1
|
Ghosh P, Kundu A, Ganguly D. From experimental studies to computational approaches: recent trends in designing novel therapeutics for amyloidogenesis. J Mater Chem B 2024. [PMID: 39664012 DOI: 10.1039/d4tb01890g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Amyloidosis is a condition marked by misfolded proteins that build up in tissues and eventually destroy organs. It has been connected to a number of fatal illnesses, including non-neuropathic and neurodegenerative conditions, which in turn have a significant influence on the worldwide health sector. The inability to identify the underlying etiology of amyloidosis has hampered efforts to find a treatment for the condition. Despite the identification of a multitude of putative pathogenic variables that may operate independently or in combination, the molecular mechanisms responsible for the development and progression of the disease remain unclear. A thorough investigation into protein aggregation and the impacts of toxic aggregated species will help to clarify the cytotoxicity of aggregation-mediated cellular apoptosis and lay the groundwork for future studies aimed at creating effective treatments and medications. This review article provides a thorough summary of the combination of various experimental and computational approaches to modulate amyloid aggregation. Further, an overview of the latest developments of novel therapeutic agents is given, along with a discussion of the possible obstacles and viewpoints on this developing field. We believe that the information provided by this review will help scientists create innovative treatment strategies that affect the way proteins aggregate.
Collapse
Affiliation(s)
- Pooja Ghosh
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata 700091, West Bengal, India.
| | - Agnibin Kundu
- Department of Medicine, District Hospital Howrah, 10, Biplabi Haren Ghosh Sarani Lane, Howrah 711101, West Bengal, India
| | - Debabani Ganguly
- Centre for Health Science & Technology, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata 700091, West Bengal, India.
| |
Collapse
|
2
|
Sharma A, Nayak M, Thakur S, Jadhav HR, Bharate SB. Structure-Based Virtual Screening and Biological Characterization of Novel BACE-1 and Amyloid-β Aggregation Inhibitors. ChemMedChem 2024:e202400685. [PMID: 39644140 DOI: 10.1002/cmdc.202400685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/09/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder having limited treatment options. The beta-site APP cleaving enzyme 1 (BACE-1) is a key target for therapeutic intervention in Alzheimer's disease. To discover new scaffolds for BACE-1 inhibitors, a ChemBridge DIVERSet library of 20,000 small molecules was employed to structure-based virtual screening. The top 45 compounds, based on docking scores and binding affinities, were tested for BACE-1 inhibitory activity using a FRET assay. Four compounds, 18 (5353320), 20 (5262831), 29 (5784196) and 32 (5794006) demonstrated more than 35 % inhibitory activity at 10 μM. Notably, pyrazole-5-carbohydrazide 29 (5784196) exhibited BACE-1 inhibition with an IC50 value of 14.5 μM and a ki value of 0.25 μM. Additionally, it also inhibits the self-aggregation of β-amyloid, with IC50 value of 14.87 μM. Molecular modeling and dynamics simulations provided insights into its interaction pattern and stability of the enzyme-inhibitor complex. These findings suggest that virtual screening is an efficient and cost-effective method for identifying potential leads for AD.
Collapse
Affiliation(s)
- Ankita Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Madhusmita Nayak
- Department of Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| | - Shikha Thakur
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, Rajasthan, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, Rajasthan, India
| | - Sandip B Bharate
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| |
Collapse
|
3
|
Massaga C, Paul L, Kwiyukwa LP, Vianney JM, Chacha M, Raymond J. Computational analysis of Urolithin A as a potential compound for anti-inflammatory, antioxidant, and neurodegenerative pathways. Free Radic Biol Med 2024; 227:508-520. [PMID: 39643139 DOI: 10.1016/j.freeradbiomed.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/24/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Urolithin A, an active precursor derived from the metabolism of ellagitanins in rats and humans, is known for its potential health benefits, including stimulating mitophagy and promoting muscular skeletal function. While experimental studies have demonstrated Urolithin A's potential to enhance cellular health, the detailed molecular interactions through which Urolithin A exerts its effects are not fully elucidated. In this study, we investigated the anti-inflammatory, antioxidation and neuroprotective abilities of Urolithin A in selected targets using molecular docking and molecular dynamics simulation methods. Molecular docking studies revealed the strong affinity for receptors involved in inflammation activities, including human p38 MAP kinase (4DLI) with -10.1 kcal/mol interacting with SER252, LYS249, and ASP294 residues. The binding energy in the 5KIR target was -8.6 kcal/mol, interacting with GLN203 through hydrogen bond, and lastly, 1A9U with an affinity of -6.8 with no hydrogen bond formed with Urolithin A and interacts with van der Waals interactions. In oxidant targets, the influence of Urolithin was observed in 1OG5 with -7.9 kcal/mol interacting with GLN185, PHE447. For the 1M17 target, the binding affinity was -7.7 kcal/mol interacting with THR95 residue and 1ZXM target at -7.4 kcal/mol interacting with TYR36, TYR216, and LEU234 residues. The neuroprotective ability of urolithin A was observed in selected targets for acetylcholinesterase; the binding energy was -9.7 kcal/mol interacting with van der Waals and π interactions; for the 1GQR target, the binding energy was -9.9 kcal/mol interacting with van der Waals and π interactions and for β-amylase (1iyt) the binding energy was -5.5 forming hydrogen bond with SER8, GLN15 residues. Molecular Dynamics simulations at 100 ns of Urolithin A compared with reference 4DLI. The Urolithin A-4DLI complex exhibited greater stability than the reference receptor, as confirmed by RMSD, RMSF, Radius of Gyration, Hydrogen bond, and SASA analyses.
Collapse
Affiliation(s)
- Caroline Massaga
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
| | - Lucas Paul
- Department of Chemistry, Dar es Salaam University College of Education, P.O. Box 2329, Dar es Salaam, Tanzania.
| | - Lucas P Kwiyukwa
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania.
| | - John-Mary Vianney
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
| | - Musa Chacha
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
| | - Jofrey Raymond
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
| |
Collapse
|
4
|
Tenchov R, Sasso JM, Zhou QA. Alzheimer's Disease: Exploring the Landscape of Cognitive Decline. ACS Chem Neurosci 2024; 15:3800-3827. [PMID: 39392435 PMCID: PMC11587518 DOI: 10.1021/acschemneuro.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. The pathology of AD is marked by the accumulation of amyloid beta plaques and tau protein tangles in the brain, along with neuroinflammation and synaptic dysfunction. Genetic factors, such as mutations in APP, PSEN1, and PSEN2 genes, as well as the APOE ε4 allele, contribute to increased risk of acquiring AD. Currently available treatments provide symptomatic relief but do not halt disease progression. Research efforts are focused on developing disease-modifying therapies that target the underlying pathological mechanisms of AD. Advances in identification and validation of reliable biomarkers for AD hold great promise for enhancing early diagnosis, monitoring disease progression, and assessing treatment response in clinical practice in effort to alleviate the burden of this devastating disease. In this paper, we analyze data from the CAS Content Collection to summarize the research progress in Alzheimer's disease. We examine the publication landscape in effort to provide insights into current knowledge advances and developments. We also review the most discussed and emerging concepts and assess the strategies to combat the disease. We explore the genetic risk factors, pharmacological targets, and comorbid diseases. Finally, we inspect clinical applications of products against AD with their development pipelines and efforts for drug repurposing. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding AD, to outline challenges, and to evaluate growth opportunities to further efforts in combating the disease.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical
Society, Columbus Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American Chemical
Society, Columbus Ohio 43210, United States
| | | |
Collapse
|
5
|
Mayo P, Pascual J, Crisman E, Domínguez C, López MG, León R. Innovative pathological network-based multitarget approaches for Alzheimer's disease treatment. Med Res Rev 2024; 44:2367-2419. [PMID: 38678582 DOI: 10.1002/med.22045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and is a major health threat globally. Its prevalence is forecasted to exponentially increase during the next 30 years due to the global aging population. Currently, approved drugs are merely symptomatic, being ineffective in delaying or blocking the relentless disease advance. Intensive AD research describes this disease as a highly complex multifactorial disease. Disclosure of novel pathological pathways and their interconnections has had a major impact on medicinal chemistry drug development for AD over the last two decades. The complex network of pathological events involved in the onset of the disease has prompted the development of multitarget drugs. These chemical entities combine pharmacological activities toward two or more drug targets of interest. These multitarget-directed ligands are proposed to modify different nodes in the pathological network aiming to delay or even stop disease progression. Here, we review the multitarget drug development strategy for AD during the last decade.
