleeft H, Lee JR, Redinbo MR. Metagenomics combined with activity-based proteomics point to gut bacterial enzymes that reactivate mycophenolate. Gut Microbes 2022; 14:2107289. [PMID: 35953888 PMCID: PMC9377255 DOI: 10.1080/19490976.2022.2107289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mycophenolate mofetil (MMF) is an important immunosuppressant prodrug prescribed to prevent organ transplant rejection and to treat autoimmune diseases. MMF usage, however, is limited by severe gastrointestinal toxicity that is observed in approximately 45% of MMF recipients. The active form of the drug, mycophenolic acid (MPA), undergoes extensive enterohepatic recirculation by bacterial β-glucuronidase (GUS) enzymes, which reactivate MPA from mycophenolate glucuronide (MPAG) within the gastrointestinal tract. GUS enzymes demonstrate distinct substrate preferences based on their structural features, and gut microbial GUS enzymes that reactivate MPA have not been identified. Here, we compare the fecal microbiomes of transplant recipients receiving MMF to healthy individuals using shotgun metagenomic sequencing. We find that neither microbial composition nor the presence of specific structural classes of GUS genes are sufficient to explain the differences in MPA reactivation measured between fecal samples from the two cohorts. We next employed a GUS-specific activity-based chemical probe and targeted metaproteomics to identify and quantify the GUS proteins present in the human fecal samples. The identification of specific GUS enzymes was improved by using the metagenomics data collected from the fecal samples. We found that the presence of GUS enzymes that bind the flavin mononucleotide (FMN) is significantly correlated with efficient MPA reactivation. Furthermore, structural analysis identified motifs unique to these FMN-binding GUS enzymes that provide molecular support for their ability to process this drug glucuronide. These results indicate that FMN-binding GUS enzymes may be responsible for reactivation of MPA and could be a driving force behind MPA-induced GI toxicity.
Collapse
Affiliation(s)
- Joshua B. Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josh J. Sekela
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amanda L. Graboski
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valentina B. Borlandelli
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marissa M. Bivins
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie K. Barker
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alicia A. Sorgen
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Angie L. Mordant
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca L. Johnson
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aadra P. Bhatt
- Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hermen Overkleeft
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - John R. Lee
- Department of Medicine, Division of Nephrology and Hypertension, New York, New York, USA
| | - Matthew. R. Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, Department of Microbiology and Immunology, and the Institute for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
31
|
Li JX, Wang Y, Hao Y, Huo XK, Sun CP, Zhao XX, Wang JC, Zhang JB, Ning J, Tian XG, Wang C, Zhao WY, Lv X, Li YC, Ma XC. Identification of Escherichia coli β-glucuronidase inhibitors from Polygonum cuspidatum Siebold & Zucc. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e21394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
| | - Yu Wang
- The Second Hospital of Dalian Medical University, China
| | - Ying Hao
- Dalian Medical University, China
| | | | | | | | | | | | | | | | | | | | - Xia Lv
- Dalian Medical University, China
| | | | - Xiao-Chi Ma
- Dalian Medical University, China; The Second Hospital of Dalian Medical University, China
| |
Collapse
|
32
|
Wang F, He MM, Yao YC, Zhao X, Wang ZQ, Jin Y, Luo HY, Li JB, Wang FH, Qiu MZ, Lv ZD, Wang DS, Li YH, Zhang DS, Xu RH. Regorafenib plus toripalimab in patients with metastatic colorectal cancer: a phase Ib/II clinical trial and gut microbiome analysis. CELL REPORTS MEDICINE 2021; 2:100383. [PMID: 34622226 PMCID: PMC8484502 DOI: 10.1016/j.xcrm.2021.100383] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/07/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023]
Abstract
This is a phase Ib/II study of regorafenib plus toripalimab for colorectal cancer. The objective response rate (ORR) is 15.2% and the disease control rate is 36.4% in evaluable patients with recommended phase II dose (80 mg regorafenib plus toripalimab). The median progression-free survival (PFS) and the median overall survival are 2.1 months and 15.5 months, respectively. Patients with liver metastases have lower ORR than those without (8.7% versus 30.0%). All patients (3/3) with lung-only metastasis respond, whereas no patients (0/4) with liver-only metastasis respond. 94.9% and 38.5% of patients have grade 1 and grade 3 treatment-related adverse events, respectively. Gut microbiome analysis of the baseline fecal samples shows significantly increased relative abundance and positive detection rate of Fusobacterium in non-responders than responders. Patients with high-abundance Fusobacterium have shorter PFS than those with low abundance (median PFS = 2.0 versus 5.2 months; p = 0.002).
