1
|
Dou Y, He Y, Zhang H, Yang M, Liu Q, Ma W, Fu X, Chen Y. T7 RNA polymerase-mediated rolling circle transcription and the CRISPR-Cas13a cascade reaction for sensitive and specific detection of piRNA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6810-6818. [PMID: 39263843 DOI: 10.1039/d4ay01131g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The aberrant expression of piRNAs in germ cells is a potential cause of male infertility. Establishing diagnostic methods with highly specific biomarkers for male infertility is important for accurate diagnosis and treatment of male infertility. In this study, we proposed a novel method combining rolling circle transcription (RCT) and Cas13a techniques, which utilized the high amplification efficiency of RCT and the two different RNase activities possessed by Cas13a, establishing a highly sensitive and specific assay for male infertility-associated piRNA. First, a circular DNA template was synthesized by hybridizing linear ssDNA with the T7 promoter. The nick in the circular DNA was closed by T4 DNA ligase. In the presence of T7 RNA polymerase, the closed circular DNA produced tandemly repeated pre-crRNA. The RNase activity of Cas13a was used to process pre-crRNAs to form mature crRNA. Guided by crRNA, Cas13a specifically recognized piRNA and activated collateral activity. Activated Cas13a disaggregated thousands of fluorescent probes for each target RNA detected, resulting in powerful signal amplification. As a proof of concept, piR-hsa-14 was used as the validation target. The limit of detection was as low as 3.32 fM with a good linearity in the range of 100 fM to 50 pM. Recovery of piR-hsa-14 ranged from 91.33% to 112.63% in spiked recovery experiments using human serum samples. The results revealed that this method has the advantages of high sensitivity, sufficient accuracy and good reproducibility. We believe that this method could have a promising future as a potential tool for clinical diagnosis of male infertility.
Collapse
Affiliation(s)
- Yuhao Dou
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Yangui He
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - He Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Mei Yang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Qiong Liu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Wenjie Ma
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Xin Fu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Yong Chen
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| |
Collapse
|
2
|
Abdullah KA, Tahir TF, Qader AF, Omer RA, Othman KA. Nanozymes: Classification and Analytical Applications - A Review. J Fluoresc 2024:10.1007/s10895-024-03930-3. [PMID: 39271600 DOI: 10.1007/s10895-024-03930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The recent discovery of a new class of nanomaterials called nanozymes, which have the action of enzymes and are thus of tremendous significance, has altered our understanding of these previously believed to be biologically inert nanomaterials. As a significant and exciting class of synthetic enzymes, nanozymes have distinct advantages over natural enzymes. They are less expensive, more stable, and easier to work with and store, making them a viable substitute. This practical advantage of nanozymes over natural enzymes reassures us about the potential of this new technology. Peroxidase-like nanozymes have been investigated for the purpose of creating adaptable biosensors via the use of molecularly imprinted polymers (MIPs) or particular bio recognition ligands, including enzymes, antibodies, and aptamers. This review delves into the distinctions between synthetic and natural enzymes, explaining their structures and analytical applications. It primarily focuses on carbon-based nanozymes, particularly those that contain both carbon and hydrogen, as well as metal-based nanozymes like Fe, Cu, and Au, along with their metal oxide (FeO, CuO), which have applications in many fields today. Analytical chemistry finds great use for nanozymes for sensing and other applications, particularly in comparison with other classical methods in terms of selectivity and sensitivity. Nanozymes, with their unique catalytic capabilities, have emerged as a crucial tool in the early diagnosis of COVID-19. Their application in nanozyme-based sensing and detection, particularly through colorimetric and fluorometric methods, has significantly advanced our ability to detect the virus at an early stage.
Collapse
Affiliation(s)
- Kurdo A Abdullah
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| | - Tara F Tahir
- Department of Medical Microbiology, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| | - Aryan F Qader
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq.
| | - Rebaz A Omer
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, 44001, Iraq
| | - Khdir A Othman
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| |
Collapse
|
3
|
Kurosaki Y, Martins DBG, Filho JLL. Special Issue "Novel Diagnostic Technologies for SARS-CoV-2 and Other Emerging Viruses". Viruses 2024; 16:1252. [PMID: 39205226 PMCID: PMC11358883 DOI: 10.3390/v16081252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
In the last decade, extensive and borderless viral disease outbreaks have been caused by Ebola, Zika, and SARS-CoV-2 [...].
Collapse
Affiliation(s)
- Yohei Kurosaki
- National Research Centre for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan
| | | | - José Luiz Lima Filho
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPA), Recife 50670-901, Brazil; (D.B.G.M.); (J.L.L.F.)
| |
Collapse
|
4
|
He Q, Chen Q, Lian L, Qu J, Yuan X, Wang C, Xu L, Wei J, Zeng S, Yu D, Dong Y, Zhang Y, Deng L, Du K, Zhang C, Pandey V, Gul I, Qin P. Unraveling the influence of CRISPR/Cas13a reaction components on enhancing trans-cleavage activity for ultrasensitive on-chip RNA detection. Mikrochim Acta 2024; 191:466. [PMID: 39017814 DOI: 10.1007/s00604-024-06545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
The CRISPR/Cas13 nucleases have been widely documented for nucleic acid detection. Understanding the intricacies of CRISPR/Cas13's reaction components is pivotal for harnessing its full potential for biosensing applications. Herein, we report on the influence of CRISPR/Cas13a reaction components on its trans-cleavage activity and the development of an on-chip total internal reflection fluorescence microscopy (TIRFM)-powered RNA sensing system. We used SARS-CoV-2 synthetic RNA and pseudovirus as a model system. Our results show that optimizing Mg2+ concentration, reporter length, and crRNA combination significantly improves the detection sensitivity. Under optimized conditions, we detected 100 fM unamplified SARS-CoV-2 synthetic RNA using a microtiter plate reader. To further improve sensitivity and provide a new amplification-free RNA sensing toolbox, we developed a TIRFM-based amplification-free RNA sensing system. We were able to detect RNA down to 100 aM. Furthermore, the TIRM-based detection system developed in this study is 1000-fold more sensitive than the off-coverslip assay. The possible clinical applicability of the system was demonstrated by detecting SARS-CoV-2 pseudovirus RNA. Our proposed sensing system has the potential to detect any target RNA with slight modifications to the existing setup, providing a universal RNA detection platform.
Collapse
Affiliation(s)
- Qian He
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Qun Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Lijin Lian
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Jiuxin Qu
- Clinical Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518115, Guangdong Province, China
| | - Xi Yuan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Chuhui Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Lidan Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, China
| | - Shaoling Zeng
- Animal and Plant Inspection and Quarantine Technology Center, Shenzhen Customs, Shenzhen, 518010, Guangdong Province, China
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, 264209, Shandong, China
| | - Yuhan Dong
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Yongbing Zhang
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Deng
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Ke Du
- Chemical and Environmental Engineering, University of California, Riverside, USA
| | - Canyang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Ijaz Gul
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China.
| | - Peiwu Qin
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China.
| |
Collapse
|
5
|
Zhang J, Chen Z, Lv H, Liang J, Yan C, Song C, Wang L. Rapid and accurate SERS assay of disease-related nucleic acids based on isothermal cascade signal amplifications of CRISPR/Cas13a system and catalytic hairpin assembly. Biosens Bioelectron 2024; 253:116196. [PMID: 38467101 DOI: 10.1016/j.bios.2024.116196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Developing rapid, accurate and convenient nucleic acid diagnostic techniques is essential for the prevention and control of contagious diseases that are prone to gene mutations and may have homologous sequences, especially emerging infectious diseases such as the SARS-CoV-2 pandemic. Herein, a one-pot SERS assay integrating isothermal cascade signal amplification strategy (i.e., CRISPR/Cas13a system (Cas13a) and catalytic hairpin assembly (CHA), Cas13a-CHA) and SERS-active silver nanorods (AgNRs) sensing chips was proposed for rapid and accurate detection of disease-related nucleic acids. Taking SARS-CoV-2 RNA assay as a model, the Cas13a-CHA based SERS sensing strategy can achieve ultra-high sensitivity low to 5.18 × 102 copies·mL-1 within 60 min, and excellent specificity, i.e., not only the ability to identify SARS-CoV-2 RNA from gene mutations, but also incompatibility with coronaviruses such as severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and other respiratory viruses. The proposed Cas13a-CHA based SERS assay for SARS-CoV-2 RNA has satisfactory sensitivity, specificity, uniformity, and repeatability, and can be easily expanded and universalized for screening different viruses, which is expected to promise as a crucial role for diagnosis of disease-related nucleic acids in various medical application scenarios.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhilong Chen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Huiming Lv
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jing Liang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chenlong Yan
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
6
|
Tekin YS, Kul SM, Sagdic O, Rodthongkum N, Geiss B, Ozer T. Optical biosensors for diagnosis of COVID-19: nanomaterial-enabled particle strategies for post pandemic era. Mikrochim Acta 2024; 191:320. [PMID: 38727849 PMCID: PMC11087243 DOI: 10.1007/s00604-024-06373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
The COVID-19 pandemic underlines the need for effective strategies for controlling virus spread and ensuring sensitive detection of SARS-CoV-2. This review presents the potential of nanomaterial-enabled optical biosensors for rapid and low-cost detection of SARS-CoV-2 biomarkers, demonstrating a comprehensive analysis including colorimetric, fluorescence, surface-enhanced Raman scattering, and surface plasmon resonance detection methods. Nanomaterials including metal-based nanomaterials, metal-organic frame-based nanoparticles, nanorods, nanoporous materials, nanoshell materials, and magnetic nanoparticles employed in the production of optical biosensors are presented in detail. This review also discusses the detection principles, fabrication methods, nanomaterial synthesis, and their applications for the detection of SARS-CoV-2 in four categories: antibody-based, antigen-based, nucleic acid-based, and aptamer-based biosensors. This critical review includes reports published in the literature between the years 2021 and 2024. In addition, the review offers critical insights into optical nanobiosensors for the diagnosis of COVID-19. The integration of artificial intelligence and machine learning technologies with optical nanomaterial-enabled biosensors is proposed to improve the efficiency of optical diagnostic systems for future pandemic scenarios.
Collapse
Affiliation(s)
- Yusuf Samil Tekin
- Department of Biomedical Engineering, Graduate Education Institute, Malatya Turgut Ozal University, 44210, Battalgazi, Malatya, Turkey
| | - Seyda Mihriban Kul
- Department of Food Engineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Bangkok, 10330, Patumwan, Thailand
| | - Brian Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523-1019, USA.
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, 34220, Istanbul, Turkey.
| |
Collapse
|
7
|
Priyanka, Mohan B, Poonia E, Kumar S, Virender, Singh C, Xiong J, Liu X, Pombeiro AJL, Singh G. COVID-19 Virus Structural Details: Optical and Electrochemical Detection. J Fluoresc 2024; 34:479-500. [PMID: 37382834 DOI: 10.1007/s10895-023-03307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
The increasing viral species have ruined people's health and the world's economy. Therefore, it is urgent to design bio-responsive materials to provide a vast platform for detecting a different family's passive or active virus. One can design a reactive functional unit for that moiety based on the particular bio-active moieties in viruses. Nanomaterials as optical and electrochemical biosensors have enabled better tools and devices to develop rapid virus detection. Various material science platforms are available for real-time monitoring and detecting COVID-19 and other viral loads. In this review, we discuss the recent advances of nanomaterials in developing the tools for optical and electrochemical sensing COVID-19. In addition, nanomaterials used to detect other human viruses have been studied, providing insights for developing COVID-19 sensing materials. The basic strategies for nanomaterials develop as virus sensors, fabrications, and detection performances are studied. Moreover, the new methods to enhance the virus sensing properties are discussed to provide a gateway for virus detection in variant forms. The study will provide systematic information and working of virus sensors. In addition, the deep discussion of structural properties and signal changes will offer a new gate for researchers to develop new virus sensors for clinical applications.
