1
|
Magny R, Lefrère B, Roulland E, Auzeil N, Farah S, Richeval C, Gish A, Vodovar D, Labat L, Houzé P. Feature-Based Molecular Network for New Psychoactive Substance Identification: The Case of Synthetic Cannabinoids in a Seized e-Liquid and Biological Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2276-2287. [PMID: 39186500 DOI: 10.1021/jasms.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The comprehensive detection of new psychoactive substances, including synthetic cannabinoids along with their associated metabolites in biological samples, remains an analytical challenge. To detect these chemicals, untargeted approaches using appropriate bioinformatic tools such as molecular networks are useful, albeit it necessitates as a prerequisite the identification of a node of interest within the cluster. To illustrate it, we reported in this study the identification of synthetic cannabinoids and some of their metabolites in seized e-liquid, urine, and hair collected from an 18-year-old poisoned patient hospitalized for neuropsychiatric disorders. A comprehensive analysis of the seized e-liquid was performed using gas chromatography coupled with electron ionization mass spectrometry, 1H NMR, and liquid chromatography coupled with high resolution tandem mass spectrometry combined with data processing based on molecular network strategy. It allowed researchers to detect in the e-liquid known synthetic cannabinoids including MDMB-4en-PINACA, EDMB-4en-PINACA, MMB-4en-PINACA, and MDMB-5F-PICA. Compounds corresponding to transesterification of MDMB-4en-PINACA with pentenol, glycerol, and propylene glycol were also identified. Regarding the urine sample of the patient, metabolites of MDMB-4en-PINACA were detected, including MDMB-4en-PINACA butanoic acid, dihydroxylated MDMB-4en-PINACA butanoic acid, and glucurono-conjugated MDMB-4en-PINACA butanoic acid. Hair analysis of the patient allowed the detection of MDMB-4en-PINACA and MDMB-5F-PICA in the two investigated hair segments. This untargeted analysis of seized materials and biological samples demonstrates the utility of the molecular network strategy in identifying closely related compounds and metabolites of synthetic cannabinoids. It also emphasizes the need for developing strategies to anchor molecular networks, especially for new psychoactive substances.
Collapse
Affiliation(s)
- Romain Magny
- Laboratoire de Toxicologie, Fédération de Toxicologie, AH-HP, Hôpital Lariboisière, 75010 Paris, France
- INSERM UMRS-1144, Université Paris Cité, 75006 Paris, France
| | - Bertrand Lefrère
- Laboratoire de Toxicologie, Fédération de Toxicologie, AH-HP, Hôpital Lariboisière, 75010 Paris, France
| | | | - Nicolas Auzeil
- CNRS, CiTCoM, Université Paris Cité, 75006 Paris, France
| | - Soha Farah
- Laboratoire de Toxicologie, Fédération de Toxicologie, AH-HP, Hôpital Lariboisière, 75010 Paris, France
- INSERM UMRS-1144, Université Paris Cité, 75006 Paris, France
| | - Camille Richeval
- CHRU Lille, Unité Fonctionnelle de Toxicologie, 59000 Lille, France
- ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, Université de Lille, 59000 Lille, France
| | - Alexandr Gish
- CHRU Lille, Unité Fonctionnelle de Toxicologie, 59000 Lille, France
- ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, Université de Lille, 59000 Lille, France
| | - Dominique Vodovar
- INSERM UMRS-1144, Université Paris Cité, 75006 Paris, France
- Centre antipoison de Paris, Hôpital Fernand Widal, AP-HP, 75010 Paris, France
| | - Laurence Labat
- Laboratoire de Toxicologie, Fédération de Toxicologie, AH-HP, Hôpital Lariboisière, 75010 Paris, France
- INSERM UMRS-1144, Université Paris Cité, 75006 Paris, France
| | - Pascal Houzé
- Laboratoire de Toxicologie, Fédération de Toxicologie, AH-HP, Hôpital Lariboisière, 75010 Paris, France
- INSERM UMRS-1144, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
2
|
Janssens LK, Sommer MJ, Grafinger KE, Hermanns-Clausen M, Auwärter V, Stove CP. Interpreting mono- and poly-SCRA intoxications from an activity-based point of view: JWH-018 equivalents in serum as a comparative measure. Arch Toxicol 2024; 98:3337-3350. [PMID: 39115690 DOI: 10.1007/s00204-024-03830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/25/2024] [Indexed: 09/17/2024]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are a class of synthetic drugs that mimic and greatly surpass the effect of recreational cannabis. Acute SCRA intoxications are in general difficult to assess due to the large number of compounds involved, differing widely in both chemical structure and pharmacological properties. The rapid pace of emergence of unknown SCRAs hampers on one hand the timely availability of methods for identification and quantification to confirm and estimate the extent of the SCRA intoxication. On the other hand, lack of knowledge about the harm potential of emerging SCRAs hampers adequate interpretation of serum concentrations in intoxication cases. In the present study, a novel comparative measure for SCRA intoxications was evaluated, focusing on the cannabinoid activity (versus serum concentrations), which can be measured in serum extracts with an untargeted bioassay assessing ex vivo CB1 activity. Application of this principle to a series of SCRA intoxication cases (n = 48) allowed for the determination of activity equivalents, practically entailing a conversion from different SCRA serum concentrations to a JWH-018 equivalent. This allowed for the interpretation of both mono- (n = 34) and poly-SCRA (n = 14) intoxications, based on the intrinsic potential of the present serum levels to exert cannabinoid activity (cf. pharmacological/toxicological properties). A non-distinctive toxidrome was confirmed, showing no relation to CB1 activity. The JWH-018 equivalent was partly related to the poison severity score (PSS) and causality of the clinical intoxication elicited by the SCRA. Altogether, this equivalent concept allows to comparatively and timely interpret (poly-)SCRA intoxications based on CB1 activity.
Collapse
Affiliation(s)
- Liesl K Janssens
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Michaela J Sommer
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | - Katharina Elisabeth Grafinger
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, University of Freiburg, Freiburg, Germany
- Institute of Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Maren Hermanns-Clausen
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Poisons Information Center, Center for Pediatrics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Brandon AM, Baginski SR, Peet C, Dugard P, Green H, Sutcliffe OB, Daéid NN, Nisbet LA, Read KD, McKenzie C. Log D 7.4 and plasma protein binding of synthetic cannabinoid receptor agonists and a comparison of experimental and predicted lipophilicity. Drug Test Anal 2024; 16:1012-1025. [PMID: 38062938 DOI: 10.1002/dta.3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 10/17/2024]
Abstract
The emergence of new synthetic cannabinoid receptor agonists (SCRAs) onto the illicit drugs market continues to cause harm, and the overall availability of physicochemical and pharmacokinetic data for new psychoactive substances is lacking. The lipophilicity of 23 SCRAs and the plasma protein binding (PPB) of 11 SCRAs was determined. Lipophilicity was determined using a validated chromatographic hydrophobicity index (CHI) log D method; tested SCRAs showed moderate to high lipophilicity, with experimental log D7.4 ranging from 2.48 (AB-FUBINACA) to 4.95 (4F-ABUTINACA). These results were also compared to in silico predictions generated using seven commercially available software packages and online tools (Canvas; ChemDraw; Gastroplus; MoKa; PreADMET; SwissADME; and XlogP). Licenced, dedicated software packages provided more accurate lipophilicity predictions than those which were free or had prediction as a secondary function; however, the latter still provided competitive estimates in most cases. PPB of tested SCRAs, as determined by equilibrium dialysis, was in the upper range of the lipophilicity scale, ranging from 90.8% (ADB-BUTINACA) to 99.9% (BZO-HEXOXIZID). The high PPB of these drugs may contribute to reduced rate of clearance and extended durations of pharmacological effects compared to lesser-bound SCRAs. The presented data improve understanding of the behaviour of these drugs in the body. Ultimately, similar data and predictions may be used in the prediction of the structure and properties of drugs yet to emerge on the illicit market.
Collapse
Affiliation(s)
- Andrew M Brandon
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Steven R Baginski
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Caroline Peet
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
- Debiopharm, Lausanne, Switzerland
| | - Pat Dugard
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Henrik Green
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Oliver B Sutcliffe
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Niamh Nic Daéid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Lorna A Nisbet
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Kevin D Read
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - Craig McKenzie
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
- Chiron AS, Trondheim, Norway
| |
Collapse
|
4
|
Timmerman A, Balcaen M, Coopman V, Degreef M, Pottie E, Stove CP. Activity-based detection of synthetic cannabinoid receptor agonists in plant materials. Harm Reduct J 2024; 21:127. [PMID: 38951904 PMCID: PMC11218095 DOI: 10.1186/s12954-024-01044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Since late 2019, fortification of 'regular' cannabis plant material with synthetic cannabinoid receptor agonists (SCRAs) has become a notable phenomenon on the drug market. As many SCRAs pose a higher health risk than genuine cannabis, recognizing SCRA-adulterated cannabis is important from a harm reduction perspective. However, this is not always an easy task as adulterated cannabis may only be distinguished from genuine cannabis by dedicated, often expensive and time-consuming analytical techniques. In addition, the dynamic nature of the SCRA market renders identification of fortified samples a challenging task. Therefore, we established and applied an in vitro cannabinoid receptor 1 (CB1) activity-based procedure to screen plant material for the presence of SCRAs. METHODS The assay principle relies on the functional complementation of a split-nanoluciferase following recruitment of β-arrestin 2 to activated CB1. A straightforward sample preparation, encompassing methanolic extraction and dilution, was optimized for plant matrices, including cannabis, spiked with 5 µg/mg of the SCRA CP55,940. RESULTS The bioassay successfully detected all samples of a set (n = 24) of analytically confirmed authentic Spice products, additionally providing relevant information on the 'strength' of a preparation and whether different samples may have originated from separate batches or possibly the same production batch. Finally, the methodology was applied to assess the occurrence of SCRA adulteration in a large set (n = 252) of herbal materials collected at an international dance festival. This did not reveal any positives, i.e. there were no samples that yielded a relevant CB1 activation. CONCLUSION In summary, we established SCRA screening of herbal materials as a new application for the activity-based CB1 bioassay. The simplicity of the sample preparation, the rapid results and the universal character of the bioassay render it an effective and future-proof tool for evaluating herbal materials for the presence of SCRAs, which is relevant in the context of harm reduction.
Collapse
Affiliation(s)
- Axelle Timmerman
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Margot Balcaen
- Belgian Early Warning System on Drugs, Unit Illicit drugs, Health information, Sciensano, Brussels, Belgium
| | | | - Maarten Degreef
- Belgian Early Warning System on Drugs, Unit Illicit drugs, Health information, Sciensano, Brussels, Belgium
| | - Eline Pottie
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Sparkes E, Markham JW, Boyd R, Udoh M, Gordon R, Zaman H, Walker KA, Dane C, Kevin RC, Santiago MJ, Hibbs DE, Banister SD, Ametovski A, Cairns EA. Synthesis and functional evaluation of proteinogenic amino acid-derived synthetic cannabinoid receptor agonists related to MPP-5F-PICA, MMB-5F-PICA, and MDMB-5F-PICA. RSC Med Chem 2024; 15:2063-2079. [PMID: 38911147 PMCID: PMC11187556 DOI: 10.1039/d3md00758h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/29/2024] [Indexed: 06/25/2024] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) comprise the second largest class of new psychoactive substances (NPS), and typically α-amino acid moieties are incorporated as part of their design. Limited investigation has been performed into elucidating structure-activity relationships around commonly used α-amino acid-derived head groups, mainly with valine and tert-leucine-derived compounds previously described. As such, proactive synthesis, characterisation and pharmacological evaluation were performed to explore structure-activity relationships of 15 α-amino acid derivatives, with both the natural isomers and their enantiomers at CB1 and CB2 investigated using a fluorescence-based membrane potential assay. This library was based around the detected SCRAs MPP-5F-PICA, MMB-5F-PICA, and MDMB-5F-PICA, with the latter showing significant receptor activation at CB1 (pEC50 = 8.34 ± 0.05 M; E max = 108 ± 3%) and CB2 (pEC50 = 8.13 ± 0.07 M; E max = 99 ± 2%). Most valine and leucine derivatives were potent and efficacious SCRAs, while smaller derivatives generally showed reduced activity at CB1 and CB2, and larger derivatives also showed reduced activity. SAR trends observed were rationalised via in silico induced fit docking. Overall, while natural enantiomers showed equipotent or greater activity than the unnatural isomers in most cases, this was not universal. As such, a number of these compounds should be monitored as emerging NPS, and various substituents described herein.
Collapse
Affiliation(s)
- Eric Sparkes
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney 94 Mallett St, Building M02F, Camperdown Sydney NSW 2050 Australia
- School of Chemistry, Faculty of Science, The University of Sydney NSW 2050 Australia
| | - Jack W Markham
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney 94 Mallett St, Building M02F, Camperdown Sydney NSW 2050 Australia
- School of Chemistry, Faculty of Science, The University of Sydney NSW 2050 Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney NSW 2050 Australia
| | - Rochelle Boyd
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney 94 Mallett St, Building M02F, Camperdown Sydney NSW 2050 Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney NSW 2050 Australia
| | - Michael Udoh
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney 94 Mallett St, Building M02F, Camperdown Sydney NSW 2050 Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney NSW 2050 Australia
| | - Rebecca Gordon
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney 94 Mallett St, Building M02F, Camperdown Sydney NSW 2050 Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney NSW 2050 Australia
| | - Humayra Zaman
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University Sydney NSW 2109 Australia
| | - Katelyn A Walker
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney 94 Mallett St, Building M02F, Camperdown Sydney NSW 2050 Australia
- School of Psychology, Faculty of Science, The University of Sydney NSW 2050 Australia
| | - Chianna Dane
- School of Chemistry, Faculty of Science, The University of Sydney NSW 2050 Australia
| | - Richard C Kevin
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney 94 Mallett St, Building M02F, Camperdown Sydney NSW 2050 Australia
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital Sydney Sydney NSW 2010 Australia
- School of Clinical Medicine, The University of New South Wales Sydney NSW 2052 Australia
| | - Marina J Santiago
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University Sydney NSW 2109 Australia
| | - David E Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney NSW 2050 Australia
| | - Samuel D Banister
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney 94 Mallett St, Building M02F, Camperdown Sydney NSW 2050 Australia
- School of Chemistry, Faculty of Science, The University of Sydney NSW 2050 Australia
| | - Adam Ametovski
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney 94 Mallett St, Building M02F, Camperdown Sydney NSW 2050 Australia
- School of Chemistry, Faculty of Science, The University of Sydney NSW 2050 Australia
| | - Elizabeth A Cairns
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney 94 Mallett St, Building M02F, Camperdown Sydney NSW 2050 Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney NSW 2050 Australia
| |
Collapse
|
6
|
Sparkes E, Maloney CJ, Markham JW, Dane C, Boyd R, Gilchrist J, Moir M, Gordon R, Luo JL, Pike E, Walker KA, Kassiou M, McGregor IS, Kevin RC, Hibbs DE, Jorgensen WT, Banister SD, Cairns EA, Ametovski A. Structure-Activity Relationships, Deuteration, and Fluorination of Synthetic Cannabinoid Receptor Agonists Related to AKB48, 5F-AKB-48, and AFUBIATA. ACS Chem Neurosci 2024; 15:2160-2181. [PMID: 38766866 DOI: 10.1021/acschemneuro.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are a growing class of new psychoactive substances (NPS) commonly derived from an N-alkylated indole, indazole, or 7-azaindole scaffold. Diversification of this core (at the 3-position) with amide-linked pendant amino acid groups and modular N-alkylation (of the indole/indazole/7-azaindole core) ensures that novel SCRAs continue to enter the illicit drug market rapidly. In response to the large number of SCRAs that have been detected, pharmacological evaluation of this NPS class has become increasingly common. Adamantane-derived SCRAs have consistently appeared throughout the market since 2011, and as such, a systematic set of these derivatives was synthesized and pharmacologically evaluated. Deuterated and fluorinated adamantane derivatives were prepared to evaluate typical hydrogen bioisosteres, as well as evaluation of the newly detected AFUBIATA.
