1
|
Yapa MT, Lalevée J, Laborie MP. Towards Photocrosslinkable Lyotropic Blends of Organosolv Lignin and Hydroxypropyl Cellulose for 3D Printing by Direct Ink Writing. Polymers (Basel) 2024; 16:2869. [PMID: 39458697 PMCID: PMC11510783 DOI: 10.3390/polym16202869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Polymer blends containing up to 70% organosolv lignin content and lyotropic cellulose derivatives have been established as "lignin inks" for direct ink writing of fully biobased 3D parts. However, a fast-crosslinking mechanism is needed to improve throughput and design space. In this paper, UV-photocrosslinkable organosolv lignin/hydroxypropyl cellulose inks are formulated through doping with common photocrosslinkers. The most potent photocrosslinkers for neat hydroxypropyl cellulose, lignin and their blends are determined through a series of DOEs. Hydroxypropyl cellulose is significantly more amenable to photocrosslinking than organosolv lignin. The optimal photocrosslinkable ink formulations are printable and exhibit up to 70% gel content, although thermal post-curing remains essential. Chemical, thermal, and mechanical investigations of the photocrosslinked 3D parts evidence efficient crosslinking of HPC through its hydroxyl groups, while lignin appears internally plasticized and/or degraded during inefficient photocrosslinking. Despite this, photocrosslinkable inks exhibit improved tensile properties, shape flexibility, and fidelity. The heterogeneous crosslinking and residual creep highlight the need to further activate lignin for homogeneous photocrosslinking in order to fully exploit the potential of lignin inks in DIW.
Collapse
Affiliation(s)
- Mehmet-Talha Yapa
- Forest Biomaterials, Institute of Earth and Environmental Sciences, Faculty of Environment and Natural Resources, University of Freiburg, Werthmanstr. 6, 79085 Freiburg im Breisgau, Germany;
- Freiburg Materials Research Center, Stefan-Meier-Straße 21, 79104 Freiburg im Breisgau, Germany
| | - Jacques Lalevée
- Université de Haute Alsace, CNRS, IS2M UMR 7361, 68100 Mulhouse, France
- Strasbourg University, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Marie-Pierre Laborie
- Forest Biomaterials, Institute of Earth and Environmental Sciences, Faculty of Environment and Natural Resources, University of Freiburg, Werthmanstr. 6, 79085 Freiburg im Breisgau, Germany;
- Freiburg Materials Research Center, Stefan-Meier-Straße 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Driscoll OJ, Van Hecke K, Vande Velde CML, Blockhuys F, Rubens M, Kuwaba T, van de Pas DJ, Eevers W, Vendamme R, Feghali E. Solid-State Structures and Properties of Lignin Hydrogenolysis Oil Compounds: Shedding a Unique Light on Lignin Valorization. Int J Mol Sci 2024; 25:10810. [PMID: 39409146 PMCID: PMC11477037 DOI: 10.3390/ijms251910810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
This article explores the important, and yet often overlooked, solid-state structures of selected bioaromatic compounds commonly found in lignin hydrogenolysis oil, a renewable bio-oil that holds great promise to substitute fossil-based aromatic molecules in a wide range of chemical and material industrial applications. At first, single-crystal X-ray diffraction (SCXRD) was applied to the lignin model compounds, dihydroconiferyl alcohol, propyl guaiacol, and eugenol dimers, in order to elucidate the fundamental molecular interactions present in such small lignin-derived polyols. Then, considering the potential use of these lignin-derived molecules as building blocks for polymer applications, structural analysis was also performed for two chemically modified model compounds, i.e., the methylene-bridging propyl-guaiacol dimer and propyl guaiacol and eugenol glycidyl ethers, which can be used as precursors in phenolic and epoxy resins, respectively, thus providing additional information on how the molecular packing is altered following chemical modifications. In addition to the expected H-bonding interactions, other interactions such as π-π stacking and C-H∙∙∙π were observed. This resulted in unexpected trends in the tendencies towards the crystallization of lignin compounds. This was further explored with the aid of DSC analysis and CLP intermolecular energy calculations, where the relationship between the major interactions observed in all the SCXRD solid-state structures and their physico-chemical properties were evaluated alongside other non-crystallizable lignin model compounds. Beyond lignin model compounds, our findings could also provide important insights into the solid-state structure and the molecular organization of more complex lignin fragments, paving the way to the more efficient design of lignin-based materials with improved properties for industrial applications or improving downstream processing of lignin oils in biorefining processes, such as in enhancing the separation and isolation of specific bioaromatic compounds).
Collapse
Affiliation(s)
- Oliver J. Driscoll
- Sustainable Polymer Technologies Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium; (M.R.); (T.K.); (W.E.); (R.V.)
- New Zealand Forest Research Institute (Scion), Private Bag 3020, Rotorua 3046, New Zealand;
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium;
| | | | - Frank Blockhuys
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
| | - Maarten Rubens
- Sustainable Polymer Technologies Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium; (M.R.); (T.K.); (W.E.); (R.V.)
| | - Tatsuhiro Kuwaba
- Sustainable Polymer Technologies Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium; (M.R.); (T.K.); (W.E.); (R.V.)
| | - Daniel J. van de Pas
- New Zealand Forest Research Institute (Scion), Private Bag 3020, Rotorua 3046, New Zealand;
| | - Walter Eevers
- Sustainable Polymer Technologies Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium; (M.R.); (T.K.); (W.E.); (R.V.)