Collapse
Affiliation(s)
- Feng Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Ming-Ming He
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Yi-Chen Yao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Xia Zhao
- Cancer microbiome platform, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Microbiology, Army Medical University, Chongqing 400038, China
| | - Zhi-Qiang Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Ying Jin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Ji-Bin Li
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Feng-Hua Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Miao-Zhen Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Zhi-Da Lv
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - De-Shen Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Yu-Hong Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Dong-Sheng Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| |
Collapse
|
33
|
Sui Y, Wu J, Chen J. The Role of Gut Microbial β-Glucuronidase in Estrogen Reactivation and Breast Cancer. Front Cell Dev Biol 2021; 9:631552. [PMID: 34458248 PMCID: PMC8388929 DOI: 10.3389/fcell.2021.631552] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
Over the past decade, the gut microbiota has received considerable attention for its interactions with the host. Microbial β-glucuronidase generated by this community has hence aroused concern for its biotransformation activity to a wide range of exogenous (foreign) and endogenous compounds. Lately, the role of gut microbial β-glucuronidase in the pathogenesis of breast cancer has been proposed for its estrogen reactivation activity. This is plausible considering that estrogen glucuronides are the primary products of estrogens' hepatic phase II metabolism and are subject to β-glucuronidase-catalyzed hydrolysis in the gut via bile excretion. However, research in this field is still at its very preliminary stage. This review outlines the biology of microbial β-glucuronidase in the gastrointestinal tract and elaborates on the clues to the existence of microbial β-glucuronidase-estrogen metabolism-breast cancer axis. The research gaps in this field will be discussed and possible strategies to address these challenges are suggested.
Collapse
Affiliation(s)
- Yue Sui
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
34
|
Temraz S, Nassar F, Kreidieh F, Mukherji D, Shamseddine A, Nasr R. Hepatocellular Carcinoma Immunotherapy and the Potential Influence of Gut Microbiome. Int J Mol Sci 2021; 22:ijms22157800. [PMID: 34360566 PMCID: PMC8346024 DOI: 10.3390/ijms22157800] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Disruptions in the human gut microbiome have been associated with a cycle of hepatocyte injury and regeneration characteristic of chronic liver disease. Evidence suggests that the gut microbiota can promote the development of hepatocellular carcinoma through the persistence of this inflammation by inducing genetic and epigenetic changes leading to cancer. As the gut microbiome is known for its effect on host metabolism and immune response, it comes as no surprise that the gut microbiome may have a role in the response to therapeutic strategies such as immunotherapy and chemotherapy for liver cancer. Gut microbiota may influence the efficacy of immunotherapy by regulating the responses to immune checkpoint inhibitors in patients with hepatocellular carcinoma. Here, we review the mechanisms by which gut microbiota influences hepatic carcinogenesis, the immune checkpoint inhibitors currently being used to treat hepatocellular carcinoma, as well as summarize the current findings to support the potential critical role of gut microbiome in hepatocellular carcinoma (HCC) immunotherapy.
Collapse
Affiliation(s)
- Sally Temraz
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
- Correspondence: (S.T.); (R.N.)
| | - Farah Nassar
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
| | - Firas Kreidieh
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
| | - Deborah Mukherji
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
| | - Ali Shamseddine
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon
- Correspondence: (S.T.); (R.N.)
