1
|
Floyd HEE, Kavanagh AM, Lowe GJ, Amado M, Fraser JA, Blaskovich MAT, Elliott AG, Zuegg J. Standardisation of high throughput microdilution antifungal susceptibility testing for Candida albicans and Cryptococcus neoformans. Sci Rep 2024; 14:23407. [PMID: 39379501 PMCID: PMC11461513 DOI: 10.1038/s41598-024-74068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
The Clinical and Laboratory Standards Institute (CLSI) M27 guidelines are the recommended and most commonly used protocols for broth microdilution antifungal susceptibility testing of yeasts. However, these guidelines are limited to the use of 96-well assay plates, limiting assay capacity. With the increased risk of fungal resistance emerging in the community, it is important to have alternative protocols available, that offer higher throughput and can screen more than eight to ten potential antifungal compounds per plate. This study presents an optimised broth microdilution minimum inhibitory concentration (MIC) method for testing the susceptibility of yeasts in an efficient high throughput screening setup, with minimal growth variability and maximum reproducibility. We extend the M27 guidelines and optimise the conditions for 384-well plates. Validation of the assay was performed with ten clinically used antifungals (fluconazole, amphotericin B, 5-fluorocytosine, posaconazole, voriconazole, ketoconazole, itraconazole, caspofungin diacetate, anidulafungin and micafungin) against Candida albicans and Cryptococcus neoformans.
Collapse
Affiliation(s)
- Holly E E Floyd
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Angela M Kavanagh
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gabrielle J Lowe
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Maite Amado
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - James A Fraser
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Zeng P, Wang H, Zhang P, Leung SSY. Unearthing naturally-occurring cyclic antibacterial peptides and their structural optimization strategies. Biotechnol Adv 2024; 73:108371. [PMID: 38704105 DOI: 10.1016/j.biotechadv.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Natural products with antibacterial activity are highly desired globally to combat against multidrug-resistant (MDR) bacteria. Antibacterial peptide (ABP), especially cyclic ABP (CABP), is one of the abundant classes. Most of them were isolated from microbes, demonstrating excellent bactericidal effects. With the improved proteolytic stability, CABPs are normally considered to have better druggability than linear peptides. However, most clinically-used CABP-based antibiotics, such as colistin, also face the challenges of drug resistance soon after they reached the market, urgently requiring the development of next-generation succedaneums. We present here a detail review on the novel naturally-occurring CABPs discovered in the past decade and some of them are under clinical trials, exhibiting anticipated application potential. According to their chemical structures, they were broadly classified into five groups, including (i) lactam/lactone-based CABPs, (ii) cyclic lipopeptides, (iii) glycopeptides, (iv) cyclic sulfur-rich peptides and (v) multiple-modified CABPs. Their chemical structures, antibacterial spectrums and proposed mechanisms are discussed. Moreover, engineered analogs of these novel CABPs are also summarized to preliminarily analyze their structure-activity relationship. This review aims to provide a global perspective on research and development of novel CABPs to highlight the effectiveness of derivatives design in identifying promising antibacterial agents. Further research efforts in this area are believed to play important roles in fighting against the multidrug-resistance crisis.