Collapse
Affiliation(s)
- Paloma Mayo
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Jorge Pascual
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Enrique Crisman
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Cristina Domínguez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| |
Collapse
|
6
|
Sun B, Jiang H. Synthesis and bio-activities of bifunctional tetrahydrosalen Cu (II) chelators with potential efficacy in Alzheimer's disease therapy. J Inorg Biochem 2024; 259:112636. [PMID: 38943843 DOI: 10.1016/j.jinorgbio.2024.112636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024]
Abstract
The dyshomeostasis of metal ions in the brain leads to the accumulation of excess metals in extracellular and inter-neuronal locations and the Amyloid β peptide (Aβ) binds these transition metals, which ultimately cause the Aβ aggregation and severe oxidative stress in the brain. The aggregation of Aβ and oxidative stress are important factors to trigger Alzheimer's disease (AD). Metal chelation therapy is a promising approach to removing metals from Aβ-M species and relieve the oxidative stress. Therefore, 4 tetrahydrosalens containing benzothiazole moiety were designed and synthesized. Their biological activities for Alzheimer's disease therapy in vitro were determined by Turbidity assay, BCA protein assay, MTT assay and fluorescent probe of DCFH-DA. The results were comparing with that of non-specific chelator (cliquinol, CQ) and non-benzothiazole functionalized tetrahydrosalens, the results demonstrated that benzothiazole functionalized chelators had more efficient bio-activities in preventing Cu2+-induced Aβ aggregation, attenuating cytotoxicity mediated by Aβ-Cu2+ species and decrease the level of reactive oxygen species (ROS) in Cu2+-Aβ treated PC12 cells than that of cliquinol and non-benzothiazole functionalized analogues.
Collapse
Affiliation(s)
- Bin Sun
- Key Laboratory of Natural Medicine Research of Chongqing Education Commission, Chongqing 400067, PR China; College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, PR China.
| | - Heyan Jiang
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, PR China
| |
Collapse
|
7
|
Dabas A, Goyal B. Structural Reorganization Mechanism of the Aβ 42 Fibril Mediated by N-Substituted Oligopyrrolamide ADH-353. ACS Chem Neurosci 2024; 15:3136-3151. [PMID: 39158263 DOI: 10.1021/acschemneuro.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
The inhibition of amyloid-β (Aβ) fibrillation and clearance of Aβ aggregates have emerged as a potential pharmacological strategy to alleviate Aβ aggregate-induced neurotoxicity in Alzheimer's disease (AD). Maity et al. shortlisted ADH-353 from a small library of positively charged N-substituted oligopyrrolamides for its notable ability to inhibit Aβ fibrillation, disintegrate intracellular cytotoxic Aβ oligomers, and alleviate Aβ-induced cytotoxicity in the SH-SY5Y and N2a cells. However, the molecular mechanism through which ADH-353 interacts with the Aβ42 fibrils, leading to their disruption and subsequent clearance, remains unclear. Thus, a detailed molecular mechanism underlying the disruption of neurotoxic Aβ42 fibrils (PDB ID 2NAO) by ADH-353 has been illuminated in this work using molecular dynamics simulations. Interestingly, conformational snapshots during simulation depicted the shortening and disappearance of β-strands and the emergence of a helix conformation, indicating a loss of the well-organized β-sheet-rich structure of the disease-relevant Aβ42 fibril on the incorporation of ADH-353. ADH-353 binds strongly to the Aβ42 fibril (ΔGbinding= -142.91 ± 1.61 kcal/mol) with a notable contribution from the electrostatic interactions between positively charged N-propylamine side chains of ADH-353 with the glutamic (Glu3, Glu11, and Glu22) and aspartic (Asp7 and Asp23) acid residues of the Aβ42 fibril. This aligns well with heteronuclear single quantum coherence NMR studies, which depict that the binding of ADH-353 with the Aβ peptide is driven by electrostatic and hydrophobic contacts. Furthermore, a noteworthy decrease in the binding affinity of Aβ42 fibril chains on the incorporation of ADH-353 indicates the weakening of interchain interactions leading to the disruption of the double-horseshoe conformation of the Aβ42 fibril. The illumination of key interactions responsible for the destabilization of the Aβ42 fibril by ADH-353 in this work will greatly aid in designing new chemical scaffolds with enhanced efficacy for the clearance of Aβ aggregates in AD.
Collapse
Affiliation(s)
- Arushi Dabas
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| | - Bhupesh Goyal
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| |
Collapse
|
8
|
Sheng L, Bhalla R. Biomarkers and Target-Specific Small-Molecule Drugs in Alzheimer's Diagnostic and Therapeutic Research: From Amyloidosis to Tauopathy. Neurochem Res 2024; 49:2273-2302. [PMID: 38844706 PMCID: PMC11310295 DOI: 10.1007/s11064-024-04178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 08/09/2024]
Abstract
Alzheimer's disease (AD) is the most common type of human dementia and is responsible for over 60% of diagnosed dementia cases worldwide. Abnormal deposition of β-amyloid and the accumulation of neurofibrillary tangles have been recognised as the two pathological hallmarks targeted by AD diagnostic imaging as well as therapeutics. With the progression of pathological studies, the two hallmarks and their related pathways have remained the focus of researchers who seek for AD diagnostic and therapeutic strategies in the past decades. In this work, we reviewed the development of the AD biomarkers and their corresponding target-specific small molecule drugs for both diagnostic and therapeutic applications, underlining their success, failure, and future possibilities.
Collapse
Affiliation(s)
- Li Sheng
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Rajiv Bhalla
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
9
|
Mazur T, Malik M, Bieńko DC. The impact of chelating compounds on Cu 2+, Fe 2+/ 3+, and Zn 2+ ions in Alzheimer's disease treatment. J Inorg Biochem 2024; 257:112601. [PMID: 38744143 DOI: 10.1016/j.jinorgbio.2024.112601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid - β extracellular plaques and tau interfibrillar tangles, leading to memory loss, cognitive decline, and behavioral changes. With dementia posing a growing global health concern, there is an urgent need for comprehensive strategies to address its challenges. The economic burden of dementia is projected to rise significantly, emphasizing the necessity for collaborative efforts in research and healthcare. In the United States alone, millions are affected by AD, with prevalence increasing with age and even affecting younger individuals. The complexity of AD involves intricate biological processes, including the aggregation of amyloid beta, oxidative stress, and metal ion dysregulation. Metal ions, particularly those from copper, iron, and zinc, play pivotal roles in AD pathology, influencing Aβ deposition and tau protein accumulation. Current treatments offer symptomatic relief but do not address the underlying disease mechanisms. This paper explores the potential of various chelating compounds to target metal ions involved in AD pathology. N-acylhydrazones, morpholine, chrysin, quinoline, oxindole, cyclam, catechol-based, and quinazolinone-based derivatives show promising chelation activity and therapeutic effects. Metal chelation therapy offers a targeted approach to AD treatment by addressing the core pathology. By selectively binding to metal ions implicated in disease progression, chelators may minimize side effects associated with broad-spectrum treatments. Additionally, chelators may offer neuroprotective effects beyond metal binding, further enhancing their therapeutic potential. Overall, metal chelation therapy presents a promising strategy in combating AD, with the potential to significantly impact disease progression and improve patient outcomes.