Collapse
Affiliation(s)
- Priyanka
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais, 1049-001, Lisbon, Portugal.
| | - Ekta Poonia
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Sandeep Kumar
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Virender
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, 246174, India
| | - Jichuan Xiong
- Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Xuefeng Liu
- Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais, 1049-001, Lisbon, Portugal
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Ashique S, Mishra N, Mohanto S, Garg A, Taghizadeh-Hesary F, Gowda BJ, Chellappan DK. Application of artificial intelligence (AI) to control COVID-19 pandemic: Current status and future prospects. Heliyon 2024; 10:e25754. [PMID: 38370192 PMCID: PMC10869876 DOI: 10.1016/j.heliyon.2024.e25754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
The impact of the coronavirus disease 2019 (COVID-19) pandemic on the everyday livelihood of people has been monumental and unparalleled. Although the pandemic has vastly affected the global healthcare system, it has also been a platform to promote and develop pioneering applications based on autonomic artificial intelligence (AI) technology with therapeutic significance in combating the pandemic. Artificial intelligence has successfully demonstrated that it can reduce the probability of human-to-human infectivity of the virus through evaluation, analysis, and triangulation of existing data on the infectivity and spread of the virus. This review talks about the applications and significance of modern robotic and automated systems that may assist in spreading a pandemic. In addition, this study discusses intelligent wearable devices and how they could be helpful throughout the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, 474005, Madhya Pradesh, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, M.P, 483001, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran
| | - B.H. Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, BT9 7BL, UK
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
9
|
Kim J, Baek S, Nam J, Park J, Kim K, Kang J, Yeom G. Simultaneous Detection of Infectious Diseases Using Aptamer-Conjugated Gold Nanoparticles in the Lateral Flow Immunoassay-Based Signal Amplification Platform. Anal Chem 2024; 96:1725-1732. [PMID: 38240676 DOI: 10.1021/acs.analchem.3c04870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Various platforms for the accurate diagnosis of infectious diseases have been studied because of the emergence of coronavirus disease (COVID-19) in 2019. Recently, it has become difficult to distinguish viruses with similar symptoms due to the continuous mutation of viruses, and there is an increasing need for a diagnostic method to detect them simultaneously. Therefore, we developed a paper-based rapid antigen diagnostic test using DNA aptamers for the simultaneous detection of influenza A, influenza B, and COVID-19. Aptamers specific for each target viral antigen were selected and attached to AuNPs for application in a rapid antigen diagnosis kit using our company's heterogeneous sandwich-type aptamer screening method (H-SELEX). We confirmed that the three viruses could be detected on the same membrane without cross-reactivity based on the high stability, specificity, and binding affinity of the selected aptamers. Further, the limit of detection was 2.89 pg·mL-1 when applied to develop signal amplification technology; each virus antigen was detected successfully in diluted nasopharyngeal samples. We believe that the developed simultaneous diagnostic kit, based on such high accuracy, can distinguish various infectious diseases, thereby increasing the therapeutic effect and contributing to the clinical field.
Collapse
Affiliation(s)
- Jinwoo Kim
- SB BIOSCIENCE Inc., Room 120, Venture Building, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sowon Baek
- SB BIOSCIENCE Inc., Room 120, Venture Building, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jungmin Nam
- SB BIOSCIENCE Inc., Room 120, Venture Building, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeongeun Park
- SB BIOSCIENCE Inc., Room 120, Venture Building, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kihyeun Kim
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Juyoung Kang
- SB BIOSCIENCE Inc., Room 120, Venture Building, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gyuho Yeom
- SB BIOSCIENCE Inc., Room 120, Venture Building, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Wang Z, Wei P. Shifting the paradigm in RNA virus detection: integrating nucleic acid testing and immunoassays through single-molecule digital ELISA. Front Immunol 2024; 14:1331981. [PMID: 38235132 PMCID: PMC10791976 DOI: 10.3389/fimmu.2023.1331981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
In this review article, we explore the characteristics of RNA viruses and their potential threats to humanity. We also provide a brief overview of the primary contemporary techniques used for the early detection of such viruses. After thoroughly analyzing the strengths and limitations of these methods, we highlight the importance of integrating nucleic acid testing with immunological assays in RNA virus detection. Although notable methodological differences between nucleic acid testing and immune assays pose challenges, the emerging single-molecule immunoassay-digital ELISA may be applied to technically integrate these techniques. We emphasize that the greatest value of digital ELISA is its extensive compatibility, which creates numerous opportunities for real-time, large-scale testing of RNA viruses. Furthermore, we describe the possible developmental trends of digital ELISA in various aspects, such as reaction carriers, identification elements, signal amplification, and data reading, thus revealing the remarkable potential of single-molecule digital ELISA in future RNA virus detection.
Collapse
Affiliation(s)
| | - Pei Wei
- Department of Immunology, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
11
|
Sharma N, Neill T, Yang HC, Oliver CL, Mahaffee WF, Naegele R, Moyer MM, Miles TD. Development of a PNA-LNA-LAMP Assay to Detect an SNP Associated with QoI Resistance in Erysiphe necator. PLANT DISEASE 2023; 107:3238-3247. [PMID: 37005502 DOI: 10.1094/pdis-09-22-2027-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The repetitive use of quinone outside inhibitor fungicides (QoIs, strobilurins; Fungicide Resistance Action Committee [FRAC] 11) to manage grape powdery mildew has led to development of resistance in Erysiphe necator. While several point mutations in the mitochondrial cytochrome b gene are associated with resistance to QoI fungicides, the substitution of glycine to alanine at codon 143 (G143A) has been the only mutation observed in QoI-resistant field populations. Allele-specific detection methods such as digital droplet PCR and TaqMan probe-based assays can be used to detect the G143A mutation. In this study, a peptide nucleic acid-locked nucleic acid mediated loop-mediated isothermal amplification (PNA-LNA-LAMP) assay consisting of an A-143 reaction and a G-143 reaction, was designed for rapidly detecting QoI resistance in E. necator. The A-143 reaction amplifies the mutant A-143 allele faster than the wild-type G-143 allele, while the G-143 reaction amplifies the G-143 allele faster than the A-143 allele. Identification of resistant or sensitive E. necator samples was determined by which reaction had the shorter time to amplification. Sixteen single-spore QoI-resistant and -sensitive E. necator isolates were tested using both assays. Assay specificity in distinguishing the single nucleotide polymorphism (SNP) approached 100% when tested using purified DNA of QoI-sensitive and -resistant E. necator isolates. This diagnostic tool was sensitive to one-conidium equivalent of extracted DNA with an R2 value of 0.82 and 0.87 for the G-143 and A-143 reactions, respectively. This diagnostic approach was also evaluated against a TaqMan probe-based assay using 92 E. necator samples collected from vineyards. The PNA-LNA-LAMP assay detected QoI resistance in ≤30 min and showed 100% agreement with the TaqMan probe-based assay (≤1.5 h) for the QoI-sensitive and -resistant isolates. There was 73.3% agreement with the TaqMan probe-based assay when samples had mixed populations with both G-143 and A-143 alleles present. Validation of the PNA-LNA-LAMP assay was conducted in three different laboratories with different equipment. The results showed 94.4% accuracy in one laboratory and 100% accuracy in two other laboratories. The PNA-LNA-LAMP diagnostic tool was faster and required less expensive equipment relative to the previously developed TaqMan probe-based assay, making it accessible to a broader range of diagnostic laboratories for detection of QoI resistance in E. necator. This research demonstrates the utility of the PNA-LANA-LAMP for discriminating SNPs from field samples and its utility for point-of-care monitoring of plant pathogen genotypes.
Collapse
Affiliation(s)
- Nancy Sharma
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI
| | - Tara Neill
- USDA-ARS Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR
| | - Hui-Ching Yang
- USDA-ARS Crop Diseases, Pests and Genetics Unit, San Joaquin Valley Agricultural Sciences Center, Parlier, CA
| | - Charlotte L Oliver
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA
| | - Walter F Mahaffee
- USDA-ARS Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR
| | - Rachel Naegele
- USDA-ARS Crop Diseases, Pests and Genetics Unit, San Joaquin Valley Agricultural Sciences Center, Parlier, CA
| | - Michelle M Moyer
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA
| | - Timothy D Miles
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
12
|
Lei Z, Lian L, Zhang L, Liu C, Zhai S, Yuan X, Wei J, Liu H, Liu Y, Du Z, Gul I, Zhang H, Qin Z, Zeng S, Jia P, Du K, Deng L, Yu D, He Q, Qin P. Detection of Frog Virus 3 by Integrating RPA-CRISPR/Cas12a-SPM with Deep Learning. ACS OMEGA 2023; 8:32555-32564. [PMID: 37720737 PMCID: PMC10500685 DOI: 10.1021/acsomega.3c02929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A fast, easy-to-implement, highly sensitive, and point-of-care (POC) detection system for frog virus 3 (FV3) is proposed. Combining recombinase polymerase amplification (RPA) and CRISPR/Cas12a, a limit of detection (LoD) of 100 aM (60.2 copies/μL) is achieved by optimizing RPA primers and CRISPR RNAs (crRNAs). For POC detection, smartphone microscopy is implemented, and an LoD of 10 aM is achieved in 40 min. The proposed system detects four positive animal-derived samples with a quantitation cycle (Cq) value of quantitative PCR (qPCR) in the range of 13 to 32. In addition, deep learning models are deployed for binary classification (positive or negative samples) and multiclass classification (different concentrations of FV3 and negative samples), achieving 100 and 98.75% accuracy, respectively. Without temperature regulation and expensive equipment, the proposed RPA-CRISPR/Cas12a combined with smartphone readouts and artificial-intelligence-assisted classification showcases the great potential for FV3 detection, specifically POC detection of DNA virus.
Collapse
Affiliation(s)
- Zhengyang Lei
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Lijin Lian
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Likun Zhang
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Changyue Liu
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Shiyao Zhai
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Xi Yuan
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Jiazhang Wei
- Department
of Otolaryngology & Head and Neck, The
People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi
Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, China
| | - Hong Liu
- Animal
and Plant Inspection and Quarantine Technical Centre, Shenzhen Exit and Entry Inspection and Quarantine Bureau, Shenzhen, Guangdong Province 518045, China
| | - Ying Liu
- Animal
and Plant Inspection and Quarantine Technical Centre, Shenzhen Exit and Entry Inspection and Quarantine Bureau, Shenzhen, Guangdong Province 518045, China
| | - Zhicheng Du
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Ijaz Gul
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Haihui Zhang
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Zhifeng Qin
- Animal
and Plant Inspection and Quarantine Technology Center, Shenzhen Customs, Shenzhen, Guangdong Province 518033, China
| | - Shaoling Zeng
- Animal
and Plant Inspection and Quarantine Technology Center, Shenzhen Customs, Shenzhen, Guangdong Province 518033, China
| | - Peng Jia
- Quality and
Standards Academy, Shenzhen Technology University, Shenzhen 518118, China
| | - Ke Du
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Lin Deng
- Shenzhen
Bay Laboratory, Shenzhen 518132, China
| | - Dongmei Yu
- School
of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong 264209, China
| | - Qian He
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Peiwu Qin
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| |
Collapse
|
13
|
Kim HE, Schuck A, Park H, Huh HJ, Kang M, Kim YS. Gold nanostructures modified carbon-based electrode enhanced with methylene blue for point-of-care COVID-19 tests using isothermal amplification. Talanta 2023; 265:124841. [PMID: 37390671 PMCID: PMC10290770 DOI: 10.1016/j.talanta.2023.124841] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) and RNA-dependent RNA polymerase (RdRP) genes were detected via electrochemical measurements using a screen-printed carbon electrode (SPCE) (3-electrode system) coupled with a battery-operated thin-film heater based on the loop-mediated isothermal amplification (LAMP) technique. The working electrodes of the SPCE sensor were decorated with synthesized gold nanostars (AuNSs) to obtain a large surface area and improve sensitivity. The LAMP assay was enhanced using a real-time amplification reaction system to detect the optimal target genes (E and RdRP) of SARS-CoV-2. The optimized LAMP assay was performed with diluted concentrations (from 0 to 109 copies) of the target DNA using 30 μM of methylene blue as a redox indicator. Target DNA amplification was conducted for 30 min at a constant temperature using a thin-film heater, and the final amplicon electrical signals were detected based on cyclic voltammetry curves. Our electrochemical LAMP analysis of SARS-CoV-2 clinical samples showed an excellent correlation with the Ct value of real-time reverse transcriptase-polymerase chain reaction, indicating successful validation of results. A linear relationship between the peak current response and the amplified DNA was observed for both genes. The AuNS-decorated SPCE sensor with the optimized LAMP primer enabled accurate analysis of both SARS-CoV-2-positive and -negative clinical samples. Therefore, the developed device is suitable for use as a point-of-care test DNA-based sensor for the diagnosis of SARS-CoV-2.