Collapse
Affiliation(s)
- Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Honglan Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pengfei Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
3
|
Klug DM, Tse EG, Silva DG, Cao Y, Charman SA, Chauhan J, Crighton E, Dichiara M, Drake C, Drewry D, da Silva Emery F, Ferrins L, Graves L, Hopkins E, Kresina TAC, Lorente-Macías Á, Perry B, Phipps R, Quiroga B, Quotadamo A, Sabatino GN, Sama A, Schätzlein A, Simpson QJ, Steele J, Shanu-Wilson J, Sjö P, Stapleton P, Swain CJ, Vaideanu A, Xie H, Zuercher W, Todd MH. Open Source Antibiotics: Simple Diarylimidazoles Are Potent against Methicillin-Resistant Staphylococcus aureus. ACS Infect Dis 2023; 9:2423-2435. [PMID: 37991879 PMCID: PMC10714399 DOI: 10.1021/acsinfecdis.3c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Antimicrobial resistance (AMR) is widely acknowledged as one of the most serious public health threats facing the world, yet the private sector finds it challenging to generate much-needed medicines. As an alternative discovery approach, a small array of diarylimidazoles was screened against the ESKAPE pathogens, and the results were made publicly available through the Open Source Antibiotics (OSA) consortium (https://github.com/opensourceantibiotics). Of the 18 compounds tested (at 32 μg/mL), 15 showed >90% growth inhibition activity against methicillin-resistant Staphylococcus aureus (MRSA) alone. In the subsequent hit-to-lead optimization of this chemotype, 147 new heterocyclic compounds containing the diarylimidazole and other core motifs were synthesized and tested against MRSA, and their structure-activity relationships were identified. While potent, these compounds have moderate to high intrinsic clearance and some associated toxicity. The best overall balance of parameters was found with OSA_975, a compound with good potency, good solubility, and reduced intrinsic clearance in rat hepatocytes. We have progressed toward the knowledge of the molecular target of these phenotypically active compounds, with proteomic techniques suggesting TGFBR1 is potentially involved in the mechanism of action. Further development of these compounds toward antimicrobial medicines is available to anyone under the licensing terms of the project.
Collapse
Affiliation(s)
- Dana M. Klug
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Edwin G. Tse
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Daniel G. Silva
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903. Brazil
| | - Yafeng Cao
- WuXi
AppTec (Wuhan) Co., Ltd., 666 Gaoxin Road, East Lake High-Tech Development Zone, Wuhan 430075, People’s Republic of China
| | - Susan A. Charman
- Centre
for Drug Candidate Optimization, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jyoti Chauhan
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Elly Crighton
- Centre
for Drug Candidate Optimization, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Maria Dichiara
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Chris Drake
- Hypha Discovery, 154b Brook Dr, Milton, Abingdon OX14 4SD, United Kingdom
| | - David Drewry
- UNC Lineberger
Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Flavio da Silva Emery
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903. Brazil
| | - Lori Ferrins
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Lee Graves
- Department
of Pharmacology, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily Hopkins
- Hypha Discovery, 154b Brook Dr, Milton, Abingdon OX14 4SD, United Kingdom
| | - Thomas A. C. Kresina
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Álvaro Lorente-Macías
- Department
of Pharmacology, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Medicinal & Organic Chemistry and Excellence Research Unit
of ‘‘Chemistry Applied to Biomedicine and the Environment’’,
Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- A. L-M.
Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | - Benjamin Perry
- Drugs
for Neglected Diseases initiative (DNDi), 15 Chemin Camille-Vidart, 1202 Geneva, Switzerland
| | - Richard Phipps
- Hypha Discovery, 154b Brook Dr, Milton, Abingdon OX14 4SD, United Kingdom
| | - Bruno Quiroga
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Antonio Quotadamo
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- Clinical
and Experimental Medicine PhD Program, University
of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Giada N. Sabatino
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Anthony Sama
- Citizen
scientist, New York, New York 11570, United States
| | - Andreas Schätzlein
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Quillon J. Simpson
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Jonathan Steele
- Hypha Discovery, 154b Brook Dr, Milton, Abingdon OX14 4SD, United Kingdom
| | - Julia Shanu-Wilson
- Hypha Discovery, 154b Brook Dr, Milton, Abingdon OX14 4SD, United Kingdom
| | - Peter Sjö
- Drugs
for Neglected Diseases initiative (DNDi), 15 Chemin Camille-Vidart, 1202 Geneva, Switzerland
| | - Paul Stapleton
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Christopher J. Swain
- Cambridge
MedChem Consulting, 8
Mangers Lane, Duxford, Cambridge CB22 4RN, United Kingdom
| | - Alexandra Vaideanu
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Huanxu Xie
- WuXi
AppTec (Wuhan) Co., Ltd., 666 Gaoxin Road, East Lake High-Tech Development Zone, Wuhan 430075, People’s Republic of China
| | - William Zuercher
- UNC Lineberger
Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew H. Todd
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
- Structural
Genomics Consortium, University College
London, 29-39 Brunswick
Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
4
|
Walesch S, Birkelbach J, Jézéquel G, Haeckl FPJ, Hegemann JD, Hesterkamp T, Hirsch AKH, Hammann P, Müller R. Fighting antibiotic resistance-strategies and (pre)clinical developments to find new antibacterials. EMBO Rep 2022; 24:e56033. [PMID: 36533629 PMCID: PMC9827564 DOI: 10.15252/embr.202256033] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Antibacterial resistance is one of the greatest threats to human health. The development of new therapeutics against bacterial pathogens has slowed drastically since the approvals of the first antibiotics in the early and mid-20th century. Most of the currently investigated drug leads are modifications of approved antibacterials, many of which are derived from natural products. In this review, we highlight the challenges, advancements and current standing of the clinical and preclinical antibacterial research pipeline. Additionally, we present novel strategies for rejuvenating the discovery process and advocate for renewed and enthusiastic investment in the antibacterial discovery pipeline.
