1
|
Wei MZ, Wang ZJ, Zhu YY, Zu WB, Zhao YL, Luo XD. Oleanolic acid derivatives against drug-resistant bacteria and fungi by multi-targets to avoid drug resistance. Eur J Med Chem 2024; 280:116940. [PMID: 39388902 DOI: 10.1016/j.ejmech.2024.116940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Mixed infections caused by drug-resistant bacteria and fungi pose a severe threat to human health, and multi-target drugs may provide an effective approach to combat drug-resistant pathogens. Therefore, this study aimed to investigate the efficacies of some oleanolic acid (OA) derivatives against multidrug-resistant (MDR) bacteria and fungi using in vitro and in vivo experiments. Novel amphiphilic OA derivatives were designed and optimised, in which compounds G1 and J1 exhibited effective antimicrobial activity (MICs = 1-2 μg/mL), high selectivity against MDR strains, rapid bactericidal activity, and good predictive pharmacokinetics. Mechanistically, both compounds prevented drug resistance by disrupting the bacterial cell membrane, inserting into the DNA, and binding to DNA gyrase. Additionally, J1 reduced microbial count in a mouse MRSA skin infection model and accelerated wound healing much better than vancomycin. Conclusively, this study presents a new class of potential drugs for resistant bacteria and fungi.
Collapse
Affiliation(s)
- Mei-Zhen Wei
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Yan-Yan Zhu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Wen-Biao Zu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
2
|
Arévalo-Jaimes BV, Salinas-Pena M, Ponte I, Jordan A, Roque A, Torrents E. Antimicrobial and antibiofilm activity of human recombinant H1 histones against bacterial infections. mSystems 2024; 9:e0070424. [PMID: 39470247 PMCID: PMC11575268 DOI: 10.1128/msystems.00704-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Histones possess significant antimicrobial potential, yet their activity against biofilms remains underexplored. Moreover, concerns regarding adverse effects limit their clinical implementation. We investigated the antibacterial efficacy of human recombinant histone H1 subtypes against Pseudomonas aeruginosa PAO1, both planktonic and in biofilms. After the in vitro tests, toxicity and efficacy were assessed in a P. aeruginosa PAO1 infection model using Galleria mellonella larvae. Histones were also evaluated in combination with ciprofloxacin (Cpx) and gentamicin (Gm). Our results demonstrate antimicrobial activity of all three histones against P. aeruginosa PAO1, with H1.0 and H1.4 showing efficacy at lower concentrations. The bactericidal effect was associated with a mechanism of membrane disruption. In vitro studies using static and dynamic models showed that H1.4 had antibiofilm potential by reducing cell biomass. Neither H1.0 nor H1.4 showed toxicity in G. mellonella larvae, and both increased larvae survival when infected with P. aeruginosa PAO1. Although in vitro synergism was observed between ciprofloxacin and H1.0, no improvement over the antibiotic alone was noted in vivo. Differences in antibacterial and antibiofilm activity were attributed to sequence and structural variations among histone subtypes. Moreover, the efficacy of H1.0 and H1.4 was influenced by the presence and strength of the extracellular matrix. These findings suggest histones hold promise for combating acute and chronic infections caused by pathogens such as P. aeruginosa.IMPORTANCEThe constant increase of multidrug-resistant bacteria is a critical global concern. The inefficacy of current therapies to treat bacterial infections is attributed to multiple mechanisms of resistance, including the capacity to form biofilms. Therefore, the identification of novel and safe therapeutic strategies is imperative. This study confirms the antimicrobial potential of three histone H1 subtypes against both Gram-negative and Gram-positive bacteria. Furthermore, histones H1.0 and H1.4 demonstrated in vivo efficacy without associated toxicity in an acute infection model of Pseudomonas aeruginosa PAO1 in Galleria mellonella larvae. The bactericidal effect of these proteins also resulted in biomass reduction of P. aeruginosa PAO1 biofilms. Given the clinical significance of this opportunistic pathogen, our research provides a comprehensive initial evaluation of the efficacy, toxicity, and mechanism of action of a potential new therapeutic approach against acute and chronic bacterial infections.
Collapse
Affiliation(s)
- Betsy Verónica Arévalo-Jaimes
- Bacterial infections and antimicrobial therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | | | - Inmaculada Ponte
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Alicia Roque
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eduard Torrents
- Bacterial infections and antimicrobial therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Günther A, Zalewski P, Sip S, Ruszkowski P, Bednarczyk-Cwynar B. Acetylation of Oleanolic Acid Dimers as a Method of Synthesis of Powerful Cytotoxic Agents. Molecules 2024; 29:4291. [PMID: 39339286 PMCID: PMC11434080 DOI: 10.3390/molecules29184291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Oleanolic acid, a naturally occurring triterpenoid compound, has garnered significant attention in the scientific community due to its diverse pharmacological properties. Continuing our previous work on the synthesis of oleanolic acid dimers (OADs), a simple, economical, and safe acetylation reaction was performed. The newly obtained derivatives (AcOADs, 3a-3n) were purified using two methods. The structures of all acetylated dimers (3a-3n) were determined based on spectral methods (IR, NMR). For all AcOADs (3a-3n), the relationship between the structure and the expected directions of pharmacological activity was determined using a computational method (QSAR computational analysis). All dimers were also tested for their cytotoxic activity on the SKBR-3, SKOV-3, PC-3, and U-87 cancer cell lines. HDF cell line was applied to evaluate the Selectivity Index of the tested compounds. All cytotoxic tests were performed with the application of the MTT assay. Finally, all dimers of oleanolic acid were subjected to DPPH and CUPRAC tests to evaluate their antioxidant activity. The obtained results indicate a very high level of cytotoxic activity (IC50 for most AcOADs below 5.00 µM) and a fairly high level of antioxidant activity (Trolox equivalent in some cases above 0.04 mg/mL).
Collapse
Affiliation(s)
- Andrzej Günther
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 2 (CP.2), Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 1 (CP.1), Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Szymon Sip
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 1 (CP.1), Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Piotr Ruszkowski
- Department of Pharmacology, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 1 (CP.1), Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 2 (CP.2), Rokietnicka Str. 3, 60-806 Poznan, Poland
- Center of Innovative Pharmaceutical Technology (CITF), Rokietnicka Str. 3, 60-806 Poznan, Poland
| |
Collapse
|
4
|
Fontana G, Badalamenti N, Bruno M, Maggi F, Dell’Annunziata F, Capuano N, Varcamonti M, Zanfardino A. Biological Properties of Oleanolic Acid Derivatives Bearing Functionalized Side Chains at C-3. Int J Mol Sci 2024; 25:8480. [PMID: 39126048 PMCID: PMC11312724 DOI: 10.3390/ijms25158480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Triterpene acids are a class of pentacyclic natural carboxylic compounds endowed with a variety of biological activities including antitumor, antimicrobial, and hepatoprotective effects. In this work, several oleanolic acid derivatives were synthesized by structurally modifying them on the C-3 position. All synthesized derivatives were evaluated for possible antibacterial and antiviral activity, and among all the epimers, 6 and 7 demonstrated the best biological activities. Zone-of-inhibition analyses were conducted against two strains, E. coli as a Gram-negative and S. aureus as a Gram-positive model. Subsequently, experiments were performed using the microdilution method to determine the minimum inhibitory concentration (MIC). The results showed that only the derivative with reduced hydrogen bonding ability on ring A possesses remarkable activity toward E. coli. The conversion from acid to methyl ester implies a loss of activity, probably due to a reduced affinity with the bacterial membrane. Before the antiviral activity, the cytotoxicity of triterpenes was evaluated through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Samples 6 and 7 showed less than 50% cytotoxicity at 0.625 and 1 mg/mL, respectively. The antiviral activity against SARS-CoV-2 and PV-1 did not indicate that triterpene acids had any inhibitory capacity in the sub-toxic concentration range.
Collapse
Affiliation(s)
- Gianfranco Fontana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.F.); (N.B.); (M.B.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.F.); (N.B.); (M.B.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.F.); (N.B.); (M.B.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
- Centro Interdipartimentale di Ricerca “Riutilizzo Bio-Based degli Scarti da Matrici Agroalimentari” (RIVIVE), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Federica Dell’Annunziata
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (F.D.); (N.C.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Nicoletta Capuano
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (F.D.); (N.C.)
| | - Mario Varcamonti
- Department of Biology, University of Naples, Federico II, Via Cinthia, 80126 Naples, Italy; (M.V.); (A.Z.)
| | - Anna Zanfardino
- Department of Biology, University of Naples, Federico II, Via Cinthia, 80126 Naples, Italy; (M.V.); (A.Z.)
| |
Collapse
|
5
|
Jannus F, Sainz J, Reyes-Zurita FJ. Principal Bioactive Properties of Oleanolic Acid, Its Derivatives, and Analogues. Molecules 2024; 29:3291. [PMID: 39064870 PMCID: PMC11279785 DOI: 10.3390/molecules29143291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Natural products have always played an important role in pharmacotherapy, helping to control pathophysiological processes associated with human disease. Thus, natural products such as oleanolic acid (OA), a pentacyclic triterpene that has demonstrated important activities in several disease models, are in high demand. The relevant properties of this compound have motivated re-searchers to search for new analogues and derivatives using the OA as a scaffold to which new functional groups have been added or modifications have been realized. OA and its derivatives have been shown to be effective in the treatment of inflammatory processes, triggered by chronic diseases or bacterial and viral infections. OA and its derivatives have also been found to be effective in diabetic disorders, a group of common endocrine diseases characterized by hyperglycemia that can affect several organs, including the liver and brain. This group of compounds has been reported to exhibit significant bioactivity against cancer processes in vitro and in vivo. In this review, we summarize the bioactive properties of OA and its derivatives as anti-inflammatory, anti-bacterial, antiviral, anti-diabetic, hepatoprotective, neuroprotective, and anticancer agents.