Collapse
Affiliation(s)
- Hyo Eun Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ariadna Schuck
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyeonseek Park
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, Republic of Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Minhee Kang
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, Republic of Korea.
| | - Yong-Sang Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
14
|
Sharifi E, Yousefiasl S, Trovato M, Sartorius R, Esmaeili Y, Goodarzi H, Ghomi M, Bigham A, Moghaddam FD, Heidarifard M, Pourmotabed S, Nazarzadeh Zare E, Paiva-Santos AC, Rabiee N, Wang X, Tay FR. Nanostructures for prevention, diagnosis, and treatment of viral respiratory infections: from influenza virus to SARS-CoV-2 variants. J Nanobiotechnology 2023; 21:199. [PMID: 37344894 PMCID: PMC10283343 DOI: 10.1186/s12951-023-01938-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Viruses are a major cause of mortality and socio-economic downfall despite the plethora of biopharmaceuticals designed for their eradication. Conventional antiviral therapies are often ineffective. Live-attenuated vaccines can pose a safety risk due to the possibility of pathogen reversion, whereas inactivated viral vaccines and subunit vaccines do not generate robust and sustained immune responses. Recent studies have demonstrated the potential of strategies that combine nanotechnology concepts with the diagnosis, prevention, and treatment of viral infectious diseases. The present review provides a comprehensive introduction to the different strains of viruses involved in respiratory diseases and presents an overview of recent advances in the diagnosis and treatment of viral infections based on nanotechnology concepts and applications. Discussions in diagnostic/therapeutic nanotechnology-based approaches will be focused on H1N1 influenza, respiratory syncytial virus, human parainfluenza virus type 3 infections, as well as COVID-19 infections caused by the SARS-CoV-2 virus Delta variant and new emerging Omicron variant.
Collapse
Affiliation(s)
- Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran.
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Yasaman Esmaeili
- School of Advanced Technologies in Medicine, Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Hamid Goodarzi
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Départment d'Ophtalmologie, Université de Montréal, Montreal, QC, Canada
| | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Ashkan Bigham
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Maryam Heidarifard
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Départment d'Ophtalmologie, Université de Montréal, Montreal, QC, Canada
| | - Samiramis Pourmotabed
- Department of Emergency Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | | | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
15
|
Tang YN, Jiang D, Wang X, Liu Y, Wei D. Recent progress on rapid diagnosis of COVID-19 by point-of-care testing platforms. CHINESE CHEM LETT 2023; 35:108688. [PMID: 37362324 PMCID: PMC10266891 DOI: 10.1016/j.cclet.2023.108688] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
The outbreak of COVID-19 has drawn great attention around the world. SARS-CoV-2 is a highly infectious virus with occult transmission by many mutations and a long incubation period. In particular, the emergence of asymptomatic infections has made the epidemic even more severe. Therefore, early diagnosis and timely management of suspected cases are essential measures to control the spread of the virus. Developing simple, portable, and accurate diagnostic techniques for SARS-CoV-2 is the key to epidemic prevention. The advantages of point-of-care testing technology make it play an increasingly important role in viral detection and screening. This review summarizes the point-of-care testing platforms developed by nucleic acid detection, immunological detection, and nanomaterial-based biosensors detection. Furthermore, this paper provides a prospect for designing future highly accurate, cheap, and convenient SARS-CoV-2 diagnostic technology.
Collapse
Affiliation(s)
- Ya-Nan Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dingding Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Srivastava S, Singh S, Mishra AC, Lohia P, Dwivedi DK. Numerical Study of Titanium Dioxide and MXene Nanomaterial-Based Surface Plasmon Resonance Biosensor for Virus SARS-CoV-2 Detection. PLASMONICS (NORWELL, MASS.) 2023; 18:1-12. [PMID: 37360047 PMCID: PMC10171911 DOI: 10.1007/s11468-023-01874-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/28/2023] [Indexed: 06/28/2023]
Abstract
A novel surface plasmon resonance-based biosensor for SARS-CoV-2 virus is proposed in this article. The biosensor is a Kretschmann configuration-based structure that consists of CaF2 prism as base, at which silver (Ag), TiO2, and MXene nanolayers are used to enhance the performance. Theoretically, the performance parameters have been investigated by means of Fresnel equations and transfer matrix method (TMM). The TiO2 nanolayer not only prevents oxidation of Ag layer but also enhances the evanescent field in its vicinity. The sensor provides an ultrahigh angular sensitivity of 346°/RIU for the detection of SARS-CoV-2 virus. Some other performance parameters, including FWHM (full width at half maxima), detection accuracy (DA), limit of detection (LOD), and quality factor (QF) have also been calculated for proposed SPR biosensor with their optimized values 2.907°, 0.3439 deg-1, 1.445 × 10-5, and 118.99 RIU-1, respectively. The obtained results designate that the proposed surface plasmon resonance (SPR) based biosensor has notably enhanced angular sensitivity as compared to previous results reported in the literatures till date. This work may facilitate a significant biological sample sensing device for fast and accurate diagnosis at early stage of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Swati Srivastava
- Photonics and Photovoltaic Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010 India
| | - Sachin Singh
- Photonics and Photovoltaic Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010 India
| | - Adarsh Chandra Mishra
- Photonics and Photovoltaic Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010 India
| | - Pooja Lohia
- Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010 India
| | - D. K. Dwivedi
- Photonics and Photovoltaic Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010 India
| |
Collapse
|
17
|
Lian Z, Wu T, Wang H, Chi J, Cheng L, Xie D, Pan X, Hu Y, Tan Z, Chen S, Yang X, Yun Y, Wu W, Li C, Su M, Song Y. At-Home COVID-19 Rapid Antigen Test Down to 0.03 pg mL -1 of Nucleocapsid Protein. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301162. [PMID: 36988021 DOI: 10.1002/smll.202301162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Rapid and ultra-sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for early screening and management of COVID-19. Currently, the real-time reverse transcription polymerase chain reaction (rRT-PCR) is the primary laboratory method for diagnosing SARS-CoV-2. It is not suitable for at-home COVID-19 diagnostic test due to the long operating time, specific equipment, and professional procedures. Here an all-printed photonic crystal (PC) microarray with portable device for at-home COVID-19 rapid antigen test is reported. The fluorescence-enhanced effect of PC amplifies the fluorescence intensity of the labeled probe, achieving detection of nucleocapsid (N-) protein down to 0.03 pg mL-1 . A portable fluorescence intensity measurement instrument gives the result (negative or positive) by the color of the indicator within 5 s after inserting the reacted PC microarray test card. The N protein in inactivated virus samples (with cycle threshold values of 26.6-40.0) can be detected. The PC microarray provides a general and easy-to-use method for the timely monitoring and eventual control of the global coronavirus pandemic.
Collapse
Affiliation(s)
- Zewei Lian
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tingqing Wu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jimei Chi
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lijun Cheng
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Daixi Xie
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangyu Pan
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuming Hu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyu Tan
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sisi Chen
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xu Yang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Yun
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Wu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chunbao Li
- Peoples Liberat Army Gen Hosp, Med Ctr 4 Dept Orthopaed Med, Beijing, 100853, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Yadav SK, Yadav RD, Tabassum H, Arya M. Recent Developments in Nanotechnology-Based Biosensors for the Diagnosis of Coronavirus. PLASMONICS (NORWELL, MASS.) 2023; 18:955-969. [PMID: 37229148 PMCID: PMC10040920 DOI: 10.1007/s11468-023-01822-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/08/2023] [Indexed: 05/27/2023]
Abstract
The major challenge in today's world is that medical research is facing the existence of a vast number of viruses and their mutations, which from time to time cause outbreaks. Also, the continuous and spontaneous mutations occurring in the viruses and the emergence of resistant virus strains have become serious medical hazards. So, in view of the growing number of diseases, like the recent COVID-19 pandemic that has caused the deaths of millions of people, there is a need to improve rapid and sensitive diagnostic strategies to initiate timely treatment for such conditions. In the cases like COVID-19, where a real cure due to erratic and ambiguous signs is not available, early intervention can be life-saving. In the biomedical and pharmaceutical industries, nanotechnology has evolved exponentially and can overcome multiple obstacles in the treatment and diagnosis of diseases. Nanotechnology has developed exponentially in the biomedical and pharmaceutical fields and can overcome numerous challenges in the treatment and diagnosis of diseases. At the nano stage, the molecular properties of materials such as gold, silver, carbon, silica, and polymers get altered and can be used for the creation of reliable and accurate diagnostic techniques. This review provides insight into numerous diagnostic approaches focused on nanoparticles that could have been established for quick and early detection of such diseases.
Collapse
Affiliation(s)
- Sarita K. Yadav
- Department of Pharmacy, MLN Medical College, Prayagraj, Uttar Pradesh India
| | - Rahul Deo Yadav
- Department of Pharmacy, MLN Medical College, Prayagraj, Uttar Pradesh India
| | - Heena Tabassum
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra India
| | - Malti Arya
- Department of Pharmaceutics, Chandra Shekhar Singh College of Pharmacy, Uttar Pradesh Kaushambi, India
| |
Collapse
|
19
|
Hao R, Liu L, Yuan J, Wu L, Lei S. Recent Advances in Field Effect Transistor Biosensors: Designing Strategies and Applications for Sensitive Assay. BIOSENSORS 2023; 13:bios13040426. [PMID: 37185501 PMCID: PMC10136430 DOI: 10.3390/bios13040426] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
In comparison with traditional clinical diagnosis methods, field-effect transistor (FET)-based biosensors have the advantages of fast response, easy miniaturization and integration for high-throughput screening, which demonstrates their great technical potential in the biomarker detection platform. This mini review mainly summarizes recent advances in FET biosensors. Firstly, the review gives an overview of the design strategies of biosensors for sensitive assay, including the structures of devices, functionalization methods and semiconductor materials used. Having established this background, the review then focuses on the following aspects: immunoassay based on a single biosensor for disease diagnosis; the efficient integration of FET biosensors into a large-area array, where multiplexing provides valuable insights for high-throughput testing options; and the integration of FET biosensors into microfluidics, which contributes to the rapid development of lab-on-chip (LOC) sensing platforms and the integration of biosensors with other types of sensors for multifunctional applications. Finally, we summarize the long-term prospects for the commercialization of FET sensing systems.