Collapse
Affiliation(s)
- Sebastian Walesch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Joy Birkelbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Thomas Hesterkamp
- Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| | - Peter Hammann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| |
Collapse
|
5
|
Yu B, Choudhury MR, Yang X, Benoit SL, Womack E, Van Mouwerik Lyles K, Acharya A, Kumar A, Yang C, Pavlova A, Zhu M, Yuan Z, Gumbart JC, Boykin DW, Maier RJ, Eichenbaum Z, Wang B. Restoring and Enhancing the Potency of Existing Antibiotics against Drug-Resistant Gram-Negative Bacteria through the Development of Potent Small-Molecule Adjuvants. ACS Infect Dis 2022; 8:1491-1508. [PMID: 35801980 PMCID: PMC11227883 DOI: 10.1021/acsinfecdis.2c00121] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rapid and persistent emergence of drug-resistant bacteria poses a looming public health crisis. The possible task of developing new sets of antibiotics to replenish the existing ones is daunting to say the least. Searching for adjuvants that restore or even enhance the potency of existing antibiotics against drug-resistant strains of bacteria represents a practical and cost-effective approach. Herein, we describe the discovery of potent adjuvants that extend the antimicrobial spectrum of existing antibiotics and restore their effectiveness toward drug-resistant strains including mcr-1-expressing strains. From a library of cationic compounds, MD-100, which has a diamidine core structure, was identified as a potent antibiotic adjuvant against Gram-negative bacteria. Further optimization efforts including the synthesis of ∼20 compounds through medicinal chemistry work led to the discovery of a much more potent compound MD-124. MD-124 was shown to sensitize various Gram-negative bacterial species and strains, including multidrug resistant pathogens, toward existing antibiotics with diverse mechanisms of action. We further demonstrated the efficacy of MD-124 in an ex vivo skin infection model and in an in vivo murine systemic infection model using both wild-type and drug-resistant Escherichia coli strains. MD-124 functions through selective permeabilization of the outer membrane of Gram-negative bacteria. Importantly, bacteria exhibited low-resistance frequency toward MD-124. In-depth computational investigations of MD-124 binding to the bacterial outer membrane using equilibrium and steered molecular dynamics simulations revealed key structural features for favorable interactions. The very potent nature of such adjuvants distinguishes them as very useful leads for future drug development in combating bacterial drug resistance.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Manjusha Roy Choudhury
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | | | - Edroyal Womack
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | | | - Atanu Acharya
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Anna Pavlova
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - James C. Gumbart
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - David W. Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
6
|
Moynihan E, Mackey K, Blaskovich MAT, Reen FJ, McGlacken G. N-Alkyl-2-Quinolonopyrones Demonstrate Antimicrobial Activity against ESKAPE Pathogens Including Staphylococcus aureus. ACS Med Chem Lett 2022; 13:1358-1362. [PMID: 35978679 PMCID: PMC9377017 DOI: 10.1021/acsmedchemlett.2c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Eoin Moynihan
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 YN60, Ireland
| | - Katrina Mackey
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 YN60, Ireland
| | - Mark A. T. Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - F. Jerry Reen
- School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
| | - Gerard McGlacken
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 YN60, Ireland
| |
Collapse
|
7
|
Mongia M, Guler M, Mohimani H. An interpretable machine learning approach to identify mechanism of action of antibiotics. Sci Rep 2022; 12:10342. [PMID: 35725893 PMCID: PMC9209520 DOI: 10.1038/s41598-022-14229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/02/2022] [Indexed: 11/19/2022] Open
Abstract