Collapse
Affiliation(s)
- Fatin Jannus
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración, 114, PTS, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria IBs.Granada, 18010 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria IBs.Granada, 18010 Granada, Spain
| |
Collapse
|
6
|
Triaa N, Znati M, Ben Jannet H, Bouajila J. Biological Activities of Novel Oleanolic Acid Derivatives from Bioconversion and Semi-Synthesis. Molecules 2024; 29:3091. [PMID: 38999041 PMCID: PMC11243203 DOI: 10.3390/molecules29133091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Oleanolic acid (OA) is a vegetable chemical that is present naturally in a number of edible and medicinal botanicals. It has been extensively studied by medicinal chemists and scientific researchers due to its biological activity against a wide range of diseases. A significant number of researchers have synthesized a variety of analogues of OA by modifying its structure with the intention of creating more potent biological agents and improving its pharmaceutical properties. In recent years, chemical and enzymatic techniques have been employed extensively to investigate and modify the chemical structure of OA. This review presents recent advancements in medical chemistry for the structural modification of OA, with a special focus on the biotransformation, semi-synthesis and relationship between the modified structures and their biopharmaceutical properties.
Collapse
Affiliation(s)
- Nahla Triaa
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
- Laboratoire de Génie Chimique, Université Paul Sabatier, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Mansour Znati
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
| | - Hichem Ben Jannet
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université Paul Sabatier, CNRS, INPT, UPS, 31062 Toulouse, France
| |
Collapse
|
7
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
8
|
Asensio-López J, Lázaro-Díez M, Hernández-Cruz TM, Blanco-Cabra N, Sorzabal-Bellido I, Arroyo-Urea EM, Buetas E, González-Paredes A, Ortiz de Solórzano C, Burgui S, Torrents E, Monteserín M, Garmendia J. Multimodal evaluation of drug antibacterial activity reveals cinnamaldehyde analog anti-biofilm effects against Haemophilus influenzae. Biofilm 2024; 7:100178. [PMID: 38317668 PMCID: PMC10839773 DOI: 10.1016/j.bioflm.2024.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Biofilm formation by the pathobiont Haemophilus influenzae is associated with human nasopharynx colonization, otitis media in children, and chronic respiratory infections in adults suffering from chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD). β-lactam and quinolone antibiotics are commonly used to treat these infections. However, considering the resistance of biofilm-resident bacteria to antibiotic-mediated killing, the use of antibiotics may be insufficient and require being replaced or complemented with novel strategies. Moreover, unlike the standard minimal inhibitory concentration assay used to assess antibacterial activity against planktonic cells, standardization of methods to evaluate anti-biofilm drug activity is limited. In this work, we detail a panel of protocols for systematic analysis of drug antimicrobial effect on bacterial biofilms, customized to evaluate drug effects against H. influenzae biofilms. Testing of two cinnamaldehyde analogs, (E)-trans-2-nonenal and (E)-3-decen-2-one, demonstrated their effectiveness in both H. influenzae inhibition of biofilm formation and eradication or preformed biofilms. Assay complementarity allowed quantifying the dynamics and extent of the inhibitory effects, also observed for ampicillin resistant clinical strains forming biofilms refractory to this antibiotic. Moreover, cinnamaldehyde analog encapsulation into poly(lactic-co-glycolic acid) (PLGA) polymeric nanoparticles allowed drug vehiculization while maintaining efficacy. Overall, we demonstrate the usefulness of cinnamaldehyde analogs against H. influenzae biofilms, present a test panel that can be easily adapted to a wide range of pathogens and drugs, and highlight the benefits of drug nanoencapsulation towards safe controlled release.
Collapse
Affiliation(s)
- Javier Asensio-López
- Centro de Ingeniería de Superficies y Materiales Avanzados, Asociación de la Industria Navarra (AIN), Cordovilla, Spain
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - María Lázaro-Díez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Tania M. Hernández-Cruz
- Centro de Ingeniería de Superficies y Materiales Avanzados, Asociación de la Industria Navarra (AIN), Cordovilla, Spain
| | - Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology, and Statistics, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| | - Ioritz Sorzabal-Bellido
- Laboratory of Microphysiological Systems and Quantitative Biology, Biomedical Engineering Program, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Eva M. Arroyo-Urea
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
- Conexión Nanomedicina, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Elena Buetas
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Ana González-Paredes
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
- Conexión Nanomedicina, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Ortiz de Solórzano
- Laboratory of Microphysiological Systems and Quantitative Biology, Biomedical Engineering Program, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Oncológicas (CIBERONC), Madrid, Spain
| | - Saioa Burgui
- Centro de Ingeniería de Superficies y Materiales Avanzados, Asociación de la Industria Navarra (AIN), Cordovilla, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology, and Statistics, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| | - María Monteserín
- Centro de Ingeniería de Superficies y Materiales Avanzados, Asociación de la Industria Navarra (AIN), Cordovilla, Spain
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
9
|
Yang K, Wang SB, Pei D, Pu LM, Huang XY. Effective separation of maslinic acid and oleanolic acid from olive pomace using high-speed shear off-line coupled with high-speed countercurrent chromatography and their antibacterial activity test. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1236:124069. [PMID: 38442634 DOI: 10.1016/j.jchromb.2024.124069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
In this work, a high-speed shear extraction off-line coupling high-speed countercurrent chromatography method was developed to separate maslinic acid and oleanolic acid from olive pomace. To improve extraction efficiency, the polar disparity between maslinic acid and oleanolic acid necessitated the concurrent utilization of both polar and non-polar solvents during high-speed shear extraction. Then, the high-speed shear extraction was directly feed to high-speed countercurrent chromatography for subsequently separation. A total of 250 min were needed to complete the extraction and separation process. This yielded two molecules from 3.3 g of defatted olive pomace: 7.2 mg of 93.8 % pure maslinic acid and 2.3 mg of 90.1 % pure oleanolic acid, both determined by HPLC at 210 nm. Furthermore, the compounds exhibited inhibitory activity against Escherichia coli and Staphylococcus aureus. At a concentration of 100 μg/mL, its efficacy in inhibiting hyaluronidase was comparable to that of the standard drug indomethacin. Compared with the conventional separation method, this coupled technique reduced the whole time due to the direct injection of sample extraction solution. This technique provides a useful approach for the separation of natural products with significant polarity differences.
Collapse
Affiliation(s)
- Kun Yang
- College of Science, Gansu Agricultural University, Lanzhou 730000, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Sheng-Bing Wang
- College of Science, Gansu Agricultural University, Lanzhou 730000, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Dong Pei
- Yunnan Olive Health Industry Innovation Research and Development Co., Ltd, Lijiang 674100, China
| | - Lu-Mei Pu
- College of Science, Gansu Agricultural University, Lanzhou 730000, China.
| | - Xin-Yi Huang
- College of Science, Gansu Agricultural University, Lanzhou 730000, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China.
| |
Collapse
|
10
|
Yang H, Deng M, Jia H, Zhang K, Liu Y, Cheng M, Xiao W. A review of structural modification and biological activities of oleanolic acid. Chin J Nat Med 2024; 22:15-30. [PMID: 38278556 DOI: 10.1016/s1875-5364(24)60559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 01/28/2024]
Abstract
Oleanolic acid (OA), a pentacyclic triterpenoid, exhibits a broad spectrum of biological activities, including antitumor, antiviral, antibacterial, anti-inflammatory, hepatoprotective, hypoglycemic, and hypolipidemic effects. Since its initial isolation and identification, numerous studies have reported on the structural modifications and pharmacological activities of OA and its derivatives. Despite this, there has been a dearth of comprehensive reviews in the past two decades, leading to challenges in subsequent research on OA. Based on the main biological activities of OA, this paper comprehensively summarized the modification strategies and structure-activity relationships (SARs) of OA and its derivatives to provide valuable reference for future investigations into OA.
Collapse
Affiliation(s)
- Huali Yang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Minghui Deng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongwei Jia
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kaicheng Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China.
| |
Collapse
|
11
|
Woo S, Marquez L, Crandall WJ, Risener CJ, Quave CL. Recent advances in the discovery of plant-derived antimicrobial natural products to combat antimicrobial resistant pathogens: insights from 2018-2022. Nat Prod Rep 2023; 40:1271-1290. [PMID: 37439502 PMCID: PMC10472255 DOI: 10.1039/d2np00090c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Covering: 2018 to 2022Antimicrobial resistance (AMR) poses a significant global health threat. There is a rising demand for innovative drug scaffolds and new targets to combat multidrug-resistant bacteria. Before the advent of antibiotics, infections were treated with plants chosen from traditional medicine practices. Of Earth's 374 000 plant species, approximately 9% have been used medicinally, but most species remain to be investigated. This review illuminates discoveries of antimicrobial natural products from plants covering 2018 to 2022. It highlights plant-derived natural products with antibacterial, antivirulence, and antibiofilm activity documented in lab studies. Additionally, this review examines the development of novel derivatives from well-studied parent natural products, as natural product derivatives have often served as scaffolds for anti-infective agents.