Collapse
Affiliation(s)
- Tomasz Mazur
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Magdalena Malik
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Dariusz C Bieńko
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
10
|
Rajkumar M, Govindaraj P, Vimala K, Thangaraj R, Kannan S. Chitosan/PLA-loaded Magnesium oxide nanocomposite to attenuate oxidative stress, neuroinflammation and neurotoxicity in rat models of Alzheimer's disease. Metab Brain Dis 2024; 39:487-508. [PMID: 38085467 DOI: 10.1007/s11011-023-01336-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 04/23/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by amyloid-beta (Aβ) aggregation, neuroinflammation, oxidative stress, and dysfunction in the mitochondria and cholinergic system. In this study, the synthesis of chitosan-polylactic acid-loaded magnesium oxide nanocomposite (CH/PLA/MgONCs) was examined using the green precipitation method. The synthesized CH/PLA/MgONCs were confirmed by using the UV-Vis spectrum, FT-IR, SEM-EDAX, and physical properties. The experiments were carried out using male Wistar rats by injecting streptozotocin (STZ) bilaterally into the brain's ventricles through the intracerebroventricular (ICV) route at a dose of 3 mg/kg. We also evaluated the effects of CH/PLA/MgONCs at doses of 10 mg/kg. To assess the cognitive dysfunction induced by ICV-STZ, we performed behavioral, biochemical, and histopathological analyses. In our study results, UV-Vis spectrum analysis of CH/PLA/MgONCs showed 285 nm, FT-IR analyses confirmed that the various functional groups were present, and SEM-EDAX analysis confirmed that a cauliflower-like spherical shape, Mg and O were present. Treatment with CH/PLA/MgONCs (10 mg/kg) showed a significant improvement in spatial and non-spatial memory functions. This was further supported by biochemical analysis showing improved antioxidant enzyme (GSH, SOD, CAT, and GPx activity) activities that significantly attenuated cholinergic activity and oxidative stress. In the CH/PLA/MgONCs-treated group, significant improvement was observed in the mitochondrial complex activity. ICV-STZ-induced neuroinflammation, as indicated by increased levels of TNF-α, IL-6, and CRP, was significantly reduced by CH/PLA/MgONCs treatment. Additionally, CH/PLA/MgONCs treated histological results showed improved healthy neuronal cells in the brain. Furthermore, in silico studies confirm that these molecules have good binding affinity and inhibit Aβ aggregation. In conclusion, CH/PLA/MgONCs treatment reversed AD pathology by improving memory and reducing oxidative stress, neuroinflammation, and mitochondrial dysfunction. These findings recommend that CH/PLA/MgONCs are possible therapeutic agents to treat AD.
Collapse
Affiliation(s)
- Manickam Rajkumar
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Prabha Govindaraj
- Department of Chemistry, St. Joseph's Institute of Technology, Chennai, 600 119, Tamil Nadu, India
| | - Karuppaiya Vimala
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Soundarapandian Kannan
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India.
| |
Collapse
|
11
|
Panghal A, Flora SJS. Nanotechnology in the diagnostic and therapy for Alzheimer's disease. Biochim Biophys Acta Gen Subj 2024; 1868:130559. [PMID: 38191034 DOI: 10.1016/j.bbagen.2024.130559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by β-amyloid plaque, intraneuronal tangles, significant neuronal loss and cognitive deficit. Treatment in the early stages of the disease is crucial for preventing or perhaps reversing the neurodegeneration in the AD cases. However, none of the current diagnostic procedures are capable of early diagnosis of AD. Further, the available treatments merely provide symptomatic alleviation in AD and do not address the underlying illness. Therefore, there is no permanent cure for AD currently. Better therapeutic outcomes need the optimum drug concentration in the central nervous system (CNS) by traversing blood-brain-barrier (BBB). Nanotechnology offers enormous promise to transform the treatment and diagnostics of neurodegenerative diseases. Nanotechnology based diagnostic tools, drug delivery systems and theragnostic are capable of highly sensitive molecular detection, effective drug targeting and their combination. Significant work has been done in this area over the last decade and prospective results have been obtained in AD therapy. This review explores the various applications of nanotechnology in addressing the varied facets of AD, ranging from early detection to therapeutic interventions. This review also looks at how nanotechnology can help with the development of disease-modifying medicines, such as the delivery of anti-amyloid, anti-tau, cholinesterase inhibitors, antioxidants and hormonal drugs. In conclusion, this paper discusses the role of nanotechnology in the early detection of AD, effective drug targeting to the CNS and theragnostic applications in the management of AD.
Collapse
Affiliation(s)
- Archna Panghal
- National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Panjab 160012, India
| | - S J S Flora
- National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Panjab 160012, India; Institute of Pharmaceutical Sciences, Era Medical University, Safarajganj, Lucknow 226003, U.P., India.
| |
Collapse
|
12
|
Ghosh P, Narang K, Iyer PK. Role of Amyloid Beta in Neurodegeneration and Therapeutic Strategies for Neuroprotection. Methods Mol Biol 2024; 2761:337-354. [PMID: 38427249 DOI: 10.1007/978-1-0716-3662-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The gradual loss of neurons' structure and function in the central nervous system is known as neurodegeneration. It is a defining feature of several incapacitating illnesses, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The buildup of amyloid beta (Aβ) protein in the brain is one of the several variables linked to neurodegeneration. We shall delve into the fascinating realm of Aβ in this chapter and examine its role in the etiology of neurodegenerative illnesses. Insights into the processes through which Aβ exerts its toxicity are crucial for the creation of therapeutic approaches to treat these life-threatening diseases. Despite the presence of multiple obstacles, recent research shows promise for the development of some new anti-Aβ therapies that will help millions of people suffering from neurodegeneration. In this chapter, we discuss the role of Aβ in contributing to neurotoxicity and several anti-Aβ therapies for neuroprotection.
Collapse
Affiliation(s)
- Priyam Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kavita Narang
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
13
|
Dattatray Shinde S, Kumar Behera S, Kulkarni N, Dewangan B, Sahu B. Bifunctional backbone modified squaramide dipeptides as amyloid beta (Aβ) aggregation inhibitors. Bioorg Med Chem 2024; 97:117538. [PMID: 38056379 DOI: 10.1016/j.bmc.2023.117538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition with complex pathophysiology. Aggregated amyloid beta (Aβ) peptide plaques and higher concentrations of bio-metals such as copper (Cu), zinc (Zn), and iron (Fe) are the most significant hallmarks of AD observed in the brains of AD patients. Therefore simultaneous inhibition of Aβ peptide aggregation and reduction of metal stress may serve as an effective therapeutic approach for treating Alzheimer's disease. A series of bifunctional dipeptides bearing squaramide backbone were synthesized and investigated for their ability to chelate metal ions and prevent Aβ peptide aggregation. Dipeptides with Valine (V) and Threonine (T) substitutions at the C-terminus exhibited preferential chelation with Cu(II), Zn(II), and Fe(III) metal ions in the presence of other metal ions. They were also found to inhibit the aggregation of Aβ peptide in-vitro. A further molecular dynamics (MD) simulation study demonstrated that these two dipeptides interact with the Aβ peptide in the hydrophobic core (KLVFF) region. Circular dichroism (CD) study revealed slight conformational change in the Aβ peptide upon the interactions with dipeptides. Apart from metal chelation and inhibition of Aβ peptide aggregation, the selected dipeptides were found to possess anti-oxidant properties. Therefore, the squaramide backbone-modified dipeptides may serve as an active bifunctional scaffold towards the development of new chemical entities for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Suchita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gujarat 382355, India
| | - Santosh Kumar Behera
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gujarat 382355, India
| | - Neeraj Kulkarni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gujarat 382355, India
| | - Bhaskar Dewangan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gujarat 382355, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gujarat 382355, India.
| |
Collapse
|
14
|
Kumar S, Mahajan A, Ambatwar R, Khatik GL. Recent Advancements in the Treatment of Alzheimer's Disease: A Multitarget-directed Ligand Approach. Curr Med Chem 2024; 31:6032-6062. [PMID: 37861025 DOI: 10.2174/0109298673264076230921065945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and one of the leading causes of progressive dementia, affecting 50 million people worldwide. Many pathogenic processes, including amyloid β aggregation, tau hyperphosphorylation, oxidative stress, neuronal death, and deterioration of the function of cholinergic neurons, are associated with its progression. The one-compound-one-target treatment paradigm was unsuccessful in treating AD due to the multifaceted nature of Alzheimer's disease. The recent development of multitarget-directed ligand research has been explored to target the complementary pathways associated with the disease. We aimed to find the key role and progress of MTDLs in treating AD; thus, we searched for the past ten years of literature on "Pub- Med", "ScienceDirect", "ACS" and "Bentham Science" using the keywords neurodegenerative diseases, Alzheimer's disease, and multitarget-directed ligands. The literature was further filtered based on the quality of work and relevance to AD. Thus, this review highlights the current advancement and advantages of multitarget-directed ligands over traditional single-targeted drugs and recent progress in their development to treat AD.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Amol Mahajan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Ramesh Ambatwar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| |
Collapse
|
15
|
Abidi SMS, Sharma C, Randhawa S, Shukla AK, Acharya A. A review on nanotechnological perspective of "the amyloid cascade hypothesis" for neurodegenerative diseases. Int J Biol Macromol 2023; 253:126821. [PMID: 37690655 DOI: 10.1016/j.ijbiomac.2023.126821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive degeneration of neurons which deteriorates the brain functions. An early detection of the onset of NDs is utmost important, as it will provide the fast treatment strategies to prevent further progression of the disease. Conventionally, accurate diagnosis of the brain related disorders is difficult in their early phase. To solve this problem, nanotechnology based neurofunctional imaging and biomarker detection techniques have been developed which allows high specificity and sensitivity towards screening and diagnosis of NDs. Another challenge to treat the brain related disorders is to overcome the complex integrity of blood-brain-barrier (BBB) for the delivery of theranostic agents. Fortunately, utilization of nanomaterials has been pursued as promising strategy to address this challenge. Herein, we critically highlighted the recent improvements in the field of neurodiagnostic and therapeutic approaches involving innovative strategies for diagnosis, and inhibition of protein aggregates. We have provided particular emphasis on the use of nanotechnology which can push forward the blooming research growth in this field to win the battle against devastating NDs.