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
| | - Richard Vendamme
- Sustainable Polymer Technologies Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium; (M.R.); (T.K.); (W.E.); (R.V.)
| | - Elias Feghali
- Sustainable Polymer Technologies Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium; (M.R.); (T.K.); (W.E.); (R.V.)
- Chemical Engineering Program, Notre Dame University–Louaize, Zouk Mosbeh 1211, Lebanon
| |
Collapse
|
3
|
Arya M, Chauhan G, Fatima T, Verma D, Sharma M. Statistical Modelling of Thermostable Cellulase Production Conditions of Thermophilic Geobacillus sp. TP-1 Isolated from Tapovan Hot Springs of the Garhwal Himalayan Mountain Ranges, India. Indian J Microbiol 2024; 64:1132-1143. [PMID: 39282208 PMCID: PMC11399532 DOI: 10.1007/s12088-024-01258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/10/2024] [Indexed: 09/18/2024] Open
Abstract
A thermo-alkali stable cellulase from Geobacillus sp. TP-1 was isolated from Tapovan hot spring soil sample. The BLASTn sequence analysis of 16S rRNA sequence revealed that the isolate belonged to the Geobacillus genus and shared the highest degree of sequence similarity (99.43%) with the different strains of Geobacillus subterraneus. The neighbour joining method of multiple sequence alignment revealed that the 16S rRNA sequence of Geobacillus sp. TP-1 shows maximum similarity with Geobacillus stearothermophilus strain S_YE6-1017-022. One-Factor-At-a-Time analysis was used to optimize the carbon source, nitrogen source, pH, temperature, inoculum size and growth profile with respect to cellulase production. When compared to un-optimized basal media, optimised medium increased cellulase production by around 3.6 times. The Plackett Burman factorial design was employed to identify the critical medium components influencing cellulase activity and temperature was determined to have a significant effect on overall cellulase production. The current strain was capable of utilising lignocellulosic waste as an alternative carbon source. The use of sugarcane molasses and wheat bran as carbon sources resulted in a significant increase (~ 7.2 fold) in cellulase production in the current study, indicating the bacterium's potential for valorising lignocellulosic biomass into value-added products, which encourages its use in lignocellulosic-based bio refineries. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01258-x.
Collapse
Affiliation(s)
- Meghna Arya
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| | - Garima Chauhan
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| | - Tazeem Fatima
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| | - Monica Sharma
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| |
Collapse
|
4
|
Zhang X, Mahajan JS, Zhang J, Korley LTJ, Epps TH, Wu C. Lignin-derivable alternatives to bisphenol A with potentially undetectable estrogenic activity and minimal developmental toxicity. Food Chem Toxicol 2024; 190:114787. [PMID: 38838754 DOI: 10.1016/j.fct.2024.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/26/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Lignin-derivable bisguaiacols/bissyringols are viable alternatives to commercial bisphenols; however, many bisguaiacols/bissyringols (e.g., bisguaiacol F [BGF]) have unsubstituted bridging carbons between the aromatic rings, making them more structurally similar to bisphenol F (BPF) than bisphenol A (BPA) - both of which are suspected endocrine disruptors. Herein, we investigated the estrogenic activity (EA) and developmental toxicity of dimethyl-substituted bridging carbon-based lignin-derivable bisphenols (bisguaiacol A [BGA] and bissyringol A [BSA]). Notably, BSA showed undetectable EA at seven test concentrations (from 10-12 M to 10-6 M) in the MCF-7 cell proliferation assay, whereas BPA had detectable EA at five concentrations (from 10-10 M to 10-6 M). In silico results indicated that BSA had the lowest binding affinity with estrogen receptors. Moreover, in vivo chicken embryonic assay results revealed that lignin-derivable monomers had minimal developmental toxicity vs. BPA at environmentally relevant test concentrations (8.7-116 μg/kg). Additionally, all lignin-derivable compounds showed significantly lower expression fold changes (from ∼1.81 to ∼4.41) in chicken fetal liver tests for an estrogen-response gene (apolipoprotein II) in comparison to BPA (fold change of ∼11.51), which was indicative of significantly reduced estrogenic response. Altogether, the methoxy substituents on lignin-derivable bisphenols appeared to be a positive factor in reducing the EA of BPA alternatives.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Jignesh S Mahajan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Jinglin Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - LaShanda T J Korley
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA; Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Thomas H Epps
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA; Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
5
|
Gopal MR, Kunjapur AM. Harnessing biocatalysis to achieve selective functional group interconversion of monomers. Curr Opin Biotechnol 2024; 86:103093. [PMID: 38417202 DOI: 10.1016/j.copbio.2024.103093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
Polymeric materials are ubiquitous to modern life. However, reliance of petroleum for polymeric building blocks is not sustainable. The synthesis of macromolecules from recalcitrant polymer waste feedstocks, such as plastic waste and lignocellulosic biomass, presents an opportunity to bypass the use of petroleum-based feedstocks. However, the deconstruction and transformation of these alternative feedstocks remained limited until recently. Herein, we highlight examples of monomers liberated from the deconstruction of recalcitrant polymers, and more extensively, we showcase the state-of-the-art in biocatalytic technologies that are enabling synthesis of diverse upcycled monomeric starting materials for a wide variety of macromolecules. Overall, this review emphasizes the importance of functional group interconversion as a promising strategy by which biocatalysis can aid the diversification and upcycling of monomers.