| |
Collapse
|
35
|
Bai Y, Chen L, Cao YF, Hou XD, Jia SN, Zhou Q, He YQ, Hou J. Beta-Glucuronidase Inhibition by Constituents of Mulberry Bark. PLANTA MEDICA 2021; 87:631-641. [PMID: 33733438 DOI: 10.1055/a-1402-6431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intestinal bacterial β-glucuronidases, the key enzymes responsible for the hydrolysis of various glucuronides into free aglycone, have been recognized as key targets for treating various intestinal diseases. This study aimed to investigate the inhibitory effects and mechanisms of the Mulberry bark constituents on E. coli β-glucuronidase (EcGUS), the most abundant β-glucuronidases produced by intestinal bacteria. The results showed that the flavonoids isolated from Mulberry bark could strongly inhibit E. coli β-glucuronidase, with IC50 values ranging from 1.12 µM to 10.63 µM, which were more potent than D-glucaric acid-1,4-lactone. Furthermore, the mode of inhibition of 5 flavonoids with strong E. coli β-glucuronidase inhibitory activity (IC50 ≤ 5 µM) was carefully investigated by a set of kinetic assays and in silico analyses. The results demonstrated that these flavonoids were noncompetitive inhibitors against E. coli β-glucuronidase-catalyzed 4-nitrophenyl β-D-glucuronide hydrolysis, with Ki values of 0.97 µM, 2.71 µM, 3.74 µM, 3.35 µM, and 4.03 µM for morin (1: ), sanggenon C (2: ), kuwanon G (3: ), sanggenol A (4: ), and kuwanon C (5: ), respectively. Additionally, molecular docking simulations showed that all identified flavonoid-type E. coli β-glucuronidase inhibitors could be well-docked into E. coli β-glucuronidase at nonsubstrate binding sites, which were highly consistent with these agents' noncompetitive inhibition mode. Collectively, our findings demonstrated that the flavonoids in Mulberry bark displayed strong E. coli β-glucuronidase inhibition activity, suggesting that Mulberry bark might be a promising dietary supplement for ameliorating β-glucuronidase-mediated intestinal toxicity.
Collapse
Affiliation(s)
- Yue Bai
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lu Chen
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yun-Feng Cao
- Dalian Runsheng Kangtai Medical Laboratory Co. Ltd, Dalian, China
| | - Xu-Dong Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shou-Ning Jia
- Qinghai Hospital of Traditional Chinese Medicine, Xining, China
| | - Qi Zhou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yu-Qi He
- The Key Laboratory of the Basic Pharmacology of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jie Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
36
|
Drug Response Diversity: A Hidden Bacterium? J Pers Med 2021; 11:jpm11050345. [PMID: 33922920 PMCID: PMC8146020 DOI: 10.3390/jpm11050345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 11/27/2022] Open
Abstract
Interindividual heterogeneity in response to treatment is a real public health problem. It is a factor that can be responsible not only for ineffectiveness or fatal toxicity but also for hospitalization due to iatrogenic effects, thus increasing the cost of patient care. Several research teams have been interested in what may be at the origin of these phenomena, particularly at the genetic level and the basal activity of organs dedicated to the inactivation and elimination of drug molecules. Today, a new branch is being set up, explaining the enigmatic part that could not be explained before. Pharmacomicrobiomics attempts to investigate the interactions between bacteria, especially those in the gut, and drug response. In this review, we provide a state of the art on what this field has brought as new information and discuss the challenges that lie ahead to see the real application in clinical practice.
Collapse
|
37
|
Wang P, Jia Y, Wu R, Chen Z, Yan R. Human gut bacterial β-glucuronidase inhibition: An emerging approach to manage medication therapy. Biochem Pharmacol 2021; 190:114566. [PMID: 33865833 DOI: 10.1016/j.bcp.2021.114566] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Bacterial β-glucuronidase enzymes (BGUSs) are at the interface of host-microbial metabolic symbiosis, playing an important role in health and disease as well as medication outcomes (efficacy or toxicity) by deconjugating a large number of endogenous and exogenous glucuronides. In recent years, BGUSs inhibition has emerged as a new approach to manage diseases and medication therapy and attracted an increasing research interest. However, a growing body of evidence underlines great genetic diversity, functional promiscuity and varied inhibition propensity of BGUSs, which have posed big challenges to identifying BGUSs involved in a specific pathophysiological or pharmacological process and developing effective inhibition. In this article, we offered a general introduction of the function, in particular the physiological, pathological and pharmacological roles, of BGUSs and their taxonomic distribution in human gut microbiota, highlighting the structural features (active sites and adjacent loop structures) that affecting the protein-substrate (inhibitor) interactions. Recent advances in BGUSs-mediated deconjugation of drugs and carcinogens and the discovery and applications of BGUS inhibitors in management of medication therapy, typically, irinotecan-induced diarrhea and non-steroidal anti-inflammatory drugs (NSAIDs)-induced enteropathy, were also reviewed. At the end, we discussed the perspectives and the challenges of tailoring BGUS inhibition towards precision medicine.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Yifei Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Rongrong Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Zhiqiang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