Collapse
Affiliation(s)
- Eric Sparkes
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Callan J Maloney
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jack W Markham
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chianna Dane
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rochelle Boyd
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jayson Gilchrist
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Moir
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia
| | - Rebecca Gordon
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jia Lin Luo
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward Pike
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Katelyn A Walker
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Iain S McGregor
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard C Kevin
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital Sydney, Sydney, NSW 2010, Australia
- School of Clinical Medicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - David E Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - William T Jorgensen
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Samuel D Banister
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth A Cairns
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Adam Ametovski
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Deventer MH, Persson M, Norman C, Liu H, Connolly MJ, Daéid NN, McKenzie C, Gréen H, Stove CP. In vitro cannabinoid activity profiling of generic ban-evading brominated synthetic cannabinoid receptor agonists and their analogs. Drug Test Anal 2024; 16:616-628. [PMID: 37903509 DOI: 10.1002/dta.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023]
Abstract
Following the enactment of a generic ban in China in 2021, the synthetic cannabinoid market has been evolving, now encompassing even wider structural diversity. Compounds carrying a brominated core such as ADB-5'Br-BUTINACA (ADMB-B-5Br-INACA) and tail-less analogs, such as ADB-5'Br-INACA (ADMB-5Br-INACA), MDMB-5'Br-INACA, and ADB-INACA (ADMB-INACA), have been detected since late 2021. This study investigated the cannabinoid receptor (CB) activation potential of synthesized (S)-enantiomers of these substances, as well as of two predicted analogs MDMB-5'Br-BUTINACA (MDMB-B-5Br-INACA) and ADB-5'F-BUTINACA (ADMB-B-5F-INACA), using CB1 and CB2 β-arrestin 2 recruitment assays and a CB1 intracellular calcium release assay. Surprisingly, the tail-less (S)-ADB-5'Br-INACA and (S)-MDMB-5'Br-INACA retained CB activity, albeit with a decreased potency compared to their tailed counterparts (S)-ADB-5'Br-BUTINACA and (S)-MDMB-5'Br-BUTINACA, respectively, which were potent and efficacious CB1 agonists. Also, at CB2, tail-less analogs showed a lower potency but increased efficacy. Removing the bromine substitution ((S)-ADB-INACA) resulted in a reduced activity at CB1; however, this effect was less prominent at CB2. Looking at tailed analogs, replacing the bromine with a fluorine substitution ((S)-ADB-5'F-BUTINACA) resulted in an increased potency and efficacy at both receptors. Furthermore, as ADB-5'Br-INACA and MDMB-5'Br-INACA have been frequently detected together in Scottish prisons, this study also evaluated the CB1 receptor activation potential of different mixtures of their respective reference standards, showing no unexpected cannabimimetic effect of combining both substances. Lastly, two powders seized by Belgian Customs and confirmed to contain ADB-5'Br-INACA and MDMB-5'Br-INACA, respectively, were assessed for CB activity. Based on the comparison with their reference standards, varying degrees of purity were suspected.
Collapse
Affiliation(s)
- Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Mattias Persson
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Caitlyn Norman
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | | | | | - Niamh Nic Daéid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Craig McKenzie
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
- Chiron AS, Trondheim, Norway
| | - Henrik Gréen
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Patel M, Zheng X, Akinfiresoye LR, Prioleau C, Walker TD, Glass M, Marusich JA. Pharmacological evaluation of new generation OXIZID synthetic cannabinoid receptor agonists. Eur J Pharmacol 2024; 971:176549. [PMID: 38561104 PMCID: PMC11132922 DOI: 10.1016/j.ejphar.2024.176549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) remain one the largest classes of new psychoactive substances, and are increasingly associated with severe adverse effects and death compared to the phytocannabinoid Δ9-tetrahydrocannabinol (THC). In the attempt to circumvent the rapid emergence of novel SCRAs, several nations have implemented 'generic' legislations, or 'class-wide' bans based on common structural scaffolds. However, this has only encouraged the incorporation of new chemical entities, including distinct core and linker structures, for which there is a dearth of pharmacological data. The current study evaluated five emergent OXIZID SCRAs for affinity and functional activity at the cannabinoid CB1 receptor (CB1) in HEK 293 cells, as well as pharmacological equivalence with THC in drug discrimination in mice. All OXIZID compounds behaved as agonists in Gαi protein activation and β-arrestin 2 translocation assays, possessing low micromolar affinity at CB1. All ligands also substituted for THC in drug discrimination, where potencies broadly correlated with in vitro activity, with the methylcyclohexane analogue BZO-CHMOXIZID being the most potent. Notably, MDA-19 (BZO-HEXOXIZID) exhibited partial efficacy in vitro, generating an activity profile most similar to that of THC, and partial substitution in vivo. Overall, the examined OXIZIDs were comparatively less potent and efficacious than previous generations of SCRAs. Further toxicological data will elucidate whether the moderate cannabimimetic activity for this series of SCRAs will translate to severe adverse health effects as seen with previous generations of SCRAs.
Collapse
Affiliation(s)
- Monica Patel
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Xiaoxi Zheng
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Institute of Environmental Science and Research Ltd (ESR), New Zealand
| | - Luli R Akinfiresoye
- United States Department of Justice, Drug Enforcement Administration, Diversion Control Division, Drug and Chemical Evaluation Section, 8701 Morrissette Drive, Springfield, VA, USA
| | - Cassandra Prioleau
- United States Department of Justice, Drug Enforcement Administration, Diversion Control Division, Drug and Chemical Evaluation Section, 8701 Morrissette Drive, Springfield, VA, USA
| | - Teneille D Walker
- United States Department of Justice, Drug Enforcement Administration, Diversion Control Division, Drug and Chemical Evaluation Section, 8701 Morrissette Drive, Springfield, VA, USA
| | - Michelle Glass
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Institute of Environmental Science and Research Ltd (ESR), New Zealand.
| | - Julie A Marusich
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
9
|
Sparkes E, Timmerman A, Markham JW, Boyd R, Gordon R, Walker KA, Kevin RC, Hibbs DE, Banister SD, Cairns EA, Stove C, Ametovski A. Synthesis and Functional Evaluation of Synthetic Cannabinoid Receptor Agonists Related to ADB-HEXINACA. ACS Chem Neurosci 2024; 15:1787-1812. [PMID: 38597712 DOI: 10.1021/acschemneuro.3c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
ADB-HEXINACA has been recently reported as a synthetic cannabinoid receptor agonist (SCRA), one of the largest classes of new psychoactive substances (NPSs). This compound marks the entry of the n-hexyl tail group into the SCRA landscape, which has continued in the market with recent, newly detected SCRAs. As such, a proactive characterization campaign was undertaken, including the synthesis, characterization, and pharmacological evaluation of ADB-HEXINACA and a library of 41 closely related analogues. Two in vitro functional assays were employed to assess activity at CB1 and CB2 cannabinoid receptors, measuring Gβγ-coupled agonism through a fluorescence-based membrane potential assay (MPA) and β-arrestin 2 (βarr2) recruitment via a live cell-based nanoluciferase complementation reporter assay. ADB-HEXINACA was a potent and efficacious CB1 agonist (CB1 MPA pEC50 = 7.87 ± 0.12 M; Emax = 124 ± 5%; βarr2 pEC50 = 8.27 ± 0.14 M; Emax = 793 ± 42.5), as were most compounds assessed. Isolation of the heterocyclic core and alkyl tails allowed for the comprehensive characterization of structure-activity relationships in this compound class, which were rationalized in silico via induced fit docking experiments. Overall, most compounds assessed are possibly emerging NPSs.
Collapse
Affiliation(s)
- Eric Sparkes
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Axelle Timmerman
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jack W Markham
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2050, Australia
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Rochelle Boyd
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Rebecca Gordon
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Katelyn A Walker
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Richard C Kevin
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital Sydney, Sydney, New South Wales 2010, Australia
- School of Clinical Medicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - David E Hibbs
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Samuel D Banister
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Elizabeth A Cairns
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Adam Ametovski
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2050, Australia
| |
Collapse
|
10
|
Xu Y, Li X, Xu P, Yan F, Wang D. Comparative pharmacokinetic and intracerebral distribution of MDMB-4F-BICA in mice following inhalation ('vapor') and subcutaneous injection. J Pharm Biomed Anal 2024; 241:115988. [PMID: 38301574 DOI: 10.1016/j.jpba.2024.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
MDMB-4F-BICA, also known as 4F-MDMB-BICA, is a new psychoactive substance that emerged in 2020. It is often illegally added to electronic cigarette oil for inhalation abuse, leading to serious adverse symptoms and even death. There are significant differences in pharmacokinetics between inhalation administration and conventional drug delivery methods. Inhalation administration can pass through the blood-brain barrier to enter the brain directly. However, the specific distribution of the drug in the brain following inhalation has not been well investigated. In order to scientifically compare the absorption and distribution of MDMB-4F-BICA after two administration methods (inhalation and subcutaneous injection), this study analyzed the drug concentration in mice blood and brain by LC-MS/MS after systemic exposure inhalation in the form of electronic cigarettes. The aim was to conduct the pharmacokinetics study of MDMB-4F-BICA after inhalation('vapor') administration. Pharmacokinetics and distribution of the compound revealed that the maximum concentrations in blood of this compound were reached at 0.5 min and 15 min, respectively, and the concentration in the brain reached the maximum at the same time after two modes of administration. The drug concentration in the brain was higher than that of subcutaneous injection, and the drug remained at a low concentration in the brain for a long period (20 ng/g brain tissue) with a significant distribution in several olfactory primary cortex brain regions. Taken together, the pharmacokinetics of the synthetic cannabinoid MDMB-4F-BICA after single systemic exposure inhalation were investigated for the first time in this study. A basis for subsequent evaluation research of inhalation-related harmfulness is provided by comparing the distribution of drugs in the brain after the two administration modes.
Collapse
Affiliation(s)
- Yawen Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, China
| | - Xiangyu Li
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China; Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, China
| | - Peng Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China; Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, China
| | - Fang Yan
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, China.
| | - Dan Wang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China; Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, China.
| |
Collapse
|
11
|
Dutta S, Shukla D. Characterization of binding kinetics and intracellular signaling of new psychoactive substances targeting cannabinoid receptor using transition-based reweighting method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.29.560261. [PMID: 37873328 PMCID: PMC10592854 DOI: 10.1101/2023.09.29.560261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
New psychoactive substances (NPS) targeting cannabinoid receptor 1 pose a significant threat to society as recreational abusive drugs that have pronounced physiological side effects. These greater adverse effects compared to classical cannabinoids have been linked to the higher downstream β-arrestin signaling. Thus, understanding the mechanism of differential signaling will reveal important structure-activity relationship essential for identifying and potentially regulating NPS molecules. In this study, we simulate the slow (un)binding process of NPS MDMB-Fubinaca and classical cannabinoid HU-210 from CB1 using multi-ensemble simulation to decipher the effects of ligand binding dynamics on downstream signaling. The transition-based reweighing method is used for the estimation of transition rates and underlying thermodynamics of (un)binding processes of ligands with nanomolar affinities. Our analyses reveal major interaction differences with transmembrane TM7 between NPS and classical cannabinoids. A variational autoencoder-based approach, neural relational inference (NRI), is applied to assess the allosteric effects on intracellular regions attributable to variations in binding pocket interactions. NRI analysis indicate a heightened level of allosteric control of NPxxY motif for NPS-bound receptors, which contributes to the higher probability of formation of a crucial triad interaction (Y7.53-Y5.58-T3.46) necessary for stronger β-arrestin signaling. Hence, in this work, MD simulation, data-driven statistical methods, and deep learning point out the structural basis for the heightened physiological side effects associated with NPS, contributing to efforts aimed at mitigating their public health impact.
Collapse
Affiliation(s)
- Soumajit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| |
Collapse
|
12
|
Ryalls B, Patel M, Sparkes E, Banister SD, Finlay DB, Glass M. Investigating selectivity and bias for G protein subtypes and β-arrestins by synthetic cannabinoid receptor agonists at the cannabinoid CB 1 receptor. Biochem Pharmacol 2024; 222:116052. [PMID: 38354957 DOI: 10.1016/j.bcp.2024.116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The cannabinoid CB1 receptor (CB1) is a G protein-coupled receptor (GPCR) with widespread expression in the central nervous system. This canonically G⍺i/o-coupled receptor mediates the effects of Δ9-tetrahydrocannabinol (THC) and synthetic cannabinoid receptor agonists (SCRAs). Recreational use of SCRAs is associated with serious adverse health effects, making pharmacological research into these compounds a priority. Several studies have hypothesised that signalling bias may explain the different toxicological profiles between SCRAs and THC. Previous studies have focused on bias between G protein activation measured by cyclic adenosine monophosphate (cAMP) inhibition and β-arrestin translocation. In contrast, the current study characterises bias between G⍺ subtypes of the G⍺i/o family and β-arrestins; this method facilitates a more accurate assessment of ligand bias by assessing signals that have not undergone major amplification. We have characterised G protein dissociation and translocation of β-arrestin 1 and 2 using real-time BRET reporters. The responses produced by each SCRA across the G protein subtypes tested were consistent with the responses produced by the reference ligand AMB-FUBINACA. Ligand bias was probed by applying the operational analysis to determine biases within the G⍺i/o family, and between G protein subtypes and β-arrestins. Overall, these results confirm SCRAs to be balanced, high-efficacy ligands compared to the low efficacy ligand THC, with only one SCRA, 4CN-MPP-BUT7IACA, demonstrating statistically significant bias in one pathway comparison (towards β-arrestin 1 when compared with G⍺oA/oB). This suggests that the adverse effects caused by SCRAs are due to high potency and efficacy at CB1, rather than biased agonism.