Collapse
Affiliation(s)
- Ruisha Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Lei Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jiangyan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Lingli Wu
- Medical College, Northwest Minzu University, Lanzhou 730000, China
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Ceccon DM, Amaral PHR, Andrade LM, da Silva MIN, Andrade LAF, Moraes TFS, Bagno FF, Rocha RP, de Almeida Marques DP, Ferreira GM, Lourenço AA, Ribeiro ÁL, Coelho-dos-Reis JGA, da Fonseca FG, Gonzalez JC. New, fast, and precise method of COVID-19 detection in nasopharyngeal and tracheal aspirate samples combining optical spectroscopy and machine learning. Braz J Microbiol 2023:10.1007/s42770-023-00923-5. [PMID: 36854899 PMCID: PMC9974055 DOI: 10.1007/s42770-023-00923-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Fast, precise, and low-cost diagnostic testing to identify persons infected with SARS-CoV-2 virus is pivotal to control the global pandemic of COVID-19 that began in late 2019. The gold standard method of diagnostic recommended is the RT-qPCR test. However, this method is not universally available, and is time-consuming and requires specialized personnel, as well as sophisticated laboratories. Currently, machine learning is a useful predictive tool for biomedical applications, being able to classify data from diverse nature. Relying on the artificial intelligence learning process, spectroscopic data from nasopharyngeal swab and tracheal aspirate samples can be used to leverage characteristic patterns and nuances in healthy and infected body fluids, which allows to identify infection regardless of symptoms or any other clinical or laboratorial tests. Hence, when new measurements are performed on samples of unknown status and the corresponding data is submitted to such an algorithm, it will be possible to predict whether the source individual is infected or not. This work presents a new methodology for rapid and precise label-free diagnosing of SARS-CoV-2 infection in clinical samples, which combines spectroscopic data acquisition and analysis via artificial intelligence algorithms. Our results show an accuracy of 85% for detection of SARS-CoV-2 in nasopharyngeal swab samples collected from asymptomatic patients or with mild symptoms, as well as an accuracy of 97% in tracheal aspirate samples collected from critically ill COVID-19 patients under mechanical ventilation. Moreover, the acquisition and processing of the information is fast, simple, and cheaper than traditional approaches, suggesting this methodology as a promising tool for biomedical diagnosis vis-à-vis the emerging and re-emerging viral SARS-CoV-2 variant threats in the future.
Collapse
Affiliation(s)
- Denny M. Ceccon
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Campus Pampulha 31270-901, Belo Horizonte, Minas Gerais 6627 Brazil
| | - Paulo Henrique R. Amaral
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Campus Pampulha 31270-901, Belo Horizonte, Minas Gerais 6627 Brazil
| | - Lídia M. Andrade
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Campus Pampulha 31270-901, Belo Horizonte, Minas Gerais 6627 Brazil
| | - Maria I. N. da Silva
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Campus Pampulha 31270-901, Belo Horizonte, Minas Gerais 6627 Brazil
| | - Luis A. F. Andrade
- Centro de Tecnologia Em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thais F. S. Moraes
- Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flavia F. Bagno
- Centro de Tecnologia Em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raissa P. Rocha
- Centro de Tecnologia Em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Geovane Marques Ferreira
- Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alice Aparecida Lourenço
- Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ágata Lopes Ribeiro
- Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jordana G. A. Coelho-dos-Reis
- Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flavio G. da Fonseca
- Centro de Tecnologia Em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil ,Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - J. C. Gonzalez
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Campus Pampulha 31270-901, Belo Horizonte, Minas Gerais 6627 Brazil
| |
Collapse
|
21
|
Shan J, Wu T, Wei W, Huang J, Li Y, Zou B, Ma Y, Cui L, Wu H, Zhou G. Visualized RNA detection of SARS-CoV-2 in a closed tube by coupling RT-PCR with nested invasive reaction. Analyst 2023; 148:995-1004. [PMID: 36723063 DOI: 10.1039/d2an01679f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A simple, cost-effective and reliable diagnosis of pathogen nucleic acids assay is much required for controlling a pandemic of a virus disease, such as COVID-19. Our previously developed visualized detection of pathogen DNA in a single closed tube is very suitable for POCT. However, virus RNA could not be detected directly and should be reverse-transcribed into cDNA in advance. To enable this visualized assay to detect virus RNA directly, various types of reverse transcriptase were investigated, and finally we found that HiScript II reverse transcriptase could keep active and be well adapted to the one-pot visualized assay in optimized conditions. Reverse transcription, template amplification and amplicon identification by PCR coupled with invasive reaction, as well as visualization by self-assembling of AuNP probes could be automatically and sequentially performed in a closed tube under different temperature conditions, achieving "sample (RNA)-in-result (red color)-out" only by a simple PCR engine plus the naked eye. The visualized RT-PCR is sensitive to unambiguous detection of 5 copies of the N and ORFlab genes of SARS-CoV-2 RNA comparing favourably with qPCR methods (commercialized kit), is specific to genotype 3 variants (Alpha, Beta and Omicron) of SARS-CoV-2, and is very accurate for picking up 0.01% Omicron variant from a large amount of sequence-similar backgrounds. The method is employed in detecting 50 clinical samples, and 10 of them were detected as SARS-CoV-2 positive samples, identical to those by conventional RT-PCR, indicating that the method is cost-effective and labor-saving for pathogen RNA screening in resource-limited regions.
Collapse
Affiliation(s)
- Jingwen Shan
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Tao Wu
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Wei Wei
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jinling Huang
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yijun Li
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Bingjie Zou
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China. .,School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Ma
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210023, China
| | - Lunbiao Cui
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Haiping Wu
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China. .,School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Guohua Zhou
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China. .,School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210023, China.,School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
22
|
Krishnan SK, Nataraj N, Meyyappan M, Pal U. Graphene-Based Field-Effect Transistors in Biosensing and Neural Interfacing Applications: Recent Advances and Prospects. Anal Chem 2023; 95:2590-2622. [PMID: 36693046 PMCID: PMC11386440 DOI: 10.1021/acs.analchem.2c03399] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei106, Taiwan
| | - M Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati781039, Assam, India
| | - Umapada Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| |
Collapse
|
23
|
Quantum computing led innovation for achieving a more sustainable Covid-19 healthcare industry. TECHNOVATION 2023; 120:102544. [PMCID: PMC9072813 DOI: 10.1016/j.technovation.2022.102544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/12/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2023]
Abstract
Involvement of multiple stakeholders in healthcare industry, even the simple healthcare problems become complex due to classical approach to treatment. In the Covid-19 era where quick and accurate solutions in healthcare are needed along with quick collaboration of stakeholders such as patients, insurance agents, healthcare providers and medicine supplier etc., a classical computing approach is not enough. Therefore, this study aims to identify the role of quantum computing in disrupting the healthcare sector with the lens of organizational information processing theory (OIPT), creating a more sustainable (less strained) healthcare system. A semi-structured interview approach is adopted to gauge the expectations of professionals from healthcare industry regarding quantum computing. A structured approach of coding, using open, axial and selective approach is adopted to map the themes under quantum computing for healthcare industry. The findings indicate the potential applications of quantum computing for pharmaceutical, hospital, health insurance organizations along with patients to have precise and quick solutions to the problems, where greater accuracy and speed can be achieved. Existing research focuses on the technological background of quantum computing, whereas this study makes an effort to mark the beginning of quantum computing research with respect to organizational management theory.
Collapse
|
24
|
Roychoudhury A, Allen RJ, Curk T, Farrell J, McAllister G, Templeton K, Bachmann TT. Amplification Free Detection of SARS-CoV-2 Using Multi-Valent Binding. ACS Sens 2022; 7:3692-3699. [PMID: 36482673 PMCID: PMC9743695 DOI: 10.1021/acssensors.2c01340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present the development of electrochemical impedance spectroscopy (EIS)-based biosensors for sensitive detection of SARS-CoV-2 RNA using multi-valent binding. By increasing the number of probe-target binding events per target molecule, multi-valent binding is a viable strategy for improving the biosensor performance. As EIS can provide sensitive and label-free measurements of nucleic acid targets during probe-target hybridization, we used multi-valent binding to build EIS biosensors for targeting SARS-CoV-2 RNA. For developing the biosensor, we explored two different approaches including probe combinations that individually bind in a single-valent fashion and the probes that bind in a multi-valent manner on their own. While we found excellent biosensor performance using probe combinations, we also discovered unexpected signal suppression. We explained the signal suppression theoretically using inter- and intra-probe hybridizations which confirmed our experimental findings. With our best probe combination, we achieved a LOD of 182 copies/μL (303 aM) of SARS-CoV-2 RNA and used these for successful evaluation of patient samples for COVID-19 diagnostics. We were also able to show the concept of multi-valent binding with shorter probes in the second approach. Here, a 13-nt-long probe has shown the best performance during SARS-CoV-2 RNA binding. Therefore, multi-valent binding approaches using EIS have high utility for direct detection of nucleic acid targets and for point-of-care diagnostics.
Collapse
Affiliation(s)
- Appan Roychoudhury
- Infection
Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France
Crescent, Edinburgh, EH16
4SB, United Kingdom
| | - Rosalind J. Allen
- School
of Physics and Astronomy, University of
Edinburgh, Edinburgh, EH9 3FD, United Kingdom
| | - Tine Curk
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United
States
| | - James Farrell
- Institute
of Physics, Chinese Academy of Sciences, Beijing, 100190, China,School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing, 100049, China
| | - Gina McAllister
- Department
of Laboratory Medicine, Royal Infirmary
of Edinburgh, Edinburgh, EH16 4SA, United Kingdom
| | - Kate Templeton
- Department
of Laboratory Medicine, Royal Infirmary
of Edinburgh, Edinburgh, EH16 4SA, United Kingdom
| | - Till T. Bachmann
- Infection
Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France
Crescent, Edinburgh, EH16
4SB, United Kingdom,E-mail:
| |
Collapse
|
25
|
Chen W, Chen H, Liu Y, Wei H, Wang Y, Rong Z, Liu X. An integrated fluorescent lateral flow assay for multiplex point-of-care detection of four respiratory viruses. Anal Biochem 2022; 659:114948. [PMID: 36216143 DOI: 10.1016/j.ab.2022.114948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
This work established a highly sensitive and specific quantum dot nanobeads-based lateral flow assay for multiplex detection of four respiratory virus markers at point of care. The respiratory virus antigens were detected by fluorescent lateral flow strips within 20 min. The limits of detection for SARS-CoV-2 antigen, IAV antigen, IBV antigen, and ADV antigen were 0.01 ng/mL, 0.05 ng/mL, 0.31 ng/mL, and 0.40 ng/mL, respectively, which were superior to that of conventional AuNPs-based colorimetric lateral flow assay. The coefficients of variation of the test strip were 6.09%, 2.24%, 7.92%, and 12.43% for these four antigens, which indicated that the proposed method had good repeatability. The specificity of the detection system was verified by different combinations of these four respiratory viruses and several other respiratory pathogens. These results indicated that this method could simultaneously detect SARS-CoV-2, IAV, IBV and ADV in a short assay time, showing the remarkable potential for the rapid and multiplex detection of respiratory viruses in resource-limited settings.