Collapse
Affiliation(s)
- Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Zaręba P, Łątka K, Mazur G, Gryzło B, Pasieka A, Godyń J, Panek D, Skrzypczak-Wiercioch A, Höfner GC, Latacz G, Maj M, Espargaró A, Sabaté R, Jóźwiak K, Wanner KT, Sałat K, Malawska B, Kulig K, Bajda M. Discovery of novel multifunctional ligands targeting GABA transporters, butyrylcholinesterase, β-secretase, and amyloid β aggregation as potential treatment of Alzheimer's disease. Eur J Med Chem 2023; 261:115832. [PMID: 37837674 DOI: 10.1016/j.ejmech.2023.115832] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/16/2023]
Abstract
Alzheimer's disease (AD) is a global health problem in the medical sector that will increase over time. The limited treatment of AD leads to the search for a new clinical candidate. Considering the multifactorial nature of AD, a strategy targeting number of regulatory proteins involved in the development of the disease is an effective approach. Here, we present a discovery of new multi-target-directed ligands (MTDLs), purposely designed as GABA transporter (GAT) inhibitors, that successfully provide the inhibitory activity against butyrylcholinesterase (BuChE), β-secretase (BACE1), amyloid β aggregation and calcium channel blockade activity. The selected GAT inhibitors, 19c and 22a - N-benzylamide derivatives of 4-aminobutyric acid, displayed the most prominent multifunctional profile. Compound 19c (mGAT1 IC50 = 10 μM, mGAT4 IC50 = 12 μM and BuChE IC50 = 559 nM) possessed the highest hBACE1 and Aβ40 aggregation inhibitory activity (IC50 = 1.57 μM and 99 % at 10 μM, respectively). Additionally, it showed a decrease in both the elongation and nucleation constants of the amyloid aggregation process. In contrast compound 22a represented the highest activity and a mixed-type of eqBuChE inhibition (IC50 = 173 nM) with hBACE1 (IC50 = 9.42 μM), Aβ aggregation (79 % at 10 μM) and mGATs (mGAT1 IC50 = 30 μM, mGAT4 IC50 = 25 μM) inhibitory activity. Performed molecular docking studies described the mode of interactions with GATs and enzymatic targets. In ADMET in vitro studies both compounds showed acceptable metabolic stability and low neurotoxicity. Successfully, compounds 19c and 22a at the dose of 30 mg/kg possessed statistically significant antiamnesic properties in a mouse model of amnesia caused by scopolamine and assessed in the novel object recognition (NOR) task or the passive avoidance (PA) task.
Collapse
Affiliation(s)
- Paula Zaręba
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Kamil Łątka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Gabriela Mazur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Beata Gryzło
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Anna Pasieka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Anna Skrzypczak-Wiercioch
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Kraków, Mickiewicz 24/28 St., 30-059, Kraków, Poland
| | - Georg C Höfner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstr., 5-13, 81377, Munich, Germany
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, W. Chodzki 4a St., 20-093, Lublin, Poland
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028, Barcelona, Spain
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028, Barcelona, Spain
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, W. Chodzki 4a St., 20-093, Lublin, Poland
| | - Klaus T Wanner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstr., 5-13, 81377, Munich, Germany
| | - Kinga Sałat
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Katarzyna Kulig
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Marek Bajda
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland.
| |
Collapse
|
17
|
Kim S, Hyun DG, Nam Y, Shin SJ, Im D, Kim HS, Leem SH, Park HH, Kim BH, Park YH, Cho E, Goddard WA, Kim DH, Kim HI, Moon M. Genipin and pyrogallol: Two natural small molecules targeting the modulation of disordered proteins in Alzheimer's disease. Biomed Pharmacother 2023; 168:115770. [PMID: 37865990 DOI: 10.1016/j.biopha.2023.115770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the aggregation of disordered proteins, such as amyloid beta (Aβ) and tau, leading to neurotoxicity and disease progression. Despite numerous efforts, effective inhibitors of Aβ and tau aggregates have not been developed. Thus, we aimed to screen natural small molecules from crude extracts that target various pathologies and are prescribed for patients with neurological diseases. In this study, we screened 162 natural small molecules prescribed for neurological diseases and identified genipin and pyrogallol as hit compounds capable of simultaneously regulating the aggregation of Aβ and tau K18. Moreover, we confirmed the dual modulatory effects of these compounds on the reduction of amyloid-mediated neurotoxicity in vitro and the disassembly of preformed Aβ42 and tau K18 fibrils. Furthermore, we observed the alleviatory effects of genipin and pyrogallol against AD-related pathologies in triple transgenic AD mice. Molecular dynamics and docking simulations revealed the molecular interaction dynamics of genipin and pyrogallol with Aβ42 and tau K18, providing insights into their suppression of aggregation. Our findings suggest the therapeutic potential of genipin and pyrogallol as dual modulators for the treatment of AD by inhibiting aggregation or promoting dissociation of Aβ and tau.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea; Research Institute for Dementia Science, Konyang University, Daejeon 35365, the Republic of Korea
| | - Da Gyeong Hyun
- Department of Chemistry, Korea University, Seoul 02841, the Republic of Korea; Center for Proteogenome Research, Korea University, Seoul 02841, the Republic of Korea; Single Cell Analysis Laboratory, Korea University, Seoul 02841, the Republic of Korea; Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United States
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Dongjoon Im
- Department of Chemistry, Korea University, Seoul 02841, the Republic of Korea; Center for Proteogenome Research, Korea University, Seoul 02841, the Republic of Korea; Single Cell Analysis Laboratory, Korea University, Seoul 02841, the Republic of Korea; Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United States
| | - Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Seol Hwa Leem
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Byeong-Hyeon Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Eunbi Cho
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, the Republic of Korea
| | - William A Goddard
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United States
| | - Dong Hyun Kim
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, the Republic of Korea.
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, the Republic of Korea; Center for Proteogenome Research, Korea University, Seoul 02841, the Republic of Korea; Single Cell Analysis Laboratory, Korea University, Seoul 02841, the Republic of Korea; Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United States.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea; Research Institute for Dementia Science, Konyang University, Daejeon 35365, the Republic of Korea.
| |
Collapse
|
18
|
Żyła A, Martel A, Jurczak P, Moliński A, Szymańska A, Kozak M. Human cystatin C induces the disaggregation process of selected amyloid beta peptides: a structural and kinetic view. Sci Rep 2023; 13:20833. [PMID: 38012338 PMCID: PMC10682421 DOI: 10.1038/s41598-023-47514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and various types of amyloidosis, are incurable; therefore, understanding the mechanisms of amyloid decomposition is crucial to develop an effective drug against them for future therapies. It has been reported that one out of three people over the age of 85 are suffering from dementia as a comorbidity to AD. Amyloid beta (Aβ), the hallmark of AD, transforms structurally from monomers into β-stranded aggregates (fibrils) via multiple oligomeric states. Astrocytes in the central nervous system secrete the human cystatin C protein (HCC) in response to various proteases and cytokines. The codeposition of Aβ and HCC in the brains of patients with AD led to the hypothesis that cystatin C is implicated in the disease process. In this study, we investigate the intermolecular interactions between different atomic structures of fibrils formed by Aβ peptides and HCC to understand the pathological aggregation of these polypeptides into neurotoxic oligomers and then amyloid plaques. To characterize the interactions between Aβ and HCC, we used a complementary approach based on the combination of small-angle neutron scattering analysis, atomic force microscopy and computational modelling, allowing the exploration of the structures of multicomponent protein complexes. We report here an optimized protocol to study that interaction. The results show a dependency of the sequence length of the Aβ peptide on the ability of the associated HCC to disaggregate it.