Collapse
Affiliation(s)
- Beth Ryalls
- Department of Pharmacology & Toxicology, University of Otago, Dunedin, New Zealand. PO Box 56, Dunedin 9054, New Zealand
| | - Monica Patel
- Department of Pharmacology & Toxicology, University of Otago, Dunedin, New Zealand. PO Box 56, Dunedin 9054, New Zealand
| | - Eric Sparkes
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Samuel D Banister
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - David B Finlay
- Department of Pharmacology & Toxicology, University of Otago, Dunedin, New Zealand. PO Box 56, Dunedin 9054, New Zealand
| | - Michelle Glass
- Department of Pharmacology & Toxicology, University of Otago, Dunedin, New Zealand. PO Box 56, Dunedin 9054, New Zealand; Institute of Environmental Science and Research Limited (ESR) Kenepuru Science Centre: 34 Kenepuru Drive, Kenepuru, Porirua 5022, New Zealand.
| |
Collapse
|
13
|
Norman C, Deventer MH, Dremann O, Reid R, Van Uytfanghe K, Guillou C, Vinckier IMJ, Nic Daéid N, Krotulski A, Stove CP. In vitro cannabinoid receptor activity, metabolism, and detection in seized samples of CH-PIATA, a new indole-3-acetamide synthetic cannabinoid. Drug Test Anal 2024; 16:380-391. [PMID: 37491777 DOI: 10.1002/dta.3555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
The rapidly evolving synthetic cannabinoid receptor agonist (SCRA) market poses significant challenges for forensic scientists. Since the enactment of a generic ban in China, a variety of new compounds have emerged capable of evading the legislation by carrying new structural features. One recent example of a SCRA with new linker and head moieties is CH-PIATA (CH-PIACA, CHX-PIATA, CHX-PIACA). CH-PIATA bears an additional methylene spacer in the linker moiety between the indole core and the traditional carbonyl component of the linker. This study describes detections in 2022 of this new SCRA in the United States, Belgium, and Scottish prisons. CH-PIATA was detected once in a seized powder by Belgian customs and 12 times in Scottish prisons in infused papers or resin. The metabolites of CH-PIATA were investigated via in vitro human liver microsome (HLM) incubations and eight metabolites were identified, dominated by oxidative biotransformations. A blood sample from the United States was confirmed to contain a mixture of SCRAs including CH-PIATA via presence of the parent and at least five of the metabolites identified from HLM incubations. Furthermore, this paper evaluates the intrinsic in vitro cannabinoid 1 and 2 (CB1 and CB2) receptor activation potential of CH-PIATA reference material and the powder seized by Belgian customs by means of β-arrestin 2 recruitment assays. Both the reference and the seized powder showed a weak activity at both CB receptors with signs of antagonism found. Based on these results, the expected harm potential of this newly emerging substance remains limited.
Collapse
Affiliation(s)
- Caitlyn Norman
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Olivia Dremann
- College of Arts and Sciences, Arcadia University, Glenside, Pennsylvania, USA
| | - Robert Reid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Katleen Van Uytfanghe
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Claude Guillou
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Niamh Nic Daéid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Alex Krotulski
- Center for Forensic Science Research and Education, Frederic Rieders Family Foundation, Willow Grove, Pennsylvania, USA
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Azuma Y, Doi T, Asada A, Tanaka M, Tagami T. Synthesis and structure determination of a synthetic cannabinoid CUMYL-THPINACA metabolite with differentiation between the ortho-, meta-, and para-hydroxyl positions of the cumyl moiety. Drug Test Anal 2024; 16:348-358. [PMID: 37485784 DOI: 10.1002/dta.3548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Synthetic cannabinoids, a type of new psychoactive substances, are likely to be rapidly metabolized; thus, the detection of their metabolites, rather than the parent compound, is a common method used to prove drug consumption. Although the analysis of metabolites is generally performed by mass spectrometry, it is limited to structural estimation because of few commercially available standards. In particular, distinguishing between positional isomers is difficult. Synthetic cannabinoids with a cumyl moiety can be hydroxylated at the cumyl moiety during metabolism, but it remains unclear whether the hydroxylation occurs at the ortho, meta, or para position. This study determined the structures of a metabolite formed by mono-hydroxylation at the cumyl moiety of the synthetic cannabinoid CUMYL-THPINACA, used as a model compound. Chemical synthesis was performed to create possible metabolites with one hydroxyl group at the ortho, meta, or para positions of the cumyl moiety. Using the synthesized metabolites and liquid chromatography-quadrupole time-of-flight mass spectrometry, the metabolite detected in the microsomal reaction of CUMYL-THPINACA was identified as a compound mono-hydroxylated at the para position based on retention time and product ion spectra. Moreover, the rapid metabolism of CUMYL-THPINACA was demonstrated with an in vitro half-life of 4.9 min and the identified metabolite could be detected for a relatively long time in vitro. The synthesized metabolite may be utilized as a good reference standard for proof of CUMYL-THPINACA consumption. These findings have potential applications in the synthesis of metabolites of other synthetic cannabinoids bearing a cumyl moiety.
Collapse
Affiliation(s)
- Yuki Azuma
- Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Takahiro Doi
- Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Akiko Asada
- Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Misa Tanaka
- Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Takaomi Tagami
- Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka, Japan
| |
Collapse
|
15
|
Zhou F, Wang X, Tan S, Shi Y, Xie B, Xiang P, Cong B, Ma C, Wen D. Differential cannabinoid-like effects and pharmacokinetics of ADB-BICA, ADB-BINACA, ADB-4en-PINACA and MDMB-4en-PINACA in mice: A comparative study. Addict Biol 2024; 29:e13372. [PMID: 38380735 PMCID: PMC10898835 DOI: 10.1111/adb.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 12/19/2023] [Indexed: 02/22/2024]
Abstract
Despite synthetic cannabinoids' (SCs) prevalent use among humans, these substances often lack comprehensive pharmacological data, primarily due to their rapid emergence in the market. This study aimed to discern differences and causal factors among four SCs (ADB-BICA, ADB-BINACA, ADB-4en-PINACA and MDMB-4en-PINACA), with respect to locomotor activity, body temperature and nociception threshold. Adult male C57BL/6 mice received intraperitoneal injections of varying doses (0.5, 0.1 and 0.02 mg/kg) of these compounds. Three substances (including ADB-BINACA, ADB-4en-PINACA and MDMB-4en-PINACA) demonstrated dose- and time-dependent hypolocomotive and hypothermic effects. Notably, 0.1 mg/kg MDMB-4en-PINACA exhibited analgesic properties. However, ADB-BICA did not cause any effects. MDMB-4en-PINACA manifested the most potent and sustained effects, followed by ADB-4en-PINACA, ADB-BINACA and ADB-BICA. Additionally, the cannabinoid receptor 1 (CB1R) antagonist AM251 suppressed the effects induced by acute administration of the substances. Analysis of molecular binding configurations revealed that the four SCs adopted a congruent C-shaped geometry, with shared linker binding pockets conducive to robust steric interaction with CB1R. Essential residues PHE268 , PHE200 and SER173 within CB1R were identified as pivotal contributors to enhancing receptor-ligand associations. During LC-MS/MS analysis, 0.5 mg/kg MDMB-4en-PINACA exhibited the highest plasma concentration and most prolonged detection window post-administration. The study of SCs' pharmacological and pharmacokinetic profiles is crucial for better understanding the main mechanisms of cannabinoid-like effects induced by SCs, interpreting clinical findings related to SC uses and enhancing SCs risk awareness.
Collapse
Affiliation(s)
- Fenghua Zhou
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Xiaoli Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Sujun Tan
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Yan Shi
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Judicial Expertise, Department of Forensic ToxicologyAcademy of Forensic Science, Ministry of JusticeShanghaiChina
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Ping Xiang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Judicial Expertise, Department of Forensic ToxicologyAcademy of Forensic Science, Ministry of JusticeShanghaiChina
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| |
Collapse
|
16
|
Lea Houston M, Morgan J, Kelso C. Narrative Review of the Pharmacodynamics, Pharmacokinetics, and Toxicities of Illicit Synthetic Cannabinoid Receptor Agonists. Mini Rev Med Chem 2024; 24:92-109. [PMID: 37190813 DOI: 10.2174/1389557523666230515163107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Synthetic cannabinoid receptor agonists (SCRAs) are the most diverse class of new psychoactive substances worldwide, with approximately 300 unique SCRAs identified to date. While the use of this class of drug is not particularly prevalent, SCRAs are associated with several deaths every year due to their severe toxicity. METHODS A thorough examination of the literature identified 15 new SCRAs with a significant clinical impact between 2015 and 2021. RESULTS These 15 SCRAs have been implicated in 154 hospitalizations and 209 deaths across the US, Europe, Asia, and Australasia during this time period. CONCLUSION This narrative review provides pharmacodynamic, pharmacokinetic, and toxicologic data for SCRAs as a drug class, including an in-depth review of known pharmacological properties of 15 recently identified and emerging SCRAs for the benefit of researchers, policy makers, and clinicians who wish to be informed of developments in this field.
Collapse
Affiliation(s)
- Matilda Lea Houston
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Jody Morgan
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Celine Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- Molecular Horizons Institute, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
17
|
Neukamm MA, Halter S, Auwärter V, Schmitt G, Giorgetti A, Bartel M. Death after smoking of fentanyl, 5F-ADB, 5F-MDMB-P7AICA and other synthetic cannabinoids with a bucket bong. Forensic Toxicol 2024; 42:82-92. [PMID: 37300633 PMCID: PMC10808286 DOI: 10.1007/s11419-023-00666-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE We report a case of a polydrug user who consumed various synthetic cannabinoids and fentanyl from a transdermal patch via a bucket bong. Toxicological results from postmortem matrices with special focus on synthetic cannabinoids are discussed in terms of their relevance to the death. METHODS The samples were analyzed by toxicological screening procedures involving immunoassays and gas chromatography-mass spectrometry (GC-MS) as well as quantitative analyses by means of GC-MS and high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS At the autopsy, coronary artery disease and signs of liver congestion were noted, in the absence of acute myocardial ischemic changes. Femoral blood concentrations of fentanyl and pregabalin were 14 ng/mL and 3,200 ng/mL, respectively. In addition, 2.7 ng/mL 5F-ADB and 13 ng/mL 5F-MDMB-P7AICA were detected together with relatively low amounts of 5 other synthetic cannabinoids in cardiac blood. A total number of up to 17 synthetic cannabinoids were detected in kidney, liver, urine and hair. Fentanyl and 5F-ADB were also detected in the water of the bucket bong. CONCLUSIONS The cause of death could be attributed to an acute mixed intoxication by fentanyl and 5F-ADB (both Toxicological Significance Score (TSS) = 3) with a contribution of pregabalin and 5F-MDMB-P7AICA (TSS = 2), in a subject suffering from pre-existing heart damage. The most plausible mechanism of death consists in a respiratory depression. This case report demonstrates that use of opioids in combination with synthetic cannabinoids might be particularly dangerous.
Collapse
Affiliation(s)
- Merja A Neukamm
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstrasse 9, 79104, Freiburg, Germany.
| | - Sebastian Halter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstrasse 9, 79104, Freiburg, Germany
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstrasse 9, 79104, Freiburg, Germany
| | - Georg Schmitt
- Institute of Forensic and Traffic Medicine, University Hospital, Voßstrasse 2, 69115, Heidelberg, Germany
| | - Arianna Giorgetti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, 40126, Bologna, Italy
| | - Marc Bartel
- Institute of Forensic and Traffic Medicine, University Hospital, Voßstrasse 2, 69115, Heidelberg, Germany
| |
Collapse
|
18
|
Baginski SR, Rautio T, Nisbet LA, Lindbom K, Wu X, Dahlén J, McKenzie C, Gréen H. The metabolic profile of the synthetic cannabinoid receptor agonist ADB-HEXINACA using human hepatocytes, LC-QTOF-MS and synthesized reference standards. J Anal Toxicol 2023; 47:826-834. [PMID: 37747838 PMCID: PMC10714907 DOI: 10.1093/jat/bkad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) remain a major public health concern, with their use implicated in intoxications and drug-related deaths worldwide. Increasing our systematic understanding of SCRA metabolism supports clinical and forensic toxicology casework, facilitating the timely identification of analytical targets for toxicological screening procedures and confirmatory analysis. This is particularly important as new SCRAs continue to emerge on the illicit drug market. In this work, the metabolism of ADB-HEXINACA (ADB-HINACA, N-[1-amino-3,3-dimethyl-1-oxobutan-2-yl]-1-hexyl-1H-indazole-3-carboxamide), which has increased in prevalence in the United Kingdom and other jurisdictions, was investigated using in vitro techniques. The (S)-enantiomer of ADB-HEXINACA was incubated with pooled human hepatocytes over 3 hours to identify unique and abundant metabolites using liquid chromatography-quadrupole time-of-flight mass spectrometry. In total, 16 metabolites were identified, resulting from mono-hydroxylation, di-hydroxylation, ketone formation (mono-hydroxylation then dehydrogenation), carboxylic acid formation, terminal amide hydrolysis, dihydrodiol formation, glucuronidation and combinations thereof. The majority of metabolism took place on the hexyl tail, forming ketone and mono-hydroxylated products. The major metabolite was the 5-oxo-hexyl product (M9), while the most significant mono-hydroxylation product was the 4-hydroxy-hexyl product (M8), both of which were confirmed by comparison to in-house synthesized reference standards. The 5-hydroxy-hexyl (M6) and 6-hydroxy-hexyl (M7) metabolites were not chromatographically resolved, and the 5-hydroxy-hexyl product was the second largest mono-hydroxylated metabolite. The structures of the terminal amide hydrolysis products without (M16, third largest metabolite) and with the 5-positioned ketone (M13) were also confirmed by comparison to synthesized reference standards, along with the 4-oxo-hexyl metabolite (M11). The 5-oxo-hexyl and 4-hydroxy-hexyl metabolites are suggested as biomarkers for ADB-HEXINACA consumption.
Collapse
Affiliation(s)
- Steven R Baginski
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Fleming Laboratory, Small’s Wynd, Dundee DD1 4HN, UK
| | - Tobias Rautio
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Lorna A Nisbet
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Fleming Laboratory, Small’s Wynd, Dundee DD1 4HN, UK
| | - Karin Lindbom
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping 581 83, Sweden
| | - Xiongyu Wu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Johan Dahlén
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Craig McKenzie
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Fleming Laboratory, Small’s Wynd, Dundee DD1 4HN, UK
- Chiron AS, Stiklestadveien 1, Trondheim 7041, Norway
| | - Henrik Gréen
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping 581 83, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Artillerigatan 12, Linköping 587 58, Sweden
| |
Collapse
|
19
|
Patel M, Grimsey NL, Banister SD, Finlay DB, Glass M. Evaluating signaling bias for synthetic cannabinoid receptor agonists at the cannabinoid CB 2 receptor. Pharmacol Res Perspect 2023; 11:e01157. [PMID: 38018694 PMCID: PMC10685394 DOI: 10.1002/prp2.1157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
The rapid structural evolution and emergence of novel synthetic cannabinoid receptor agonists (SCRAs) in the recreational market remains a key public health concern. Despite representing one of the largest classes of new psychoactive substances, pharmacological data on new SCRAs is limited, particularly at the cannabinoid CB2 receptor (CB2 ). Hence, the current study aimed to characterize the molecular pharmacology of a structurally diverse panel of SCRAs at CB2 , including 4-cyano MPP-BUT7AICA, 4F-MDMB-BUTINACA, AMB-FUBINACA, JWH-018, MDMB-4en-PINACA, and XLR-11. The activity of SCRAs was assessed in a battery of in vitro assays in CB2 -expressing HEK 293 cells: G protein activation (Gαi3 and GαoB ), phosphorylation of ERK1/2, and β-arrestin 1/2 translocation. The activity profiles of the ligands were further evaluated using the operational analysis to identify ligand bias. All SCRAs activated the CB2 signaling pathways in a concentration-dependent manner, although with varying potencies and efficacies. Despite the detection of numerous instances of statistically significant bias, compound activities generally appeared only subtly distinct in comparison with the reference ligand, CP55940. In contrast, the phytocannabinoid THC exhibited an activity profile distinct from the SCRAs; most notably in the translocation of β-arrestins. These findings demonstrate that CB2 is able to accommodate a structurally diverse array of SCRAs to generate canonical agonist activity. Further research is required to elucidate whether the activation of CB2 contributes to the toxicity of these compounds.