Collapse
Affiliation(s)
- Wenji Chen
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121012, PR China; Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Hong Chen
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Ye Liu
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Hongjuan Wei
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yunxiang Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Zhen Rong
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China.
| | - Xin Liu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121012, PR China; Jinzhou Medical University Huludao Central Hospital Teaching Base, Huludao, 125001, PR China.
| |
Collapse
|
26
|
He X, Su F, Chen Y, Li Z. Novel reverse transcription-multiple inner primer loop-mediated isothermal amplification (RT-MIPLAMP) for visual and sensitive detection of SARS-CoV-2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5012-5018. [PMID: 36448309 DOI: 10.1039/d2ay01330d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the end of 2019, outbreaks of COVID-19 pandemics have continued in different areas worldwide, which exacerbates the need for rapid, sensitive and simple methods for diagnosis. Currently, COVID-19 diagnosis mainly relies on reverse transcription-polymerase chain reaction (RT-PCR), which requires sophisticated instruments. Reverse transcription-loop mediated isothermal amplification (RT-LAMP), due to its isothermal nature and high specificity, can be used as an alternative. In this paper, a novel visual reverse transcription-multiple inner primer loop-mediated isothermal amplification (RT-MIPLAMP) method is established based on RT-LAMP by adding a pair of inner primers. The RT-MIPLAMP method has a higher sensitivity and shorter reaction time compared with conventional RT-LAMP. By using RT-MIPLAMP, as low as 6 × 103 copies per mL in vitro transcribed (IVT) N gene can be detected within 55 min. Meanwhile, as low as 6 × 104 copies per mL IVT N gene is detectable with conventional RT-LAMP within 80 min. The feasibility of visual RT-MIPLAMP is also validated by detecting the N gene spiked into one healthy volunteer's saliva and the full-length RNA in pseudoviruses, indicating the great potential of visual RT-MIPLAMP for SARS-CoV-2 identification.
Collapse
Affiliation(s)
- Xiaofei He
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China.
| | - Fengxia Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China.
| | - Yutong Chen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China.
| | - Zhengping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China.
| |
Collapse
|
27
|
Li D, Cheng W, Hou Z, Duan C, Yao Y, Chen Y, Yang G, Cheng Z, Xiang Y. A functional RNA/DNA circuit for one-pot detection of SARS-CoV-2 RNA. Chem Commun (Camb) 2022; 58:13475-13478. [PMID: 36383079 DOI: 10.1039/d2cc05251b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A simple method is proposed in this work for the detection of SARS-CoV-2 RNA based on a functional RNA/DNA circuit. By ingeniously integrating the nucleic acid circuit technology and CRISPR/cas12a system, this method can achieve femtomolar detection of the target RNA in one step and successfully distinguish COVID-19 positive cases from clinical samples, proving its great potential for clinical application.
Collapse
Affiliation(s)
- Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Wenting Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhiqiang Hou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Yanheng Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Yan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Gang Yang
- Pulmonary and Critical Care Department, Wuhu Hospital of East China Normal University, Wuhu 241000, P. R. China.
| | - Zhouxiang Cheng
- Center for Disease Control and Prevention, Wuhu 241000, P. R. China.
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China. .,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
28
|
Feng Y, Chen T, Rao Q, Xie X, Zhang L, Lv Y. Time-Resolved Persistent Luminescence Encoding for Multiplexed Severe Acute Respiratory Syndrome Coronavirus 2 Detection. Anal Chem 2022; 94:16967-16974. [DOI: 10.1021/acs.analchem.2c04788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yang Feng
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Tingyan Chen
- College of Mathematics, Sichuan University, Chengdu, Sichuan610064, China
| | - Qianli Rao
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Xiaobo Xie
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
| |
Collapse
|
29
|
Gul I, Zhai S, Zhong X, Chen Q, Yuan X, Du Z, Chen Z, Raheem MA, Deng L, Leeansyah E, Zhang C, Yu D, Qin P. Angiotensin-Converting Enzyme 2-Based Biosensing Modalities and Devices for Coronavirus Detection. BIOSENSORS 2022; 12:984. [PMID: 36354493 PMCID: PMC9688389 DOI: 10.3390/bios12110984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 05/30/2023]
Abstract
Rapid and cost-effective diagnostic tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a critical and valuable weapon for the coronavirus disease 2019 (COVID-19) pandemic response. SARS-CoV-2 invasion is primarily mediated by human angiotensin-converting enzyme 2 (hACE2). Recent developments in ACE2-based SARS-CoV-2 detection modalities accentuate the potential of this natural host-virus interaction for developing point-of-care (POC) COVID-19 diagnostic systems. Although research on harnessing ACE2 for SARS-CoV-2 detection is in its infancy, some interesting biosensing devices have been developed, showing the commercial viability of this intriguing new approach. The exquisite performance of the reported ACE2-based COVID-19 biosensors provides opportunities for researchers to develop rapid detection tools suitable for virus detection at points of entry, workplaces, or congregate scenarios in order to effectively implement pandemic control and management plans. However, to be considered as an emerging approach, the rationale for ACE2-based biosensing needs to be critically and comprehensively surveyed and discussed. Herein, we review the recent status of ACE2-based detection methods, the signal transduction principles in ACE2 biosensors and the development trend in the future. We discuss the challenges to development of ACE2-biosensors and delineate prospects for their use, along with recommended solutions and suggestions.
Collapse
Affiliation(s)
- Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shiyao Zhai
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyun Zhong
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qun Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Yuan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhicheng Du
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhenglin Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lin Deng
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Canyang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Dongmei Yu
- Department of Computer Science and Technology, School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
30
|
Fan YT, Lee JY, Cheng YC, Lin HH, Chien CH, Tu PW, Chung HW. The requirements of nucleic acid test for COVID-19 during public health emergency: Current regulatory in Taiwan, Singapore, and the United States. J Chin Med Assoc 2022; 85:1038-1043. [PMID: 36343271 DOI: 10.1097/jcma.0000000000000804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In mid-2022, the COVID-19 cases have reached close to 562 million, but its overall infection rate is hard to confirm. Even with effective vaccines, break-through infections with new variants occur, and safe and reliable testing still plays a critical role in isolation of infected individuals and in control of an outbreak of a COVID-19 pandemic. In response to this urgent need, the diagnostic tests for COVID-19 are rapidly evolving and improving these days. The health authorities of many countries issued requirements for detecting SARS-CoV-2 diagnosis tests during the pandemic and have timely access to these tests to ensure safety and effectiveness. In this study, we compared the requirements of EUA in Taiwan, Singapore, and the United States. For the performance evaluations of nucleic acid extraction, inclusivity, limit of detection (LoD), cross-reactivity, interference, cutoff, and stability, the requirements are similar in the three countries. The use of natural clinical specimens is needed for clinical evaluation in Taiwan and the United States. However, carry-over and cross-contamination studies can be exempted in Taiwan and the United States but are required in Singapore. This review outlines requirements and insight to guide the test developers on the development of IVDs. Considering the rapidly evolving viruses and severe pandemic of COVID-19, timely and accurate diagnostic testing is imperative to the management of diseases. As noted above, the performance requirements for SARS-CoV-2 nucleic acid tests are similar between Taiwan, Singapore and the United States. The differences are mainly in two points: the recommended microorganisms for cross-reactivity study, and the specimen requirement for clinical evaluation. This study provides an overview of current requirements of SARS-CoV-2 nucleic acid tests in Taiwan, Singapore, and the United States.
Collapse
Affiliation(s)
- Yin-Ting Fan
- Office of Medical Device Evaluation, Center for Measurement Standards, Industrial Technology Research Institute, Hsinchu, Taiwan, ROC
| | - Jin-Yu Lee
- Division of Medical Devices and Cosmetics, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Yu-Che Cheng
- Division of Medical Devices and Cosmetics, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Hsin-Hui Lin
- Division of Medical Devices and Cosmetics, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Chia-Hung Chien
- Division of Medical Devices and Cosmetics, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Pei-Weng Tu
- Division of Medical Devices and Cosmetics, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Hui-Wen Chung
- Office of Medical Device Evaluation, Center for Measurement Standards, Industrial Technology Research Institute, Hsinchu, Taiwan, ROC
| |
Collapse
|
31
|
Chauhan S, Saini D, Madan K. Screening of Phytoconstituents from Traditional Plants against SARSCoV-
2 using Molecular Docking Approach. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220307163058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The emergence of COVID-19 as a fatal viral disease encourages researchers to
develop effective and efficient therapeutic agents. The intervention of in silico studies has led to revolutionary
changes in the conventional method of testing the bioactivity of plant constituents.
Objective:
The current study deals with the investigation of some traditional immunomodulators of plant
origin to combat this ailment.
Materials and Methods:
A total of 151 phytomolecules of 12 immunomodulatory plants were evaluated
for their inhibitory action against the main protease (PDB ID: 7D1M) and NSP15 endoribonuclease (PDB
ID: 6WLC) by structure-based virtual screening. In addition, the promising molecules with ligand efficiency
of more than -0.3(kcal/mol)/heavy atoms were further predicted for pharmacokinetic properties
and druggability using the SwissADME web server, and their toxicity was also evaluated using Protox-II.
Result:
Myricetin-3-O-arabinofuranoside of cranberry plant was found to be the most potential candidate
against both enzymes: main protease (–14.2 kcal/mol) and NSP15 endoribonuclease (–12.2 kcal/mol).
Conclusion:
The promising outcomes of the current study may be implemented in future drug development
against coronavirus. The findings also help in the development of lead candidates of plant origin
with a better ADMET profile in the future.
Collapse
Affiliation(s)
- Shilpi Chauhan
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-I1, Greater
Noida, Uttar Pradesh 201306, India
| | - Deepika Saini
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-I1, Greater
Noida, Uttar Pradesh 201306, India
| | - Kumud Madan
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-I1, Greater
Noida, Uttar Pradesh 201306, India
| |
Collapse
|
32
|
Wasfi A, Awwad F, Qamhieh N, Al Murshidi B, Palakkott AR, Gelovani JG. Real-time COVID-19 detection via graphite oxide-based field-effect transistor biosensors decorated with Pt/Pd nanoparticles. Sci Rep 2022; 12:18155. [PMID: 36307495 PMCID: PMC9614753 DOI: 10.1038/s41598-022-22249-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 12/31/2022] Open
Abstract
Coronavirus 2019 (COVID-19) spreads an extremely infectious disease where there is no specific treatment. COVID-19 virus had a rapid and unexpected spread rate which resulted in critical difficulties for public health and unprecedented daily life disruption. Thus, accurate, rapid, and early diagnosis of COVID-19 virus is critical to maintain public health safety. A graphite oxide-based field-effect transistor (GO-FET) was fabricated and functionalized with COVID-19 antibody for the purpose of real-time detection of COVID-19 spike protein antigen. Thermal evaporation process was used to deposit the gold electrodes on the surface of the sensor substrate. Graphite oxide channel was placed between the gold electrodes. Bimetallic nanoparticles of platinum and palladium were generated via an ultra-high vacuum (UHV) compatible system by sputtering and inert-gas condensation technique. The biosensor graphite oxide channel was immobilized with specific antibodies against the COVID-19 spike protein to achieve selectivity and specificity. This technique uses the attractive semiconductor characteristics of the graphite oxide-based materials resulting in highly specific and sensitive detection of COVID-19 spike protein. The GO-FET biosensor was decorated with bimetallic nanoparticles of platinum and palladium to investigate the improvement in the sensor sensitivity. The in-house developed biosensor limit of detection (LOD) is 1 fg/mL of COVID-19 spike antigen in phosphate-buffered saline (PBS). Moreover, magnetic labelled SARS-CoV-2 spike antibody were studied to investigate any enhancement in the sensor performance. The results indicate the successful fabrication of a promising field effect transistor biosensor for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Asma Wasfi
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Falah Awwad
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Naser Qamhieh
- Department of Physics, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badria Al Murshidi
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdul Rasheed Palakkott
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Juri George Gelovani
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
33
|
Gul I, Liu C, Yuan X, Du Z, Zhai S, Lei Z, Chen Q, Raheem MA, He Q, Hu Q, Xiao C, Haihui Z, Wang R, Han S, Du K, Yu D, Zhang CY, Qin P. Current and Perspective Sensing Methods for Monkeypox Virus. Bioengineering (Basel) 2022; 9:571. [PMID: 36290539 PMCID: PMC9598380 DOI: 10.3390/bioengineering9100571] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The outbreak of the monkeypox virus (MPXV) in non-endemic countries is an emerging global health threat and may have an economic impact if proactive actions are not taken. As shown by the COVID-19 pandemic, rapid, accurate, and cost-effective virus detection techniques play a pivotal role in disease diagnosis and control. Considering the sudden multicountry MPXV outbreak, a critical evaluation of the MPXV detection approaches would be a timely addition to the endeavors in progress for MPXV control and prevention. Herein, we evaluate the current MPXV detection methods, discuss their pros and cons, and provide recommended solutions to the problems. We review the traditional and emerging nucleic acid detection approaches, immunodiagnostics, whole-particle detection, and imaging-based MPXV detection techniques. The insights provided in this article will help researchers to develop novel techniques for the diagnosis of MPXV.