Collapse
Affiliation(s)
- Sunmin Woo
- Center for the Study of Human Health, Emory University, USA
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - William J Crandall
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - Caitlin J Risener
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - Cassandra L Quave
- Center for the Study of Human Health, Emory University, USA
- Department of Dermatology, Emory University School of Medicine, USA.
| |
Collapse
|
12
|
Qi Y, Yang F, Gao Y, Zhu Q, Tang X, Wang C, Sun H. Role of biochar-derived DOM compositions in enhanced biodegradation of sulfamethoxazole and chloramphenicol. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131979. [PMID: 37423136 DOI: 10.1016/j.jhazmat.2023.131979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
In the study, we investigated the different compositions of biochar-derived dissolved organic matter (BDOM) that play a key role in the biodegradation of sulfamethoxazole (SMX) and chloramphenicol (CAP) by P. stutzeri and S. putrefaciens, and found that aliphatic compounds in Group 4, fulvic acid like in Region III, and solid microbial byproduct like in region IV are key common factors. The growth and antibiotic degradation efficiency of P. stutzeri and S. putrefaciens are positively correlated with the content of Group 4 and Region III, and negatively correlated with Region IV. This is consistent with the optimal biodegradation results of BDOM700 with the highest content of Group 4 and Region III. Additionally, the degradation efficiency of SMX by Pseudomonas stutzeri is negatively correlated with the percentage of polycyclic aromatics in Group 1, but not with CAP. Similarly, the percentage of fatty acids in S. putrefaciens was positively correlated with Group 1, whereas P. stutzeri did not. This indicates that some components of BDOM have varying effects on different bacteria or types of antibiotics. This study provides new insights into enhancing antibiotic biodegradation by controlling the composition of BDOM.
Collapse
Affiliation(s)
- Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fang Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yue Gao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China
| |
Collapse
|
13
|
Maslinic Acid Supplementation during the In Vitro Culture Period Ameliorates Early Embryonic Development of Porcine Embryos by Regulating Oxidative Stress. Animals (Basel) 2023; 13:ani13061041. [PMID: 36978582 PMCID: PMC10044061 DOI: 10.3390/ani13061041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023] Open
Abstract
As a pentacyclic triterpene, MA exhibits effective free radical scavenging capabilities. The purpose of this study was to explore the effects of MA on porcine early-stage embryonic development, oxidation resistance and mitochondrial function. Our results showed that 1 μM was the optimal concentration of MA, which resulted in dramatically increased blastocyst formation rates and improvement of blastocyst quality of in vitro-derived embryos from parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT). Further analysis indicated that MA supplementation not only significantly decreased the abundance of intracellular reactive oxygen species (ROS) and dramatically increased the abundance of intracellular reductive glutathione (GSH) in porcine early-stage embryos, but also clearly attenuated mitochondrial dysfunction and inhibited apoptosis. Moreover, Western blotting showed that MA supplementation upregulated OCT4 (p < 0.01), SOD1 (p < 0.0001) and CAT (p < 0.05) protein expression in porcine early-stage embryos. Collectively, our data reveal that MA supplementation exerts helpful effects on porcine early embryo development competence via regulation of oxidative stress (OS) and amelioration of mitochondrial function and that MA may be useful for increasing the in vitro production (IVP) efficiency of porcine early-stage embryos.
Collapse
|
14
|
Khojali WMA, Hussein W, Bin Break MK, Alafnan A, Huwaimel B, Khalifa NE, Badulla WFS, Alshammari RA, Alshammari LK, Alshammari RAR, Albarak SM, Alrkad EH, Mahboob T, Alshammari H. Chemical Composition, Antibacterial Activity and In Vitro Anticancer Evaluation of Ochradenus baccatus Methanolic Extract. Medicina (B Aires) 2023; 59:medicina59030546. [PMID: 36984547 PMCID: PMC10054464 DOI: 10.3390/medicina59030546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Background and Objectives: Ochradenus baccatus belongs to the family Resedaceae. It is widely spread in Saudi Arabia and other countries in Southwest Asia. O. baccatus is extensively used in traditional medicine as an anti-inflammatory and antibacterial agent, in addition to being a vital source of food for certain desert animal species. The aim of the present study was to investigate the chemical composition and antibacterial/anticancer activities of O. baccatus methanolic extracts collected from Hail, Saudi Arabia. Materials and Methods: The O. baccatus extracts were obtained by macerating the crude powder in methanol, followed by filtration and evaporation. Liquid chromatography–mass spectrometry (LC-MS) was used to analyze the methanolic extracts’ chemical constituents. Broth microdilution assay for minimum inhibitory concentration (MIC) determination was used to assess antimicrobial activity, while the extracts’ anticancer potential was assessed by sulforhodamine B Assay (SRB) assay. Results: The results of the antibacterial assay showed that the methanolic extracts from the roots and branches possessed varying degrees of activity against particular bacterial strains, with the highest activity being exerted by the branches’ extract against Escherichia coli and Salmonella typhimurium (St), demonstrating MIC values of 15.6 µg/mL and 20 µg/mL, respectively. Furthermore, the SRB cell viability assay revealed that only the branches’ extract inhibited the growth of A549 cancer cells, with an IC50 value of 86.19 µg/mL. The LC-MS analysis of the methanolic extracts from the plant’s roots and branches was then conducted, resulting in the identification of 8 and 13 major chemical constituents, respectively. Azelaic acid, β-amyrin, and phytanic acid are some of the bioactive compounds that were detected in the extracts via LC-MS, and they are thought to be responsible for the observed antibacterial/anticancer activity of O. baccatus methanolic extracts. Conclusions: This study confirmed the antibacterial/anticancer potential of O. baccatus methanolic extracts and analyzed their phytochemical constituents. Further isolation and biological screening are warranted to understand the therapeutic potential of O. baccatus.
Collapse
Affiliation(s)
- Weam M. A. Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Omdurman Islamic University, Al Khartoum 14415, Sudan
| | - Weiam Hussein
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aden University, Aden 6075, Yemen
- Correspondence: (W.H.); (M.K.B.B.)
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia
- Correspondence: (W.H.); (M.K.B.B.)
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia
| | - Nasrin E. Khalifa
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11115, Sudan
| | - Wafa F. S. Badulla
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aden University, Aden 6075, Yemen
| | | | - Lama Khalid Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia
| | | | - Sara Mohsen Albarak
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia
| | - Enas Hmdan Alrkad
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia
| | - Tooba Mahboob
- Faculty of Pharmaceutical Sciences, UCSI University, KL Campus, Kuala Lumpur 56000, Malaysia
| | - Hisham Alshammari
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia
| |
Collapse
|
15
|
Popović M, Burčul F, Veršić Bratinčević M, Režić Mužinić N, Skroza D, Frleta Matas R, Nazlić M, Ninčević Runjić T, Jukić Špika M, Bego A, Dunkić V, Vitanović E. In the Beginning Was the Bud: Phytochemicals from Olive ( Olea europaea L.) Vegetative Buds and Their Biological Properties. Metabolites 2023; 13:metabo13020237. [PMID: 36837856 PMCID: PMC9966879 DOI: 10.3390/metabo13020237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Even though Olea europaea L. is one of the most important and well-studied crops in the world, embryonic parts of the plants remain largely understudied. In this study, comprehensive phytochemical profiling of olive vegetative buds of two Croatian cultivars, Lastovka and Oblica, was performed with an analysis of essential oils and methanol extracts as well as biological activities (antioxidant, antimicrobial, and cytotoxic activities). A total of 113 different volatiles were identified in essential oils with hydrocarbons accounting for up to 60.30% and (Z)-3-heptadecene being the most abundant compound. Oleacein, oleuropein, and 3-hydroxytyrosol had the highest concentrations of all phenolics in the bud extracts. Other major compounds belong to the chemical classes of sugars, fatty acids, and triterpenoid acids. Antioxidant, antimicrobial, and cytotoxic activities were determined for both cultivars. Apart from antioxidant activity, essential oils had a weak overall biological effect. The extract from cultivar Lastovka showed much better antioxidant activity than both isolates with both methods (with an oxygen radical absorbance capacity value of 1835.42 μM TE/g and DPPH IC50 of 0.274 mg/mL), as well as antimicrobial activity with the best results against Listeria monocytogenes. The human breast adenocarcinoma MDA-MB-231 cell line showed the best response for cultivar Lastovka bud extract (IC50 = 150 μg/mL) among three human cancer cell lines tested. These results demonstrate great chemical and biological potential that is hidden in olive buds and the need to increase research in the area of embryonic parts of plants.
Collapse
Affiliation(s)
- Marijana Popović
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
- Correspondence: ; Tel.: +385-21434450
| | - Franko Burčul
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Maja Veršić Bratinčević
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Nikolina Režić Mužinić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Roberta Frleta Matas
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia
| | - Marija Nazlić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Tonka Ninčević Runjić
- Department for Plant Sciences, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Maja Jukić Špika
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Ana Bego
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Valerija Dunkić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Elda Vitanović
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| |
Collapse
|
16
|
Development of a ternary cyclodextrin–arginine–ciprofloxacin antimicrobial complex with enhanced stability. Commun Biol 2022; 5:1234. [DOI: 10.1038/s42003-022-04197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractDesigning useful functionalities in clinically validated, old antibiotics holds promise to provide the most economical solution for the global lack of effective antibiotics, as undoubtedly a serious health threat. Here we show that using the surface chemistry of the cyclodextrin (βCD) cycle and arginine (arg) as a linker, provides more stable ternary antibiotic complex (βCD-arg-cpx). In contrast to classical less stable inclusion complexes, which only modify antibiotic solubility, here-presented ternary complex is more stable and controls drug release. The components of the complex intensify interactions with bacterial membranes and increase the drug’s availability inside bacterial cells, thereby improving its antimicrobial efficacy and safety profile. Multifunctional antibiotics, formulated as drug delivery systems per se, that take the drug to the site of action, maximize its efficacy, and provide optical detectability are envisaged as the future in fighting against infections. Their role as a tool against multiresistant strains remains as interesting challenge open for further research.