Collapse
Affiliation(s)
- Monica Patel
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| | - Natasha L. Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Samuel D. Banister
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind CentreUniversity of SydneyNew South WalesAustralia
- School of Chemistry, Faculty of ScienceUniversity of SydneyNew South WalesAustralia
| | - David B. Finlay
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| | - Michelle Glass
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
20
|
Doi T, Sakai T. Methyl 1-(4-fluoro-benz-yl)-1 H-indazole-3-carboxyl-ate. IUCRDATA 2023; 8:x230995. [PMID: 38313071 PMCID: PMC10833126 DOI: 10.1107/s2414314623009951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/16/2023] [Indexed: 02/06/2024] Open
Abstract
The title compound, C16H13FN2O2, was synthesized by nucleophilic substitution of the indazole N-H hydrogen atom of methyl 1H-indazole-3-carboxyl-ate with 1-(bromo-meth-yl)-4-fluoro-benzene. In the crystal, some hydrogen-bond-like inter-actions are observed.
Collapse
Affiliation(s)
- Takahiro Doi
- Osaka Institute of Public Health, Division of Hygienic Chemistry, Pharmaceutical Affairs Section, Nakamichi 1-3-3, Higashinari-ku, Osaka, 537-0025, Japan
| | - Takayuki Sakai
- Osaka Institute of Public Health, Division of Hygienic Chemistry, Pharmaceutical Affairs Section, Nakamichi 1-3-3, Higashinari-ku, Osaka, 537-0025, Japan
| |
Collapse
|
21
|
Simon G, Kuzma M, Mayer M, Petrus K, Tóth D. Fatal Overdose with the Cannabinoid Receptor Agonists MDMB-4en-PINACA and 4F-ABUTINACA: A Case Report and Review of the Literature. TOXICS 2023; 11:673. [PMID: 37624178 PMCID: PMC10458319 DOI: 10.3390/toxics11080673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
A case of a 26-year-old male who died from consuming synthetic cannabinoid receptor agonists MDMB-4en-PINACA and 4F-ABUTINACA is reported. MDMB-4en-PINACA and 4F-ABUTINACA are potent synthetic cannabinoid receptor agonists (SCRAs). This is the first detailed reporting of MDMB-4-en-PINACA and 4F-ABUTINACA associated fatality, which can help the routine forensic work. The scientific literature on the symptoms associated with these substances are evaluated, along with the pharmacological properties and possible mechanism of death. A forensic autopsy was performed according to Recommendation No. R (99)3 of the Council of Europe on medico-legal autopsies. Histological samples were stained with hematoxylin and eosin (HE). Complement component C9 immunohistochemistry was applied to all heart samples. Toxicological analyses were carried out by supercritical fluid chromatography coupled with tandem mass spectrometry (SFC-MS/MS) and headspace gas chromatography with a flame ionization detector (HS-GC-FID). The literature was reviewed to identify reported cases of MDMB-4en-PINACA and 4F-ABUTINACA use. Autopsy findings included brain edema, internal congestion, petechial bleeding, pleural ecchymoses, and blood fluidity. Toxicological analyses determined 7.2 ng/mL of MDMB-4en-PINACA and 9.1 ng/mL of 4F-ABUTINACA in the peripheral blood. MDMB-4en-PINACA and 4F-ABUTINACA are strong, potentially lethal SCRA, and their exact effects and outcome are unpredictable.
Collapse
Affiliation(s)
- Gábor Simon
- Department of Forensic Medicine, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary; (M.K.); (M.M.); (K.P.); (D.T.)
| | - Mónika Kuzma
- Department of Forensic Medicine, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary; (M.K.); (M.M.); (K.P.); (D.T.)
| | - Mátyás Mayer
- Department of Forensic Medicine, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary; (M.K.); (M.M.); (K.P.); (D.T.)
- Department of Laboratory Medicine, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
| | - Karola Petrus
- Department of Forensic Medicine, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary; (M.K.); (M.M.); (K.P.); (D.T.)
| | - Dénes Tóth
- Department of Forensic Medicine, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary; (M.K.); (M.M.); (K.P.); (D.T.)
| |
Collapse
|
22
|
Haller J, Rompos É, Szabó Í, Humli V, Christián L. Drug regulations and trafficking: Synthetic cannabinoids and cathinones in Hungary. Forensic Sci Int 2023; 349:111778. [PMID: 37437415 DOI: 10.1016/j.forsciint.2023.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
In principle, new psychoactive substances (NPSs) are produced to circumvent drug regulations. However, the mixed success of regulatory efforts suggests that the dynamics of marketing is incompletely understood. To address this issue, we conducted a comprehensive study on the marketing of all synthetic cannabinoids and cathinones present in Hungary over ten years. Market evaluation was based on drug seizure data and chemical analyses provided by the Hungarian Institute for Forensic Sciences. Over ten years, 18 synthetic cannabinoids and 11 cathinones were identified. Total seizure counts were 22,906 and 10,273, respectively. When new synthetic cannabinoids emerged, seizures increased exponentially, but rapidly declined after their banning. In parallel, new synthetic cannabinoids emerged on the market. The systematic monitoring of local legislation allowed large sales between market introduction and legal control. Cathinones were also marketed in successive waves, but trading intensity was not associated with local regulations. Sales remained low throughout, likely because the risks involved by the temporal mismatch between marketing and legal control. One can hypothesize that marketing was driven by general trends in EU regulations or by measures taken by large countries. Our findings imply the existence of two different strategies for NPS marketing. The choice between the two may depend on multiple factors from the availability of skills required by rapid marketing adjustments to cost/benefit evaluations for various market segments. Studying NPS market strategies in neighboring and distant EU countries may help analyzing and predicting market events.
Collapse
Affiliation(s)
- József Haller
- Drug Research Institute, Budapest, Hungary; University of Public Service, Budapest, Hungary.
| | - Éva Rompos
- Hungarian Institute for Forensic Sciences, Budapest, Hungary
| | | | | | - László Christián
- Drug Research Institute, Budapest, Hungary; University of Public Service, Budapest, Hungary
| |
Collapse
|
23
|
de Oliveira MC, Vides MC, Lassi DLS, Torales J, Ventriglio A, Bombana HS, Leyton V, Périco CDAM, Negrão AB, Malbergier A, Castaldelli-Maia JM. Toxicity of Synthetic Cannabinoids in K2/Spice: A Systematic Review. Brain Sci 2023; 13:990. [PMID: 37508922 PMCID: PMC10377539 DOI: 10.3390/brainsci13070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Synthetic cannabinoids (SCs) are emerging drugs of abuse sold as 'K2', 'K9' or 'Spice'. Evidence shows that using SCs products leads to greater health risks than cannabis. They have been associated with greater toxicity and higher addiction potential unrelated to the primary psychoactive component of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC). Moreover, early cases of intoxication and death related to SCs highlight the inherent danger that may accompany the use of these substances. However, there is limited knowledge of the toxicology of Spice ingredients. This systematic review intends to analyze the toxicity of SCs compounds in Spice/K2 drugs. (2) Methods: Studies analyzing synthetic cannabinoid toxicity and dependence were included in the present review. We searched the PubMed database of the US National Library of Medicine, Google Scholar, CompTox Chemicals, and Web of Science up to May 2022. (3) Results: Sixty-four articles reporting the effects of synthetic cannabinoids in humans were included in our review. Ten original papers and fifty-four case studies were also included. Fourteen studies reported death associated with synthetic cannabinoid use, with AB-CHMINACA and MDMB-CHMICA being the main reported SCs. Tachycardia and seizures were the most common toxicity symptoms. The prevalence of neuropsychiatric symptoms was higher in third-generation SCs. (4) Conclusion: SCs may exhibit higher toxicity than THC and longer-lasting effects. Their use may be harmful, especially in people with epilepsy and schizophrenia, because of the increased risk of the precipitation of psychiatric and neurologic disorders. Compared to other drugs, SCs have a higher potential to trigger a convulsive crisis, a decline in consciousness, and hemodynamic changes. Therefore, it is crucial to clarify their potential harms and increase the availability of toxicology data in both clinical and research settings.
Collapse
Affiliation(s)
- Mariana Campello de Oliveira
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
| | - Mariana Capelo Vides
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
| | - Dângela Layne Silva Lassi
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
| | - Julio Torales
- Department of Psychological Medicine, School of Medical Sciences, National University of Asuncion, San Lorenzo 111421, Paraguay
| | - Antonio Ventriglio
- Department of Experimental Medicine, Medical School, University of Foggia, 71122 Foggia, Italy
| | - Henrique Silva Bombana
- Department of Legal Medicine, Medical School, São Paulo University, São Paulo 05508-090, SP, Brazil
| | - Vilma Leyton
- Department of Legal Medicine, Medical School, São Paulo University, São Paulo 05508-090, SP, Brazil
| | | | - André Brooking Negrão
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
| | - André Malbergier
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
| | - João Maurício Castaldelli-Maia
- Interdisciplinary Group of Alcohol and Drug Studies (GREA), Institute Perdizes, Department of Psychiatry Medical School, São Paulo University, São Paulo 05403-903, SP, Brazil
- Department of Neuroscience, Medical School, FMABC University Center, Santo André 09060-870, SP, Brazil
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| |
Collapse
|
24
|
Gioé-Gallo C, Ortigueira S, Brea J, Raïch I, Azuaje J, Paleo MR, Majellaro M, Loza MI, Salas CO, García-Mera X, Navarro G, Sotelo E. Pharmacological insights emerging from the characterization of a large collection of synthetic cannabinoid receptor agonists designer drugs. Biomed Pharmacother 2023; 164:114934. [PMID: 37236027 DOI: 10.1016/j.biopha.2023.114934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/01/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) constitute the largest and most defiant group of abuse designer drugs. These new psychoactive substances (NPS), developed as unregulated alternatives to cannabis, have potent cannabimimetic effects and their use is usually associated with episodes of psychosis, seizures, dependence, organ toxicity and death. Due to their ever-changing structure, very limited or nil structural, pharmacological, and toxicological information is available to the scientific community and the law enforcement offices. Here we report the synthesis and pharmacological evaluation (binding and functional) of the largest and most diverse collection of enantiopure SCRAs published to date. Our results revealed novel SCRAs that could be (or may currently be) used as illegal psychoactive substances. We also report, for the first time, the cannabimimetic data of 32 novel SCRAs containing an (R) configuration at the stereogenic center. The systematic pharmacological profiling of the library enabled the identification of emerging Structure-Activity Relationship (SAR) and Structure-Selectivity Relationship (SSR) trends, the detection of ligands exhibiting incipient cannabinoid receptor type 2 (CB2R) subtype selectivity and highlights the significant neurotoxicity of representative SCRAs on mouse primary neuronal cells. Several of the new emerging SCRAs are currently expected to have a rather limited potential for harm, as the evaluation of their pharmacological profiles revealed lower potencies and/or efficacies. Conceived as a resource to foster collaborative investigation of the physiological effects of SCRAs, the library obtained can contribute to addressing the challenge posed by recreational designer drugs.
Collapse
Affiliation(s)
- Claudia Gioé-Gallo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Sandra Ortigueira
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - José Brea
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Iu Raïch
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona 08028, Spain; Institute of Neurosciences (NeuroUB), Campus Mundet, University of Barcelona, Barcelona 08035, Spain
| | - Jhonny Azuaje
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - M Rita Paleo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Maria Majellaro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - María Isabel Loza
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Cristian O Salas
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Xerardo García-Mera
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona 08028, Spain; Institute of Neurosciences (NeuroUB), Campus Mundet, University of Barcelona, Barcelona 08035, Spain.
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|
25
|
Dvorácskó S, Körmöczi T, Sija É, Bende B, Weiczner R, Varga T, Ilisz I, Institóris L, Kereszty ÉM, Tömböly C, Berkecz R. Focusing on the 5F-MDMB-PICA, 4F-MDMB-BICA synthetic cannabinoids and their primary metabolites in analytical and pharmacological aspects. Toxicol Appl Pharmacol 2023; 470:116548. [PMID: 37182749 DOI: 10.1016/j.taap.2023.116548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Nowadays, more and more new synthetic cannabinoids (SCs) appearing on the illicit market present challenges to analytical, forensic, and toxicology experts. For a better understanding of the physiological effect of SCs, the key issue is studying their metabolomic and psychoactive properties. In this study, our validated targeted reversed phase UHPLC-MS/MS method was used for determination of urinary concentration of 5F-MDMB-PICA, 4F-MDMB-BICA, and their primary metabolites. The liquid-liquid extraction procedure was applied for the enrichment of SCs.The pharmacological characterization of investigated SCs were studied by radioligand competition binding and ligand stimulated [35S]GTPγS binding assays. For 5F-MDMB-PICA and 4F-MDMB-BICA, the median urinary concentrations were 0.076 and 0.312 ng/mL. For primary metabolites, the concentration range was 0.029-881.02* ng/mL for 5F-MDMB-PICA-COOH, and 0.396-4579* ng/mL for 4F-MDMB-BICA-COOH. In the polydrug aspect, the 22 urine samples were verified to be abused with 6 illicit drugs. The affinity of the metabolites to CB1R significantly decreased compared to the parent ligands. In the GTPγS functional assay, both 5F-MDMB-PICA and 4F-MDMB-BICA were acting as full agonists, while the metabolites were found as weak inverse agonists. Additionally, the G-protein stimulatory effects of the full agonist 5F-MDMB-PICA and 4F-MDMB-BICA were reduced by metabolites. These results strongly indicate the dose-dependent CB1R-mediated weak inverse agonist effects of the two butanoic acid metabolites. The obtained high concentration of main urinary metabolites of 5F-MDMB-PICA and 4F-MDMB-BICA confirmed the relevance of their routine analysis in forensic and toxicological practices. Based on in vitro binding assays, the metabolites presumably might cause a lower psychoactive effect than parent compounds.