Collapse
Affiliation(s)
- Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Changyue Liu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Yuan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhicheng Du
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shiyao Zhai
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhengyang Lei
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qun Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qiuyue Hu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chufan Xiao
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhang Haihui
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Runming Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ke Du
- Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA;
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
34
|
Ma X, Xu J, Zhou F, Ye J, Yang D, Wang H, Wang P, Li M. Recent advances in PCR-free nucleic acid detection for SARS-COV-2. Front Bioeng Biotechnol 2022; 10:999358. [PMID: 36277389 PMCID: PMC9585218 DOI: 10.3389/fbioe.2022.999358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
As the outbreak of Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory disease coronavirus 2 (SARS-COV-2), fast, accurate, and economic detection of viral infection has become crucial for stopping the spread. Polymerase chain reaction (PCR) of viral nucleic acids has been the gold standard method for SARS-COV-2 detection, which, however, generally requires sophisticated facilities and laboratory space, and is time consuming. This review presents recent advances in PCR-free nucleic acid detection methods for SARS-CoV-2, including emerging methods of isothermal amplification, nucleic acid enzymes, electrochemistry and CRISPR.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Wang
- Department of Laboratory Medicine, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengfei Wang
- Department of Laboratory Medicine, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Li
- Department of Laboratory Medicine, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Ben-Shimon Y, Sharma CP, Arnusch CJ, Ya'akobovitz A. Freestanding Laser-Induced Graphene Ultrasensitive Resonative Viral Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44713-44723. [PMID: 36083630 DOI: 10.1021/acsami.2c08302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Early and reliable detection of an infectious viral disease is critical to accurately monitor outbreaks and to provide individuals and health care professionals the opportunity to treat patients at the early stages of a disease. The accuracy of such information is essential to define appropriate actions to protect the population and to reduce the likelihood of a possible pandemic. Here, we show the fabrication of freestanding laser-induced graphene (FLIG) flakes that are highly sensitive sensors for high-fidelity viral detection. As a case study, we show the detection of SARS-CoV-2 spike proteins. FLIG flakes are nonembedded porous graphene foams ca. 30 μm thick that are generated using laser irradiation of polyimide and can be fabricated in seconds at a low cost. Larger pieces of FLIG were cut forming a cantilever, used as suspended resonators, and characterized for their electromechanics behavior. Thermomechanical analysis showed FLIG stiffness comparable to other porous materials such as boron nitride foam, and electrostatic excitation showed amplification of the vibrations at frequencies in the range of several kilo-hertz. We developed a protocol for aqueous biological sensing by characterizing the wetting dynamic response of the sensor in buffer solution and in water, and devices functionalized with COVID-19 antibodies specifically detected SARS-CoV-2 spike protein binding, while not detecting other viruses such as MS2. The FLIG sensors showed a clear mass-dependent frequency response shift of ∼1 Hz/pg, and low nanomolar concentrations could be detected. Ultimately, the sensors demonstrated an outstanding limit of detection of 2.63 pg, which is equivalent to as few as ∼5000 SARS-CoV-2 viruses. Thus, the FLIG platform technology can be utilized to develop portable and highly accurate sensors, including biological applications where the fast and reliable protein or infectious particle detection is critical.
Collapse
Affiliation(s)
- Yahav Ben-Shimon
- Faculty of Engineering Sciences, Ben-Gurion University of the Negev, 8410501 Be'er Sheva, Israel
| | - Chetan Prakash Sharma
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990 Be'er Sheva, Israel
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990 Be'er Sheva, Israel
| | - Assaf Ya'akobovitz
- Faculty of Engineering Sciences, Ben-Gurion University of the Negev, 8410501 Be'er Sheva, Israel
| |
Collapse
|
36
|
Spectroscopic methods for COVID-19 detection and early diagnosis. Virol J 2022; 19:152. [PMID: 36138463 PMCID: PMC9502632 DOI: 10.1186/s12985-022-01867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
The coronavirus pandemic is a worldwide hazard that poses a threat to millions of individuals throughout the world. This pandemic is caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which was initially identified in Wuhan, China's Hubei provincial capital, and has since spread throughout the world. According to the World Health Organization's Weekly Epidemiological Update, there were more than 250 million documented cases of coronavirus infections globally, with five million fatalities. Early detection of coronavirus does not only reduce the spread of the virus, but it also increases the chance of curing the infection. Spectroscopic techniques have been widely used in the early detection and diagnosis of COVID-19 using Raman, Infrared, mass spectrometry and fluorescence spectroscopy. In this review, the reported spectroscopic methods for COVID-19 detection were discussed with emphasis on the practical aspects, limitations and applications.
Collapse
|
37
|
Beck S, Nakajima R, Jasinskas A, Abram TJ, Kim SJ, Bigdeli N, Tifrea DF, Hernandez-Davies J, Huw Davies D, Hedde PN, Felgner PL, Zhao W. A Protein Microarray-Based Respiratory Viral Antigen Testing Platform for COVID-19 Surveillance. Biomedicines 2022; 10:2238. [PMID: 36140339 PMCID: PMC9496200 DOI: 10.3390/biomedicines10092238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
High-throughput and rapid screening testing is highly desirable to effectively combat the rapidly evolving COVID-19 pandemic co-presents with influenza and seasonal common cold epidemics. Here, we present a general workflow for iterative development and validation of an antibody-based microarray assay for the detection of a respiratory viral panel: (a) antibody screening to quickly identify optimal reagents and assay conditions, (b) immunofluorescence assay design including signal amplification for low viral titers, (c) assay characterization with recombinant proteins, inactivated viral samples and clinical samples, and (d) multiplexing to detect a panel of common respiratory viruses. Using RT-PCR-confirmed SARS-CoV-2 positive and negative pharyngeal swab samples, we demonstrated that the antibody microarray assay exhibited a clinical sensitivity and specificity of 77.2% and 100%, respectively, which are comparable to existing FDA-authorized antigen tests. Moreover, the microarray assay is correlated with RT-PCR cycle threshold (Ct) values and is particularly effective in identifying high viral titers. The multiplexed assay can selectively detect SARS-CoV-2 and influenza virus, which can be used to discriminate these viral infections that share similar symptoms. Such protein microarray technology is amenable for scale-up and automation and can be broadly applied as a both diagnostic and research tool.
Collapse
Affiliation(s)
- Sungjun Beck
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Rie Nakajima
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Algis Jasinskas
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | | | - Sun Jin Kim
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Nader Bigdeli
- Student Health Center, University of California, Irvine, CA 92697, USA
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Jenny Hernandez-Davies
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - D. Huw Davies
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
- Institute for Immunology, University of California, Irvine, CA 92697, USA
| | - Per Niklas Hedde
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
- Laboratory for Fluorescence Dynamics, University of California, Irvine, CA 92697, USA
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92697, USA
| | - Philip L. Felgner
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
- Institute for Immunology, University of California, Irvine, CA 92697, USA
| | - Weian Zhao
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
- Institute for Immunology, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
38
|
Liu X, Kortoçi P, Motlagh NH, Nurmi P, Tarkoma S. A survey of COVID-19 in public transportation: Transmission risk, mitigation and prevention. MULTIMODAL TRANSPORTATION 2022. [PMCID: PMC9174338 DOI: 10.1016/j.multra.2022.100030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The COVID-19 pandemic is posing significant challenges to public transport operators by drastically reducing demand while also requiring them to implement measures that minimize risks to the health of the passengers. While the collective scientific understanding of the SARS-CoV-2 virus and COVID-19 pandemic are rapidly increasing, currently there is a lack of understanding of how the COVID-19 relates to public transport operations. This article presents a comprehensive survey of the current research on COVID-19 transmission mechanisms and how they relate to public transport. We critically assess literature through a lens of disaster management and survey the main transmission mechanisms, forecasting, risks, mitigation, and prevention mechanisms. Social distancing and control on passenger density are found to be the most effective mechanisms. Computing and digital technology can support risk control. Based on our survey, we draw guidelines for public transport operators and highlight open research challenges to establish a research roadmap for the path forward.
Collapse
|
39
|
Naikoo GA, Arshad F, Hassan IU, Awan T, Salim H, Pedram MZ, Ahmed W, Patel V, Karakoti AS, Vinu A. Nanomaterials-based sensors for the detection of COVID-19: A review. Bioeng Transl Med 2022; 7:e10305. [PMID: 35599642 PMCID: PMC9110902 DOI: 10.1002/btm2.10305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
With the threat of increasing SARS-CoV-2 cases looming in front of us and no effective and safest vaccine available to curb this pandemic disease due to its sprouting variants, many countries have undergone a lockdown 2.0 or planning a lockdown 3.0. This has upstretched an unprecedented demand to develop rapid, sensitive, and highly selective diagnostic devices that can quickly detect coronavirus (COVID-19). Traditional techniques like polymerase chain reaction have proven to be time-inefficient, expensive, labor intensive, and impracticable in remote settings. This shifts the attention to alternative biosensing devices that can be successfully used to sense the COVID-19 infection and curb the spread of coronavirus cases. Among these, nanomaterial-based biosensors hold immense potential for rapid coronavirus detection because of their noninvasive and susceptible, as well as selective properties that have the potential to give real-time results at an economical cost. These diagnostic devices can be used for mass COVID-19 detection to understand the rapid progression of the infection and give better-suited therapies. This review provides an overview of existing and potential nanomaterial-based biosensors that can be used for rapid SARS-CoV-2 diagnostics. Novel biosensors employing different detection mechanisms are also highlighted in different sections of this review. Practical tools and techniques required to develop such biosensors to make them reliable and portable have also been discussed in the article. Finally, the review is concluded by presenting the current challenges and future perspectives of nanomaterial-based biosensors in SARS-CoV-2 diagnostics.