Collapse
|
17
|
Interference in the production of bacterial virulence factors by olive oil processing waste. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Novel Biotransformation of Maslinic Acid to MA-2-O-β-D-Glucoside by UDP-Glycosyltransferases from Bacillus subtilis. Catalysts 2022. [DOI: 10.3390/catal12080884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Maslinic acid (MA) is a pentacyclic triterpenoid which originates from olive and other plants. Though MA possesses multiple biological activities, it has limitations due to its poor water solubility. YojK, YjiC, and UGT109A3 UDP-glycosyltransferases (UGTs) from Bacillus subtilis (B. subtilis) were utilized to catalyze the conjugation of MA with UDP-Glucose to generate a new MA glycosylation product, MA-2-O-β-D-glucoside (MA-2-O-β-D-Glu). The experimental results indicated that the resultant water solubility of MA-2-O-β-D-Glu is 1.69 times higher than that of MA. In addition, the recombinant YojK showed maximum activity at 40 °C with a pH range of 8.0−10.0, while the recombinant YjiC showed maximum activity at 45 °C with a pH of 8.0, and the recombinant UGT109A3 showed maximum activity at 40 °C with a pH of 8.0. Mg2+ is an important factor for efficient catalysis by three recombinant glycosyltransferases. The chemical conversion rate of the recombinant YojK, YjiC, and UGT109A3 is nearly 100% at their optimum pH, temperature, and metal ions. Furthermore, eight essential residues of three UGTs for MA glycosylation modification were further determined by molecular docking and site-directed mutagenesis. Thus, efficient glycosylation modification improves the water solubility of MA and provides a new potential method for the glycosylation modification of other pentacyclic triterpenoids.
Collapse
|
19
|
Bhattacharjee B, Mukherjee S, Mukherjee R, Haldar J. Easy Fabrication of a Polymeric Transparent Sheet to Combat Microbial Infection. ACS APPLIED BIO MATERIALS 2022; 5:3951-3959. [PMID: 35912488 DOI: 10.1021/acsabm.2c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surges in infectious diseases and their transmission in households and commercial and healthcare settings have increased the use of polymeric materials as protective covers. Despite ongoing efforts, conventional polymeric materials still pose the threat of surface-associated transmission of pathogens due to the fact that they lack antimicrobial properties. Here, we have developed an easy-to-fabricate polymeric sheet [quaternary polymeric transparent sheet (QPTS)] that shows an excellent antimicrobial property and is also transparent in nature, increasing its practical applications in a wide range of surfaces. The sheet was fabricated by combining cationic amphiphilic water-soluble polyethylenimine derivative (QPEINH-C6) and poly(vinyl alcohol) (PVA). The optimum composition (QPTS-3) exhibited a complete reduction of bacterial and fungal infection (∼3-4 log reduction) within 15 min. QPTS-3 also exhibited activity against antibiotic-insusceptible metabolically inactive bacterial cells. The sheet prevented the growth of MRSA biofilm even after 72 h of incubation, which was confirmed through electron microscopy on the QPTS sheet. Most importantly, ∼99.9% of the influenza viral load was reduced completely within 30 min of exposure of the sheet. Apart from the antimicrobial property, the sheet successfully retained its transparency (∼88%) and maintained a significant mechanical strength (∼15 N), highlighting its potential applications in commercial and healthcare settings.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, 560064 Karnataka, India
| | - Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, 560064 Karnataka, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, 560064 Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, 560064 Karnataka, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, 560064 Karnataka, India
| |
Collapse
|
20
|
Bhattacharjee B, Mukherjee R, Haldar J. Biocompatible Hemostatic Sponge Exhibiting Broad-Spectrum Antibacterial Activity. ACS Biomater Sci Eng 2022; 8:3596-3607. [PMID: 35802178 DOI: 10.1021/acsbiomaterials.2c00410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemorrhage during accidents or surgery is a significant challenge that can contribute to mortality. This is further aggravated due to bacterial infections at the injured site. Therefore, rapid application of a hemostatic and antibacterial material is highly necessary as a pretreatment for patients' survival. Herein, we have developed a hemostatic sponge (Hemobac) through amide crosslinking of gelatin and an N-(2-hydroxy) propyl-3-trimethylammonium chitosan (HTCC)-silver chloride nanocomposite (QAm1-Ag0.1) to mitigate bacterial infections, while aiding hemostasis. This Hemobac sponge completely eradicated (∼4-5 log) a wide range of Gram-positive and Gram-negative bacteria encompassing various clinical isolates within 6 h. The antihemorrhagic ability of Hemobac was ascertained through SEM images, which exhibited the presence of agglomerated blood cells onto the sponge with a significantly low blood-clotting index value (∼23 ± 1). Notably, Hemobac reduced the blood loss by ∼70-80% in the liver puncture model and femoral vein injury model in mice, displaying its improved hemostatic ability over a marketed gelatin-based sponge. Negligible hemolytic activity (∼6%) and retained healthy morphology of mammalian cells were observed upon exposure to the Hemobac sponge. Minimal immune response was noticed at the Hemobac-treated wound in mice through histopathology analysis. Collectively, these findings indicate that this biocompatible Hemobac sponge can stop the bleeding instantaneously and combat bacterial infections.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
21
|
Neutralization of ionic interactions by dextran-based single-chain nanoparticles improves tobramycin diffusion into a mature biofilm. NPJ Biofilms Microbiomes 2022; 8:52. [PMID: 35787627 PMCID: PMC9253323 DOI: 10.1038/s41522-022-00317-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
The extracellular matrix protects biofilm cells by reducing diffusion of antimicrobials. Tobramycin is an antibiotic used extensively to treat P. aeruginosa biofilms, but it is sequestered in the biofilm periphery by the extracellular negative charge matrix and loses its efficacy significantly. Dispersal of the biofilm extracellular matrix with enzymes such as DNase I is another promising therapy that enhances antibiotic diffusion into the biofilm. Here, we combine the charge neutralization of tobramycin provided by dextran-based single-chain polymer nanoparticles (SCPNs) together with DNase I to break the biofilm matrix. Our study demonstrates that the SCPNs improve the activity of tobramycin and DNase I by neutralizing the ionic interactions that keep this antibiotic in the biofilm periphery. Moreover, the detailed effects and interactions of nanoformulations with extracellular matrix components were revealed through time-lapse imaging of the P. aeruginosa biofilms by laser scanning confocal microscopy with specific labeling of the different biofilm components.
Collapse
|
22
|
Bhattacharjee B, Jolly L, Mukherjee R, Haldar J. An easy-to-use antimicrobial hydrogel effectively kills bacteria, fungi, and influenza virus. Biomater Sci 2022; 10:2014-2028. [PMID: 35294508 DOI: 10.1039/d2bm00134a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Various drug resistant pathogens such as bacteria, fungi and viruses enter a host through different routes, which can lead to health-related problems and even fatalities. Propagation of these infectious microbes majorly occurs through the mucosal openings or upon topical contact. To curb their transmission or to cure infections associated with these pathogens, herein we describe the development of an antimicrobial hydrogel, based on a water soluble quaternary lipophilic polyethyleneimine derivative (QPEINH-C6). The cationic polymer QPEINH-C6 exhibited antibacterial activity against drug-resistant Gram-positive bacteria (MIC = 10-62 μg mL-1) and Gram-negative bacteria (MIC = 117-123 μg mL-1). The derivative showed killing of human pathogenic fungi (MIC = 58-67 μg mL-1), including their clinical isolates. The rapid bactericidal and fungicidal nature were confirmed from the fast inactivation kinetics of bacterial cells (methicillin resistant S. aureus and vancomycin resistant S. aureus) within 3-6 hours and C. albicans within 1 h with ∼5-6 log reduction in the microbial burden. This antibacterial and antifungal cationic polymer was then used to construct an antimicrobial shear-thinning hydrogel (Bacfuvir), through non-covalent crosslinking with biocompatible gellan and polyvinyl alcohol (PVA). This hydrogel displayed ∼5-7 log reduction of numerous multidrug-resistant bacteria and their stationary phase cells which are insusceptible to conventional antibiotics. In addition, >99.9 % viable bacterial burden was reduced from preformed biofilm matrices of drug-resistant bacteria. Alongside, fluconazole-resistant C. albicans strains were killed completely within 15-60 min upon exposure to Bacfuvir gel. Most importantly, MRSA and C. albicans cells were reduced (3-4 log) in polymicrobial biofilms after hydrogel treatment. The hydrogel exhibited 99.9 % reduction of influenza viruses in a rapid manner. Due to the biocompatibility of Bacfuvir gel on topical application in a murine model and easy administration owing to its shear-thinning behaviour, this hydrogel can markedly contribute to mitigating drug-resistant bacterial, fungal and viral infections in healthcare settings.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jakkur, Bengaluru 560064, Karnataka, India
| | - Logia Jolly
- Antimicrobial Research Laboratory, New Chemistry Unit, Jakkur, Bengaluru 560064, Karnataka, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jakkur, Bengaluru 560064, Karnataka, India
- Antimicrobial Research Laboratory, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India.