Collapse
Affiliation(s)
- Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA; Center for Plastics Innovation, University of Delaware, Newark, DE, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA; Center for Plastics Innovation, University of Delaware, Newark, DE, USA.
| |
Collapse
|
6
|
Feng J, Xing Y, Yin C, Tang P, Jiang F. Wholly sustainable graft copolymers derived from cellulose, lignin, and hemicellulose for high-performance elastomers, adhesives, and UV-blocking materials. Carbohydr Polym 2024; 326:121606. [PMID: 38142094 DOI: 10.1016/j.carbpol.2023.121606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
Sustainable elastomers derived from renewable biobased resources with excellent mechanical properties and varied functions are highly pursued to substitute traditional petroleum-based polymers yet challenging due to their limited macroscopic performance. In this work, we designed a series of wholly biobased cellulose-graft-poly(vanillin acrylate-co-tetrahydrofurfuryl acrylate) (Cell-g-P(VA-co-THFA) copolymer elastomers with cellulose as the rigid backbone, sustainable VA derived from lignin and soft THFA derived from hemicellulose as the hard and soft segments in the rubbery side chains. Moreover, the grafted side chains can be cross-linked to introduce an additional dynamic network structure via Schiff-base chemistry between the aldehyde and amino groups. The mechanical properties of Cell-g-P(VA-co-THFA) copolymer elastomers, including tensile strength, extensibility, elasticity, and toughness can be facilely manipulated by the VA/THFA feed ratio, cellulose content, and cross-linking density. These Cell-g-P(VA-co-THFA) copolymer elastomers are thermally stable and possess outstanding adhesion behavior and prominent UV-shielding performance. Besides dramatically enhanced mechanical properties, the cross-linked Cell-g-P(VA-co-THFA) counterparts exhibit remarkable shape memory behavior. This work provides a robust and convenient strategy for developing strong and versatile sustainable elastomers with different application demands by integrating different biomass feedstocks via elaborate molecular design.
Collapse
Affiliation(s)
- Jiajun Feng
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yuxian Xing
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chuantao Yin
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pengfei Tang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Feng Jiang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
7
|
Vidal F, van der Marel ER, Kerr RWF, McElroy C, Schroeder N, Mitchell C, Rosetto G, Chen TTD, Bailey RM, Hepburn C, Redgwell C, Williams CK. Designing a circular carbon and plastics economy for a sustainable future. Nature 2024; 626:45-57. [PMID: 38297170 DOI: 10.1038/s41586-023-06939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/05/2023] [Indexed: 02/02/2024]
Abstract
The linear production and consumption of plastics today is unsustainable. It creates large amounts of unnecessary and mismanaged waste, pollution and carbon dioxide emissions, undermining global climate targets and the Sustainable Development Goals. This Perspective provides an integrated technological, economic and legal view on how to deliver a circular carbon and plastics economy that minimizes carbon dioxide emissions. Different pathways that maximize recirculation of carbon (dioxide) between plastics waste and feedstocks are outlined, including mechanical, chemical and biological recycling, and those involving the use of biomass and carbon dioxide. Four future scenarios are described, only one of which achieves sufficient greenhouse gas savings in line with global climate targets. Such a bold system change requires 50% reduction in future plastic demand, complete phase-out of fossil-derived plastics, 95% recycling rates of retrievable plastics and use of renewable energy. It is hard to overstate the challenge of achieving this goal. We therefore present a roadmap outlining the scale and timing of the economic and legal interventions that could possibly support this. Assessing the service lifespan and recoverability of plastic products, along with considerations of sufficiency and smart design, can moreover provide design principles to guide future manufacturing, use and disposal of plastics.
Collapse
Affiliation(s)
- Fernando Vidal
- Department of Chemistry, University of Oxford, Oxford, UK
- POLYMAT, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Eva R van der Marel
- Faculty of Law, University of Oxford, Oxford, UK
- Faculty of Law, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ryan W F Kerr
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Caitlin McElroy
- Smith School of Enterprise and the Environment, University of Oxford, Oxford, UK
| | - Nadia Schroeder
- Smith School of Enterprise and the Environment, University of Oxford, Oxford, UK
| | - Celia Mitchell
- Smith School of Enterprise and the Environment, University of Oxford, Oxford, UK
| | - Gloria Rosetto
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Richard M Bailey
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Cameron Hepburn
- Smith School of Enterprise and the Environment, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
8
|
Wu Z, Lin X, Teng J, Li M, Song J, Huang C, Wang R, Ying H, Zhang L, Zhu C. Recent Advances of Lignin Functionalization for High-Performance and Advanced Functional Rubber Composites. Biomacromolecules 2023; 24:4553-4567. [PMID: 37813827 DOI: 10.1021/acs.biomac.3c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The biomass lignin is the only large-volume renewable feedstock that is composed of aromatics but has been largely underutilized and is sought for valorization as a value-added material. Recent research has highlighted lignin as a promising alternative to traditional petrol-based reinforcements and functional additives for rubber composites. This review summarized the recent advances in the functionalization of lignin for a variety of rubber composites, as well as the compounding techniques for effectively dispersing lignin within the rubber matrix. Significant progress has been achieved in the development of high-performance and advanced functional rubber/lignin composites through carefully designing the structure of lignin-based additives and the optimization of interfacial morphologies. This Review discussed the effect of lignin on composite properties, including mechanical reinforcement, dynamic properties, antiaging performance, and oil resistance, and also the advanced stimuli-responsive performance in detail. A critical analysis for the future development of rubber/lignin composites is presented as concluding remarks.