Collapse
Affiliation(s)
- Adriana Żyła
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Anne Martel
- Large Scale Structures, ILL Neutrons for Society, Institute Laue-Langevin, Grenoble, France
| | - Przemysław Jurczak
- Laboratory of Medical Chemistry, Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Augustyn Moliński
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Aneta Szymańska
- Laboratory of Medical Chemistry, Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Maciej Kozak
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland.
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
19
|
Kaur A, Goyal B. Identification of new pentapeptides as potential inhibitors of amyloid-β 42 aggregation using virtual screening and molecular dynamics simulations. J Mol Graph Model 2023; 124:108558. [PMID: 37390790 DOI: 10.1016/j.jmgm.2023.108558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease mainly characterized by extracellular accumulation of amyloid-β (Aβ) peptide. Previous studies reported pentapeptide RIIGL as an effective inhibitor of Aβ aggregation and neurotoxicity induced by Aβ aggregates. In this work, a library of 912 pentapeptides based on RIIGL has been designed and assessed for their efficacy to inhibit Aβ42 aggregation using computational techniques. The top hit pentapeptides revealed by molecular docking were further assessed for their binding affinity with Aβ42 monomer using MM-PBSA (molecular mechanics Poisson-Boltzmann surface area) method. The MM-PBSA analysis identified RLAPV, RVVPI, and RIAPA, which bind to Aβ42 monomer with a higher binding affinity -55.80, -46.32, and -44.26 kcal/mol, respectively, as compared to RIIGL (ΔGbinding = -41.29 kcal/mol). The residue-wise binding free energy predicted hydrophobic contacts between Aβ42 monomer and pentapeptides. The secondary structure analysis of the conformational ensembles generated by molecular dynamics (MD) depicted remarkably enhanced sampling of helical and no β-sheet conformations in Aβ42 monomer on the incorporation of RVVPI and RIAPA. Notably, RVVPI and RIAPA destabilized the D23-K28 salt bridge in Aβ42 monomer, which plays a crucial role in Aβ42 oligomer stability and fibril formation. The MD simulations highlighted that the incorporation of proline and arginine in pentapeptides contributed to their strong binding with Aβ42 monomer. Furthermore, RVVPI and RIAPA prevented conformational conversion of Aβ42 monomer to aggregation-prone structures, which, in turn, resulted in a lower aggregation tendency of Aβ42 monomer.
Collapse
Affiliation(s)
- Apneet Kaur
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
20
|
Shah-Abadi ME, Ariaei A, Moradi F, Rustamzadeh A, Tanha RR, Sadigh N, Marzban M, Heydari M, Ferdousie VT. In Silico Interactions of Natural and Synthetic Compounds with Key Proteins Involved in Alzheimer's Disease: Prospects for Designing New Therapeutics Compound. Neurotox Res 2023; 41:408-430. [PMID: 37086338 PMCID: PMC10122091 DOI: 10.1007/s12640-023-00648-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 04/16/2023] [Indexed: 04/23/2023]
Abstract
Memory impairment is a result of multiple factors including amyloid-beta (Aβ) accumulation. Several receptors are mediated for Aβ transport and signaling. Moreover, blood lipids are involved in Aβ signaling pathway through these receptors. Mediated blood lipid level by statins aims to regulate Aβ signaling cascade. First, the structure of receptors was taken from the RCSB PDB database and prepared with MGLTools and AutoDock tool 4. Second, the ligand was prepared for docking through AutoDock Vina. The binding affinity was calculated, and the binding sites were determined through LigPlot+ software. Besides, pharmacokinetic properties were calculated through multiple software. Finally, a molecular dynamics (MD) simulation was conducted to evaluate ligands stability along with clustering analysis to evaluate proteins connection. Our molecular docking and dynamic analyses revealed silymarin as a potential inhibitor of acetylcholinesterase (AChE), P-glycoprotein, and angiotensin-converting enzyme 2 (ACE2) with 0.704, 0.85, and 0.83 Å for RMSD along with -114.27, -107.44, and -122.51 kcal/mol for free binding energy, respectively. Moreover, rosuvastatin and quercetin have more stability compared to silymarin and donepezil in complex with P-glycoprotein and ACE2, respectively. Eventually, based on clustering and pharmacokinetics analysis, silymarin, rosuvastatin, and quercetin are suggested to be involved in peripheral clearance of Aβ. The bioactivity effects of mentioned statins and antioxidants are predicted to be helpful in treating memory impairment in Alzheimer's disease (AD). Nevertheless, mentioned drug effect could be improved by nanoparticles to facilitate penetration of the blood-brain barrier (BBB).
Collapse
Affiliation(s)
| | - Armin Ariaei
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Auob Rustamzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rastegar Rahmani Tanha
- Department of Neurosurgery, School of Medicine, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nader Sadigh
- Department of Emergency Medicine, Trauma and Injury Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Marzban
- Student Research Committee, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mahdi Heydari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
21
|
Arar S, Haque MA, Kayed R. Protein aggregation and neurodegenerative disease: Structural outlook for the novel therapeutics. Proteins 2023:10.1002/prot.26561. [PMID: 37530227 PMCID: PMC10834863 DOI: 10.1002/prot.26561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Before the controversial approval of humanized monoclonal antibody lecanemab, which binds to the soluble amyloid-β protofibrils, all the treatments available earlier, for Alzheimer's disease (AD) were symptomatic. The researchers are still struggling to find a breakthrough in AD therapeutic medicine, which is partially attributable to lack in understanding of the structural information associated with the intrinsically disordered proteins and amyloids. One of the major challenges in this area of research is to understand the structural diversity of intrinsically disordered proteins under in vitro conditions. Therefore, in this review, we have summarized the in vitro applications of biophysical methods, which are aimed to shed some light on the heterogeneity, pathogenicity, structures and mechanisms of the intrinsically disordered protein aggregates associated with proteinopathies including AD. This review will also rationalize some of the strategies in modulating disease-relevant pathogenic protein entities by small molecules using structural biology approaches and biophysical characterization. We have also highlighted tools and techniques to simulate the in vivo conditions for native and cytotoxic tau/amyloids assemblies, urge new chemical approaches to replicate tau/amyloids assemblies similar to those in vivo conditions, in addition to designing novel potential drugs.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| |
Collapse
|
22
|
Pandey S, Gupta SM, Sharma SK. Plasmonic nanoparticle's anti-aggregation application in sensor development for water and wastewater analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:874. [PMID: 37351696 DOI: 10.1007/s10661-023-11355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/08/2023] [Indexed: 06/24/2023]
Abstract
Colorimetric sensors have emerged as a powerful tool in the detection of water pollutants. Plasmonic nanoparticles use localized surface plasmon resonance (LSPR)-based colorimetric sensing. LSPR-based sensing can be accomplished through different strategies such as etching, growth, aggregation, and anti-aggregation. Based on these strategies, various sensors have been developed. This review focuses on the newly developed anti-aggregation-based strategy of plasmonic nanoparticles. Sensors based on this strategy have attracted increasing interest because of their exciting properties of high sensitivity, selectivity, and applicability. This review highlights LSPR-based anti-aggregation sensors, their classification, and role of plasmonic nanoparticles in these sensors for the detection of water pollutants. The anti-aggregation based sensing of major water pollutants such as heavy metal ions, anions, and small organic molecules has been summarized herein. This review also provides some personal insights into current challenges associated with anti-aggregation strategy of LSPR-based colorimetric sensors and proposes future research directions.