| |
Collapse
|
23
|
Rufino-Palomares EE, Pérez-Jiménez A, García-Salguero L, Mokhtari K, Reyes-Zurita FJ, Peragón-Sánchez J, Lupiáñez JA. Nutraceutical Role of Polyphenols and Triterpenes Present in the Extracts of Fruits and Leaves of Olea europaea as Antioxidants, Anti-Infectives and Anticancer Agents on Healthy Growth. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072341. [PMID: 35408740 PMCID: PMC9000726 DOI: 10.3390/molecules27072341] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
There is currently a worldwide consensus and recognition of the undoubted health benefits of the so-called Mediterranean diet, with its intake being associated with a lower risk of mortality. The most important characteristics of this type of diet are based on the consumption of significant amounts of fruit, vegetables, legumes, and nuts, which provide, in addition to some active ingredients, fiber and a proportion of vegetable protein, together with extra virgin olive oil (EVOO) as the main sources of vegetable fat. Fish and meat from poultry and other small farm animals are the main sources of protein. One of the main components, as already mentioned, is EVOO, which is rich in monounsaturated fatty acids and to a lesser extent in polyunsaturated fatty acids. The intake of this type of nutrient also provides an important set of phytochemicals whose health potential is widely spread and agreed upon. These phytochemicals include significant amounts of anthocyanins, stilbenes, flavonoids, phenolic acids, and terpenes of varying complexities. Therefore, the inclusion in the diet of this type of molecules, with a proven healthy effect, provides an unquestionable preventive and/or curative activity on an important group of pathologies related to cardiovascular, infectious, and cancerous diseases, as well as those related to the metabolic syndrome. The aim of this review is therefore to shed light on the nutraceutical role of two of the main phytochemicals present in Olea europaea fruit and leaf extracts, polyphenols, and triterpenes, on healthy animal growth. Their immunomodulatory, anti-infective, antioxidant, anti-aging, and anti-carcinogenic capabilities show them to be potential nutraceuticals, providing healthy growth.
Collapse
Affiliation(s)
- Eva E. Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Amalia Pérez-Jiménez
- Department of Zoology, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain;
| | - Leticia García-Salguero
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Khalida Mokhtari
- Department of Biology, Faculty of Sciences, Mohammed I University, Oujda BP 717 60000, Morocco;
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Juan Peragón-Sánchez
- Department of Experimental Biology, Biochemistry and Molecular Biology Section, Faculty of Experimental Biology, University of Jaén, 23071 Jaén, Spain;
| | - José A. Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
- Correspondence: ; Tel.: +34-958-243-089; Fax: +34-958-249-945
| |
Collapse
|
24
|
Barman S, Dhanda G, Naik P, Mukherjee R, Jolly L, Joseph J, Haldar J. Multi‐Functional Small Molecules with Temporal Charge‐Switchability Tackle Infection and Inflammation. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Swagatam Barman
- Antimicrobial Research Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 India
| | - Geetika Dhanda
- Antimicrobial Research Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 India
| | - Poonam Naik
- LV Prasad Eye Institute, Microbiology Hyderabad 500034 India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 India
| | - Logia Jolly
- Antimicrobial Research Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 India
| | - Joveeta Joseph
- LV Prasad Eye Institute, Microbiology Hyderabad 500034 India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 India
- School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 India
| |
Collapse
|
25
|
Khwaza V, Oyedeji OO, Aderibigbe BA, Morifi E, Fonkui YT, Ndinteh DT, Nell M, Steenkamp V. Design of Oleanolic Acid-based Hybrid Compounds as Potential Pharmaceutical Scaffolds. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210604112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Infectious diseases, as well as cancer, are the leading causes of death
worldwide. Drug resistance usually results in their treatment requiring a combination of two or more
drugs.
Objective:
Oleanolic-based hybrid compounds were prepared via esterification and characterized
using FTIR, NMR and LC-MS. In vitro antibacterial and in vitro cytotoxicity studies were performed.
Method:
Oleanolic acid was hybridized with selected known pharmaceutical scaffolds via the carboxylic
acid functionality in order to develop therapeutics with increased biological activity. Antibacterial
activity was determined using the micro-dilution assay against selected Gram-positive and
Gram-negative bacteria and cytotoxicity using the sulforhodamine B assay.
Results:
Compound 8 displayed potent antibacterial effect against five strains of bacteria, such as
Bacillus subtilis, Staphylococcus aureus, Proteus vulgaris, Klebsiella oxytoca, and Escherichia coli,
with MIC values of 1.25, 0.078, 0.078, 1.25, 1.25 mg/mL when compared to the control, oleanolic
acid (MIC = 2.5 mg/mL). Furthermore, in vitro cytotoxicity, as determined using the SRB assay,
against selected cancer cells revealed that compound 7 was the most cytotoxic on MDA, DU145, and
MCF-7 cell lines with IC50 values of 69.87 ± 1.04, 73.2 ± 1.08, and 85.27 ± 1.02 μg/mL, respectively,
compared to oleanolic acid with an IC50 > 200 μg/mL.
Conclusion:
Hybridization of oleanolic acid was successful, and further development of these potential
antibacterial compounds with reduced cytotoxicity is therefore warranted.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice, Eastern
Cape, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice, Eastern
Cape, South Africa
| | - Blessing Atim Aderibigbe
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice, Eastern
Cape, South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry division, University of the Witwatersrand, Johannesburg
Private Bag X3, WITS, 2050, South Africa
| | - Youmbi Thierry Fonkui
- Department of Biotechnology and Food Technology, Faculty of Science,
University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Derek Tantoh Ndinteh
- Department of Applied Chemistry,
Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Margo Nell
- Department of
Pharmacology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Vanessa Steenkamp
- Department of
Pharmacology, Faculty of Health Sciences, University of Pretoria, South Africa
| |
Collapse
|
26
|
Hoenke S, Serbian I, Csuk R. A Malaprade cleavage, a McMurry ring closure and an intramolecular aldol contraction of maslinic acid’s ring A. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Synergistic effects of silver nanoparticles and cisplatin in combating inflammation and hyperplasia of airway stents. Bioact Mater 2021; 9:266-280. [PMID: 34820570 PMCID: PMC8586718 DOI: 10.1016/j.bioactmat.2021.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/04/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022] Open
Abstract
Anti-inflammatory and antihyperplasia activities are essential requirements for the successful use of airway stents. In this work, silver nanoparticles (AgNPs) and cisplatin (DDP) were combined in a synergistic modification strategy to improve the surface function of airway stents. Using polycaprolactone (PCL) as a drug carrier, a dual-functional PCL-AgNPs-DDP fiber film-coated airway stent was fabricated by electrospinning. The physicochemical and biological properties of the obtained fiber films were examined. The ATR-FTIR, XPS, SEM-EDS and TEM results suggested that AgNPs and DDP could be successfully immobilized onto the airway stent surface. The drug release and surface degradation results revealed that AgNPs and DDP can undergo sustained release from films for 30 d, and the weight loss was approximately 50% after 35 d. In addition, the dual-functional fiber film suppressed human embryonic lung fibroblast growth and exhibited excellent antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Furthermore, the effectiveness of the dual-functional fiber film-coated airway stent was evaluated by application to the trachea of New Zealand rabbits. The in vivo results indicated that PCL-AgNPs-DDP fiber film-coated airway stent can significantly inhibit granulation tissue formation and collagen deposition, reduced the expression of IL-8, TNF-α, IL-1α, PCNA, α-SMA and CD68, and ultimately achieved anti-inflammatory and antihyperplasia effects. Hence, this study provides a dual-functional surface-coated airway stent to address the clinical complications associated with respiratory tract inflammation and granulation tissue hyperplasia, thus inhibiting tracheal stenosis. This study provides a dual-functional PCL-AgNPs-DDP nanofiber film-coated airway stent. The airway stent processes antibacterial activity and suppress CCC-HPF-1 growth. The stent inhibits tracheal stenosis by antiinflammatory and antihyperplasia treatment.
Collapse
|
28
|
Verstraeten S, Catteau L, Boukricha L, Quetin-Leclercq J, Mingeot-Leclercq MP. Effect of Ursolic and Oleanolic Acids on Lipid Membranes: Studies on MRSA and Models of Membranes. Antibiotics (Basel) 2021; 10:antibiotics10111381. [PMID: 34827319 PMCID: PMC8615140 DOI: 10.3390/antibiotics10111381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and the major causative agent of life-threatening hospital- and community-acquired infections. A combination of antibiotics could be an opportunity to address the widespread emergence of antibiotic-resistant strains, including Methicillin-Resistant S. aureus (MRSA). We here investigated the potential synergy between ampicillin and plant-derived antibiotics (pentacyclic triterpenes, ursolic acid (UA) and oleanolic acid (OA)) towards MRSA (ATCC33591 and COL) and the mechanisms involved. We calculated the Fractional Inhibitory Concentration Index (FICI) and demonstrated synergy. We monitored fluorescence of Bodipy-TR-Cadaverin, propidium iodide and membrane potential-sensitive probe for determining the ability of UA and OA to bind to lipoteichoic acids (LTA), and to induce membrane permeabilization and depolarization, respectively. Both pentacyclic triterpenes were able to bind to LTA and to induce membrane permeabilization and depolarization in a dose-dependent fashion. These effects were not accompanied by significant changes in cellular concentration of pentacyclic triterpenes and/or ampicillin, suggesting an effect mediated through lipid membranes. We therefore focused on membranous effects induced by UA and OA, and we investigated on models of membranes, the role of specific lipids including phosphatidylglycerol and cardiolipin. The effect induced on membrane fluidity, permeability and ability to fuse were studied by determining changes in fluorescence anisotropy of DPH/generalized polarization of Laurdan, calcein release from liposomes, fluorescence dequenching of octadecyl-rhodamine B and liposome-size, respectively. Both UA and OA showed a dose-dependent effect with membrane rigidification, increase of membrane permeabilization and fusion. Except for the effect on membrane fluidity, the effect of UA was consistently higher compared with that obtained with OA, suggesting the role of methyl group position. All together the data demonstrated the potential role of compounds acting on lipid membranes for enhancing the activity of other antibiotics, like ampicillin and inducing synergy. Such combinations offer an opportunity to explore a larger antibiotic chemical space.