Collapse
Affiliation(s)
- Zhengzhe Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiran Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiye Teng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ming Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Runguo Wang
- Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liqun Zhang
- Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Emergent Elastomers, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Veloso-Fernández A, Ruiz-Rubio L, Yugueros I, Moreno-Benítez MI, Laza JM, Vilas-Vilela JL. Improving the Recyclability of an Epoxy Resin through the Addition of New Biobased Vitrimer. Polymers (Basel) 2023; 15:3737. [PMID: 37765591 PMCID: PMC10537514 DOI: 10.3390/polym15183737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In recent decades, the use of thermoset epoxy resins (ER) has spread to countless applications due to their mechanical properties, heat resistance and stability. However, these ERs are neither biodegradable nor recyclable due to their permanent crosslinked networks and usually, they are synthesized from fossil and toxic precursors. Therefore, reducing its consumption is of vital importance to the environment. On the one hand, the solution to the recyclability problems of epoxy resins can be achieved through the use of vitrimers, which have thermoset properties and can be recycled as thermoplastic materials. On the other hand, vitrimers can be made from natural sources, reducing their toxicity. In this work, a sustainable epoxy vitrimer has been efficiently synthesized, VESOV, by curing epoxidized soybean oil (ESO) with a new vanillin-derived Schiff base (VSB) dynamic hardener, aliphatic diamine (1,4-butanediamine, BDA) and using 1,2-dimethylimidazole (DMI) as an accelerator. Likewise, using the same synthesized VSB agent, a commercial epoxy resin has also been cured and characterized as ESO. Finally, different percentages (30, 50 and 70 wt%) of the same ER have been included in the formulation of VESOV, demonstrating that only including 30 wt% of ER in the formulation is able to improve the thermo-mechanical properties, maintaining the VESOV's inherent reprocessability or recyclability. In short, this is the first approach to achieve a new material that can be postulated in the future as a replacement for current commercial epoxy resins, although it still requires a minimum percentage of RE in the formulation, it makes it possible to recycle the material while maintaining good mechanical properties.
Collapse
Affiliation(s)
- Antonio Veloso-Fernández
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (L.R.-R.); and (J.M.L.); (J.L.V.-V.)
| | - Leire Ruiz-Rubio
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (L.R.-R.); and (J.M.L.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Imanol Yugueros
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (L.R.-R.); and (J.M.L.); (J.L.V.-V.)
| | - M. Isabel Moreno-Benítez
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain;
| | - José Manuel Laza
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (L.R.-R.); and (J.M.L.); (J.L.V.-V.)
| | - José Luis Vilas-Vilela
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (L.R.-R.); and (J.M.L.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
10
|
Rubens M, Falireas P, Vanbroekhoven K, Van Hecke W, Kaya GE, Baytekin B, Vendamme R. Molecular Design of Lignin-Derived Side-Chain Phenolic Polymers toward Functional Radical Scavenging Materials with Antioxidant and Antistatic Properties. Biomacromolecules 2023; 24:3498-3509. [PMID: 37167224 DOI: 10.1021/acs.biomac.3c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This article reports a new family of functional side-chain phenolic polymers derived from lignin monomers, displaying a combination of properties that are usually mutually exclusive within a single material. This includes a well-defined molecular structure, transparency, antioxidant activity, and antistatic properties. Our design strategy is based on the lignin-derived bioaromatic monomer dihydroconiferyl alcohol (DCA), a promising and yet largely unexplored asymmetrical diol bearing one aliphatic and one phenolic hydroxyl group. A lipase-catalyzed (meth)acrylation protocol was developed to selectively functionalize the aliphatic hydroxy group of DCA while preserving its phenolic group responsible for its radical scavenging properties. The resulting mono-(meth)acrylated monomers were then directly copolymerized using reversible addition-fragmentation chain-transfer (RAFT) polymerization without any protection of the phenolic side chains. Kinetics studies revealed that, under select conditions, these unprotected phenolic groups surprisingly did not inhibit the radical polymerization and lead to polymers with defined molar masses, low dispersities, and block copolymers. Finally, applications of these new radical scavenging polymers were demonstrated using an antioxidant assay and antistatic experiments. This research opens the door to the direct incorporation of natural antioxidants within the synthetic polymer backbones, increasing the biobased content and limiting the leaching of potentially harmful additives.