As antibiotic resistance is becoming a major public health problem worldwide, one of the approaches for novel antibiotic discovery is re-purposing drugs available on the market for treating antibiotic resistant bacteria. The main economic advantage of this approach is that since these drugs have already passed all the safety tests, it vastly reduces the overall cost of clinical trials. Recently, several machine learning approaches have been developed for predicting promising antibiotics by training on bioactivity data collected on a set of small molecules. However, these methods report hundreds/thousands of bioactive molecules, and it remains unclear which of these molecules possess a novel mechanism of action. While the cost of high-throughput bioactivity testing has dropped dramatically in recent years, determining the mechanism of action of small molecules remains a costly and time-consuming step, and therefore computational methods for prioritizing molecules with novel mechanisms of action are needed. The existing approaches for predicting bioactivity of small molecules are based on uninterpretable machine learning, and therefore are not capable of determining known mechanism of action of small molecules and prioritizing novel mechanisms. We introduce InterPred, an interpretable technique for predicting bioactivity of small molecules and their mechanism of action. InterPred has the same accuracy as the state of the art in bioactivity prediction, and it enables assigning chemical moieties that are responsible for bioactivity. After analyzing bioactivity data of several thousand molecules against bacterial and fungal pathogens available from Community for Open Antimicrobial Drug Discovery and a US Food and Drug Association-approved drug library, InterPred identified five known links between moieties and mechanism of action.
Collapse
Affiliation(s)
- Mihir Mongia
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, USA
| | - Mustafa Guler
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, USA
| | - Hosein Mohimani
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, USA.
| |
Collapse
|
8
|
Gurvic D, Leach AG, Zachariae U. Data-Driven Derivation of Molecular Substructures That Enhance Drug Activity in Gram-Negative Bacteria. J Med Chem 2022; 65:6088-6099. [PMID: 35427114 PMCID: PMC9059115 DOI: 10.1021/acs.jmedchem.1c01984] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 11/28/2022]
Abstract
The complex cell envelope of Gram-negative bacteria creates a formidable barrier to antibiotic influx. Reduced drug uptake impedes drug development and contributes to a wide range of drug-resistant bacterial infections, including those caused by extremely resistant species prioritized by the World Health Organization. To develop new and efficient treatments, a better understanding of the molecular features governing Gram-negative permeability is essential. Here, we present a data-driven approach, using matched molecular pair analysis and machine learning on minimal inhibitory concentration data from Gram-positive and Gram-negative bacteria to uncover chemical features that influence Gram-negative bioactivity. We find recurring chemical moieties, of a wider range than previously known, that consistently improve activity and suggest that this insight can be used to optimize compounds for increased Gram-negative uptake. Our findings may help to expand the chemical space of broad-spectrum antibiotics and aid the search for new antibiotic compound classes.
Collapse
Affiliation(s)
- Dominik Gurvic
- Computational
Biology, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Andrew G. Leach
- Division
of Pharmacy and Optometry, University of
Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Medchemica
Limited, Mereside, Alderley
Park, Macclesfield, SK10
4TG, United Kingdom
| | - Ulrich Zachariae
- Computational
Biology, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| |
Collapse
|
9
|
Gervasoni S, Malloci G, Bosin A, Vargiu AV, Zgurskaya HI, Ruggerone P. AB-DB: Force-Field parameters, MD trajectories, QM-based data, and Descriptors of Antimicrobials. Sci Data 2022; 9:148. [PMID: 35365662 PMCID: PMC8976083 DOI: 10.1038/s41597-022-01261-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is a major threat to public health. The development of chemo-informatic tools to guide medicinal chemistry campaigns in the efficint design of antibacterial libraries is urgently needed. We present AB-DB, an open database of all-atom force-field parameters, molecular dynamics trajectories, quantum-mechanical properties, and curated physico-chemical descriptors of antimicrobial compounds. We considered more than 300 molecules belonging to 25 families that include the most relevant antibiotic classes in clinical use, such as β-lactams and (fluoro)quinolones, as well as inhibitors of key bacterial proteins. We provide traditional descriptors together with properties obtained with Density Functional Theory calculations. Noteworthy, AB-DB contains less conventional descriptors extracted from μs-long molecular dynamics simulations in explicit solvent. In addition, for each compound we make available force-field parameters for the major micro-species at physiological pH. With the rise of multi-drug-resistant pathogens and the consequent need for novel antibiotics, inhibitors, and drug re-purposing strategies, curated databases containing reliable and not straightforward properties facilitate the integration of data mining and statistics into the discovery of new antimicrobials.