Collapse
Affiliation(s)
- Gowhar A. Naikoo
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Fareeha Arshad
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Israr U. Hassan
- College of Engineering, Dhofar UniversitySalalahSultanate of Oman
| | - Tasbiha Awan
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Hiba Salim
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Mona Z. Pedram
- Faculty of Mechanical Engineering‐Energy DivisionK.N. Toosi University of TechnologyTehranIran
| | - Waqar Ahmed
- School of Mathematics and Physics, College of ScienceUniversity of LincolnLincolnUK
| | - Vaishwik Patel
- Global Innovative Center for Advanced NanomaterialsCollege of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| | - Ajay S. Karakoti
- Global Innovative Center for Advanced NanomaterialsCollege of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| | - Ajayan Vinu
- Global Innovative Center for Advanced NanomaterialsCollege of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| |
Collapse
|
40
|
Xu M, Zhou J, Cheng Y, Jin Z, Clark AE, He T, Yim W, Li Y, Chang YC, Wu Z, Fajtová P, O’Donoghue AJ, Carlin AF, Todd MD, Jokerst JV. A Self-Immolative Fluorescent Probe for Selective Detection of SARS-CoV-2 Main Protease. Anal Chem 2022; 94:11728-11733. [PMID: 35973073 PMCID: PMC9396966 DOI: 10.1021/acs.analchem.2c02381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
Existing tools to detect and visualize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suffer from low selectivity, poor cell permeability, and high cytotoxicity. Here we report a novel self-immolative fluorescent probe (MP590) for the highly selective and sensitive detection of the SARS-CoV-2 main protease (Mpro). This fluorescent probe was prepared by connecting a Mpro-cleavable peptide (N-acetyl-Abu-Tle-Leu-Gln) with a fluorophore (i.e., resorufin) via a self-immolative aromatic linker. Fluorescent titration results show that MP590 can detect Mpro with a limit of detection (LoD) of 35 nM and is selective over interferents such as hemoglobin, bovine serum albumin (BSA), thrombin, amylase, SARS-CoV-2 papain-like protease (PLpro), and trypsin. The cell imaging data indicate that this probe can report Mpro in HEK 293T cells transfected with a Mpro expression plasmid as well as in TMPRSS2-VeroE6 cells infected with SARS-CoV-2. Our results suggest that MP590 can both measure and monitor Mpro activity and quantitatively evaluate Mpro inhibition in infected cells, making it an important tool for diagnostic and therapeutic research on SARS-CoV-2.
Collapse
Affiliation(s)
- Ming Xu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yong Cheng
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Alex E. Clark
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yi Li
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Zhuohong Wu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Aaron F. Carlin
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Michael D. Todd
- Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
41
|
Wu C, Chen Z, Li C, Hao Y, Tang Y, Yuan Y, Chai L, Fan T, Yu J, Ma X, Al-Hartomy OA, Wageh S, Al-Sehemi AG, Luo Z, He Y, Li J, Xie Z, Zhang H. CRISPR-Cas12a-Empowered Electrochemical Biosensor for Rapid and Ultrasensitive Detection of SARS-CoV-2 Delta Variant. NANO-MICRO LETTERS 2022; 14:159. [PMID: 35925472 PMCID: PMC9352833 DOI: 10.1007/s40820-022-00888-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 05/11/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The gold standard method for the diagnosis of SARS-CoV-2 depends on quantitative reverse transcription-polymerase chain reaction till now, which is time-consuming and requires expensive instrumentation, and the confirmation of variants relies on further sequencing techniques. Herein, we first proposed a robust technique-methodology of electrochemical CRISPR sensing with the advantages of rapid, highly sensitivity and specificity for the detection of SARS-CoV-2 variant. To enhance the sensing capability, gold electrodes are uniformly decorated with electro-deposited gold nanoparticles. Using DNA template identical to SARS-CoV-2 Delta spike gene sequence as model, our biosensor exhibits excellent analytical detection limit (50 fM) and high linearity (R2 = 0.987) over six orders of magnitude dynamic range from 100 fM to 10 nM without any nucleic-acid-amplification assays. The detection can be completed within 1 h with high stability and specificity which benefits from the CRISPR-Cas system. Furthermore, based on the wireless micro-electrochemical platform, the proposed biosensor reveals promising application ability in point-of-care testing.
Collapse
Affiliation(s)
- Chenshuo Wu
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Zhi Chen
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Hospital of Guangzhou Medical University, Qingyuan city People's Hospital, Qingyuan, 511518, People's Republic of China.
| | - Chaozhou Li
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Yabin Hao
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Shenzhen Han's Tech Limited Company, Shenzhen, 518000, People's Republic of China
| | - Yuxuan Tang
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Hospital of Guangzhou Medical University, Qingyuan city People's Hospital, Qingyuan, 511518, People's Republic of China
| | - Yuxuan Yuan
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Luxiao Chai
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Taojian Fan
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jiangtian Yu
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116, People's Republic of China
| | - Xiaopeng Ma
- Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, 518038, People's Republic of China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Zhiguang Luo
- Zhongmin (Shenzhen) Intelligent Ecology Co., Ltd, Shenzhen, 518055, People's Republic of China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China
| | - Jingfeng Li
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116, People's Republic of China.
| | - Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116, People's Republic of China.
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, 518038, People's Republic of China.
| | - Han Zhang
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
42
|
Wang K, Wang Q, Peng C, Guo Y, Li Y, Zhou J, Wu W. Portable Heating System Based on a Liquid Metal Bath for Rapid PCR. ACS OMEGA 2022; 7:26165-26173. [PMID: 35936432 PMCID: PMC9352155 DOI: 10.1021/acsomega.2c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
With the outbreak of COVID-19 around the world, rapid and accurate detection of new coronaviruses is the key to stop the transmission of the disease and prevent and control the novel coronavirus, among which polymerase chain reaction (PCR) is the mainstream nucleic acid detection method. A temperature cycling device is the core of the PCR amplification micro-device. The precision of the temperature control and temperature change rate directly affect the efficiency of PCR amplification. This study proposes a new PCR method based on rapid PCR chip optimization of a liquid metal bath, which realizes precise and rapid temperature rise and fall control. We systematically explored the feasibility of using liquid metals with different melting points in the system and proposed a 47 °C bismuth-based liquid metal bath as the heat conduction medium of the system to optimize the system. The heat conduction properties of the thermally conductive silicone oil bath were compared. Compared with the thermally conductive silicone oil bath, thermal cycle efficiency is improved nearly 3 times. The average heating rate of the liquid metal bath is fast, and the temperature control stability is good, which can significantly reduce the hysteresis, and the temperature change curve is more gentle, which can greatly improve the efficiency of PCR amplification. The results of gene amplification using rat DNA as the template and SEC61A as the target also indicate that the system can be successfully used in PCR devices, and the types of PCR containers can be not limited to PCR tubes. Based on the experiment, we proved that the PCR method optimized by the liquid metal bath multi-gene rapid PCR chip can further improve the temperature response speed. It has the advantages of accurate data, fast response speed, low price, safety, and environmental protection and can effectively reduce the time of PCR and improve the application efficiency. As far as we know, this is the first international report on using a liquid metal bath to do rapid-cooling PCR.
Collapse
Affiliation(s)
- Kangning Wang
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, Guangzhou 516001, China
| | - Qingran Wang
- State
Key Laboratory of Luminescence and Applications, Changchun Institute
of Optics, Fine Mechanics and Physics, Chinese
Academy of Sciences, Changchun 130033, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Canfu Peng
- State
Key Laboratory of Luminescence and Applications, Changchun Institute
of Optics, Fine Mechanics and Physics, Chinese
Academy of Sciences, Changchun 130033, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Guo
- School
of Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Li
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, Guangzhou 516001, China
| | - Jia Zhou
- State
Key Laboratory of Microelectronics and Integrated Circuits, Fudan University, Shanghai 200433, China
| | - Wenming Wu
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, Guangzhou 516001, China
| |
Collapse
|
43
|
Cajigas S, Alzate D, Fernández M, Muskus C, Orozco J. Electrochemical genosensor for the specific detection of SARS-CoV-2. Talanta 2022; 245:123482. [PMID: 35462140 PMCID: PMC9012668 DOI: 10.1016/j.talanta.2022.123482] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/19/2022]
Abstract
Infection caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is responsible for the Coronavirus disease (COVID-19) and the current pandemic. Its mortality rate increases, demonstrating the imperative need for acute and rapid diagnostic tools as an alternative to current serological tests and molecular techniques. Features of electrochemical genosensor devices make them amenable for fast and accurate testing closer to the patient. This work reports on a specific electrochemical genosensor for SARS-CoV-2 detection and discrimination against homologous respiratory viruses. The electrochemical biosensor was assembled by immobilizing thiolated capture probes on top of maleimide-coated magnetic particles, followed by specific target hybridization between the capture and biotinylated signaling probes in a sandwich-type manner. The probes were rigorously designed bioinformatically and tested in vitro. Enzymatic complexes based on streptavidin-horseradish peroxidase linked the biotinylated signaling probe to render the biosensor electrochemical response. The genosensor showed to reach a sensitivity of 174.4 μA fM−1 and a limit of detection of 807 fM when using streptavidin poly-HRP20 enzymatic complex, detected SARS-CoV-2 specifically and discriminated it against homologous viruses in spiked samples and samples from SARS-CoV-2 cell cultures, a step forward to detect SARS-CoV-2 closer to the patient as a promising way for diagnosis and surveillance of COVID-19.
Collapse
Affiliation(s)
- Sebastian Cajigas
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciencies, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia
| | - Daniel Alzate
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciencies, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia
| | - Maritza Fernández
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciencies, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Calle 62 N° 52-59, Medellín, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciencies, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia.
| |
Collapse
|
44
|
Raypah ME, Faris AN, Mohd Azlan M, Yusof NY, Suhailin FH, Shueb RH, Ismail I, Mustafa FH. Near-Infrared Spectroscopy as a Potential COVID-19 Early Detection Method: A Review and Future Perspective. SENSORS 2022; 22:s22124391. [PMID: 35746172 PMCID: PMC9229781 DOI: 10.3390/s22124391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is a worldwide health anxiety. The rapid dispersion of the infection globally results in unparalleled economic, social, and health impacts. The pathogen that causes COVID-19 is known as a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A fast and low-cost diagnosis method for COVID-19 disease can play an important role in controlling its proliferation. Near-infrared spectroscopy (NIRS) is a quick, non-destructive, non-invasive, and inexpensive technique for profiling the chemical and physical structures of a wide range of samples. Furthermore, the NIRS has the advantage of incorporating the internet of things (IoT) application for the effective control and treatment of the disease. In recent years, a significant advancement in instrumentation and spectral analysis methods has resulted in a remarkable impact on the NIRS applications, especially in the medical discipline. To date, NIRS has been applied as a technique for detecting various viruses including zika (ZIKV), chikungunya (CHIKV), influenza, hepatitis C, dengue (DENV), and human immunodeficiency (HIV). This review aims to outline some historical and contemporary applications of NIRS in virology and its merit as a novel diagnostic technique for SARS-CoV-2.
Collapse
Affiliation(s)
- Muna E. Raypah
- School of Physics, Universiti Sains Malaysia, George Town 11800, Pulau Pinang, Malaysia;
| | - Asma Nadia Faris
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (A.N.F.); (M.M.A.); (N.Y.Y.); (R.H.S.)
| | - Mawaddah Mohd Azlan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (A.N.F.); (M.M.A.); (N.Y.Y.); (R.H.S.)
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (A.N.F.); (M.M.A.); (N.Y.Y.); (R.H.S.)
| | - Fariza Hanim Suhailin
- Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
| | - Rafidah Hanim Shueb
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (A.N.F.); (M.M.A.); (N.Y.Y.); (R.H.S.)
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| | - Irneza Ismail
- Advanced Devices & System (ADS) Research Group, Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai 71800, Negeri Sembilan, Malaysia
- Correspondence: (I.I.); (F.H.M.); Tel.: +60-7986569 (I.I.); +60-9-7672432 (F.H.M.)
| | - Fatin Hamimi Mustafa
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (A.N.F.); (M.M.A.); (N.Y.Y.); (R.H.S.)