Collapse
Affiliation(s)
- Maarten Rubens
- Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, Mol 2400, Belgium
| | - Panagiotis Falireas
- Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, Mol 2400, Belgium
| | - Karolien Vanbroekhoven
- Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, Mol 2400, Belgium
| | - Wouter Van Hecke
- Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, Mol 2400, Belgium
| | - Görkem Eylül Kaya
- UNAM National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Bilge Baytekin
- UNAM National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Department of Chemistry, Bilkent University, Ankara 06800, Turkey
| | - Richard Vendamme
- Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, Mol 2400, Belgium
| |
Collapse
|
11
|
Matt L, Sedrik R, Bonjour O, Vasiliauskaité M, Jannasch P, Vares L. Covalent Adaptable Polymethacrylate Networks by Hydrazide Crosslinking Via Isosorbide Levulinate Side Groups. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:8294-8307. [PMID: 37292449 PMCID: PMC10245394 DOI: 10.1021/acssuschemeng.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/04/2023] [Indexed: 06/10/2023]
Abstract
Reversible crosslinking offers an attractive strategy to modify and improve the properties of polymer materials while concurrently enabling a pathway for chemical recycling. This can, for example, be achieved by incorporating a ketone functionality into the polymer structure to enable post-polymerization crosslinking with dihydrazides. The resulting covalent adaptable network contains acylhydrazone bonds cleavable under acidic conditions, thereby providing reversibility. In the present work, we regioselectively prepare a novel isosorbide monomethacrylate with a pendant levulinoyl group via a two-step biocatalytic synthesis. Subsequently, a series of copolymers with different contents of the levulinic isosorbide monomer and methyl methacrylate are prepared by radical polymerization. Using dihydrazides, these linear copolymers are then crosslinked via reaction with the ketone groups in the levulinic side chains. Compared to the linear prepolymers, the crosslinked networks exhibit enhanced glass transition temperatures and thermal stability, up to 170 and 286 °C, respectively. Moreover, the dynamic covalent acylhydrazone bonds are efficiently and selectively cleaved under acidic conditions to retrieve the linear polymethacrylates. We next show that recovered polymers can again be crosslinked with adipic dihydrazide, thus demonstrating the circularity of the materials. Consequently, we envision that these novel levulinic isosorbide-based dynamic polymethacrylate networks have great potential in the field of recyclable and reusable biobased thermoset polymers.
Collapse
Affiliation(s)
- Livia Matt
- Institute
of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Rauno Sedrik
- Institute
of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Olivier Bonjour
- Department
of Chemistry, Lund University, P.O. Box 124, Lund 221
00, Sweden
| | | | - Patric Jannasch
- Institute
of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- Department
of Chemistry, Lund University, P.O. Box 124, Lund 221
00, Sweden
| | - Lauri Vares
- Institute
of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
12
|
Wu X, De bruyn M, Trimmel G, Zangger K, Barta K. High-Performance Thermoplastics from a Unique Bicyclic Lignin-Derived Diol. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:2819-2829. [PMID: 36844751 PMCID: PMC9945171 DOI: 10.1021/acssuschemeng.2c05998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Polyesters are an important class of thermoplastic polymers, and there is a clear demand to find high-performing, recyclable, and renewable alternatives. In this contribution, we describe a range of fully bio-based polyesters obtained upon the polycondensation of the lignin-derived bicyclic diol 4,4'-methylenebiscyclohexanol (MBC) with various cellulose-derived diesters. Interestingly, the use of MBC in combination with either dimethyl terephthalate (DMTA) or dimethyl furan-2,5-dicarboxylate (DMFD) resulted in polymers with industrially relevant glass transition temperatures in the 103-142 °C range and high decomposition temperatures (261-365 °C range). Since MBC is obtained as a mixture of three distinct isomers, in-depth NMR-based structural characterization of the MBC isomers and thereof derived polymers is provided. Moreover, a practical method for the separation of all MBC isomers is presented. Interestingly, clear effects on the glass transition, melting, and decomposition temperatures, as well as polymer solubility, were evidenced with the use of isomerically pure MBC. Importantly, the polyesters can be efficiently depolymerized by methanolysis with an MBC diol recovery yield of up to 90%. The catalytic hydrodeoxygenation of the recovered MBC into two high-performance specific jet fuel additives was demonstrated as an attractive end-of-life option.
Collapse
Affiliation(s)
- Xianyuan Wu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Groningen, The Netherlands
| | - Mario De bruyn
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| | - Gregor Trimmel
- Institute
for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Klaus Zangger
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| | - Katalin Barta
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Groningen, The Netherlands
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| |
Collapse
|
13
|
Zhou T, Meng XB, Du FS, Li ZC. Fully Bio-based Poly(ketal-ester)s by Ring-opening Polymerization of a Bicylcic Lactone from Glycerol and Levulinic Acid. Chem Asian J 2023; 18:e202201238. [PMID: 36756897 DOI: 10.1002/asia.202201238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
A fully renewable bio-based bicyclic lactone containing a five-membered cyclic ketal moiety, 7-methyl-3,8,10-trioxabicyclo[5.2.1]decan-4-one (TOD), was synthesized through a two-step acid-catalyzed process from glycerol and levulinic acid. The ring-opening polymerization (ROP) of TOD at 30°C with benzyl alcohol (BnOH) as the initiator and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as the catalyst can afford high molar mass PTOD with a cis-2.4-disubstitued 2-methyl 1,3-dioxolane moiety in its repeating unit. PTOD is an amorphous polymer with a glass transition temperature (Tg ) of 13°C. It can be hydrolyzed into structurally defined small molecules under acidic or basic conditions by the selective cleavage of either the cyclic ketal or the ester linkage respectively. The TBD-catalyzed copolymerization of L-lactide (L-LA) and TOD at -20°C was investigated. It was confirmed that L-LA polymerized quickly with racemization to form PLA, followed by a slow incorporation of TOD into the formed PLA chains via transesterification. By varying the feed ratios of L-LA to TOD, a series of random copolymers (PLA-co-PTOD) with different TOD incorporation ratios and tunable Tg s were obtained. Under acidic conditions, PLA-co-PTOD degrades much faster than PLA via the selective cleavage of the cyclic ketal linkages. This work provides insights for the development of more sustainable and acid-accelerated degradable alternatives to aliphatic polyesters.