Collapse
Affiliation(s)
- Sandrine Verstraeten
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium; (S.V.); (L.C.); (L.B.)
- Université Catholique de Louvain, de Duve Institute, Cellular Biology, Avenue Hippocrate 75, UCL B1.75.02, 1200 Brussels, Belgium
| | - Lucy Catteau
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium; (S.V.); (L.C.); (L.B.)
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium;
| | - Laila Boukricha
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium; (S.V.); (L.C.); (L.B.)
| | - Joelle Quetin-Leclercq
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium;
| | - Marie-Paule Mingeot-Leclercq
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium; (S.V.); (L.C.); (L.B.)
- Correspondence:
| |
Collapse
|
29
|
Sequential Extraction of Hydroxytyrosol, Mannitol and Triterpenic Acids Using a Green Optimized Procedure Based on Ultrasound. Antioxidants (Basel) 2021; 10:antiox10111781. [PMID: 34829652 PMCID: PMC8614775 DOI: 10.3390/antiox10111781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/18/2023] Open
Abstract
Olive-derived biomasses contain bioactive compounds with health promoting effects as well as antioxidant and sweet-tasting properties. However, their sequential extraction has not been attained. In the present study, firstly antioxidants and mannitol were extracted from exhausted olive pomace (EOP) by an eco-friendly method, ultrasound-assisted water extraction (UAWE). The amplitude (20-80%), extraction time (2-18 min) and solid loading (2-15%, w/v) were evaluated according to a Box-Behnken experimental design. Using the response surface methodology, the optimal conditions for extraction were obtained: 80% amplitude, 11.5% solid loading and 16 min. It enabled the multi-response optimization of the total phenolic content (TPC) (40.04 mg/g EOP), hydroxytyrosol content (6.42 mg/g EOP), mannitol content (50.92 mg/g EOP) and antioxidant activity (ferric reducing power or FRAP, 50.95 mg/g EOP; ABTS, 100.64 mg/g EOP). Moreover, the phenolic profile of the extracts was determined by liquid chromatography-UV and mass spectrometry, identifying hydroxytyrosol as the main phenolic compound and other minor derivatives could be characterized. Scanning electron microscopy was used to analyze the morphological changes produced in the cellular structure of EOP after UAWE. In addition, the chemical composition of the extracted EOP solid was characterized for further valorization. Then, a second extraction step was performed in order to extract bioactive triterpenes from the latter solid. The triterpenes content in the extract was determined and the effect of the previous UAWE step on the triterpenes extraction was evaluated. In this case, the use of ultrasound enhanced the extraction of maslinic acid and oleanolic acid from pelletized EOP with no milling requirement. Overall, UAWE can be applied to obtain antioxidant compounds and mannitol as first extraction step from pelletized EOP while supporting the subsequent recovery of triterpenic acids.
Collapse
|
30
|
Cavitt TB, Pathak N. Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates. Pharmaceuticals (Basel) 2021; 14:ph14100977. [PMID: 34681201 PMCID: PMC8538270 DOI: 10.3390/ph14100977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023] Open
Abstract
Superhydrophilic and superhydrophobic substrates are widely known to inhibit the attachment of a variety of motile and/or nonmotile bacteria. However, the thermodynamics of attachment are complex. Surface energy measurements alone do not address the complexities of colloidal (i.e., bacterial) dispersions but do affirm that polar (acid-base) interactions (ΔGAB) are often more significant than nonpolar (Lifshitz-van der Waals) interactions (ΔGLW). Classical DLVO theory alone also fails to address all colloidal interactions present in bacterial dispersions such as ΔGAB and Born repulsion (ΔGBorn) yet accounts for the significant electrostatic double layer repulsion (ΔGEL). We purpose to model both motile (e.g., P. aeruginosa and E. coli) and nonmotile (e.g., S. aureus and S. epidermidis) bacterial attachment to both superhydrophilic and superhydrophobic substrates via surface energies and extended DLVO theory corrected for bacterial geometries. We used extended DLVO theory and surface energy analyses to characterize the following Gibbs interaction energies for the bacteria with superhydrophobic and superhydrophilic substrates: ΔGLW, ΔGAB, ΔGEL, and ΔGBorn. The combination of the aforementioned interactions yields the total Gibbs interaction energy (ΔGtot) of each bacterium with each substrate. Analysis of the interaction energies with respect to the distance of approach yielded an equilibrium distance (deq) that seems to be independent of both bacterial species and substrate. Utilizing both deq and Gibbs interaction energies, substrates could be designed to inhibit bacterial attachment.
Collapse
|
31
|
Yu L, Xie X, Cao X, Chen J, Chen G, Chen Y, Li G, Qin J, Peng F, Peng C. The Anticancer Potential of Maslinic Acid and Its Derivatives: A Review. Drug Des Devel Ther 2021; 15:3863-3879. [PMID: 34526766 PMCID: PMC8437384 DOI: 10.2147/dddt.s326328] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/14/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer is still an insurmountable problem for humans and critically attacking human health. In recent years, natural products have gained increasing attention in the field of anti-tumor due to their extensive sources and minimal side effects. Maslinic acid (MA), a pentacyclic triterpene acid mainly derived from the olive tree (Olea europaea L.) has been confirmed to possess great anti-cancer effects. This paper reviewed the inhibitory effect of MA and its derivatives on lung cancer, colon cancer, ovarian cancer, gastric cancer, lymphatic, leukemia, breast cancer, pancreatic cancer, melanoma, prostate cancer, renal cell carcinoma, gallbladder cancer, and bladder cancer, among others. MA inhibited the proliferation of various tumor cells and showed lower IC50 values in melanoma 518A2 cells and gastric cancer MKN28 cells compared with other cell lines. A series of semi-synthetic derivatives obtained by modifying MA chemical structure have been shown to have high cytotoxicity to human tumor cell lines, but low cytotoxicity to non-malignant cells, which is conducive to developing its potential as a chemotherapeutic agent. These studies suggest that MA derivatives have broad prospects in the development of antitumor therapeutics in the future and warrant further study.
Collapse
Affiliation(s)
- Lei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaoyu Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Guanru Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Gangmin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Junyuan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
32
|
Bhattacharjee B, Ghosh S, Patra D, Haldar J. Advancements in release-active antimicrobial biomaterials: A journey from release to relief. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1745. [PMID: 34374498 DOI: 10.1002/wnan.1745] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Escalating medical expenses due to infectious diseases are causing huge socioeconomic pressure on mankind globally. The emergence of antibiotic resistance has further aggravated this problem. Drug-resistant pathogens are also capable of forming thick biofilms on biotic and abiotic surfaces to thrive in a harsh environment. To address these clinical problems, various strategies including antibacterial agent delivering matrices and bactericidal coatings strategies have been developed. In this review, we have discussed various types of polymeric vehicles such as hydrogels, sponges/cryogels, microgels, nanogels, and meshes, which are commonly used to deliver antibiotics, metal nanoparticles, and biocides. Compositions of these polymeric matrices have been elaborately depicted by elucidating their chemical interactions and potential activity have been discussed. On the other hand, various implant/device-surface coating strategies which exploit the release-active mechanism of bacterial killing are discussed in elaboration. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Dipanjana Patra
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| |
Collapse
|
33
|
Seepe HA, Ramakadi TG, Lebepe CM, Amoo SO, Nxumalo W. Antifungal Activity of Isolated Compounds from the Leaves of Combretum erythrophyllum (Burch.) Sond. and Withania somnifera (L.) Dunal against Fusarium Pathogens. Molecules 2021; 26:4732. [PMID: 34443320 PMCID: PMC8401019 DOI: 10.3390/molecules26164732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/03/2022] Open
Abstract
Crop diseases caused by Fusarium pathogens, among other microorganisms, threaten crop production in both commercial and smallholder farming. There are increasing concerns about the use of conventional synthetic fungicides due to fungal resistance and the associated negative effects of these chemicals on human health, livestock and the environment. This leads to the search for alternative fungicides from nature, especially from plants. The objectives of this study were to characterize isolated compounds from Combretum erythrophyllum (Burch.) Sond. and Withania somnifera (L.) Dunal leaf extracts, evaluate their antifungal activity against Fusarium pathogens, their phytotoxicity on maize seed germination and their cytotoxicity effect on Raw 264.7 macrophage cells. The investigation led to the isolation of antifungal compounds characterized as 5-hydroxy-7,4'-dimethoxyflavone, maslinic acid (21-hydroxy-3-oxo-olean-12-en-28-oic acid) and withaferin A (4β,27-dihydroxy-1-oxo-5β,6β-epoxywitha-2-24-dienolide). The structural elucidation of the isolated compounds was established using nuclear magnetic resonance (NMR) spectroscopy, mass spectroscopy (MS) and, in comparison, with the available published data. These compounds showed good antifungal activity with minimum inhibitory concentrations (MIC) less than 1.0 mg/mL against one or more of the tested Fusarium pathogens (F. oxysporum, F. verticilloides, F. subglutinans, F. proliferatum, F. solani, F. graminearum, F. chlamydosporum and F. semitectum). The findings from this study indicate that medicinal plants are a good source of natural antifungals. Furthermore, the isolated antifungal compounds did not show any phytotoxic effects on maize seed germination. The toxicity of the compounds A (5-hydroxy-7,4'-dimethoxyflavone) and AI (4β,27-dihydroxy-1-oxo-5β,6β-epoxywitha-2-24-dienolide) was dose-dependent, while compound B (21-hydroxy-3-oxo-olean-12-en-28-oic acid) showed no toxicity effect against Raw 264.7 macrophage cells.