Collapse
Affiliation(s)
- Szabolcs Dvorácskó
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, Hungary; Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 8, Szeged, Hungary
| | - Tímea Körmöczi
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged Somogyi, utca 4., Szeged, Hungary
| | - Éva Sija
- Department of Forensic Medicine, Albert Szent-Györgyi Health Centre, Kossuth Lajos sgt. 40., Szeged, Hungary
| | - Balázs Bende
- Department of Dermatology and Allergology, Albert Szent-Györgyi Health Center, H-6720 Szeged, Korányi fasor 6., Szeged, Hungary
| | - Roland Weiczner
- Department of Forensic Medicine, Albert Szent-Györgyi Health Centre, Kossuth Lajos sgt. 40., Szeged, Hungary
| | - Tibor Varga
- Drug Laboratory Szeged, Drug Investigation Department, Hungarian Institute for Forensic Sciences, Kossuth Lajos sgt. 22-24, Szeged, Hungary
| | - István Ilisz
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged Somogyi, utca 4., Szeged, Hungary
| | - László Institóris
- Department of Forensic Medicine, Albert Szent-Györgyi Health Centre, Kossuth Lajos sgt. 40., Szeged, Hungary
| | - Éva M Kereszty
- Department of Forensic Medicine, Albert Szent-Györgyi Health Centre, Kossuth Lajos sgt. 40., Szeged, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged Somogyi, utca 4., Szeged, Hungary.
| |
Collapse
|
26
|
Tokarczyk B, Suchan M, Adamowicz P. New Synthetic Cannabinoid ADB-BUTINACA-Related Death of a Police Dog. J Anal Toxicol 2023; 47:e23-e28. [PMID: 36472351 DOI: 10.1093/jat/bkac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The popularity of synthetic cannabinoids puts police sniffer dogs at risk of accidental introduction of such substances into the body. The extreme efficacy and potency of many new synthetic cannabinoids are associated with a high risk of serious poisonings and even deaths. The paper presents the toxicological findings in an intoxication of a police dog, in which a new synthetic cannabinoid ADB-BUTINACA was detected and quantified in postmortem materials. The screening analyses were performed by liquid chromatography with tandem mass spectrometry (LC-MS-MS) and liquid chromatography--quadrupole/time-of-flight mass spectrometry (LC-QTOF-MS). LC-MS-MS was also used for quantitative analyses, while LC-QTOF-MS for metabolite identification. Due to unusual matrices, the standard addition method was used for the quantitative determination of ADB-BUTINACA. The determined concentrations of ADB-BUTINACA in blood, lung, stomach, liver and kidney were 8.1 ng/mL, 6.4 ng/g, 1.5 ng/g, 1.8 ng/g and 0.4 ng/g, respectively. Apart from ADB-BUTINACA, the monohydroxylated metabolites and the dihydrodiol metabolite were detected and identified in all analyzed materials, and moreover the product of N-debutylation was found in blood and liver. The described case presents the identification and quantitation of a new synthetic cannabinoid ADB-BUTINACA in postmortem dog specimens. Although the cause of death was acute gastric dilatation, it cannot be ruled out that this process was the result of synthetic cannabinoid inhalation. Due to dogs' sensitivity to cannabinoids, ADB-BUTINACA poisoning cannot be excluded either. The described case suggests that ADB-BUTINACA elicits serious adverse effects in dogs. The article also indicates the dangers to which police dogs coming into contact with extremely potent drugs may be exposed.
Collapse
Affiliation(s)
- Bogdan Tokarczyk
- Institute of Forensic Research, Westerplatte 9, Krakow 31-033, Poland
| | - Marta Suchan
- Institute of Forensic Research, Westerplatte 9, Krakow 31-033, Poland
| | - Piotr Adamowicz
- Institute of Forensic Research, Westerplatte 9, Krakow 31-033, Poland
| |
Collapse
|
27
|
Walle N, Doerr AA, Schmidt PH, Schaefer N. 'Flying high?'-Jump from a height in a 'Spice' high?: A case report on the synthetic cannabinoid 5F-MDMB-P7AICA. Drug Test Anal 2023; 15:368-373. [PMID: 36415074 DOI: 10.1002/dta.3401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022]
Abstract
Regarding the high potency of synthetic cannabinoids (SC), many intoxications and fatal cases are reported in literature. Here, we report on a fatality with 5F-MDMB-P7AICA contributing to the occurrence of death. A 31-year-old man died 10 h after he fell from the rooftop of a house. Police investigations revealed that he had consumed a 'legal high' herbal blend some hours earlier. An initial toxicological screening for new psychoactive substances (NPS) was negative. One year after, the analysis of confiscated drug samples revealed the SC 5F-MDMB-P7AICA being unknown at the time of the first investigations. Hence, post-mortem specimens were retrospectively analysed for 5F-MDMB-P7AICA and its dimethylbutanoic acid (DBA) metabolite. Lung, liver, kidney and bile fluid (BF) of the decedent were analysed following solid-phase extraction and standard addition, heart blood (HB) and peripheral blood (PB) by fully validated liquid-liquid extraction and protein precipitation methods. Additionally, hair specimens were analysed to examine a possible chronic consumption of the SC. All specimens were analysed by liquid-chromatography tandem mass spectrometry. 5F-MDMB-P7AICA was detected in HB (0.69 ng/ml), PB (1.2 ng/ml) and hair. DBA was found in HB (46 ng/ml) and PB (5.7 ng/ml) and could additionally be identified in liver and kidney (approximately 4-5 ng/g), lung (approximately 12 ng/g) and BF (approximately 60 ng/g). Compared with the parent compound, much higher concentrations of DBA were quantified. This case shows that drugs found at the scene can provide helpful initial information for further toxicological screenings in biological samples, especially when there is evidence of NPS consumption.
Collapse
Affiliation(s)
- Nadja Walle
- Institute of Legal Medicine, Saarland University, Homburg, Germany
| | - Adrian A Doerr
- Institute of Legal Medicine, Saarland University, Homburg, Germany
| | - Peter H Schmidt
- Institute of Legal Medicine, Saarland University, Homburg, Germany
| | - Nadine Schaefer
- Institute of Legal Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
28
|
Janssens LK, Ametovski A, Sparkes E, Boyd R, Lai F, Maloney CJ, Rhook D, Gerona RR, Connolly M, Liu H, Hibbs DE, Cairns EA, Banister SD, Stove CP. Comprehensive Characterization of a Systematic Library of Alkyl and Alicyclic Synthetic Cannabinoids Related to CUMYL-PICA, CUMYL-BUTICA, CUMYL-CBMICA, and CUMYL-PINACA. ACS Chem Neurosci 2023; 14:35-52. [PMID: 36530139 DOI: 10.1021/acschemneuro.2c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Over 200 synthetic cannabinoid receptor agonists (SCRAs) have been identified as new psychoactive substances. Effective monitoring and characterization of SCRAs are hindered by the rapid pace of structural evolution. Ahead of possible appearance on the illicit drug market, new SCRAs were synthesized to complete a systematic library of cumyl-indole- (e.g., CUMYL-CPrMICA, CUMYL-CPMICA) and cumyl-indazole-carboxamides (e.g., CUMYL-CPrMINACA, CUMYL-CPMINACA), encompassing butyl, pentyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, and cyclohexylmethyl tails. Comprehensive pharmacological characterization was performed with three assay formats, monitoring the recruitment of either wild-type or C-terminally truncated (βarr2d366) β-arrestin2 to the activated cannabinoid 1 receptor (CB1) or monitoring Gβγ-mediated membrane hyperpolarization. Altered compound characterization was observed when comparing derived potency (EC50) and efficacy (Emax) values from both assays monitoring the same or a different signaling event, whereas ranges and ranking orders were similar. Structure-activity relationships (SAR) were assessed in threefold, resulting in the identification of the pendant tail as a critical pharmacophore, with the optimal chain length for CB1 activation approximating an n-pentyl (e.g., cyclopentylmethyl or cyclohexylmethyl tail). The activity of the SCRAs encompassing cyclic tails decreased with decreasing number of carbons forming the cyclic moiety, with CUMYL-CPrMICA showing the least CB1 activity in all assay formats. The SARs were rationalized via molecular docking, demonstrating the importance of the optimal steric contribution of the hydrophobic tail. While SAR conclusions remained largely unchanged, the differential compound characterization by both similar and different assay designs emphasizes the importance of detailing specific assay characteristics to allow adequate interpretation of potencies and efficacies.
Collapse
Affiliation(s)
- Liesl K Janssens
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eric Sparkes
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rochelle Boyd
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.,School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Felcia Lai
- School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Callan J Maloney
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dane Rhook
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Roy R Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | | | | | - David E Hibbs
- School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth A Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.,School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Samuel D Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
29
|
Simultaneous fatal poisoning of two victims with 4F-MDMB-BINACA and ethanol. Forensic Toxicol 2023; 41:151-157. [PMID: 36652056 PMCID: PMC9849308 DOI: 10.1007/s11419-022-00632-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/06/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE Methyl-2-(1-(4-fluorobutyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate (4F-MDMB-BINACA) is a newly emerging synthetic cannabinoid receptor agonists (SCRA) first described in 2018 in both Europe and the United States. Two fatal cases are reported caused by simultaneous consumption of 4F-MDMB-BINACA and ethanol. METHODS The victims were brothers who were both found deceased after consuming 4F-MDMB-BINACA and ethanol. Post-mortem toxicological analyses of blood and urine were carried out by supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS) and headspace gas chromatography with flame ionization detection (HS-GC-FID). RESULTS The concentration of 4F-MDMB-BINACA in the postmortem blood was 2.50 and 2.34 ng/mL, and blood alcohol concentration was 2.11 and 2.49 g/L, respectively. CONCLUSION According to the reported cases and reviews of the scientific literature, concurrent ethanol consumption should amplify the toxicity of SCRAs. The threshold SCRA concentration for fatal overdose can be estimated ng/mL level (0.37-4.1 ng/mL according to the reported cases) in cases in which 1.5-2.5 g/L of ethanol is present in the blood.
Collapse
|
30
|
Marusich JA, Gamage TF, Zhang Y, Akinfiresoye LR, Wiley JL. In vitro and in vivo pharmacology of nine novel synthetic cannabinoid receptor agonists. Pharmacol Biochem Behav 2022; 220:173467. [PMID: 36154844 PMCID: PMC9837865 DOI: 10.1016/j.pbb.2022.173467] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 01/17/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are novel psychoactive substances that bind to and activate CB1 receptors in the brain. The structural manipulations observed in newer SCRAs suggest that manufacturers have incorporated modern drug development techniques into their repertoire, often producing higher CB1 receptor affinity than Δ9-tetrahydrocannabinol (Δ9-THC). This study examined nine SCRAs recently detected by forensic surveillance, some of which caused fatalities: 5F-MDMB-PICA, FUB-144, 5F-MMB-PICA, MMB-4en-PICA, MMB-FUBICA, 5F-EDMB-PINACA, APP-BINACA, MDMB-4en-PINACA, and FUB-AKB48. Compounds were evaluated for CB1 and CB2 receptor binding affinity and functional activation and for their effects on body temperature, time course, and pharmacological equivalence with Δ9-THC in Δ9-THC drug discrimination in mice. All SCRAs bound to and activated CB1 and CB2 receptors with high affinity, with similar or greater affinity for CB2 than CB1 receptors and stimulated [35S]GTPγS binding in CB1 and CB2 expressing cell membranes. All compounds produced hypothermia, with shorter latency to peak effects for SCRAs than Δ9-THC. All SCRAs fully substituted for Δ9-THC in drug discrimination at one or more doses. Rank order potency in producing in vivo effects mostly aligned with rank order CB1 receptor affinities. Potencies for Δ9-THC-like discriminative stimulus effects were similar across sex except Δ9-THC was more potent in females and 5F-MMB-PICA was more potent in males. In summary, 5F-EMDB-PINACA, 5F-MDMB-PICA, MDMB-4en-PINACA, FUB-144, FUB-AKB48, 5F-MMB-PICA, MMB-4en-PICA, and MMB-FUBICA are potent and efficacious SCRAs with pharmacology like that of past SCRAs that have been abused in humans. In contrast, APP-BINACA was efficacious, but had lower potency than most past SCRAs.
Collapse
Affiliation(s)
- Julie A Marusich
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA.
| | - Thomas F Gamage
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Yanan Zhang
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Luli R Akinfiresoye
- United States Department of Justice, Drug Enforcement Administration, Diversion Control Division, Drug and Chemical Evaluation Section, 8701 Morrissette Drive, Springfield, VA 22152, USA
| | - Jenny L Wiley
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| |
Collapse
|
31
|
Sparkes E, Boyd R, Chen S, Markham JW, Luo JL, Foyzun T, Zaman H, Fletcher C, Ellison R, McGregor IS, Santiago MJ, Lai F, Gerona RR, Connor M, Hibbs DE, Cairns EA, Glass M, Ametovski A, Banister SD. Synthesis and pharmacological evaluation of newly detected synthetic cannabinoid receptor agonists AB-4CN-BUTICA, MMB-4CN-BUTINACA, MDMB-4F-BUTICA, MDMB-4F-BUTINACA and their analogs. Front Psychiatry 2022; 13:1010501. [PMID: 36245876 PMCID: PMC9558907 DOI: 10.3389/fpsyt.2022.1010501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) continue to make up a significant portion new psychoactive substances (NPS) detected and seized worldwide. Due to their often potent activation of central cannabinoid receptors in vivo, use of SCRAs can result in severe intoxication, in addition to other adverse health effects. Recent detections of AB-4CN-BUTICA, MMB-4CN-BUTINACA, MDMB-4F-BUTICA and MDMB-4F-BUTINACA mark a continuation in the appearance of SCRAs bearing novel tail substituents. The proactive characterization campaign described here has facilitated the detection of several new SCRAs in toxicological case work. Here we detail the synthesis, characterization, and pharmacological evaluation of recently detected SCRAs, as well as a systematic library of 32 compounds bearing head, tail, and core group combinations likely to appear in future. In vitro radioligand binding assays revealed most compounds showed moderate to high affinity at both CB1 (pK i = < 5 to 8.89 ± 0.09 M) and CB2 (pK i = 5.49 ± 0.03 to 9.92 ± 0.09 M) receptors. In vitro functional evaluation using a fluorescence-based membrane potential assay showed that most compounds were sub-micromolar to sub-nanomolar agonists at CB1 (pEC50 = < 5 to 9.48 ± 0.14 M) and CB2 (pEC50 = 5.92 ± 0.16 to 8.64 ± 0.15 M) receptors. An in silico receptor-ligand docking approach was utilized to rationalize binding trends for CB2 with respect to the tail substituent, and indicated that rigidity in this region (i.e., 4-cyanobutyl) was detrimental to affinity.