Collapse
Affiliation(s)
- Tong Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xian-Bin Meng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
14
|
Woroch CP, Cox IW, Kanan MW. A Semicrystalline Furanic Polyamide Made from Renewable Feedstocks. J Am Chem Soc 2023; 145:697-705. [PMID: 36573894 DOI: 10.1021/jacs.2c11806] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Semi-aromatic polyamides (SAPs) synthesized from petrochemical diacids and diamines are high-performance polymers that often derive their desirable properties from a high degree of crystallinity. Attempts to develop partially renewable SAPs by replacing petrochemical diacids with biobased furan-2,5-dicarboxylic acid (FDCA) have resulted in amorphous materials or polymers with low melting temperatures. Herein, we report the development of poly(5-aminomethyl-2-furoic acid) (PAMF), a semicrystalline SAP synthesized by the polycondensation of CO2 and lignocellulose-derived monomer 5-aminomethyl-2-furoic acid (AMF). PAMF has glass-transition and melting temperatures comparable to that of commercial materials and higher than that of any previous furanic SAP. Additionally, PAMF can be copolymerized with conventional nylon 6 and is chemically recyclable. Molecular dynamics (MD) simulations suggest that differences in intramolecular hydrogen bonding explain why PAMF is semicrystalline but many FDCA-based SAPs are not.
Collapse
Affiliation(s)
- Cristian P Woroch
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - India W Cox
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Matthew W Kanan
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| |
Collapse
|
15
|
Zhang X, Mahajan JS, J Korley LT, Epps TH, Wu C. Reduced genotoxicity of lignin-derivable replacements to bisphenol A studied using in silico, in vitro, and in vivo methods. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 885:503577. [PMID: 36669816 DOI: 10.1016/j.mrgentox.2022.503577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Bisguaiacols, lignin-derivable bisphenols, are considered promising and possibly safer alternatives to bisphenol A (BPA), but comprehensive toxicity investigations are needed to ensure safety. Most toxicity studies of BPA and its analogues have focused on potential estrogenic activity, and only limited toxicological data are available on other toxicity aspects, such as genotoxicity at low exposure levels. In this study, the genotoxicity of six lignin-derivable bisguaiacols with varying regioisomer contents and degrees of methoxy substitution was investigated using a multi-tiered method, consisting of in silico simulations, in vitro Ames tests, and in vivo comet tests. The toxicity estimation software tool, an application that predicts toxicity of chemicals using quantitative structure-activity relationships, calculated that the majority of the lignin-derivable bisguaiacols were non-mutagenic. These results were supported by Ames tests using five tester strains (TA98, TA100, TA102, TA1535, and TA1537) at concentrations ranging from 0.5 pmol/plate to 5 nmol/plate. The potential genotoxicity of bisguaiacols was further evaluated using in vivo comet testing in fetal chicken livers, and in addition to the standard alkaline comet assay, the formamidopyrimidine DNA glycosylase enzyme-modified comet assay was employed to investigate oxidative DNA damage in the liver samples. The oxidative stress analyses indicated that the majority of lignin-derivable analogues showed no signs of mutagenicity (mutagenic index < 1.5) or genotoxicity, in comparison to BPA and bisphenol F, likely due to the methoxy groups on the lignin-derivable aromatics. These findings reinforce the potential of lignin-derivable bisphenols as safer alternatives to BPA.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, United States
| | - Jignesh S Mahajan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - LaShanda T J Korley
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States; Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Thomas H Epps
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States; Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
16
|
Zhang C, Wang M, Lin X, Tao S, Wang X, Chen Y, Liu H, Wang Y, Qi H. Holocellulose nanofibrils assisted exfoliation of boron nitride nanosheets for thermal management nanocomposite films. Carbohydr Polym 2022; 291:119578. [DOI: 10.1016/j.carbpol.2022.119578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/02/2022]
|
17
|
Luo H, Liu X, Yu D, Yuan J, Tan J, Li H. Research Progress on Lignocellulosic Biomass Degradation Catalyzed by Enzymatic Nanomaterials. Chem Asian J 2022; 17:e202200566. [PMID: 35862657 DOI: 10.1002/asia.202200566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Indexed: 11/11/2022]
Abstract
Lignocellulose biomass (LCB) has extensive applications in many fields such as bioenergy, food, medicines, and raw materials for producing value-added products. One of the keys to efficient utilization of LCB is to obtain directly available oligo- and monomers (e.g., glucose). With the characteristics of easy recovery and separation, high efficiency, economy, and environmental protection, immobilized enzymes have been developed as heterogeneous catalysts to degrade LCB effectively. In this review, applications and mechanisms of LCB-degrading enzymes are discussed, and the nanomaterials and methods used to immobilize enzymes are also discussed. Finally, the research progress of lignocellulose biodegradation catalyzed by nano-enzymes was discussed.