Collapse
Affiliation(s)
- Shailja Pandey
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Shipra Mital Gupta
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India.
| | - Surendra Kumar Sharma
- University School of Chemical Technology, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| |
Collapse
|
23
|
Pasieka A, Panek D, Zaręba P, Sługocka E, Gucwa N, Espargaró A, Latacz G, Khan N, Bucki A, Sabaté R, Więckowska A, Malawska B. Novel drug-like fluorenyl derivatives as selective butyrylcholinesterase and β-amyloid inhibitors for the treatment of Alzheimer's disease. Bioorg Med Chem 2023; 88-89:117333. [PMID: 37236021 DOI: 10.1016/j.bmc.2023.117333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Butyrylcholinesterase (BuChE) and amyloid β (Aβ) aggregation remain important biological target and mechanism in the search for effective treatment of Alzheimer's disease. Simultaneous inhibition thereof by the application of multifunctional agents may lead to improvement in terms of symptoms and causes of the disease. Here, we present the rational design, synthesis, biological evaluation and molecular modelling studies of novel series of fluorene-based BuChE and Aβ inhibitors with drug-like characteristics and advantageous Central Nervous System Multiparameter Optimization scores. Among 17 synthesized and tested compounds, we identified 22 as the most potent eqBuChE inhibitor with IC50 of 38 nM and 37.4% of Aβ aggregation inhibition at 10 μM. Based on molecular modelling studies, including molecular dynamics, we determined the binding mode of the compounds within BuChE and explained the differences in the activity of the two enantiomers of compound 22. A novel series of fluorenyl compounds meeting the drug-likeness criteria seems to be a promising starting point for further development as anti-Alzheimer agents.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland.
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Emilia Sługocka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza St., 31-530 Kraków, Poland
| | - Natalia Gucwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028 Barcelona, Spain
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Nadia Khan
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland; Departement of Pathophysiology, Jagiellonian University Medical College, 18 Czysta St., 31-121 Kraków, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028 Barcelona, Spain
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| |
Collapse
|
24
|
Maity A, Mondal A, Kundu S, Shome G, Misra R, Singh A, Pal U, Mandal AK, Bera K, Maiti NC. Naringenin-Functionalized Gold Nanoparticles and Their Role in α-Synuclein Stabilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7231-7248. [PMID: 37094111 DOI: 10.1021/acs.langmuir.2c03259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Misfolding and self-assembly of several intrinsically disordered proteins into ordered β-sheet-rich amyloid aggregates emerged as hallmarks of several neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Here we show how the naringenin-embedded nanostructure effectively retards aggregation and fibril formation of α-synuclein, which is strongly associated with the pathology of Parkinson's-like diseases. Naringenin is a polyphenolic compound from a plant source, and in our current investigation, we reported the one-pot synthesis of naringenin-coated spherical and monophasic gold nanoparticles (NAR-AuNPs) under optimized conditions. The average hydrodynamic diameter of the produced nanoparticle was ∼24 nm and showed a distinct absorption band at 533 nm. The zeta potential of the nanocomposite was ∼-22 mV and indicated the presence of naringenin on the surface of nanoparticles. Core-level XPS spectrum analysis showed prominent peaks at 84.02 and 87.68 eV, suggesting the zero oxidation state of metal in the nanostructure. Additionally, the peaks at 86.14 and 89.76 eV were due to the Au-O bond, induced by the hydroxyl groups of the naringenin molecule. The FT-IR analysis further confirmed strong interactions of the molecule with the gold nanosurface via the phenolic oxygen group. The composite surface was found to interact with monomeric α-synuclein and caused a red shift in the nanoparticle absorption band by ∼5 nm. The binding affinity of the composite nanostructure toward α-synuclein was in the micromolar range (Ka∼ 5.02 × 106 M-1) and may produce a protein corona over the gold nanosurface. A circular dichroism study showed that the nanocomposite can arrest the conformational fluctuation of the protein and hindered its transformation into a compact cross-β-sheet conformation, a prerequisite for amyloid fibril formation. Furthermore, it was found that naringenin and its nanocomplex did not perturb the viability of neuronal cells. It thus appeared that engineering of the nanosurface with naringenin could be an alternative strategy in developing treatment approaches for Parkinson's and other diseases linked to protein conformation.
Collapse
Affiliation(s)
- Anupam Maity
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Animesh Mondal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Shubham Kundu
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Gourav Shome
- Division of Molecular Medicine, Bose Institute, Kolkata 700091, India
| | - Rajdip Misra
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Aakriti Singh
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Uttam Pal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata 700091, India
| | - Kaushik Bera
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Department of Chemistry, The Heritage School, 994 Chowbaga Road, Anandapur, East Kolkata Twp, Kolkata 700107, India
| | - Nakul C Maiti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
25
|
Madhav H, Abdel-Rahman SA, Hashmi MA, Rahman MA, Rehan M, Pal K, Nayeem SM, Gabr MT, Hoda N. Multicomponent Petasis reaction for the identification of pyrazine based multi-target directed anti-Alzheimer's agents: In-silico design, synthesis, and characterization. Eur J Med Chem 2023; 254:115354. [PMID: 37043996 DOI: 10.1016/j.ejmech.2023.115354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Multi-target directed ligands (MTDLs) have recently attracted significant interest due to their exceptional effectiveness against multi-factorial Alzheimer's disease. The present work described the development of pyrazine-based MTDLs using multicomponent Petasis reaction for the dual inhibition of tau-aggregation and human acetylcholinesterase (hAChE). The molecular structure of synthesized ligands was validated by 1H & 13C NMR and mass spectrometry. The screened compounds were shown to have a strong inhibitory effect at 10 μM concentration against tau-oligomerization and hAChE, but only moderate inhibitory activity against Aβ42. Among all the compounds, the half-maximal inhibitory concentration (IC50) for 21 and 24 against hAChE were 0.71 μM and 1.09 μM, respectively, while they displayed half-maximal effective concentrations (EC50) values of 2.21 μM and 2.71 μM for cellular tau-oligomerization, respectively. Additionally, an MTT experiment using tau-expressing SH-SY5Y neuroblastoma cells revealed that 21 was more neuroprotective than the FDA-approved medication donepezil. Furthermore, an MD simulation study was performed to investigate the dynamics and stability of AChE-21 and AChE-24 complexes in an aqueous environment. The MM-PBSA calculations were performed to evaluate the binding of 21 and 24 with AChE, and the relative binding energy was calculated as -870.578 and -875.697 kJ mol-1, respectively. As a result, the study offered insight into the design of new MTDLs and highlighted 21 as a potential roadblock to the development of anti-AD medications.
Collapse
Affiliation(s)
- Hari Madhav
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Somaya A Abdel-Rahman
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Md Ataur Rahman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Mohammad Rehan
- Max-Planck-Institute für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Moustafa T Gabr
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
26
|
Intrathecal Pseudodelivery of Drugs in the Therapy of Neurodegenerative Diseases: Rationale, Basis and Potential Applications. Pharmaceutics 2023; 15:pharmaceutics15030768. [PMID: 36986629 PMCID: PMC10059785 DOI: 10.3390/pharmaceutics15030768] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Intrathecal pseudodelivery of drugs is a novel route to administer medications to treat neurodegenerative diseases based on the CSF-sink therapeutic strategy by means of implantable devices. While the development of this therapy is still in the preclinical stage, it offers promising advantages over traditional routes of drug delivery. In this paper, we describe the rationale of this system and provide a technical report on the mechanism of action, that relies on the use of nanoporous membranes enabling selective molecular permeability. On one side, the membranes do not permit the crossing of certain drugs; whereas, on the other side, they permit the crossing of target molecules present in the CSF. Target molecules, by binding drugs inside the system, are retained or cleaved and subsequently eliminated from the central nervous system. Finally, we provide a list of potential indications, the respective molecular targets, and the proposed therapeutic agents.
Collapse
|
27
|
Zhang T, Chen X, Yuan C, Pang X, Shangguan P, Liu Y, Han L, Sun J, Lam JWY, Liu Y, Wang J, Shi B, Zhong Tang B. Near-Infrared Aggregation-Induced Emission Luminogens for In Vivo Theranostics of Alzheimer's Disease. Angew Chem Int Ed Engl 2023; 62:e202211550. [PMID: 36336656 DOI: 10.1002/anie.202211550] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/09/2022]
Abstract
Optimized theranostic strategies for Alzheimer's disease (AD) remain almost absent from bench to clinic. Current probes and drugs attempting to prevent β-amyloid (Aβ) fibrosis encounter failures due to the blood-brain barrier (BBB) penetration challenge and blind intervention time window. Herein, we design a near-infrared (NIR) aggregation-induced emission (AIE) probe, DNTPH, via balanced hydrophobicity-hydrophilicity strategy. DNTPH binds selectively to Aβ fibrils with a high signal-to-noise ratio. In vivo imaging revealed its excellent BBB permeability and long-term tracking ability with high-performance AD diagnosis. Remarkably, DNTPH exhibits a strong inhibitory effect on Aβ fibrosis and promotes fibril disassembly, thereby attenuating Aβ-induced neurotoxicity. DNTPH treatment significantly reduced Aβ plaques and rescued learning deficits in AD mice. Thus, DNTPH serves as the first AIE in vivo theranostic agent for real-time NIR imaging of Aβ plaques and AD therapy simultaneously.