Collapse
Affiliation(s)
- Eric Sparkes
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Rochelle Boyd
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Shuli Chen
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Jack W. Markham
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Chemistry, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Jia Lin Luo
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Tahira Foyzun
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Humayra Zaman
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Charlotte Fletcher
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Ross Ellison
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, San Francisco, CA, United States
| | - Iain S. McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | | | - Felcia Lai
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Roy R. Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, San Francisco, CA, United States
| | - Mark Connor
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - David E. Hibbs
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Elizabeth A. Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Samuel D. Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Deventer MH, Van Uytfanghe K, Vinckier IMJ, Reniero F, Guillou C, Stove CP. A new cannabinoid receptor 1 selective agonist evading the 2021 "China ban": ADB-FUBIATA. Drug Test Anal 2022; 14:1639-1644. [PMID: 35570246 DOI: 10.1002/dta.3285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
Following the class-wide ban of synthetic cannabinoid receptor agonists (SCRAs) in China, SCRAs carrying new core and linker structures, aimed at circumventing the recent Chinese generic legislation, have appeared on the recreational drug market. A very recent example is (S)-2-(2-(1-(4-fluorobenzyl)-1H-indol-3-yl)acetamido)-3,3-dimethylbutanamide (ADB-FUBIATA), which is structurally closely related to the potent SCRA ADB-FUBICA, but carries an additional methylene in the linker region of the molecule. ADB-FUBIATA has recently been identified in seized materials in China, Russia, the United States, and also Belgium; however, its pharmacological characteristics were unknown. The aim of this study was to evaluate the intrinsic cannabinoid receptor (hCB1 and hCB2 ) activation potential of this previously unknown substance via two distinct yet similar in vitro β-arrestin2 recruitment assays, based on the NanoLuc Binary Technology®. At CB1 , a potency of 635 nM (EC50 ) was found, with an efficacy (Emax ) of 141% relative to the reference compound CP55,940. On the other hand, ADB-FUBIATA had almost no activity at CB2 , indicative of a clear CB1 selectivity. Interestingly, this activation pattern differs markedly from that observed for ADB-FUBICA, which was previously found to be potent and efficacious at both cannabinoid receptors. Additionally, the bioassays were applied to a seized powder containing ADB-FUBIATA, as analytically confirmed by high-performance liquid chromatography coupled to diode-array detection (HLPC-DAD), gas chromatography coupled to mass spectrometry (GC-MS), liquid chromatography couple to time-of-flight mass spectrometry (LC-QTOF-MS), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR). The EC50 and Emax values obtained for this powder were very similar to those of the ADB-FUBIATA analytical standard, suggesting a high purity of the powder, although analytical techniques did reveal that the sample was not entirely pure.
Collapse
Affiliation(s)
- Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Katleen Van Uytfanghe
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - Fabiano Reniero
- European Commission, Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Ispra, Italy
| | - Claude Guillou
- European Commission, Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Ispra, Italy
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Malaca S, Busardò FP, Nittari G, Sirignano A, Ricci G. Fourth Generation of Synthetic Cannabinoid Receptor Agonists: A Review on the Latest Insights. Curr Pharm Des 2022; 28:2603-2617. [PMID: 34781870 DOI: 10.2174/1381612827666211115170521] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Over the past few years, an emerging number of new psychoactive substances (NPSs) entered the illicit market. NPSs are designed to resemble the effects of classical drugs of abuse, reinforcing their effects and duration. Among the most abused NPS, synthetic cannabinoids are cannabinoid receptor agonists (SCRAs) that mimic the effect of the main psychotropic phytocannabinoid Δ9-tetrahydrocannabinol (THC). METHODS We herein reviewed the international literature to provide available information on the newest SCRAs generation. RESULTS Compared to the previous SCRAs generations, the structures of the last generation result in increased affinity for and efficacy at cannabinoid CB1 receptors, which are thought to be mainly responsible for the psychoactive effects of THC and its analogues. Accordingly, these more potent cannabimimetic effects may increase the number of adverse reactions such as neurological disorders (e.g., psychosis, agitation, irritability, paranoia, confusion, and anxiety), psychiatric episodes (e.g., hallucinations, delusions, self-harm), other physical conditions (e.g., tachycardia, hypertension, arrhythmia, chest pain, nausea, vomiting, and fever) and deaths. In the last decade, more than a hundred SCRAs from different chemical classes emerged on the illicit web market. SCRAs have been thoroughly studied: they were physico-chemically characterized, and pharmaco-toxicological characteristics were investigated. The last SCRAs generations include increasingly potent and toxic compounds, posing a potential health threat to consumers. CONCLUSION From November 2017 to February 2021, at least 20 new "fourth-generation" SCRAs were formally reported to international drug agencies. Our understanding of the neurotoxicity of these compounds is still limited due to the lack of global data, but their potency and their toxicity are likely higher than those of the previous generations.
Collapse
Affiliation(s)
- Sara Malaca
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| | - Francesco P Busardò
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| | | | | | | |
Collapse
|
34
|
Janssens LK, Hudson S, Wood DM, Wolfe C, Dargan PI, Stove CP. Linking in vitro and ex vivo CB 1 activity with serum concentrations and clinical features in 5F-MDMB-PICA users to better understand SCRAs and their metabolites. Arch Toxicol 2022; 96:2935-2945. [PMID: 35962200 DOI: 10.1007/s00204-022-03355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) pose a danger to public health. This study focused on individuals experiencing recreational drug toxicity who had used 5F-MDMB-PICA.Patient records were evaluated regarding vital signs, Glasgow Coma Scale (GCS) and clinical features. Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) confirmed and quantified the presence of 5F-MDMB-PICA (and/or metabolites) as the only SCRA present in the serum of 71 patients. Cannabinoid activity was evaluated by a cannabinoid receptor (CB1) bioassay, to assess the relationship between serum concentrations and ex vivo human CB1 activation potential. Furthermore, a link with the clinical presentation was appraised.5F-MDMB-PICA and five metabolites were pharmacologically profiled in vitro, revealing theoretically possible contributions of two active in vivo metabolites to overall cannabinoid activity. Serum concentrations of 5F-MDMB-PICA were correlated to the ex vivo cannabinoid activity, revealing a sigmoidal relationship. The latter could also be predicted based on pharmacological characterization of 5F-MDMB-PICA and its metabolites and an in-depth investigation of the bioassay outcome. Clinically, the GCS showed a significant trend (decrease) with increasing ex vivo cannabinoid activity.This is the first study to evaluate possible toxic effects of 5F-MDMB-PICA in a unique large patient cohort. It allows a better understanding of 5F-MDMB-PICA and metabolites in humans, suggesting a negligible contribution by 5F-MDMB-PICA metabolites to the overall cannabinoid activity in serum. Additionally, this work shows that in vitro pharmacological characterization allows close prediction of an individual's ex vivo CB1 activity, the latter showing a relationship with the level of consciousness.
Collapse
Affiliation(s)
- Liesl K Janssens
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Simon Hudson
- LGC Ltd- Sport and Specialised Analytical Services, Cambridge, UK
| | - David M Wood
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Caitlin Wolfe
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Department of Emergency Medicine, Dalhousie University, Halifax, Canada
| | - Paul I Dargan
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
35
|
King A, Hill SL, Pucci M, Bailey G, Keating L, Macfarlane R, Cantle F, Hudson S, Thomas SHL. Clinical features associated with ADB-BUTINACA exposure in patients attending emergency departments in England. Clin Toxicol (Phila) 2022; 60:1094-1098. [PMID: 35943421 DOI: 10.1080/15563650.2022.2101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Synthetic cannabinoid receptor agonists (SCRA) are commonly encountered new psychoactive substances. Here we report the recent detection of ADB-BUTINACA in samples from patients attending United Kingdom emergency departments with toxicity after suspected drug misuse and describe the associated clinical features. METHODS Consenting adults (≥16 y) presenting to participating hospitals with toxicity after suspected drug misuse have been included in the Identification Of Novel psychoActive substances (IONA) study since March 2015. Demographic and clinical features are recorded and blood and/or urine samples analysed using high-resolution accurate mass liquid chromatography-mass spectrometry. RESULTS By December 2021, analytical data were available for 1279 IONA participants and ADB-BUTINACA was detected in at least one sample from 10 (9 males, age range 16-51 median 45 years), all presenting since February 2021. Smoking 'spice' was reported by four patients, two had ingested edible "cannabis" gums and four reported heroin use (2 intravenous, 1 smoked, 1 route not known). Co-use of pregabalin (oral) and crack cocaine (smoked) were also reported. In 3 cases ADB-BUTINACA was the only substance detected, while in seven other substances of misuse were also detected including other SCRA, opioids, benzodiazepines cocaine and pregabalin. Clinical features reported in these 2 groups respectively included reduced level of consciousness (3/3, 6/7), agitation (0/3, 4/7), tachycardia (0/3, 3/7), seizures (1/3, 1/7), hallucinations (1/3, 1/7), hypotension (1/3, 1/7). Metabolic acidosis (1/3, 0/7) and respiratory acidosis (1/3, 0/7), All 10 patients recovered with supportive care, including intubation and ventilation for one case. The median length of hospital stay was 19 h (range 2.6-131 h). CONCLUSIONS ADB-BUTINACA has recently emerged as a drug of misuse in England. Clinical features of toxicity are consistent with those of other SCRA and include reduced level of consciousness, respiratory and/or metabolic acidosis, seizures, confusion and hallucinations.
Collapse
Affiliation(s)
- A King
- Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - S L Hill
- Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom.,Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - M Pucci
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - G Bailey
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - L Keating
- Royal Berkshire NHS Foundation Trust, Reading, United Kingdom
| | - R Macfarlane
- Epsom and St Helier NHS Trust, Epsom, United Kingdom
| | - F Cantle
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - S Hudson
- Sport and Specialised Analytical Services, Fordham, United Kingdom
| | - S H L Thomas
- Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom.,Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
36
|
Wang Y, Pan Y, Yang H, Liu J, Wurita A, Hasegawa K. Quantification of MDMB-4en-PINACA and ADB-BUTINACA in human hair by gas chromatography-tandem mass spectrometry. Forensic Toxicol 2022; 40:340-348. [PMID: 36454410 DOI: 10.1007/s11419-022-00615-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/13/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE To test synthetic cannabinoid (SCs) in parent forms from living human, the hairs seems to be one of the best samples, because of the non-invasiveness upon their collection. The purpose of this study is to establish a method for quantification of MDMB-4en-PINACA and ADB-BUTINACA, the most recently abused SCs in hair samples, using gas chromatography-tandem mass spectrometry (GC-MS/MS). METHODS The collected hair samples were washed with a detergent solution, following by water and acetone. After drying cutting them into about 2 mm sections, they were ground by a cryogenic grinder into powder. The 50-mg powder with internal standard(s) plus 1 mL methanol were vortexed, and centrifuged to obtain the supernatant layer. After its evaporation and reconstitution with 50 µL methanol, 1-µL aliquot of it was subjected to analysis. RESULTS The standard calibration curves were created for both MDMB-4en-PINACA and ADB-BUTINACA in blank hair samples; good linear curves were obtained in the range of 20-20,000 pg/mg with correlation coefficients greater than 0.99. The limits of detection and limits of quantification were 10 and 20 pg/mg, respectively. Other validation parameters were all satisfactory. The concentrations of MDMB-4en-PINACA obtained from 3 authentic subjects and ADB-BUTINACA obtained from 3 authentic subjects were 26.2-806 pg/mg and 63.1-430 pg/mg, respectively. CONCLUSIONS In the present article, the details of simple and rapid quantification of MDMB-4en-PINACA and ADB-BUTINACA in human scalp hair have been established. To our knowledge, this is the first report for quantification of SCs in hair samples by GC-MS/MS.
Collapse
Affiliation(s)
- Yue Wang
- Department of Legal Medicine, College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Yefei Pan
- Dian Forensic Science Institute, Hangzhou, 31000, Zhejiang, China
| | - Hongkun Yang
- Department of Legal Medicine, College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Jinlei Liu
- Department of Legal Medicine, College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Amin Wurita
- Department of Legal Medicine, College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 010010, China.
| | - Koutaro Hasegawa
- Department of Legal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-tsu, Hamamatsu, 413-3192, Japan.
| |
Collapse
|
37
|
Deventer MH, Van Uytfanghe K, Vinckier IMJ, Reniero F, Guillou C, Stove CP. Cannabinoid receptor activation potential of the next generation, generic ban evading OXIZID synthetic cannabinoid receptor agonists. Drug Test Anal 2022; 14:1565-1575. [PMID: 35560866 DOI: 10.1002/dta.3283] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/07/2022]
Abstract
In recent years, several nations have implemented various measures to control the surge of new synthetic cannabinoid receptor agonists (SCRAs) entering the recreational drug market. In July 2021, China put into effect a new generic legislation, banning SCRAs containing one of 7 general core scaffolds. However, this has driven manufacturers towards the synthesis of SCRAs with alternative core structures, exemplified by the recent emergence of "OXIZID SCRAs". Here, using in vitro β-arrestin2 recruitment assays, we report on the CB1 and CB2 potency and efficacy of five members of this new class of SCRAs: BZO-HEXOXIZID, BZO-POXIZID, 5-fluoro BZO-POXIZID, BZO-4en-POXIZID and BZO-CHMOXIZID. All compounds behaved as full agonists at CB1 and partial agonists at CB2 . Potencies ranged from 84.6 - 721 nM at CB1 and 2.21 - 25.9 nM at CB2 . Shortening the n-hexyl tail to a pentyl tail enhanced activity at both receptors. Fluorination of this pentyl analog did not yield a higher receptor activation potential, whereas an unsaturated tail resulted in decreased potency and efficacy at CB1 . The cyclohexyl methyl analog BZO-CHMOXIZID was the most potent compound at both receptors, with EC50 values of 84.6 and 2.21 nM at CB1 and CB2 , respectively. Evaluation of the activity of a seized powder containing BZO-4en-POXIZID suggested a high purity, in line with HPLC-DAD, GC-MS, LC-QTOF-MS and FTIR and NMR analysis. Furthermore, all tested compounds showed a preference for CB2 , except for BZO-POXIZID. Overall, these findings inform public health officials, law enforcement agencies and clinicians on these newly emerging SCRAs.
Collapse
Affiliation(s)
- M H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - K Van Uytfanghe
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - F Reniero
- European Commission, Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Ispra, VA, Italy
| | - C Guillou
- European Commission, Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Ispra, VA, Italy
| | - C P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
38
|
Kevin RC, Mirlohi S, Manning JJ, Boyd R, Cairns EA, Ametovski A, Lai F, Luo JL, Jorgensen W, Ellison R, Gerona RR, Hibbs DE, McGregor IS, Glass M, Connor M, Bladen C, Zamponi GW, Banister SD. Putative Synthetic Cannabinoids MEPIRAPIM, 5F-BEPIRAPIM (NNL-2), and Their Analogues Are T-Type Calcium Channel (Ca V3) Inhibitors. ACS Chem Neurosci 2022; 13:1395-1409. [PMID: 35442021 DOI: 10.1021/acschemneuro.1c00822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are a large and growing class of new psychoactive substances (NPSs). Two recently identified compounds, MEPIRAPIM and 5F-BEPIRAPIM (NNL-2), have not been confirmed as agonists of either cannabinoid receptor subtype but share structural similarities with both SCRAs and a class of T-type calcium channel (CaV3) inhibitors under development as new treatments for epilepsy and pain. In this study, MEPIRAPIM and 5F-BEPIRAPIM and 10 systematic analogues were synthesized, analytically characterized, and pharmacologically evaluated using in vitro cannabinoid receptor and CaV3 assays. Several compounds showed micromolar affinities for CB1 and/or CB2, with several functioning as low potency agonists of CB1 and CB2 in a membrane potential assay. 5F-BEPIRAPIM and four other derivatives were identified as potential CaV3 inhibitors through a functional calcium flux assay (>70% inhibition), which was further confirmed using whole-cell patch-clamp electrophysiology. Additionally, MEPIRAPIM and 5F-BEPIRAPIM were evaluated in vivo using a cannabimimetic mouse model. Despite detections of MEPIRAPIM and 5F-BEPIRAPIM in the NPS market, only the highest MEPIRAPIM dose (30 mg/kg) elicited a mild hypothermic response in mice, with no hypothermia observed for 5F-BEPIRAPIM, suggesting minimal central CB1 receptor activity.