Collapse
Affiliation(s)
- Hlabana Alfred Seepe
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plants, Roodeplaat, Private Bag X293, Pretoria 0001, South Africa;
- Department of Chemistry, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa; (T.G.R.); (C.M.L.)
| | - Tselane Geneva Ramakadi
- Department of Chemistry, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa; (T.G.R.); (C.M.L.)
| | - Charity Mekgwa Lebepe
- Department of Chemistry, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa; (T.G.R.); (C.M.L.)
| | - Stephen O. Amoo
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plants, Roodeplaat, Private Bag X293, Pretoria 0001, South Africa;
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Winston Nxumalo
- Department of Chemistry, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa; (T.G.R.); (C.M.L.)
| |
Collapse
|
34
|
Blanco-Cabra N, López-Martínez MJ, Arévalo-Jaimes BV, Martin-Gómez MT, Samitier J, Torrents E. A new BiofilmChip device for testing biofilm formation and antibiotic susceptibility. NPJ Biofilms Microbiomes 2021; 7:62. [PMID: 34344902 PMCID: PMC8333102 DOI: 10.1038/s41522-021-00236-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Currently, three major circumstances threaten the management of bacterial infections: increasing antimicrobial resistance, expansion of chronic biofilm-associated infections, and lack of an appropriate approach to treat them. To date, the development of accelerated drug susceptibility testing of biofilms and of new antibiofouling systems has not been achieved despite the availability of different methodologies. There is a need for easy-to-use methods of testing the antibiotic susceptibility of bacteria that form biofilms and for screening new possible antibiofilm strategies. Herein, we present a microfluidic platform with an integrated interdigitated sensor (BiofilmChip). This new device allows an irreversible and homogeneous attachment of bacterial cells of clinical origin, even directly from clinical specimens, and the biofilms grown can be monitored by confocal microscopy or electrical impedance spectroscopy. The device proved to be suitable to study polymicrobial communities, as well as to measure the effect of antimicrobials on biofilms without introducing disturbances due to manipulation, thus better mimicking real-life clinical situations. Our results demonstrate that BiofilmChip is a straightforward tool for antimicrobial biofilm susceptibility testing that could be easily implemented in routine clinical laboratories.
Collapse
Affiliation(s)
- Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maria José López-Martínez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Monforte de Lemos 3-5, Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Betsy Verónica Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Monforte de Lemos 3-5, Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
35
|
Soltane R, Chrouda A, Mostafa A, Al-Karmalawy AA, Chouaïb K, dhahri A, Pashameah RA, Alasiri A, Kutkat O, Shehata M, Jannet HB, Gharbi J, Ali MA. Strong Inhibitory Activity and Action Modes of Synthetic Maslinic Acid Derivative on Highly Pathogenic Coronaviruses: COVID-19 Drug Candidate. Pathogens 2021; 10:623. [PMID: 34069460 PMCID: PMC8159111 DOI: 10.3390/pathogens10050623] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
In late December 2019, a novel coronavirus, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), escaped the animal-human interface and emerged as an ongoing global pandemic with severe flu-like illness, commonly known as coronavirus disease 2019 (COVID-19). In this study, a molecular docking study was carried out for seventeen (17) structural analogues prepared from natural maslinic and oleanolic acids, screened against SARS-CoV-2 main protease. Furthermore, we experimentally validated the virtual data by measuring the half-maximal cytotoxic and inhibitory concentrations of each compound. Interestingly, the chlorinated isoxazole linked maslinic acid (compound 17) showed promising antiviral activity at micromolar non-toxic concentrations. Thoughtfully, we showed that compound 17 mainly impairs the viral replication of SARS-CoV-2. Furthermore, a very promising SAR study for the examined compounds was concluded, which could be used by medicinal chemists in the near future for the design and synthesis of potential anti-SARS-CoV-2 candidates. Our results could be very promising for performing further additional in vitro and in vivo studies on the tested compound (17) before further licensing for COVID-19 treatment.
Collapse
Affiliation(s)
- Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Adham 21971, Saudi Arabia; (R.S.); (R.A.P.); (A.A.)
- Faculty of Sciences, Tunis El Manar University, Tunis 1068, Tunisia
| | - Amani Chrouda
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, Monastir University, Monastir 5000, Tunisia
- Institute of Analytical Sciences, UMR CNRS-UCBL-ENS 5280, 5 Rue la Doua, CEDEX 09, 69100 Villeurbanne, France
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, 12622 Cairo, Egypt; (O.K.); (M.S.); (M.A.A.)
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, 34518 New Damietta, Egypt;
| | - Karim Chouaïb
- Laboratory of Heterocyclic Chemistry, Faculty of Science of Monastir, University of Monastir, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, Monastir 5019, Tunisia; (K.C.); (H.B.J.)
| | - Abdelwaheb dhahri
- Polymer Materials Engineering, University of Lyon, UMR CNRS 5223, Lyon, 69100 Villeurbanne, France;
| | - Rami Adel Pashameah
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Adham 21971, Saudi Arabia; (R.S.); (R.A.P.); (A.A.)
| | - Ahlam Alasiri
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Adham 21971, Saudi Arabia; (R.S.); (R.A.P.); (A.A.)
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, 12622 Cairo, Egypt; (O.K.); (M.S.); (M.A.A.)
| | - Mahmoud Shehata
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, 12622 Cairo, Egypt; (O.K.); (M.S.); (M.A.A.)
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Faculty of Science of Monastir, University of Monastir, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, Monastir 5019, Tunisia; (K.C.); (H.B.J.)
| | - Jawhar Gharbi
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, 12622 Cairo, Egypt; (O.K.); (M.S.); (M.A.A.)
| |
Collapse
|
36
|
Vilela D, Blanco-Cabra N, Eguskiza A, Hortelao AC, Torrents E, Sanchez S. Drug-Free Enzyme-Based Bactericidal Nanomotors against Pathogenic Bacteria. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14964-14973. [PMID: 33769023 PMCID: PMC8478280 DOI: 10.1021/acsami.1c00986] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The low efficacy of current conventional treatments for bacterial infections increases mortality rates worldwide. To alleviate this global health problem, we propose drug-free enzyme-based nanomotors for the treatment of bacterial urinary-tract infections. We develop nanomotors consisting of mesoporous silica nanoparticles (MSNPs) that were functionalized with either urease (U-MSNPs), lysozyme (L-MSNPs), or urease and lysozyme (M-MSNPs), and use them against nonpathogenic planktonic Escherichia coli. U-MSNPs exhibited the highest bactericidal activity due to biocatalysis of urea into NaHCO3 and NH3, which also propels U-MSNPs. In addition, U-MSNPs in concentrations above 200 μg/mL were capable of successfully reducing 60% of the biofilm biomass of a uropathogenic E. coli strain. This study thus provides a proof-of-concept, demonstrating that enzyme-based nanomotors are capable of fighting infectious diseases. This approach could potentially be extended to other kinds of diseases by selecting appropriate biomolecules.