38
|
Predicting drug-metagenome interactions: Variation in the microbial β-glucuronidase level in the human gut metagenomes. PLoS One 2021; 16:e0244876. [PMID: 33411719 PMCID: PMC7790408 DOI: 10.1371/journal.pone.0244876] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Characterizing the gut microbiota in terms of their capacity to interfere with drug metabolism is necessary to achieve drug efficacy and safety. Although examples of drug-microbiome interactions are well-documented, little has been reported about a computational pipeline for systematically identifying and characterizing bacterial enzymes that process particular classes of drugs. The goal of our study is to develop a computational approach that compiles drugs whose metabolism may be influenced by a particular class of microbial enzymes and that quantifies the variability in the collective level of those enzymes among individuals. The present paper describes this approach, with microbial β-glucuronidases as an example, which break down drug-glucuronide conjugates and reactivate the drugs or their metabolites. We identified 100 medications that may be metabolized by β-glucuronidases from the gut microbiome. These medications included morphine, estrogen, ibuprofen, midazolam, and their structural analogues. The analysis of metagenomic data available through the Sequence Read Archive (SRA) showed that the level of β-glucuronidase in the gut metagenomes was higher in males than in females, which provides a potential explanation for the sex-based differences in efficacy and toxicity for several drugs, reported in previous studies. Our analysis also showed that infant gut metagenomes at birth and 12 months of age have higher levels of β-glucuronidase than the metagenomes of their mothers and the implication of this observed variability was discussed in the context of breastfeeding as well as infant hyperbilirubinemia. Overall, despite important limitations discussed in this paper, our analysis provided useful insights on the role of the human gut metagenome in the variability in drug response among individuals. Importantly, this approach exploits drug and metagenome data available in public databases as well as open-source cheminformatics and bioinformatics tools to predict drug-metagenome interactions.
Collapse
|
39
|
Atypical immunometabolism and metabolic reprogramming in liver cancer: Deciphering the role of gut microbiome. Adv Cancer Res 2020; 149:171-255. [PMID: 33579424 DOI: 10.1016/bs.acr.2020.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality worldwide. Much recent research has delved into understanding the underlying molecular mechanisms of HCC pathogenesis, which has revealed to be heterogenous and complex. Two major hallmarks of HCC include: (i) a hijacked immunometabolism and (ii) a reprogramming in metabolic processes. We posit that the gut microbiota is a third component in an entanglement triangle contributing to HCC progression. Besides metagenomic studies highlighting the diagnostic potential in the gut microbiota profile, recent research is pinpointing the gut microbiota as an instigator, not just a mere bystander, in HCC. In this chapter, we discuss mechanistic insights on atypical immunometabolism and metabolic reprogramming in HCC, including the examination of tumor-associated macrophages and neutrophils, tumor-infiltrating lymphocytes (e.g., T-cell exhaustion, regulatory T-cells, natural killer T-cells), the Warburg effect, rewiring of the tricarboxylic acid cycle, and glutamine addiction. We further discuss the potential involvement of the gut microbiota in these characteristics of hepatocarcinogenesis. An immediate highlight is that microbiota metabolites (e.g., short chain fatty acids, secondary bile acids) can impair anti-tumor responses, which aggravates HCC. Lastly, we describe the rising 'new era' of immunotherapies (e.g., immune checkpoint inhibitors, adoptive T-cell transfer) and discuss for the potential incorporation of gut microbiota targeted therapeutics (e.g., probiotics, fecal microbiota transplantation) to alleviate HCC. Altogether, this chapter invigorates for continuous research to decipher the role of gut microbiome in HCC from its influence on immunometabolism and metabolic reprogramming.
Collapse
|
40
|
Abstract
The field of pharmacogenetic testing was hailed as one of the early successful clinical applications arising from the personalized (or precision) medicine revolution. Substantial progress has been made to identify genes and genetic variants involved in drug response and establish clinical implementation programs. Yet, drug response is a complex trait and recent work has highlighted the key role played by the gut microbiome. As the study of the gut microbiome and pharmacogenetics converge, it may be possible to generate more precise predictions of drug response and improve health outcomes to treatments. Substantial effort will be needed to understand the dynamic impact of the microbiome and the interplay with host genetics and how to implement expanded pharmacogenetic testing.