Collapse
Affiliation(s)
- Hangyu Luo
- Guiyang University, College of Biology and Environmental Engineering, CHINA
| | - Xiaofang Liu
- Guiyang University, College of Biology and Environmental Engineering, CHINA
| | - Dayong Yu
- Guiyang University, College of Biology and Environmental Engineering, CHINA
| | - Junfa Yuan
- Guizhou University, Center for R&D of Fine Chemicals, CHINA
| | - Jinyu Tan
- Guizhou University, Center for R&D of Fine Chemicals, CHINA
| | - Hu Li
- Guizhou University, Center for R&D of Fine Chemicals, Huaxi Street, 550025, Guiyang, CHINA
| |
Collapse
|
18
|
Parkatzidis K, Boner S, Wang HS, Anastasaki A. Photoinduced Iron-Catalyzed ATRP of Renewable Monomers in Low-Toxicity Solvents: A Greener Approach. ACS Macro Lett 2022; 11:841-846. [PMID: 35731694 PMCID: PMC9301913 DOI: 10.1021/acsmacrolett.2c00302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Producing polymers from renewable resources via more sustainable approaches has become increasingly important. Herein we present the polymerization of monomers obtained from biobased renewable resources, employing an environmentally friendly photoinduced iron-catalyzed atom transfer radical polymerization (ATRP) in low-toxicity solvents. We demonstrate that renewable monomers can be successfully polymerized into sustainable polymers with controlled molecular weights and narrow molar mass distributions (Đ as low as 1.17). This is in contrast to reversible addition-fragmentation chain-transfer (RAFT) polymerization, arguably the most commonly employed method to polymerize biobased monomers, which led to poorer molecular weight control and higher dispersities for these specific monomers (Đs ∼ 1.4). The versatility of our approach was further highlighted by the temporal control demonstrated through intermittent "on/off" cycles, controlled polymerizations of a variety of monomers and chain lengths, oxygen-tolerance, and high end-group fidelity exemplified by the synthesis of block copolymers. This work highlights photoinduced iron-catalyzed ATRP as a powerful tool for the synthesis of renewable polymers.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- -Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Silja Boner
- -Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Hyun Suk Wang
- -Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Athina Anastasaki
- -Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| |
Collapse
|
19
|
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106076. [PMID: 35175001 PMCID: PMC9259732 DOI: 10.1002/advs.202106076] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Reversible-deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic-inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area.
Collapse
Affiliation(s)
- Sylwia Dworakowska
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of Chemical Engineering and TechnologyCracow University of TechnologyWarszawska 24Cracow31‐155Poland
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Department of Industrial EngineeringUniversity of Padovavia Marzolo 9Padova35131Italy
| | - Adam Gorczyński
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | |
Collapse
|
20
|
Sedrik R, Bonjour O, Laanesoo S, Liblikas I, Pehk T, Jannasch P, Vares L. Chemically Recyclable Poly(β-thioether ester)s Based on Rigid Spirocyclic Ketal Diols Derived from Citric Acid. Biomacromolecules 2022; 23:2685-2696. [PMID: 35617050 PMCID: PMC9198987 DOI: 10.1021/acs.biomac.2c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Incorporating rigid
cyclic acetal and ketal units into polymer
structures is an important strategy toward recyclable high-performance
materials from renewable resources. In the present work, citric acid,
a widely used platform chemical derived from biomass, has been efficiently
converted into di- and tricyclic diketones. Ketalization with glycerol
or trimethylolpropane afforded rigid spirodiols, which were obtained
as complex mixtures of isomers. After a comprehensive NMR analysis,
the spirodiols were converted into the respective di(meth)acrylates
and utilized in thiol–ene polymerizations in combination with
different dithiols. The resulting poly(β-thioether ester ketal)s
were thermally stable up to 300 °C and showed glass-transition
temperatures in a range of −7 to 40 °C, depending on monomer
composition. The polymers were stable in aqueous acids and bases,
but in a mixture of 1 M aqueous HCl and acetone, the ketal functional
groups were cleanly hydrolyzed, opening the pathway for potential
chemical recycling of these materials. We envision that these novel
bioderived spirodiols have a great potential to become valuable and
versatile bio-based building blocks for several different kinds of
polymer materials.