Collapse
Affiliation(s)
- Diana Vilela
- Smart
nano-bio-devices, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology
(BIST), Baldiri Reixac 10-12, 08028 Barcelona Spain
| | - Nuria Blanco-Cabra
- Bacterial
infections: antimicrobial therapies, Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona Spain
| | - Ander Eguskiza
- Smart
nano-bio-devices, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology
(BIST), Baldiri Reixac 10-12, 08028 Barcelona Spain
| | - Ana C. Hortelao
- Smart
nano-bio-devices, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology
(BIST), Baldiri Reixac 10-12, 08028 Barcelona Spain
| | - Eduard Torrents
- Bacterial
infections: antimicrobial therapies, Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona Spain
- Microbiology
Section, Department of Genetics, Microbiology and Statistics Faculty
of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain
| | - Samuel Sanchez
- Smart
nano-bio-devices, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology
(BIST), Baldiri Reixac 10-12, 08028 Barcelona Spain
- Institució
Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
37
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
38
|
The effect of natural antimicrobials against Campylobacter spp. and its similarities to Salmonella spp, Listeria spp., Escherichia coli, Vibrio spp., Clostridium spp. and Staphylococcus spp. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107745] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Bhattacharjee B, Ghosh S, Mukherjee R, Haldar J. Quaternary Lipophilic Chitosan and Gelatin Cross-Linked Antibacterial Hydrogel Effectively Kills Multidrug-Resistant Bacteria with Minimal Toxicity toward Mammalian Cells. Biomacromolecules 2020; 22:557-571. [PMID: 33325682 DOI: 10.1021/acs.biomac.0c01420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Wounds or tissue openings in the skin are susceptible to bacterial attack, which can deteriorate and slow down the healing process. In this regard, antimicrobial gels are valuable as they mitigate the infection spread and assist in the healing. Despite the success, commercially available release-active antimicrobial gels suffer from narrow-spectrum activity, resistance induction, reservoir exhaustion, and in some cases may be associated with toxicity. To circumvent these limitations, herein, we have developed new quaternary lipophilic chitosan derivatives (QuaChi) synthesized by modifying the primary alcohol of the sugar moieties without altering the free amino groups of glucosamines. Compared to protonated chitosan, the synthesized derivatives exhibited improved water solubility and enhanced antibacterial activity against multidrug-resistant Gram-positive and Gram-negative bacteria including clinical isolates. The enhanced antibacterial activity was evident from the bacterial membrane depolarization leading to rapid inactivation of ∼105-106 bacterial cells within 2 h. The applicability of the chitosan derivatives was further demonstrated by developing antibacterial hydrogels by cross-linking the free amino groups of QuaChi with biocompatible gelatin through amide linkages. The hydrogel showed ∼5-7 log reduction of various multidrug-resistant bacteria including the stationary-phase cells within 6 h. Scanning electron microscopy revealed the loss of integrity of the bacterial structure when treated with the hydrogel, whereas mammalian cells (human embryonic kidney-293 (HEK-293)), when exposed to the hydrogel, appeared to be healthy with retained morphology. Collectively, these findings suggest that the developed hydrogel formulation can find potential applications to combat notorious drug-resistant bacterial infections in the healthcare settings.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Sreyan Ghosh
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Riya Mukherjee
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, Karnataka, India
| |
Collapse
|
40
|
Ricardo SIC, Anjos IIL, Monge N, Faustino CMC, Ribeiro IAC. A Glance at Antimicrobial Strategies to Prevent Catheter-Associated Medical Infections. ACS Infect Dis 2020; 6:3109-3130. [PMID: 33245664 DOI: 10.1021/acsinfecdis.0c00526] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urinary and intravascular catheters are two of the most used invasive medical devices; however, microbial colonization of catheter surfaces is responsible for most healthcare-associated infections (HAIs). Several antimicrobial-coated catheters are available, but recurrent antibiotic therapy can decrease their potential activity against resistant bacterial strains. The aim of this Review is to question the actual effectiveness of currently used (coated) catheters and describe the progress and promise of alternative antimicrobial coatings. Different strategies have been reviewed with the common goal of preventing biofilm formation on catheters, including release-based approaches using antibiotics, antiseptics, nitric oxide, 5-fluorouracil, and silver as well as contact-killing approaches employing quaternary ammonium compounds, chitosan, antimicrobial peptides, and enzymes. All of these strategies have given proof of antimicrobial efficacy by modifying the physiology of pathogens or disrupting their structural integrity. The aim for synergistic approaches using multitarget processes and the combination of both antifouling and bactericidal properties holds potential for the near future. Despite intensive research in biofilm preventive strategies, laboratorial studies still present some limitations since experimental conditions usually are not the same and also differ from biological conditions encountered when the catheter is inserted in the human body. Consequently, in most cases, the efficacy data obtained from in vitro studies is not properly reflected in the clinical setting. Thus, further well-designed clinical trials and additional cytotoxicity studies are needed to prove the efficacy and safety of the developed antimicrobial strategies in the prevention of biofilm formation at catheter surfaces.
Collapse
Affiliation(s)
- Susana I. C. Ricardo
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês I. L. Anjos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Monge
- Centro Interdisciplinar de Estudos Educacionais (CIED), Escola Superior de Educação de Lisboa, Instituto Politécnico de Lisboa, Campus de Benfica do IPL, 1549-003 Lisboa, Portugal
| | - Célia M. C. Faustino
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Isabel A. C. Ribeiro
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
41
|
Casimero C, Ruddock T, Hegarty C, Barber R, Devine A, Davis J. Minimising Blood Stream Infection: Developing New Materials for Intravascular Catheters. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E49. [PMID: 32858838 PMCID: PMC7554993 DOI: 10.3390/medicines7090049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022]
Abstract
Catheter related blood stream infection is an ever present hazard for those patients requiring venous access and particularly for those requiring long term medication. The implementation of more rigorous care bundles and greater adherence to aseptic techniques have yielded substantial reductions in infection rates but the latter is still far from acceptable and continues to place a heavy burden on patients and healthcare providers. While advances in engineering design and the arrival of functional materials hold considerable promise for the development of a new generation of catheters, many challenges remain. The aim of this review is to identify the issues that presently impact catheter performance and provide a critical evaluation of the design considerations that are emerging in the pursuit of these new catheter systems.
Collapse
Affiliation(s)
| | | | | | | | | | - James Davis
- School of Engineering, Ulster University, Jordanstown BT37 0QB, Northern Ireland, UK; (C.C.); (T.R.); (C.H.); (R.B.); (A.D.)
| |
Collapse
|
42
|
Chen Y, Li H, Wu L, Zhang M, Gao Y, Wang H, Xu D, Chen W, Song G, Chen J. Ursolic acid derivatives are potent inhibitors against porcine reproductive and respiratory syndrome virus. RSC Adv 2020; 10:22783-22796. [PMID: 35514592 PMCID: PMC9054602 DOI: 10.1039/d0ra04070c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating viral pathogens of swine and has a substantial economic impact on the global pork industry. Currently, vaccination strategies provide very limited protection against PRRSV transmission. Therefore, there is an urgent need to develop new antiviral strategies to prevent PRRSV pandemics. In this study, we showed that 3-O-β-chacotriosyl ursolic acid (1) and its ester analogs possessed anti-PRRSV activity in vitro, of which bioisosteric surrogates 7-15 were further generated with the aim of enhancing the selective index. Our results showed that amidation of the 17-COOH group of UA could significantly reduce cytotoxicity and enhance anti-PRRSV activity in MARC-145 cells. Among them, compound 9 displayed the strongest anti-PRRSV activity with the least cytotoxicity. Potent inhibition of representative compounds 9 and 12 on PRRSV infection was observed not only in MARC-145 cells, but also in primary porcine alveolar macrophages, PRRSV-target cells in vivo. Furthermore, compounds 8, 9, 12 and 14 exhibited broad-spectrum inhibitory activities in vitro against high pathogenic type 2 PRRSV NADC30-like and GD-XH strains as well as classical CH-1a and VR2332 strains. Mechanistically, compounds 9 and 12 inhibited PRRSV replication by directly inactivating virions and therefore affecting all tested stages of the virus life cycle, including viral entry, replication and progeny virus release, but did not affect cellular susceptibility to PRRSV. Our findings suggest that compound 9 could be a hit PRRSV inhibitor and deserves further in vivo studies in swine.
Collapse
Affiliation(s)
- Yang Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 China +86-20-8528-0234
| | - Hui Li
- College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Li Wu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 China +86-20-8528-0234.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University Guangzhou 510642 China +86-20-8528-0293 +86-20-8528-0293
| | - Mingxin Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 China +86-20-8528-0234
| | - Yarou Gao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 China +86-20-8528-0234
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 China +86-20-8528-0234.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University Guangzhou 510642 China +86-20-8528-0293 +86-20-8528-0293
| | - Dan Xu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 China +86-20-8528-0234.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University Guangzhou 510642 China +86-20-8528-0293 +86-20-8528-0293
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria 3086 Australia
| | - Gaopeng Song
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University Guangzhou 510642 China +86-20-8528-0293 +86-20-8528-0293 .,College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 China +86-20-8528-0234.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University Guangzhou 510642 China +86-20-8528-0293 +86-20-8528-0293
| |
Collapse
|
43
|
Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 2020; 8:1767-1792. [PMID: 32518769 PMCID: PMC7262697 DOI: 10.12998/wjcc.v8.i10.1767] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023] Open
Abstract
Oleanolic acid (OA) and its derivatives are widely found in diverse plants and are naturally effective pentacyclic triterpenoid compounds with broad prophylactic and therapeutic roles in various diseases such as ulcerative colitis, multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers. This review assembles and presents the latest in vivo reports on the impacts of OA and OA derivatives from various plant sources and the biological mechanisms of OA activities. Thus, this review presents sufficient data proposing that OA and its derivatives are potential alternative and complementary therapies for the treatment and management of several diseases.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| |
Collapse
|
44
|
Lee W, Lee H, Lee T, Park EK, Bae JS. Inhibitory functions of maslinic acid, a natural triterpene, on HMGB1-mediated septic responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153200. [PMID: 32163831 DOI: 10.1016/j.phymed.2020.153200] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/22/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Maslinic acid (MA), a natural triterpenoid from Olea europaea, prevents oxidative stress and pro-inflammatory cytokine generation. High mobility group box 1 (HMGB1) has been recognized as a late mediator of sepsis, and the inhibition of the release of HMGB1 and the recovery of vascular barrier integrity have emerged as attractive therapeutic strategies for the management of sepsis. METHODS We tested the hypothesis that MA induces sirtuin 1 and heme oxygenase-1, which inhibit the release of HMGB1 in lipopolysaccharide (LPS)-stimulated cells, thus inhibiting HMGB1-induced hyperpermeability and increasing the survival of septic mice. MA was administered after LPS or HMGB1 challenge, and the antiseptic activity of MA was determined based on permeability, the activation of pro-inflammatory proteins, and the production of markers for tissue injury in HMGB1-activated human umbilical vein endothelial cells (HUVECs) and a cecal ligation and puncture (CLP)-induced sepsis mouse model. RESULTS MA significantly reduced the release of HMGB1 in LPS-activated HUVECs and attenuated the CLP-induced release of HMGB1. Additionally, MA alleviated HMGB1-mediated vascular disruption and inhibited hyperpermeability in mice, and in vivo analysis revealed that MA reduced sepsis-related mortality and tissue injury. CONCLUSION Taken together, the present results suggest that MA reduced HMGB1 release and septic mortality and thus may be useful in the treatment of sepsis.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hayeong Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Taeho Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
45
|
Jang J, Choi Y, Tanaka M, Choi J. Development of silver/graphene oxide nanocomposites for antibacterial and antibiofilm applications. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|