Collapse
Affiliation(s)
- Silvia Gervasoni
- University of Cagliari, Department of Physics, I-09042, Monserrato (Cagliari), Italy
| | - Giuliano Malloci
- University of Cagliari, Department of Physics, I-09042, Monserrato (Cagliari), Italy.
| | - Andrea Bosin
- University of Cagliari, Department of Physics, I-09042, Monserrato (Cagliari), Italy
| | - Attilio V Vargiu
- University of Cagliari, Department of Physics, I-09042, Monserrato (Cagliari), Italy
| | - Helen I Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, Norman, OK, 73072, United States
| | - Paolo Ruggerone
- University of Cagliari, Department of Physics, I-09042, Monserrato (Cagliari), Italy
| |
Collapse
|
10
|
Frei A, Ramu S, Lowe GJ, Dinh H, Semenec L, Elliott AG, Zuegg J, Deckers A, Jung N, Bräse S, Cain AK, Blaskovich MAT. Platinum Cyclooctadiene Complexes with Activity against Gram-positive Bacteria. ChemMedChem 2021; 16:3165-3171. [PMID: 34018686 PMCID: PMC8596843 DOI: 10.1002/cmdc.202100157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistance is a looming health crisis, and it is becoming increasingly clear that organic chemistry alone is not sufficient to continue to provide the world with novel and effective antibiotics. Recently there has been an increased number of reports describing promising antimicrobial properties of metal-containing compounds. Platinum complexes are well known in the field of inorganic medicinal chemistry for their tremendous success as anticancer agents. Here we report on the promising antibacterial properties of platinum cyclooctadiene (COD) complexes. Amongst the 15 compounds studied, the simplest compounds Pt(COD)X2 (X=Cl, I, Pt1 and Pt2) showed excellent activity against a panel of Gram-positive bacteria including vancomycin and methicillin resistant Staphylococcus aureus. Additionally, the lead compounds show no toxicity against mammalian cells or haemolytic properties at the highest tested concentrations, indicating that the observed activity is specific against bacteria. Finally, these compounds showed no toxicity against Galleria mellonella at the highest measured concentrations. However, preliminary efficacy studies in the same animal model found no decrease in bacterial load upon treatment with Pt1 and Pt2. Serum exchange studies suggest that these compounds exhibit high serum binding which reduces their bioavailability in vivo, mandating alternative administration routes such as e. g. topical application.