Collapse
Affiliation(s)
- Richard C. Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Somayeh Mirlohi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
| | - Jamie J. Manning
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Rochelle Boyd
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Elizabeth A. Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, NSW 2006, Australia
| | - Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Felcia Lai
- School of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Jia Lin Luo
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, NSW 2006, Australia
| | | | - Ross Ellison
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | - Roy R. Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | - David E. Hibbs
- School of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Iain S. McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, NSW 2006, Australia
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Mark Connor
- Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
| | - Chris Bladen
- Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Samuel D. Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
39
|
Markham J, Sparkes E, Boyd R, Chen S, Manning JJ, Finlay D, Lai F, McGregor E, Maloney CJ, Gerona RR, Connor M, McGregor IS, Hibbs DE, Glass M, Kevin RC, Banister SD. Defining Steric Requirements at CB 1 and CB 2 Cannabinoid Receptors Using Synthetic Cannabinoid Receptor Agonists 5F-AB-PINACA, 5F-ADB-PINACA, PX-1, PX-2, NNL-1, and Their Analogues. ACS Chem Neurosci 2022; 13:1281-1295. [PMID: 35404067 DOI: 10.1021/acschemneuro.2c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are a diverse class of new psychoactive substances (NPS). They commonly comprise N-alkylated indole, indazole, or 7-azaindole scaffolds with amide-linked pendant amino acid groups. To explore the contribution of the amino acid side chain to the cannabinoid pharmacology of SCRA NPS, a systematic library of side chain-modified SCRAs was prepared based on the recent detections of amino acid derivatives 17 (5F-AB-PINACA), 18 (5F-ADB-PINACA), 15 (PX-1), 19 (PX-2), and 20 (NNL-1). In vitro binding affinities and functional activities at cannabinoid type 1 and 2 receptors (CB1 and CB2, respectively) were determined for all the library members using radioligand competition experiments and a fluorescence-based membrane potential assay. Binding affinities and functional activities varied widely across compounds (Ki = 0.32 to >10 000 nM, EC50 = 0.24-1259 nM), with several clear structure-activity relationships (SARs) emerging. Affinity and potency at CB1 changed as a function of the heterocyclic core (indazole > indole > 7-azaindole) and the pendant amino acid side chain (tert-butyl > iso-propyl > iso-butyl > benzyl > ethyl > methyl > hydrogen). Ensemble docking at CB1 revealed a clear steric basis for observed SAR trends. Interestingly, although 15 (PX-1) and 19 (PX-2) have been detected in recreational drug markets, they failed to induce centrally CB1-mediated effects (e.g., hypothermia) in mice using radiobiotelemetry. Together, these data provide insights regarding structural contributions to the cannabimimetic profiles of 17 (5F-AB-PINACA), 18 (5F-ADB-PINACA), 15 (PX-1), 19 (PX-2), 20 (NNL-1), and other SCRA NPS.
Collapse
Affiliation(s)
- Jack Markham
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, New South Wales, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Eric Sparkes
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, New South Wales, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Rochelle Boyd
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, New South Wales, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Shuli Chen
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Jamie J. Manning
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - David Finlay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Felcia Lai
- School of Pharmacy, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Eila McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, New South Wales, Australia
- School of Psychology, The University of Sydney, Sydney 2005, New South Wales, Australia
| | - Callan J. Maloney
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, New South Wales, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Roy R. Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | - Mark Connor
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney 2109, New South Wales, Australia
| | - Iain S. McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, New South Wales, Australia
- School of Psychology, The University of Sydney, Sydney 2005, New South Wales, Australia
| | - David E. Hibbs
- School of Pharmacy, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Richard C. Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, New South Wales, Australia
- School of Pharmacy, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Samuel D. Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, New South Wales, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| |
Collapse
|
40
|
Li H, Qian Z, Zhao Y, Zheng H. Study on the metabolic process of synthetic cannabinoids 4F-MDMB-BINACA and 4F-MDMB-BICA in human liver microsome and zebrafish model via UHPLC-QE Orbitrap MS. Anal Bioanal Chem 2022; 414:3905-3916. [PMID: 35389093 DOI: 10.1007/s00216-022-04034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
Abstract
In order to address the increasing abuse of synthetic cannabinoids, on July 1, 2021, China listed the whole category of synthetic cannabinoids in the Supplementary Catalog for the Control of Non-medicinal Narcotic Drugs and Psychotropic Substances. Because synthetic cannabinoids metabolize rapidly, techniques are urgently needed to identify the phase I metabolites of new synthetic cannabinoids, as well as the symbol metabolites, which can be used for detection in real cases. In this study, we used pooled human liver microsome (pHLM) and zebrafish combined with ultra-high-performance liquid chromatography (UHPLC) Q Exactive Orbitrap MS to identify the phase I metabolites of two new synthetic cannabinoids 4F-MDMB-BICA and 4F-MDMB-BINACA in vitro and in vivo, respectively. We studied the toxicokinetics of 4F-MDMB-BICA and 4F-MDMB-BINACA by sampling from a pHLM incubation system at different time points to study the change in metabolites over time. We detected a total of 14 metabolites of 4F-MDMB-BINACA and 16 metabolites of 4F-MDMB-BICA in this study. Metabolites of 4F-MDMB-BICA were detected in vitro for the first time. One metabolite of 4F-MDMB-BINACA, M05, was discovered for the first time. Based on the toxicokinetics results, we recommend three metabolites (M03, M11, M12) of 4F-MDMB-BINACA and three metabolites (M10, M12, M14) of 4F-MDMB-BICA as their symbol metabolites. The results showed that these two structurally similar synthetic cannabinoids 4F-MDMB-BINACA and 4F-MDMB-BICA had similar metabolic processes, as well as similar structures of their main symbol metabolites.
Collapse
Affiliation(s)
- Huan Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Zhenhua Qian
- Institute of Forensic Science Ministry of Public Security, Beijing, China.
| | - Yanbiao Zhao
- Institute of Forensic Science Ministry of Public Security, Beijing, China
| | - Hui Zheng
- Institute of Forensic Science Ministry of Public Security, Beijing, China
| |
Collapse
|
41
|
Pulver B, Schönberger T, Weigel D, Köck M, Eschenlohr Y, Lucas T, Podlesnik N, Opatz T, Dreiseitel W, Pütz M, Schäper J, Jacobsen-Bauer A, Auwärter V, Westphal F. Structure elucidation of the novel synthetic cannabinoid Cumyl-tosyl-indazole-3-carboxamide (Cumyl-TsINACA) found in illicit products in Germany. Drug Test Anal 2022; 14:1387-1406. [PMID: 35338591 DOI: 10.1002/dta.3261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/11/2022]
Abstract
New chemical moieties continue to appear in synthetic cannabimimetics (SC), the largest group of new psychoactive substances in the EU. We describe the first comprehensive characterisation of the novel SC Cumyl-TsINACA (N-(2-phenylpropan-2-yl)-1-tosyl-1H-indazole-3-carboxamide) from seized case samples. Structure elucidation was performed within the EU-project ADEBAR plus to facilitate confident identification by other researchers and practitioners worldwide. Characteristic MS fragmentations include the cleavage of the sulfonamide bond (S-N), the aryl sulfone bond (C-S) and the elimination rearrangement of SO2 in the side chain. Cumyl-TsINACA is a full receptor agonist at hCB1 (Emax = 228%) with very weak binding affinity (Ki = 292 nm) and low functional activity (EC50 = 31 μm). Thermal degradation of Cumyl-TsINACA was observed under GC conditions. The degree to which the tosyl side chain is cleaved due to pyrolysis primarily depends on solvent, the use of glass wool in the liner, and injector temperature. The determination of the constitution by NMR spectroscopy was ambiguous due to the high number of neighbouring, non-proton-bearing atoms. Therefore, other possible structures compatible with the NMR correlations were generated using the WebCocon software. The unambiguous structural evidence was finally obtained by spectra comparison after the synthesis of Cumyl-TsINACA. The low thermal stability, as well as the low affinity and potency, render this compound unfavourable for the use as a psychoactive substance. Thus, we do not expect widespread adoption of this SC.
Collapse
Affiliation(s)
- Benedikt Pulver
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany.,State Bureau of Criminal Investigation Schleswig-Holstein, Forensic Science Institute, Kiel, Germany
| | - Torsten Schönberger
- Federal Criminal Police Office, Forensic Science Institute, Wiesbaden, Germany
| | - Diana Weigel
- Federal Criminal Police Office, Forensic Science Institute, Wiesbaden, Germany
| | - Matthias Köck
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Yvonne Eschenlohr
- Bavarian State Criminal Police Office, Forensic Science Institute, München, Germany
| | - Tobias Lucas
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Nika Podlesnik
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Wolfgang Dreiseitel
- Hessian State Criminal Police Office, Forensic Science Institute, Wiesbaden, Germany
| | - Michael Pütz
- Federal Criminal Police Office, Forensic Science Institute, Wiesbaden, Germany
| | - Jan Schäper
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | | | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Folker Westphal
- State Bureau of Criminal Investigation Schleswig-Holstein, Forensic Science Institute, Kiel, Germany
| |
Collapse
|
42
|
Glatfelter GC, Partilla JS, Baumann MH. Structure-activity relationships for 5F-MDMB-PICA and its 5F-pentylindole analogs to induce cannabinoid-like effects in mice. Neuropsychopharmacology 2022; 47:924-932. [PMID: 34802041 PMCID: PMC8882184 DOI: 10.1038/s41386-021-01227-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are an evolving class of new psychoactive substances found on recreational drug markets worldwide. The indole-containing compound, 5F-MDMB-PICA, is a popular SCRA associated with serious medical consequences, including overdose and hospitalizations. In vitro studies reveal that 5F-MDMB-PICA is a potent agonist at cannabinoid type 1 receptors (CB1), but little information exists regarding in vivo pharmacology of the drug. To this end, we examined the in vitro and in vivo cannabinoid-like effects produced by 5F-MDMB-PICA and related 5F-pentylindole analogs with differing composition of the head group moiety (i.e., 5F-NNEI, 5F-SDB-006, 5F-CUMYL-PICA, 5F-MMB-PICA). In mouse brain membranes, 5F-MDMB-PICA and its analogs inhibited binding to [3H]rimonabant-labeled CB1 and displayed agonist actions in [35S]GTPγS functional assays. 5F-MDMB-PICA exhibited the highest CB1 affinity (Ki = 1.24 nM) and functional potency (EC50 = 1.46 nM), but head group composition markedly influenced activity in both assays. For example, the 3,3-dimethylbutanoate (5F-MDMB-PICA) and cumyl (5F-CUMYL-PICA) head groups engendered high CB1 affinity and potency, whereas a benzyl (5F-SDB-006) head group did not. In C57BL/6J mice, all 5F-pentylindole SCRAs produced dose- and time-dependent hypothermia, catalepsy, and analgesia that were reversed by rimonabant, indicating CB1 involvement. In vitro Ki and EC50 values were positively correlated with in vivo ED50 potency estimates. Our findings demonstrate that 5F-MDMB-PICA is a potent SCRA, and subtle alterations to head group composition can have profound influence on pharmacological effects at CB1. Importantly, measures of CB1 binding and efficacy in mouse brain tissue seem to accurately predict in vivo drug potency in this species.
Collapse
Affiliation(s)
- Grant C. Glatfelter
- grid.420090.f0000 0004 0533 7147Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD USA
| | - John S. Partilla
- grid.420090.f0000 0004 0533 7147Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD USA
| | - Michael H. Baumann
- grid.420090.f0000 0004 0533 7147Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD USA
| |
Collapse
|
43
|
Fabregat-Safont D, Mata-Pesquera M, Barneo-Muñoz M, Martinez-Garcia F, Mardal M, Davidsen AB, Sancho JV, Hernández F, Ibáñez M. In-depth comparison of the metabolic and pharmacokinetic behaviour of the structurally related synthetic cannabinoids AMB-FUBINACA and AMB-CHMICA in rats. Commun Biol 2022; 5:161. [PMID: 35210552 PMCID: PMC8873228 DOI: 10.1038/s42003-022-03113-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
Synthetic cannabinoids receptor agonists (SCRAs) are often almost completely metabolised, and hence their pharmacokinetics should be carefully evaluated for determining the most adequate biomarker in toxicological analysis. Two structurally related SCRAs, AMB-FUBINACA and AMB-CHMICA, were selected to evaluate their in vivo metabolism and pharmacokinetics using male Sprague-Dawley rats. Brain, liver, kidney, blood (serum) and urine samples were collected at different times to assess the differences in metabolism, metabolic reactions, tissue distribution and excretion. Both compounds experimented O-demethyl reaction, which occurred more rapidly for AMB-FUBINACA. The parent compounds and O-demethyl metabolites were highly bioaccumulated in liver, and were still detected in this tissue 48 h after injection. The different indazole/indole N-functionalisation produced diverse metabolic reactions in this moiety and thus, different urinary metabolites were formed. Out of the two compounds, AMB-FUBINACA seemed to easily cross the blood-brain barrier, presenting higher brain/serum concentrations ratio than AMB-CHMICA. Synthetic cannabinoids are amongst the most widely used psychoactive drugs which are tightly controlled by government agencies around the world. Here, pharmacokinetics of two synthetic cannabinoids in rats are evaluated along with their metabolites and tissue distribution, aiding in identifying distinct biomarkers that reflect the consumption of synthetic cannabinoids based on the tissue.
Collapse
Affiliation(s)
- David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - María Mata-Pesquera
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Manuela Barneo-Muñoz
- Predepartmental Unit of Medicine, Unitat Mixta de Neuroanatomia Funcional NeuroFun-UVEG-UJI, University Jaume I, Castellón, Spain
| | - Ferran Martinez-Garcia
- Predepartmental Unit of Medicine, Unitat Mixta de Neuroanatomia Funcional NeuroFun-UVEG-UJI, University Jaume I, Castellón, Spain
| | - Marie Mardal
- Section of Forensic Chemistry, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Davidsen
- Section of Forensic Chemistry, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Juan V Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - María Ibáñez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
44
|
Park YM, Dahlem C, Meyer MR, Kiemer AK, Müller R, Herrmann J. Induction of Liver Size Reduction in Zebrafish Larvae by the Emerging Synthetic Cannabinoid 4F-MDMB-BINACA and Its Impact on Drug Metabolism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041290. [PMID: 35209079 PMCID: PMC8879502 DOI: 10.3390/molecules27041290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
Zebrafish (ZF; Danio rerio) larvae have become a popular in vivo model in drug metabolism studies. Here, we investigated the metabolism of methyl 2-[1-(4-fluorobutyl)-1H-indazole-3-carboxamido]-3,3-dimethylbutanoate (4F-MDMB-BINACA) in ZF larvae after direct administration of the cannabinoid via microinjection, and we visualized the spatial distributions of the parent compound and its metabolites by mass spectrometry imaging (MSI). Furthermore, using genetically modified ZF larvae, the role of cannabinoid receptor type 1 (CB1) and type 2 (CB2) on drug metabolism was studied. Receptor-deficient ZF mutant larvae were created using morpholino oligonucleotides (MOs), and CB2-deficiency had a critical impact on liver development of ZF larva, leading to a significant reduction of liver size. A similar phenotype was observed when treating wild-type ZF larvae with 4F-MDMB-BINACA. Thus, we reasoned that the cannabinoid-induced impaired liver development might also influence its metabolic function. Studying the metabolism of two synthetic cannabinoids, 4F-MDMB-BINACA and methyl 2-(1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamido)-3,3-dimethylbutanoate (7′N-5F-ADB), revealed important insights into the in vivo metabolism of these compounds and the role of cannabinoid receptor binding.