Collapse
Affiliation(s)
- Susanne B Haga
- Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, 101 Science Drive, Box 3382, Durham, NC 27708, USA
| |
Collapse
|
41
|
Feng W, Liu J, Ao H, Yue S, Peng C. Targeting gut microbiota for precision medicine: Focusing on the efficacy and toxicity of drugs. Theranostics 2020; 10:11278-11301. [PMID: 33042283 PMCID: PMC7532689 DOI: 10.7150/thno.47289] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Intra- and interindividual variation in drug responses is one major reason for the failure of drug therapy, drug toxicity, and even the death of patients. Precision medicine, or personalized medicine, is a field of medicine that customizes an individual's medical diagnosis and treatment based on his/her genes, microbiomes, environments, etc. Over the past decade, a large number of studies have demonstrated that gut microbiota can modify the efficacy and toxicity of drugs, and the extent of the modification varies greatly from person to person because of the variability of the gut microbiota. Personalized manipulation of gut microbiota is an important approach to rectify the abnormal drug response. In this review, we aim to improve drug efficacy and reduce drug toxicity by combining precision medicine and gut microbiota. After describing the interactions between gut microbiota and xenobiotics, we discuss (1) the effects of gut microbiota on drug efficacy and toxicity and the corresponding mechanisms, (2) the variability of gut microbiota, which leads to variation in drug responses, (3) the biomarkers used for the patient stratification and treatment decisions before the use of drugs, and (4) the methods used for the personalized manipulation of gut microbiota to improve drug outcomes. Overall, we hope to improve the drug response by incorporating the knowledge of gut microbiota into clinical practice.
Collapse
Affiliation(s)
- Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shijun Yue
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
42
|
Ervin SM, Redinbo MR. The Gut Microbiota Impact Cancer Etiology through "Phase IV Metabolism" of Xenobiotics and Endobiotics. Cancer Prev Res (Phila) 2020; 13:635-642. [PMID: 32611614 PMCID: PMC7980665 DOI: 10.1158/1940-6207.capr-20-0155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/06/2020] [Accepted: 06/22/2020] [Indexed: 11/16/2022]
Abstract
The human gut microbiome intimately complements the human genome and gut microbial factors directly influence health and disease. Here we outline how the gut microbiota uniquely contributes to cancer etiology by processing products of human drug and endobiotic metabolism. We formally propose that the reactions performed by the gut microbiota should be classified as "Phase IV xenobiotic and endobiotic metabolism." Finally, we discuss new data on the control of cancer by the inhibition of gut microbial phase IV enzymes responsible for tumor initiation and progression.
Collapse
Affiliation(s)
- Samantha M Ervin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Integrated Program for Biological and Genome Sciences, and Departments of Biochemistry and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
43
|
Rizzo A, Nannini M, Novelli M, Dalia Ricci A, Scioscio VD, Pantaleo MA. Dose reduction and discontinuation of standard-dose regorafenib associated with adverse drug events in cancer patients: a systematic review and meta-analysis. Ther Adv Med Oncol 2020; 12:1758835920936932. [PMID: 32684988 PMCID: PMC7343359 DOI: 10.1177/1758835920936932] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Regorafenib (REG) is an oral multikinase inhibitor used in colorectal cancer, gastrointestinal stromal tumour and hepatocellular carcinoma. Several adverse events (AEs) are commonly reported during REG administration, and strategies for managing AEs in everyday clinical practice include supportive care, dose modifications and, when necessary, treatment withdrawal. We performed a systematic review and meta-analysis to assess the schedule treatment modifications of REG associated with AEs across randomized controlled clinical trials (RCTs). Methods Eligible studies included RCTs assessing standard dose REG versus placebo. Outcomes of interest included: AE-related permanent discontinuation, dose interruptions and dose reductions. Results We retrieved all the relevant RCTs through PubMed/Med, Cochrane library and EMBASE: 7 eligible studies involving a total of 2099 patients (Regorafenib: 1362; placebo: 737) were included in our analysis. The use of REG was associated with higher incidence and risk of all outcomes of interest when compared with placebo. The incidences of permanent discontinuation, dose interruptions and dose reductions in patients receiving REG were 9.7%, 57.2% and 47%, respectively, versus 3.3%, 16.7% and 7.7% of placebo group; compared with placebo, the summary relative risks (RRs) of permanent discontinuation, dose interruptions and dose reductions in REG arm were 2.80 (95% CI 1.85-4.22), 3.21 (95% CI 2.59-3.99) and 6.02 (95% CI 3.28-11.03), respectively. Conclusions Treatment with REG at the standard dose of 160 mg is associated with a significant increase in AE-related permanent discontinuation, dose interruptions and dose reductions. Prompt identification and management of AEs seem mandatory to obtain maximal benefit from REG treatment. In the current landscape, dose personalization of REG may have the potential to improve quality of life, minimize treatment discontinuation and maximize patient outcomes.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Margherita Nannini