Collapse
Affiliation(s)
- Angelo Frei
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Soumya Ramu
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Gabrielle J. Lowe
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic BiologyDepartment of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Lucie Semenec
- ARC Centre of Excellence in Synthetic BiologyDepartment of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Alysha G. Elliott
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Johannes Zuegg
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Anke Deckers
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Nicole Jung
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Stefan Bräse
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic BiologyDepartment of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Mark A. T. Blaskovich
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| |
Collapse
|
11
|
Zhang C, Lum KY, Taki AC, Gasser RB, Byrne JJ, Wang T, Blaskovich MAT, Register ET, Montaner LJ, Tietjen I, Davis RA. Design, synthesis and screening of a drug discovery library based on an Eremophila-derived serrulatane scaffold. PHYTOCHEMISTRY 2021; 190:112887. [PMID: 34339980 DOI: 10.1016/j.phytochem.2021.112887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Chemical studies of the aerial parts of the Australian desert plant Eremophila microtheca afforded the targeted and known diterpenoid scaffolds, 3,7,8-trihydroxyserrulat-14-en-19-oic acid and 3-acetoxy-7,8-dihydroxyserrulat-14-en-19-oic acid. The most abundant serrulatane scaffold was converted to the poly-methyl derivatives, 3-hydroxy-7,8-dimethoxyserrulat-14-en-19-oic acid methyl ester and 3,7,8-trimethoxyserrulat-14-en-19-oic acid methyl ester using simple and rapid methylation conditions consisting of DMSO, NaOH and MeI at room temperature. Subsequently a 12-membered amide library was synthesised by reacting the methylated scaffolds with a diverse series of commercial primary amines. The chemical structures of the 12 undescribed semi-synthetic analogues were fully characterised following 1D/2D NMR, MS, UV, ECD and [α]D data analyses. All compounds were evaluated for their anthelmintic, anti-microbial and anti-viral activities. While none of the compounds significantly inhibited motility or development of the exsheathed third-stage larvae (xL3s) of a pathogenic ruminant parasite, Haemonchus contortus, the tri-methylated analogue induced a skinny phenotype in fourth-stage larvae (L4s) after seven days of treatment (IC50 = 14 μM). Anti-bacterial and anti-fungal activities were not observed at concentrations up to 20 μM. Activity against HIV latency reversal was tested in inducible, chronically-infected cells, with the tri-methylated analogue being the most active (EC50 = 38 μM).
Collapse
Affiliation(s)
- Chen Zhang
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Kah Yean Lum
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | - Rohan A Davis
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
12
|
Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P, Halby L, Arimondo PB, Glaser P, Aigle B, Bode HB, Moreira R, Li Y, Luzhetskyy A, Medema MH, Pernodet JL, Stadler M, Tormo JR, Genilloud O, Truman AW, Weissman KJ, Takano E, Sabatini S, Stegmann E, Brötz-Oesterhelt H, Wohlleben W, Seemann M, Empting M, Hirsch AKH, Loretz B, Lehr CM, Titz A, Herrmann J, Jaeger T, Alt S, Hesterkamp T, Winterhalter M, Schiefer A, Pfarr K, Hoerauf A, Graz H, Graz M, Lindvall M, Ramurthy S, Karlén A, van Dongen M, Petkovic H, Keller A, Peyrane F, Donadio S, Fraisse L, Piddock LJV, Gilbert IH, Moser HE, Müller R. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem 2021; 5:726-749. [PMID: 34426795 PMCID: PMC8374425 DOI: 10.1038/s41570-021-00313-1] [Citation(s) in RCA: 445] [Impact Index Per Article: 148.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
An ever-increasing demand for novel antimicrobials to treat life-threatening infections caused by the global spread of multidrug-resistant bacterial pathogens stands in stark contrast to the current level of investment in their development, particularly in the fields of natural-product-derived and synthetic small molecules. New agents displaying innovative chemistry and modes of action are desperately needed worldwide to tackle the public health menace posed by antimicrobial resistance. Here, our consortium presents a strategic blueprint to substantially improve our ability to discover and develop new antibiotics. We propose both short-term and long-term solutions to overcome the most urgent limitations in the various sectors of research and funding, aiming to bridge the gap between academic, industrial and political stakeholders, and to unite interdisciplinary expertise in order to efficiently fuel the translational pipeline for the benefit of future generations.