- Correspondence: (I.I.); (F.H.M.); Tel.: +60-7986569 (I.I.); +60-9-7672432 (F.H.M.)
| |
Collapse
|
45
|
Gao Z, Wu Z, Han Y, Zhang X, Hao P, Xu M, Huang S, Li S, Xia J, Jiang J, Yang S. Aberrant Fucosylation of Saliva Glycoprotein Defining Lung Adenocarcinomas Malignancy. ACS OMEGA 2022; 7:17894-17906. [PMID: 35664632 PMCID: PMC9161393 DOI: 10.1021/acsomega.2c01193] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Aberrant glycosylation is a hallmark of cancer found during tumorigenesis and tumor progression. Lung cancer (LC) induced by oncogene mutations has been detected in the patient's saliva, and saliva glycosylation has been altered. Saliva contains highly glycosylated glycoproteins, the characteristics of which may be related to various diseases. Therefore, elucidating cancer-specific glycosylation in the saliva of healthy, non-cancer, and cancer patients can reveal whether tumor glycosylation has unique characteristics for early diagnosis. In this work, we used a solid-phase chemoenzymatic method to study the glycosylation of saliva glycoproteins in clinical specimens. The results showed that the α1,6-core fucosylation of glycoproteins was increased in cancer patients, whereas α1,2 or α1,3 fucosylation was significantly increased. We further analyzed the expression of fucosyltransferases responsible for α1,2, α1,3, and α1,6 fucosylation. The fucosylation of the saliva of cancer patients is drastically different from that of non-cancer or health controls. These results indicate that the glycoform of saliva fucosylation distinguishes LC from other diseases, and this feature has the potential to diagnose lung adenocarcinoma.
Collapse
Affiliation(s)
- Ziyuan Gao
- Center
for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Department
of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Pinghai Road No. 899, Suzhou 215000, China
| | - Zhen Wu
- State
Key Laboratory of Genetic Engineering, Department of Biochemistry,
School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ying Han
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Xumin Zhang
- State
Key Laboratory of Genetic Engineering, Department of Biochemistry,
School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Piliang Hao
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Mingming Xu
- Center
for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shan Huang
- Center
for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuwei Li
- Nanjing
Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China
| | - Jun Xia
- Department
of Clinical Laboratory Center, Zhejiang Provincial People’s
Hospital, People’s Hospital of Hangzhou
Medical College, Hangzhou, Zhejiang 310014, China
| | - Junhong Jiang
- Department
of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Pinghai Road No. 899, Suzhou 215000, China
- Department
of Pulmonary and Critical Care Medicine, Dushu Lake Hospital, Affiliated to Soochow University, Chongwen Road No. 9, Suzhou 215000, China
| | - Shuang Yang
- Center
for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
46
|
Zhang Y, Chai Y, Hu Z, Xu Z, Li M, Chen X, Yang C, Liu J. Recent Progress on Rapid Lateral Flow Assay-Based Early Diagnosis of COVID-19. Front Bioeng Biotechnol 2022; 10:866368. [PMID: 35592553 PMCID: PMC9111179 DOI: 10.3389/fbioe.2022.866368] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
The outbreak of the coronavirus disease 2019 (COVID-19) has resulted in enormous losses worldwide. Through effective control measures and vaccination, prevention and curbing have proven significantly effective; however, the disease has still not been eliminated. Therefore, it is necessary to develop a simple, convenient, and rapid detection strategy for controlling disease recurrence and transmission. Taking advantage of their low-cost and simple operation, point-of-care test (POCT) kits for COVID-19 based on the lateral flow assay (LFA) chemistry have become one of the most convenient and widely used screening tools for pathogens in hospitals and at home. In this review, we introduce essential features of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, compare existing detection methods, and focus on the principles, merits and limitations of the LFAs based on viral nucleic acids, antigens, and corresponding antibodies. A systematic comparison was realized through summarization and analyses, providing a comprehensive demonstration of the LFA technology and insights into preventing and curbing the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ying Zhang
- Central Laboratory, Longgang District People’s Hospital of Shenzhen and The Second Affiliated Hospital of the Chinese University of Hong Kong, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yujuan Chai
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zulu Hu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Meirong Li
- Central Laboratory, Longgang District People’s Hospital of Shenzhen and The Second Affiliated Hospital of the Chinese University of Hong Kong, Shenzhen, China
| | - Xin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jia Liu
- Central Laboratory, Longgang District People’s Hospital of Shenzhen and The Second Affiliated Hospital of the Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
47
|
Wu Y, Ji D, Dai C, Kong D, Chen Y, Wang L, Guo M, Liu Y, Wei D. Triple-Probe DNA Framework-Based Transistor for SARS-CoV-2 10-in-1 Pooled Testing. NANO LETTERS 2022; 22:3307-3316. [PMID: 35426688 PMCID: PMC9017248 DOI: 10.1021/acs.nanolett.2c00415] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/10/2022] [Indexed: 05/03/2023]
Abstract
Accurate and population-scale screening technology is crucial in the control and prevention of COVID-19, such as pooled testing with high overall testing efficiency. Nevertheless, pooled testing faces challenges in sensitivity and specificity due to diluted targets and increased contaminations. Here, we develop a graphene field-effect transistor sensor modified with triple-probe tetrahedral DNA framework (TDF) dimers for 10-in-1 pooled testing of SARS-CoV-2 RNA. The synergy effect of triple probes as well as the special nanostructure achieve a higher binding affinity, faster response, and better specificity. The detectable concentration reaches 0.025-0.05 copy μL-1 in unamplified samples, lower than that of the reverse transcript-polymerase chain reaction. Without a requirement of nucleic-acid amplification, the sensors identify all of the 14 positive cases in 30 nasopharyngeal swabs within an average diagnosis time of 74 s. Unamplified 10-in-1 pooled testing enabled by the triple-probe TDF dimer sensor has great potential in the screening of COVID-19 and other epidemic diseases.
Collapse
Affiliation(s)
- Yungen Wu
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Daizong Ji
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Changhao Dai
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Derong Kong
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Yiheng Chen
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Liqian Wang
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public
Health Clinical Center, Fudan University, Shanghai 201508,
China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
| | - Dacheng Wei
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| |
Collapse
|
48
|
Mukherjee S, Ray SK. A new wave of COVID-19 in 2021 with unique genetic characters -present global scenario and beholding onwards. Infect Disord Drug Targets 2022; 22:29-40. [PMID: 35366784 DOI: 10.2174/1871526522666220401101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/06/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
After the first report of a coronavirus-associated pneumonia outbreak in December 2019, the virus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) that causes the infection/disease (COVID-19) has developed into a pandemic, with >100 million people infected in over 210 countries along with two million people have died from COVID-19 till today. Coronaviruses are positive-stranded RNA viruses having restricted RNA polymerase proofreading ability thus it is very genetically susceptible to mutation. The evolution of SARS-CoV-2 from a single-point zoonotic introduction in Wuhan in November or December 2019 was widely expected, and viral sequence surveillance was developed as a result. When the first sequence of SARS-CoV-2 was released, a race to develop vaccines started, and several vaccines are now used worldwide. Independent SARS-CoV-2 lineages have recently been identified in the UK (B.1.1.7), Brazil (P.1), South Africa (B.1.351), and India (B.1.617). The recent appearance of several SARS-CoV-2 variant strains has shattered faith in the modern generation of vaccines' ability to provide enduring defense against infection. The risk of escaping natural and induced immunity has encouraged an urgency to comprehend the implications of these improvements, as well as a drive to develop new approaches to combat SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Sukhes Mukherjee
- Department of Biochemistry All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020. India
| | | |
Collapse
|
49
|
Svitková V, Konderíková K, Nemčeková K. Photoelectrochemical aptasensors for detection of viruses. MONATSHEFTE FUR CHEMIE 2022; 153:963-970. [PMID: 35345838 PMCID: PMC8943106 DOI: 10.1007/s00706-022-02913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/15/2022] [Indexed: 10/31/2022]
Abstract
Photoelectrochemistry (PEC) is a dynamic discipline studying the effect of light on photoelectrode or photosensitive material, and the conversion from solar energy into electrical power. The basic PEC process refers to the oxidation or reduction reactions between electrochemical active species in solution and photoactive materials that occurred at the electrode/electrolyte interface during illumination. In recent years, the PEC biosensing approaches have also been developed by the combination of the PEC technique with bioanalysis, where the interaction between biological recognition element and analyte influences a photocurrent signal. This involves the charge and energy transfer of PEC reaction between electron donor/acceptor and photoactive material upon light irradiation. Coupling the advantages of PEC bioanalysis and aptamers has provided new concepts for highly selective and sensitive biosensors development, applicable in human health monitoring and environmental protection. In a typical assay, a photoactive material converts the affinity binding properties of aptamers into a detectable electrical signal, presenting an innovative method for probing numerous aptamer-analyte interactions. Using different aptamer probes aiming for specific purposes, more sensing strategies with rational design and exquisite signaling mechanisms have been proposed. This review concentrated on the current topic of PEC aptasensors that are used for the detection of viruses. The prospects in this area are also discussed. Graphical abstract
Collapse
Affiliation(s)
- Veronika Svitková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| | - Kristína Konderíková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| | - Katarína Nemčeková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| |
Collapse
|
50
|
Harun-Ur-Rashid M, Foyez T, Jahan I, Pal K, Imran AB. Rapid diagnosis of COVID-19 via nano-biosensor-implemented biomedical utilization: a systematic review. RSC Adv 2022; 12:9445-9465. [PMID: 35424900 PMCID: PMC8959446 DOI: 10.1039/d2ra01293f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
The novel human coronavirus pandemic is one of the most significant occurrences in human civilization. The rapid proliferation and mutation of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) have created an exceedingly challenging situation throughout the world's healthcare systems ranging from underdeveloped countries to super-developed countries. The disease is generally recognized as coronavirus disease 2019 (COVID-19), and it is caused by a new human CoV, which has put mankind in jeopardy. COVID-19 is death-dealing and affects people of all ages, including the elderly and middle-aged people, children, infants, persons with co-morbidities, and immunocompromised patients. Moreover, multiple SARS-CoV-2 variants have evolved as a result of genetic alteration. Some variants cause severe symptoms in patients, while others cause an unusually high infection rate, and yet others cause extremely severe symptoms as well as a high infection rate. Contrasting with a previous epidemic, COVID-19 is more contagious since the spike protein of SARS-CoV-2 demonstrates profuse affection to angiotensin-converting enzyme II (ACE2) that is copiously expressed on the surface of human lung cells. Since the estimation and tracking of viral loads are essential for determining the infection stage and recovery duration, a quick, accurate, easy, cheap, and versatile diagnostic tool is critical for managing COVID-19, as well as for outbreak control. Currently, Reverse Transcription Polymerase Chain Reaction (RT-PCR) testing is the most often utilized approach for COVID-19 diagnosis, while Computed Tomography (CT) scans of the chest are used to assess the disease's stages. However, the RT-PCR method is non-portable, tedious, and laborious, and the latter is not capable of detecting the preliminary stage of infection. In these circumstances, nano-biosensors can play an important role to deliver point-of-care diagnosis for a variety of disorders including a wide variety of viral infections rapidly, economically, precisely, and accurately. New technologies are being developed to overcome the drawbacks of the current methods. Nano-biosensors comprise bioreceptors with electrochemical, optical, or FET-based transduction for the specific detection of biomarkers. Different types of organic-inorganic nanomaterials have been incorporated for designing, fabricating, and improving the performance and analytical ability of sensors by increasing sensitivity, adsorption, and biocompatibility. The particular focus of this review is to carry out a systematic study of the status and perspectives of synthetic routes for nano-biosensors, including their background, composition, fabrication processes, and prospective applications in the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology Dhaka 1230 Bangladesh
| | - Tahmina Foyez
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University Dhaka 1229 Bangladesh
| | - Israt Jahan
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University Nagoya Japan
| | - Kaushik Pal
- University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University Punjab 140413 India
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh
| |
Collapse
|