Collapse
Affiliation(s)
- Tianfu Zhang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoyu Chen
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Congmin Yuan
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaobin Pang
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, 475004, Kaifeng, China
| | - Ping Shangguan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Yisheng Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Lulu Han
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Jianwei Sun
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yang Liu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, 475004, Kaifeng, China
| | - Jiefei Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China.,Centre for motor neuron disease, Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Rehman MU, Sehar N, Dar NJ, Khan A, Arafah A, Rashid S, Rashid SM, Ganaie MA. Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: An update on current advances and impediments. Neurosci Biobehav Rev 2023; 144:104961. [PMID: 36395982 DOI: 10.1016/j.neubiorev.2022.104961] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer disease (AD), Parkinson disease (PD), and Huntington disease (HD) represent a major socio-economic challenge in view of their high prevalence yet poor treatment outcomes affecting quality of life. The major challenge in drug development for these NDs is insufficient clarity about the mechanisms involved in pathogenesis and pathophysiology. Mitochondrial dysfunction, oxidative stress and inflammation are common pathways that are linked to neuronal abnormalities and initiation of these diseases. Thus, elucidating the shared initial molecular and cellular mechanisms is crucial for recognizing novel remedial targets, and developing therapeutics to impede or stop disease progression. In this context, use of multifunctional compounds at early stages of disease development unclogs new avenues as it acts on act on multiple targets in comparison to single target concept. In this review, we summarize overview of the major findings and advancements in recent years focusing on shared mechanisms for better understanding might become beneficial in searching more potent pharmacological interventions thereby reducing the onset or severity of various NDs.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Nawab John Dar
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78992 USA
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology & Toxicology, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
29
|
Kim S, Nam Y, Shin SJ, Prajapati R, Shin SM, Kim MJ, soo Kim H, Leem SH, Kim TJ, Park YH, Kim JJ, Choi JS, Moon M. Dual modulators of aggregation and dissociation of amyloid beta and tau: In vitro, in vivo, and in silico studies of Uncaria rhynchophylla and its bioactive components. Biomed Pharmacother 2022; 156:113865. [DOI: 10.1016/j.biopha.2022.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022] Open
|
30
|
Gandini A, Gonçalves AE, Strocchi S, Albertini C, Janočková J, Tramarin A, Grifoni D, Poeta E, Soukup O, Muñoz-Torrero D, Monti B, Sabaté R, Bartolini M, Legname G, Bolognesi ML. Discovery of Dual Aβ/Tau Inhibitors and Evaluation of Their Therapeutic Effect on a Drosophila Model of Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3314-3329. [PMID: 36445009 PMCID: PMC9732823 DOI: 10.1021/acschemneuro.2c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia, currently represents an extremely challenging and unmet medical need worldwide. Amyloid-β (Aβ) and Tau proteins are prototypical AD hallmarks, as well as validated drug targets. Accumulating evidence now suggests that they synergistically contribute to disease pathogenesis. This could not only help explain negative results from anti-Aβ clinical trials but also indicate that therapies solely directed at one of them may have to be reconsidered. Based on this, herein, we describe the development of a focused library of 2,4-thiazolidinedione (TZD)-based bivalent derivatives as dual Aβ and Tau aggregation inhibitors. The aggregating activity of the 24 synthesized derivatives was tested in intact Escherichia coli cells overexpressing Aβ42 and Tau proteins. We then evaluated their neuronal toxicity and ability to cross the blood-brain barrier (BBB), together with the in vitro interaction with the two isolated proteins. Finally, the most promising (most active, nontoxic, and BBB-permeable) compounds 22 and 23 were tested in vivo, in a Drosophila melanogaster model of AD. The carbazole derivative 22 (20 μM) showed extremely encouraging results, being able to improve both the lifespan and the climbing abilities of Aβ42 expressing flies and generating a better outcome than doxycycline (50 μM). Moreover, 22 proved to be able to decrease Aβ42 aggregates in the brains of the flies. We conclude that bivalent small molecules based on 22 deserve further attention as hits for dual Aβ/Tau aggregation inhibition in AD.
Collapse
Affiliation(s)
- Annachiara Gandini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy,Department
of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136Trieste, Italy
| | - Ana Elisa Gonçalves
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy,Pharmaceutical
Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, Rua Uruguai 458, 88302-202Itajaí, Santa Catarina, Brazil
| | - Silvia Strocchi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Claudia Albertini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Jana Janočková
- Biomedical
Research Center, University Hospital Hradec
Kralove, 500 00Hradec Kralove, Czech Republic
| | - Anna Tramarin
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Daniela Grifoni
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy,Department
of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito II, 67100L’Aquila, Italy
| | - Eleonora Poeta
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Ondrej Soukup
- Biomedical
Research Center, University Hospital Hradec
Kralove, 500 00Hradec Kralove, Czech Republic
| | - Diego Muñoz-Torrero
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028Barcelona, Spain
| | - Barbara Monti
- Pharmaceutical
Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, Rua Uruguai 458, 88302-202Itajaí, Santa Catarina, Brazil
| | - Raimon Sabaté
- Department
of Pharmacy and Pharmaceutical Technology and Physical Chemistry,
Faculty of Pharmacy and Food Science, University
of Barcelona, Av Joan
XXIII 27-31, E-08028Barcelona, Spain
| | - Manuela Bartolini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Giuseppe Legname
- Department
of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136Trieste, Italy
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy,. Tel: +39 0512099718
| |
Collapse
|
31
|
Rajkumar M, Vimala K, Tamiliniyan DD, Thangaraj R, Jaganathan R, Kumaradhas P, Kannan S. Gelatin/polyvinyl alcohol loaded magnesium hydroxide nanocomposite attenuates neurotoxicity and oxidative stress in Alzheimer's disease induced rats. Int J Biol Macromol 2022; 222:2122-2143. [DOI: 10.1016/j.ijbiomac.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
|
32
|
Murakami K, Ono K. Interactions of amyloid coaggregates with biomolecules and its relevance to neurodegeneration. FASEB J 2022; 36:e22493. [PMID: 35971743 DOI: 10.1096/fj.202200235r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 01/16/2023]
Abstract
The aggregation of amyloidogenic proteins is a pathological hallmark of various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In these diseases, oligomeric intermediates or toxic aggregates of amyloids cause neuronal damage and degeneration. Despite the substantial effort made over recent decades to implement therapeutic interventions, these neurodegenerative diseases are not yet understood at the molecular level. In many cases, multiple disease-causing amyloids overlap in a sole pathological feature or a sole disease-causing amyloid represents multiple pathological features. Various amyloid pathologies can coexist in the same brain with or without clinical presentation and may even occur in individuals without disease. From sparse data, speculation has arisen regarding the coaggregation of amyloids with disparate amyloid species and other biomolecules, which are the same characteristics that make diagnostics and drug development challenging. However, advances in research related to biomolecular condensates and structural analysis have been used to overcome some of these challenges. Considering the development of these resources and techniques, herein we review the cross-seeding of amyloidosis, for example, involving the amyloids amyloid β, tau, α-synuclein, and human islet amyloid polypeptide, and their cross-inhibition by transthyretin and BRICHOS. The interplay of nucleic acid-binding proteins, such as prions, TAR DNA-binding protein 43, fused in sarcoma/translated in liposarcoma, and fragile X mental retardation polyglycine, with nucleic acids in the pathology of neurodegeneration are also described, and we thereby highlight the potential clinical applications in central nervous system therapy.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenjiro Ono
- Department of Neurology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
33
|
Gharb M, Nouralishahi A, Riazi A, Riazi G. Inhibition Of Tau Protein Aggregation By a Chaperone-like β-Boswellic Acid Conjugated To Gold Nanoparticles. ACS OMEGA 2022; 7:30347-30358. [PMID: 36061732 PMCID: PMC9434627 DOI: 10.1021/acsomega.2c03616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
A potential therapeutic strategy to inhibit tau protein aggregation in neurons has substantial effects on preventing or controlling Alzheimer's disease (AD). In this work, we designed a covalent and noncovalent conjugation of β-boswellic acid (BA) to gold nanoparticles (GNPs). We provided the opportunity to investigate the effect of the surface composition of BA-GNPs on the aggregation of the tau protein 1N/4R isoform in vitro. HR-TEM and FESEM micrographs revealed that GNPs were spherical and uniform, smaller than 25 nm. According to UV-visible and FTIR data, BA was successfully conjugated to GNPs. The finding illustrates the effect of the surface charge, size, and hydrophobicity of BA-GNPs on the kinetics of tau protein aggregation. The size and surface area of U-G-BA demonstrated that inhibited tau aggregation more effectively than covalently linked BA. The proposed method for preventing tau aggregation was monomer reduction. At the same time, a chaperone-like feature of GNP-BA while sustaining a tau native structure prevented the additional formation of fibrils. Overall, this study provides insight into the interaction of GNP-BAs with a monomer of tau protein and may suggest novel future therapies for AD.