- Medical Oncology Unit, Sant’Orsola-Malpighi University Hospital, via Massarenti 9, Bologna, 40138, Italy
| | | | - Angela Dalia Ricci
- Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | - Maria Abbondanza Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
44
|
Dashnyam P, Lin HY, Chen CY, Gao S, Yeh LF, Hsieh WC, Tu Z, Lin CH. Substituent Position of Iminocyclitols Determines the Potency and Selectivity for Gut Microbial Xenobiotic-Reactivating Enzymes. J Med Chem 2020; 63:4617-4627. [PMID: 32105467 DOI: 10.1021/acs.jmedchem.9b01918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selective inhibitors of gut bacterial β-glucuronidases (GUSs) are of particular interest in the prevention of xenobiotic-induced toxicities. This study reports the first structure-activity relationships on potency and selectivity of several iminocyclitols (2-7) for the GUSs. Complex structures of Ruminococcus gnavus GUS with 2-7 explained how charge, conformation, and substituent of iminocyclitols affect their potency and selectivity. N1 of uronic isofagomine (2) made strong electrostatic interactions with two catalytic glutamates of GUSs, resulting in the most potent inhibition (Ki ≥ 11 nM). C6-propyl analogue of 2 (6) displayed 700-fold selectivity for opportunistic bacterial GUSs (Ki = 74 nM for E. coli GUS and 51.8 μM for RgGUS). In comparison with 2, there was 200-fold enhancement in the selectivity, which was attributed to differential interactions between the propyl group and loop 5 residues of the GUSs. The results provide useful insights to develop potent and selective inhibitors for undesired GUSs.
Collapse
Affiliation(s)
- Punsaldulam Dashnyam
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,National Chung-Hsing University, Taichung 40227, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hsien-Ya Lin
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Chia-Yu Chen
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Shijay Gao
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Lun-Fu Yeh
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Wei-Che Hsieh
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Zhijay Tu
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,National Chung-Hsing University, Taichung 40227, Taiwan.,Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan.,Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
45
|
Abstract
The intestinal microbiome encodes vast metabolic potential, and multidisciplinary approaches are enabling a mechanistic understanding of how bacterial enzymes impact the metabolism of diverse pharmaceutical compounds, including chemotherapeutics. Microbiota alter the activity of many drugs and chemotherapeutics via direct and indirect mechanisms; some of these alterations result in changes to the drug's bioactivity and bioavailability, causing toxic gastrointestinal side effects. Gastrointestinal toxicity is one of the leading complications of systemic chemotherapy, with symptoms including nausea, vomiting, diarrhea, and constipation. Patients undergo dose reductions or drug holidays to manage these adverse events, which can significantly harm prognosis, and can result in mortality. Selective and precise targeting of the gut microbiota may alleviate these toxicities. Understanding the composition and function of the microbiota may serve as a biomarker for prognosis, and predict treatment efficacy and potential adverse effects, thereby facilitating personalized medicine strategies for cancer patients.
Collapse
Affiliation(s)
- Samantha M. Ervin
- Department of Chemistry, University of North Carolina at Chapel Hill, 250 Bell Tower Drive, Chapel Hill, NC 27599, USA
| | | | - Aadra P. Bhatt
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA.,Corresponding author:
| |
Collapse
|
46
|
Zhou A, Tang L, Zeng S, Lei Y, Yang S, Tang B. Gut microbiota: A new piece in understanding hepatocarcinogenesis. Cancer Lett 2020; 474:15-22. [PMID: 31917160 DOI: 10.1016/j.canlet.2020.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
The gut microbiota forms a symbiotic relationship with the host and benefits the body in many critical aspects of life. However, immune system defects, alterations in the gut microbiota and environmental changes can destroy this symbiotic relationship and may lead to diseases, including cancer. Due to the anatomic and functional connection of the gut and liver, increasing studies show the important role of the gut microbiota in the carcinogenesis of hepatocellular carcinoma (HCC). In this manuscript, we review the available evidence and analyze some potential mechanisms of the gut microbiota, including bacterial dysbiosis, lipopolysaccharide (LPS), and genotoxins, in the progression and promotion of HCC. Furthermore, we discuss the possible therapeutic applications of probiotics, chemotherapy modulation, immunotherapy, targeted drugs and fecal microbiota transplantation (FMT) in targeting the gut microbiota.
Collapse
Affiliation(s)
- An Zhou
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Shuo Zeng
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yuanyuan Lei
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|