Collapse
Affiliation(s)
- Marcus Miethke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Marco Pieroni
- Food and Drug Department, University of Parma, Parma, Italy
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mark Brönstrup
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Chemical Biology (CBIO), Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Peter Hammann
- Infectious Diseases & Natural Product Research at EVOTEC, and Justus Liebig University Giessen, Giessen, Germany
| | - Ludovic Halby
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, Paris, France
| | - Paola B. Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, Paris, France
| | - Philippe Glaser
- Ecology and Evolution of Antibiotic Resistance Unit, Microbiology Department, Institut Pasteur, CNRS UMR3525, Paris, France
| | | | - Helge B. Bode
- Department of Biosciences, Goethe University Frankfurt, Frankfurt, Germany
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, Marburg, Germany
| | - Rui Moreira
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Yanyan Li
- Unit MCAM, CNRS, National Museum of Natural History (MNHN), Paris, France
| | - Andriy Luzhetskyy
- Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Jean-Luc Pernodet
- Institute for Integrative Biology of the Cell (I2BC) & Microbiology Department, University of Paris-Saclay, Gif-sur-Yvette, France
| | - Marc Stadler
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Microbial Drugs (MWIS), Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | | | | | - Andrew W. Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Kira J. Weissman
- Molecular and Structural Enzymology Group, Université de Lorraine, CNRS, IMoPA, Nancy, France
| | - Eriko Takano
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Evi Stegmann
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Wolfgang Wohlleben
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Myriam Seemann
- Institute for Chemistry UMR 7177, University of Strasbourg/CNRS, ITI InnoVec, Strasbourg, France
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
| | - Alexander Titz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Timo Jaeger
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Silke Alt
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | | | | | - Andrea Schiefer
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Kenneth Pfarr
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Heather Graz
- Biophys Ltd., Usk, Monmouthshire, United Kingdom
| | - Michael Graz
- School of Law, University of Bristol, Bristol, United Kingdom
| | | | | | - Anders Karlén
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | - Hrvoje Petkovic
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | | | | | - Laurent Fraisse
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Laura J. V. Piddock
- The Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Ian H. Gilbert
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Heinz E. Moser
- Novartis Institutes for BioMedical Research (NIBR), Emeryville, CA USA
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| |
Collapse
|
13
|
Synthesis, Antibacterial and Antifungal Activity of New 3-Aryl-5 H-pyrrolo[1,2- a]imidazole and 5 H-Imidazo[1,2- a]azepine Quaternary Salts. Molecules 2021; 26:molecules26144253. [PMID: 34299528 PMCID: PMC8305969 DOI: 10.3390/molecules26144253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
A series of novel 3-aryl-5H-pyrrolo[1,2-a]imidazole and 5H-imidazo[1,2-a]azepine quaternary salts were synthesized in 58-85% yields via the reaction of 3-aryl-6, 7-dihydro-5H-pyrrolo[1,2-a]imidazoles or 3-aryl-6,7,8,9-tetrahydro-5H-imidazo[1,2-a]azepines and various alkylating reagents. All compounds were characterized by 1H NMR, 13C NMR, and LC-MS. The conducted screening studies of the in vitro antimicrobial activity of the new quaternary salts derivatives established that 15 of the 18 newly synthesized compounds show antibacterial and antifungal activity. Synthesized 3-(3,4-dichlorohenyl)-1-[(4-phenoxyphenylcarbamoyl)-methyl]-6,7-dihydro-5H-pyrrolo[1,2-a]imidazol-1-ium chloride 6c possessed a broad activity spectrum towards Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Cryptococcus neoformans, with a high hemolytic activity against human red blood cells and cytotoxicity against HEK-293. However, compound 6c is characterized by a low in vivo toxicity in mice (LD50 > 2000 mg/kg).
Collapse
|
14
|
Semenov VV, Raihstat MM, Konyushkin LD, Semenov RV, Blaskovich MA, Zuegg J, Elliott AG, Hansford KA, Cooper MA. Antimicrobial screening of a historical collection of over 140 000 small molecules. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Klug DM, Idiris FIM, Blaskovich MAT, von Delft F, Dowson CG, Kirchhelle C, Roberts AP, Singer AC, Todd MH. There is no market for new antibiotics: this allows an open approach to research and development. Wellcome Open Res 2021; 6:146. [PMID: 34250265 PMCID: PMC8237369 DOI: 10.12688/wellcomeopenres.16847.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 11/20/2022] Open
Abstract
There is an increasingly urgent need for new antibiotics, yet there is a significant and persistent economic problem when it comes to developing such medicines. The problem stems from the perceived need for a "market" to drive commercial antibiotic development. In this article, we explore abandoning the market as a prerequisite for successful antibiotic research and development. Once one stops trying to fix a market model that has stopped functioning, one is free to carry out research and development (R&D) in ways that are more openly collaborative, a mechanism that has been demonstrably effective for the R&D underpinning the response to the COVID pandemic. New "open source" research models have great potential for the development of medicines for areas of public health where the traditional profit-driven model struggles to deliver. New financial initiatives, including major push/pull incentives, aimed at fixing the broken antibiotics market provide one possible means for funding an openly collaborative approach to drug development. We argue that now is therefore the time to evaluate, at scale, whether such methods can deliver new medicines through to patients, in a timely manner.