Collapse
Affiliation(s)
- Yu Mi Park
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany;
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Charlotte Dahlem
- Department of Pharmacy, Pharmaceutical Biology, Campus C2 3, Saarland University, 66123 Saarbrücken, Germany; (C.D.); (A.K.K.)
| | - Markus R. Meyer
- Center for Molecular Signaling (PZMS), Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Experimental and Clinical Toxicology, Saarland University, 66421 Homburg, Germany;
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Campus C2 3, Saarland University, 66123 Saarbrücken, Germany; (C.D.); (A.K.K.)
| | - Rolf Müller
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany;
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Correspondence: (R.M.); (J.H.)
| | - Jennifer Herrmann
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany;
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Correspondence: (R.M.); (J.H.)
| |
Collapse
|
45
|
Monti MC, Zeugin J, Koch K, Milenkovic N, Scheurer E, Mercer-Chalmers-Bender K. Adulteration of low-THC products with synthetic cannabinoids: Results from drug checking services. Drug Test Anal 2022; 14:1026-1039. [PMID: 34997693 PMCID: PMC9305195 DOI: 10.1002/dta.3220] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022]
Abstract
Since late 2019, low‐delta‐9‐tetrahydrocannabinol (THC) preparations adulterated with synthetic cannabinoids (SCs) have been frequently observed in Switzerland. The unawareness of users concerning the presence of SCs and the typically higher potency and toxicity of SCs, when compared with THC, can result in increased health risks. In Switzerland, low‐THC (<1%) cannabis products, except hashish, are legal. These products can act as carrier materials for SCs. In this study, cannabis samples and user self‐reports received through three drug checking services were collected and analysed, to gain deeper insight into this new phenomenon. Samples were collected from January 2020 to July 2021. Liquid chromatography coupled with high‐resolution mass spectrometry was used for the qualitative screening and semi‐quantification of SCs, while gas chromatography with flame ionization detector was applied for the quantification of THC and cannabidiol levels. Reported adverse effects were compared between users who consumed adulterated (SC‐group) and non‐adulterated (THC‐group) products. Of a total 94 samples, 50% contained up to three different SCs. MDMB‐4en‐PINACA was most often detected. All adulterated cannabis flowers contained ≤1% THC. Adulterated hashish also typically presented low THC‐levels (median: 0.8%). The SC‐group was associated with higher numbers of adverse events (p = 0.041). Furthermore, psychologic (p = 0.0007) and cardiologic (p = 0.020) adverse effects were more profound in the SC‐group than in the THC‐group. Drug checking services enabled the timely detection and monitoring of new and potentially dangerous trends. Furthermore, due to user‐reports, additional valuable information was gained on adverse events associated with the consumption of novel SCs.
Collapse
Affiliation(s)
- Manuela Carla Monti
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jill Zeugin
- Addiction Support - Region Basel (Suchthilfe Region Basel), Basel, Switzerland
| | - Konrad Koch
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Natasa Milenkovic
- Addiction Services (Abteilung Sucht), Health Department Kanton Basel-Stadt, Basel, Switzerland
| | - Eva Scheurer
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | |
Collapse
|
46
|
Theunissen EL, Kuypers KPC, Mason NL, Ramaekers JG. A Comparison of Acute Neurocognitive and Psychotomimetic Effects of a Synthetic Cannabinoid and Natural Cannabis at Psychotropic Dose Equivalence. Front Psychiatry 2022; 13:891811. [PMID: 35664482 PMCID: PMC9160432 DOI: 10.3389/fpsyt.2022.891811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023] Open
Abstract
Due to differences in potency, efficacy, and affinity for CB1 receptors, similarities and differences in psychoactive effect profiles of natural cannabis and synthetic cannabinoids (SCs) cannot reliably be derived from equipotent dose comparisons. Instead, the current study proposes to compare the intrinsic psychoactive effects of natural cannabis (THC) and an SC, JWH-018, at psychotropic dose equivalence. Participants from two placebo-controlled studies were matched for their levels of subjective high to compare neurocognitive and psychotomimetic effects of THC and JWH-018. At equal subjective intoxication levels, both drugs impaired psychomotor, divided attention, and impulse control, with no significant difference between the two drugs. Both drugs also caused significant psychotomimetic effects, but dissociative effects were considerably more pronounced for JWH-018 than THC. We conclude that psychotropic dose equivalence provides a uniform approach for comparing the neurocognitive and psychotomimetic profiles of CB1 agonists, which can also be applied to other drug classes.
Collapse
Affiliation(s)
- Eef Lien Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Kim Paula Colette Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Natasha Leigh Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Johannes Gerardus Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
47
|
Tokarczyk B, Jurczyk A, Krupińska J, Adamowicz P. Fatal intoxication with new synthetic cannabinoids 5F-MDMB-PICA and 4F-MDMB-BINACA-parent compounds and metabolite identification in blood, urine and cerebrospinal fluid. Forensic Sci Med Pathol 2022; 18:393-402. [PMID: 35699867 PMCID: PMC9194349 DOI: 10.1007/s12024-022-00492-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 12/14/2022]
Abstract
Synthetic cannabinoids (SCs) remain one of the largest groups of new psychoactive substances. Recently, new synthetic cannabinoids 5F-MDMB-PICA and 4F-MDMB-BINACA are increasing in popularity. A 33-year-old man lost consciousness after smoking an unknown substance. A glass pipe and two lumps of substance that turned out to contain 5F-MDMB-PICA and 4F-MDMB-BINACA were found at the scene. Blood, urine and cerebrospinal fluid were collected during the examination of the body. The synthetic cannabinoids were isolated from autopsy materials by precipitation with acetonitrile and extraction with ethyl acetate. The screening and quantitative analyses were performed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). The liquid chromatography-quadrupole/time of flight mass spectrometry (LC-Q/TOF) technique was used for metabolite identification. 5F-MDMB-PICA was detected and quantified in all analysed materials, whereas 4F-MDMB-BINACA was found only in cerebrospinal fluid. The determined concentrations of 5F-MDMB-PICA were 0.9 (blood), 0.1 (urine) and 3.2 ng/mL (cerebrospinal fluid). The concentration of 4F-MDMB-BINACA in cerebrospinal fluid was 0.1 ng/mL. The main metabolites of both compounds (hydrolysis and oxidative defluorination) were found in all analysed body fluids. Cerebrospinal fluid may be important alternative material in autopsy cases. Rapid elimination of 5F-MDMB-PICA and 4F-MDMB-BINACA compounds also means that the metabolite analysis can be crucial for the investigation. Laboratories must be made aware of their presence and incorporate these SCs and their metabolites into workflows for detection and confirmation. Ester hydrolysis and oxidative defluorination products can be found in blood, urine and cerebrospinal fluid making them useful biomarkers of intake.
Collapse
Affiliation(s)
- Bogdan Tokarczyk
- grid.419017.a0000 0001 0701 6599Institute of Forensic Research, Westerplatte 9, 31-033 Krakow, Poland
| | - Agnieszka Jurczyk
- grid.8267.b0000 0001 2165 3025Department of Forensic Medicine, Medical University of Lodz, Sedziowska 18a, 91-304 Lodz, Poland
| | - Justyna Krupińska
- grid.8267.b0000 0001 2165 3025Department of Forensic Medicine, Medical University of Lodz, Sedziowska 18a, 91-304 Lodz, Poland
| | - Piotr Adamowicz
- Institute of Forensic Research, Westerplatte 9, 31-033, Krakow, Poland.
| |
Collapse
|
48
|
Gilbert N, Costello A, Ellison JR, Khan U, Knight M, Linnell MJ, Ralphs R, Mewis RE, Sutcliffe OB. Synthesis, characterisation, detection and quantification of a novel hexyl-substituted synthetic cannabinoid receptor agonist: (S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-hexyl-1H-indazole-3-carboxamide (ADB-HINACA). Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Kronstrand R, Norman C, Vikingsson S, Biemans A, Valencia Crespo B, Edwards D, Fletcher D, Gilbert N, Persson M, Reid R, Semenova O, Al Teneiji F, Wu X, Dahlén J, NicDaéid N, Tarbah F, Sutcliffe OB, McKenzie C, Gréen H. The metabolism of the synthetic cannabinoids ADB-BUTINACA and ADB-4en-PINACA and their detection in forensic toxicology casework and infused papers seized in prisons. Drug Test Anal 2021; 14:634-652. [PMID: 34811926 DOI: 10.1002/dta.3203] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
Early warning systems detect new psychoactive substances (NPS), while dedicated monitoring programs and routine drug and toxicology testing identify fluctuations in prevalence. We report the increasing prevalence of the synthetic cannabinoid receptor agonist (SCRA) ADB-BUTINACA (N-[1-amino-3,3-dimethyl-1-oxobutan-2-yl]-1-butyl-1H-indazole-3-carbox-amide). ADB-BUTINACA was first detected in a seizure in Sweden in 2019, and we report its detection in 13 routine Swedish forensic toxicology cases soon after. In January 2021, ADB-BUTINACA was detected in SCRA-infused papers seized in Scottish prisons and has rapidly increased in prevalence, being detected in 60.4% of the SCRA-infused papers tested between January and July 2021. In this work, ADB-BUTINACA was incubated with human hepatocytes (HHeps), and 21 metabolites were identified in vitro, 14 being detected in authentic case samples. The parent drug and metabolites B9 (mono-hydroxylation on the n-butyl tail) and B16 (mono-hydroxylation on the indazole ring) are recommended biomarkers in blood, while metabolites B4 (dihydrodiol formation on the indazole core), B9, and B16 are suitable biomarkers in urine. ADB-4en-PINACA (N-[1-amino-3,3-dimethyl-1-oxobutan-2-yl]-1-[pent-4-en-1-yl]-1H-indazole-3-carboxamide) was detected in Scottish prisons in December 2020, but, unlike ADB-BUTINACA, prevalence has remained low. ADB-4en-PINACA was incubated with HHeps, and 11 metabolites were identified. Metabolites E3 (dihydrodiol formed in the tail moiety) and E7 (hydroxylation on the linked/head group) are the most abundant metabolites in vitro and are suggested as urinary biomarkers. The in vitro potencies of ADB-BUTINACA (EC50 , 11.5 nM and ADB-4en-PINACA (EC50 , 11.6 nM) are similar to that of MDMB-4en-PINACA (EC50 , 4.3 nM). A third tert-leucinamide SCRA, ADB-HEXINACA was also detected in prison samples and warrants further investigation.
Collapse
Affiliation(s)
- Robert Kronstrand
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.,Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Caitlyn Norman
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Svante Vikingsson
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.,Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.,RTI International, Research Triangle, North Carolina, USA
| | - Anoek Biemans
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Bryan Valencia Crespo
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Darren Edwards
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - Daniel Fletcher
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK.,BioAscent, Motherwell, UK
| | - Nicolas Gilbert
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Mattias Persson
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Robert Reid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Olga Semenova
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - Faisal Al Teneiji
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK.,General Department of Forensic Science and Criminology, Toxicology Department, Dubai Police, Dubai, United Arab Emirates
| | - Xiongyu Wu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Johan Dahlén
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Niamh NicDaéid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Fuad Tarbah
- General Department of Forensic Science and Criminology, Toxicology Department, Dubai Police, Dubai, United Arab Emirates
| | - Oliver B Sutcliffe
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Craig McKenzie
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK.,Chiron AS, Trondheim, Norway
| | - Henrik Gréen
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.,Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
50
|
Ametovski A, Cairns EA, Grafinger KE, Cannaert A, Deventer MH, Chen S, Wu X, Shepperson CE, Lai F, Ellison R, Gerona R, Blakey K, Kevin R, McGregor IS, Hibbs DE, Glass M, Stove C, Auwärter V, Banister SD. NNL-3: A Synthetic Intermediate or a New Class of Hydroxybenzotriazole Esters with Cannabinoid Receptor Activity? ACS Chem Neurosci 2021; 12:4020-4036. [PMID: 34676751 DOI: 10.1021/acschemneuro.1c00348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) remain a prolific class of new psychoactive substances (NPS) and continue to expand rapidly. Despite the recent identification of hydroxybenzotriazole (HOBt) containing SCRAs in synthetic cannabis samples, there is currently no information regarding the pharmacological profile of these NPS with respect to human CB1 and CB2 receptors. In the current study, a series consisting of seven HOBt indole-, indazole-, and 7-azaindole-carboxylates bearing a range of N-alkyl substituents were synthesized and pharmacologically evaluated. Competitive binding assays at CB1 and CB2 demonstrated that all analogues except a 2-methyl-substituted derivative had low affinity for CB1 (Ki = 3.80-43.7 μM) and CB2 (Ki = 2.75-18.2 μM). A fluorometric functional assay revealed that 2-methylindole- and indole-derived HOBt carboxylates were potent and efficacious agonists of CB1 (EC50 = 12.0 and 63.7 nM; Emax = 118 and 120%) and CB2 (EC50 = 10.9 and 321 nM; Emax = 91 and 126%). All other analogues incorporating indazole and 7-azaindole cores and bearing a range of N1-substituents showed relatively low potency for CB1 and CB2. Additionally, a reporter assay monitoring β-arrestin 2 (βarr2) recruitment to the receptor revealed that the 2-methylindole example was the most potent and efficacious at CB1 (EC50 = 131 nM; Emax = 724%) and the most potent at CB2 (EC50 = 38.2 nM; Emax = 51%). As with the membrane potential assay, the indazole and other indole HOBt carboxylates were considerably less potent at both receptors, and analogues comprising a 7-azaindole core showed little activity. Taken together, these data suggest that NNL-3 demonstrates little CB1 receptor activity and is unlikely to be psychoactive in humans. NNL-3 is likely an unintended SCRA manufacturing byproduct. However, the synthesis of NNL-3 analogues proved simple and general, and some of these showed potent cannabimetic profiles in vitro, indicating that HOBt esters of this type may represent an emerging class of SCRA NPS.
Collapse
Affiliation(s)
- Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth A. Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katharina Elisabeth Grafinger
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Marie H. Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Shuli Chen
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Xinyi Wu
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Caitlin E. Shepperson
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Felcia Lai
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Ross Ellison
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | - Roy Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | - Karen Blakey
- Illicit Drug Group, Forensic Chemistry, QHFSS, Queensland Health, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Richard Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Iain S. McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - David E. Hibbs
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Samuel D. Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|