Collapse
Affiliation(s)
- Masoumeh Gharb
- Institute
of Biochemistry and Biophysics, University
of Tehran, Tehran 14176-14335, Iran
- Caspian
Factually of Engineering, University of
Tehran, Rezvanshahr 4386191836, Gilan Iran
| | - Amideddin Nouralishahi
- Caspian
Factually of Engineering, University of
Tehran, Rezvanshahr 4386191836, Gilan Iran
| | - Ali Riazi
- Kondor
Pharma Inc., Mississauga, Ontario L4V 1T4, Canada
| | - Gholamhossein Riazi
- Institute
of Biochemistry and Biophysics, University
of Tehran, Tehran 14176-14335, Iran
| |
Collapse
|
34
|
Ramesh M, Balachandra C, Andhare P, Govindaraju T. Rationally Designed Molecules Synergistically Modulate Multifaceted Aβ Toxicity, Microglial Activation, and Neuroinflammation. ACS Chem Neurosci 2022; 13:2209-2221. [PMID: 35759686 DOI: 10.1021/acschemneuro.2c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Synergistic modulation of multifaceted toxicity is the key to tackle multifactorial Alzheimer's disease (AD). The etiology of AD includes amyloid β (Aβ) amyloidosis, metal ion dyshomeostasis, reactive oxygen species (ROS), oxidative stress, mitochondrial damage, and neuroinflammation. We rationally designed multifunctional modulators by integrating pharmacophores for metal chelation, antioxidant and anti-inflammatory properties, and modulation of Aβ42 aggregation on the naphthalene monoimide (NMI) scaffold. The in vitro and cellular studies of NMIs revealed that M3 synergistically modulates metal-independent and -dependent amyloid toxicity, scavenges ROS, alleviates oxidative stress, and emulates Nrf2-mediated stress response in neuronal cells. M3 effectively reduced structural and functional damage of mitochondria, reduced Cyt c levels, and rescued cells from apoptosis. The biological atomic force microscopy and Western blot analysis revealed the ability of M3 to suppress microglial activation and neuroinflammation through inhibition of the NF-κβ pathway. The synergistic action of M3 is in agreement with our design strategy to develop a multifunctional therapeutic candidate by integrating multiple pharmacophores with distinct structural and functional elements to ameliorate the multifaceted toxicity of AD.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Chenikkayala Balachandra
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Pradhnesh Andhare
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
35
|
Subedi S, Sasidharan S, Nag N, Saudagar P, Tripathi T. Amyloid Cross-Seeding: Mechanism, Implication, and Inhibition. Molecules 2022; 27:1776. [PMID: 35335141 PMCID: PMC8955620 DOI: 10.3390/molecules27061776] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/21/2023] Open
Abstract
Most neurodegenerative diseases such as Alzheimer's disease, type 2 diabetes, Parkinson's disease, etc. are caused by inclusions and plaques containing misfolded protein aggregates. These protein aggregates are essentially formed by the interactions of either the same (homologous) or different (heterologous) sequences. Several experimental pieces of evidence have revealed the presence of cross-seeding in amyloid proteins, which results in a multicomponent assembly; however, the molecular and structural details remain less explored. Here, we discuss the amyloid proteins and the cross-seeding phenomena in detail. Data suggest that targeting the common epitope of the interacting amyloid proteins may be a better therapeutic option than targeting only one species. We also examine the dual inhibitors that target the amyloid proteins participating in the cross-seeding events. The future scopes and major challenges in understanding the mechanism and developing therapeutics are also considered. Detailed knowledge of the amyloid cross-seeding will stimulate further research in the practical aspects and better designing anti-amyloid therapeutics.
Collapse
Affiliation(s)
- Sushma Subedi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; (S.S.); (N.N.)
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India;
| | - Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; (S.S.); (N.N.)
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India;
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; (S.S.); (N.N.)
| |
Collapse
|
36
|
Singh K, Kaur A, Goyal D, Goyal B. Mechanistic insights into the mitigation of Aβ aggregation and protofibril destabilization by a D–enantiomeric decapeptide rk10. Phys Chem Chem Phys 2022; 24:21975-21994. [DOI: 10.1039/d2cp02601e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
According to clinical studies, the development of Alzheimer’s disease (AD) is linked to the abnormal aggregation of amyloid-β (Aβ) peptides into toxic soluble oligomers, protofibrils as well as mature fibrils....
Collapse
|
37
|
Wu J, Kou X, Ju H, Zhang H, Yang A, Shen R. Design, synthesis and biological evaluation of naringenin carbamate derivatives as potential multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2021; 49:128316. [PMID: 34391893 DOI: 10.1016/j.bmcl.2021.128316] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 01/14/2023]
Abstract
A series of naringenin derivatives were designed and synthesized as multifunctional anti-Alzheimer's disease (AD) agents. The results showed that these derivatives displayed moderate-to-good acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities at the micromolar range (IC50, 12.91 ~ 62.52 μM for AChE and 0.094 ~ 13.72 μM for BuChE). Specifically, compound 1 showed the highest inhibitory activity against BuChE with the IC50 value of (0.094 ± 0.0054) μM. A Lineweaver-Burk plot and molecular docking studies demonstrated that 1 targeted both the catalytically active site (CAS) and the peripheral anion site (PAS) of BuChE. Besides, all derivatives showed excellent hydroxyl free radicals (·OH) scavenging ability than vitamin C and cyclic voltammetry results displayed that 1 could effectively scavenge superoxide anion radical (·O2-). In addition, compound 1 displayed good metal chelating properties and had anti-Aβ aggregation activities. Therefore, compound 1 might be the potential anti-AD agent for further developments.
Collapse
Affiliation(s)
- Jiarui Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hui Ju
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hongwei Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
38
|
Ramesh M, Acharya A, Murugan NA, Ila H, Govindaraju T. Thiophene-Based Dual Modulators of Aβ and Tau Aggregation. Chembiochem 2021; 22:3348-3357. [PMID: 34546619 DOI: 10.1002/cbic.202100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease is characterized by the accumulation of amyloid beta (Aβ) and Tau aggregates in the brain, which induces various pathological events resulting in neurodegeneration. There have been continuous efforts to develop modulators of the Aβ and Tau aggregation process to halt or modify disease progression. A few small-molecule-based inhibitors that target both Aβ and Tau pathology have been reported. Here, we report the screening of a targeted library of small molecules to modulate Aβ and Tau aggregation together with their in vitro, in silico and cellular studies. In vitro ThT fluorescence assay, dot blot assay, gel electrophoresis and transmission electron microscopy (TEM) results have shown that thiophene-based lead molecules effectively modulate Aβ aggregation and inhibit Tau aggregation. In silico studies performed by employing molecular docking, molecular dynamics and binding-free energy calculations have helped in understanding the mechanism of interaction of the lead thiophene compounds with Aβ and Tau fibril targets. In cellulo studies revealed that the lead candidate is biocompatible and effectively ameliorates neuronal cells from Aβ and Tau-mediated amyloid toxicity.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Anand Acharya
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - N Arul Murugan
- Department of Computer Science, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Hiriyakkanavar Ila
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India
| |
Collapse
|