Collapse
Affiliation(s)
- Dana M. Klug
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | | | - Mark A. T. Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Lucia, Queensland, 4072, Australia
| | - Frank von Delft
- Centre for Medicines Discovery, The University of Oxford, Oxford, OX3 7DQ, UK
- Diamond Light Source Ltd, Didcot, OX11 0QX, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | | | | | - Adam P. Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | | | - Matthew H. Todd
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| |
Collapse
|
16
|
|
17
|
Fuller AA, Dounay AB, Schirch D, Rivera DG, Hansford KA, Elliott AG, Zuegg J, Cooper MA, Blaskovich MAT, Hitchens JR, Burris-Hiday S, Tenorio K, Mendez Y, Samaritoni JG, O’Donnell MJ, Scott WL. Multi-Institution Research and Education Collaboration Identifies New Antimicrobial Compounds. ACS Chem Biol 2020; 15:3187-3196. [PMID: 33242957 PMCID: PMC7928911 DOI: 10.1021/acschembio.0c00732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
New
antibiotics are urgently needed to address increasing rates
of multidrug resistant infections. Seventy-six diversely functionalized
compounds, comprising five structural scaffolds, were synthesized
and tested for their ability to inhibit microbial growth. Twenty-six
compounds showed activity in the primary phenotypic screen at the
Community for Open Antimicrobial Drug Discovery (CO-ADD). Follow-up
testing of active molecules confirmed that two unnatural dipeptides
inhibit the growth of Cryptococcus neoformans with
a minimum inhibitory concentration (MIC) ≤ 8 μg/mL. Syntheses
were carried out by undergraduate students at five schools implementing
Distributed Drug Discovery (D3) programs. This report showcases that
a collaborative research and educational process is a powerful approach
to discover new molecules inhibiting microbial growth. Educational
gains for students engaged in this project are highlighted in parallel
to the research advances. Aspects of D3 that contribute to its success,
including an emphasis on reproducibility of procedures, are discussed
to underscore the power of this approach to solve important research
problems and to inform other coupled chemical biology research and
teaching endeavors.
Collapse
Affiliation(s)
- Amelia A. Fuller
- Santa Clara University, Department of Chemistry & Biochemistry, Santa Clara, California 95053, United States
| | - Amy B. Dounay
- Department of Chemistry and Biochemistry, Colorado College, 14 E. Cache La Poudre Street, Colorado Springs, Colorado 80903, United States
| | - Douglas Schirch
- Department of Chemistry, Goshen College, 1700 South Main Street, Goshen, Indiana 46526, United States
| | - Daniel G. Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Karl A. Hansford
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Alysha G. Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Matthew A Cooper
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jacob R. Hitchens
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Sarah Burris-Hiday
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Kristiana Tenorio
- Santa Clara University, Department of Chemistry & Biochemistry, Santa Clara, California 95053, United States
| | - Yanira Mendez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - J. Geno Samaritoni
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Martin J. O’Donnell
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - William L. Scott
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
18
|
Abstract
In only a matter of months, the coronavirus disease of 2019 (COVID-19) has spread around the world. The global impact of the disease has caused significant and repeated calls for quick action towards new medicines and vaccines. In response, researchers have adopted open science methods to begin to combat this disease via global collaborative efforts. We summarise here some of those initiatives, and have created an updateable list to which others may be added. Though open science has previously been shown as an accelerator of biomedical research, the COVID-19 crisis has made openness seem the logical choice. Will openness persist in the discovery of new medicines, after the crisis has receded?
Collapse
Affiliation(s)
- Edwin G. Tse
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, WC1N 1AX, UK
| | - Dana M. Klug
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, WC1N 1AX, UK
| | - Matthew H. Todd
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, WC1N 1AX, UK
| |
Collapse
|