Collapse
Affiliation(s)
- Rauno Sedrik
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Olivier Bonjour
- Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Siim Laanesoo
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Ilme Liblikas
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Tõnis Pehk
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia
| | - Patric Jannasch
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.,Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Lauri Vares
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
21
|
Smith PT, Altin G, Millik SC, Narupai B, Sietz C, Park JO, Nelson A. Methacrylated Bovine Serum Albumin and Tannic Acid Composite Materials for Three-Dimensional Printing Tough and Mechanically Functional Parts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21418-21425. [PMID: 35471016 DOI: 10.1021/acsami.2c01446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nature uses proteins as building blocks to create three-dimensional (3D) structural components (like spiderwebs and tissue) that are recycled within a closed loop. Furthermore, it is difficult to replicate the mechanical properties of these 3D architectures within synthetic systems. In the absence of biological machinery, protein-based materials can be difficult to process and can have a limited range of mechanical properties. Herein, we present an additive manufacturing workflow to fabricate tough, protein-based composite hydrogels and bioplastics with a range of mechanical properties. Briefly, methacrylated bovine-serum-albumin-based aqueous resins were 3D-printed using a commercial vat photopolymerization system. The printed structures were then treated with tannic acid to introduce additional non-covalent interactions and form tough hydrogels. The hydrogel material could be sutured and withstand mechanical load, even after immersion in water for 24 h. Additionally, a denaturing thermal cure could be used to virtually eliminate rehydration of the material and form a bioplastic. To highlight the functionality of this material, a bioplastic screw was 3D-printed and driven into wood without damage to the screw. Moreover, the 3D-printed constructs enzymatically degraded up to 85% after 30 days in pepsin solution. Thus, these protein-based 3D-printed constructs show great potential for biomedical devices that degrade in situ.
Collapse
Affiliation(s)
- Patrick T Smith
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gokce Altin
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - S Cem Millik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Benjaporn Narupai
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Cameron Sietz
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - James O Park
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
22
|
Baillargeon P, Robidas R, Toulgoat O, Michaud Z, Legault CY, Rahem T. Crystal Structures of Lignocellulosic Furfuryl Biobased Polydiacetylenes with Hydrogen-Bond Networks: Influencing the Direction of Solid-State Polymerization through Modification of the Spacer Length. CRYSTAL GROWTH & DESIGN 2022; 22:2812-2823. [PMID: 35529068 PMCID: PMC9073937 DOI: 10.1021/acs.cgd.2c00307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Indexed: 05/02/2023]
Abstract
We present the topochemical polymerization of two lignocellulosic biobased diacetylenes (DAs) that only differ by an alkyl spacer length of 1 methylene (n = 1) or 3 methylene units (n = 3) between the diyne and carbamate functionalities. Their crystalline molecular organizations have the distinctive feature of being suitable for polymerization in two potential directions, either parallel or skewed to the hydrogen-bonded (HB) network. However, single-crystal structures of the final polydiacetylenes (PDAs) demonstrate that the resulting orientation of the conjugated backbones is different for these two derivatives, which lead to HB supramolecular polymer networks (2D nanosheets) for n = 1 and to independent linear PDA chains with intramolecular HBs for n = 3. Thus, spacer length modification can be considered a new strategy to influence the molecular orientation of conjugated polymer chains, which is crucial for developing the next generation of materials with optimal mechanical and optoelectronic properties. Calculations were performed on model oligodiacetylenes to evaluate the cooperativity effect of HBs in the different crystalline supramolecular packing motifs and the energy profile related to the torsion of the conjugated backbone of a PDA chain (i.e., its ability to adopt planar or helical conformations).
Collapse
Affiliation(s)
- Pierre Baillargeon
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Raphaël Robidas
- Département
de chimie, Université de Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Olivier Toulgoat
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Zacharie Michaud
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Claude Y. Legault
- Département
de chimie, Université de Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Tarik Rahem
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| |
Collapse
|
23
|
A Bio-based Healable/Renewable Polyurethane Elastomer Derived from L-Tyrosine/Vanillin/Dimer Acid. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Epps TH, Korley LTJ, Yan T, Beers KL, Burt TM. Sustainability of Synthetic Plastics: Considerations in Materials Life-Cycle Management. JACS AU 2022; 2:3-11. [PMID: 35098218 PMCID: PMC8790729 DOI: 10.1021/jacsau.1c00191] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Indexed: 06/01/2023]
Abstract
The sustainability of current and future plastic materials is a major focus of basic research, industry, government, and society at large. There is a general recognition of the positive impacts of plastics, especially packaging; however, the negative consequences around end-of-life outcomes and overall materials circularity are issues that must be addressed. In this perspective, we highlight some of the challenges associated with the many uses of plastic components and the diversity of materials needed to satisfy consumer demand, with several examples focused on plastics packaging. We also discuss the opportunities provided by conventional and advanced recycling/upgrading routes to petrochemical and bio-based materials and feedstocks, along with overviews of chemistry-related (experimental, computational, data science, and materials traceability) approaches to the valorization of polymers toward a closed-loop environment.
Collapse
Affiliation(s)
- Thomas H. Epps
- Department
of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States of America
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United
States of America
- Center
for Research in Soft matter & Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States of America
| | - LaShanda T. J. Korley
- Department
of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States of America
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United
States of America
- Center
for Research in Soft matter & Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States of America
| | - Tianwei Yan
- Department
of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States of America
- Center
for Plastics Innovation (CPI), University
of Delaware, Newark, Delaware 19716, United
States of America
| | - Kathryn L. Beers
- Materials
Measurement Laboratory, National Institute
of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States of America
| | - Tiffani M. Burt
- Innovation
& Sustainability, Sealed Air Corporation, Charlotte, North Carolina 28208, United States of America
| |
Collapse
|
25
|
O’Dea RM, Pranda PA, Luo Y, Amitrano A, Ebikade EO, Gottlieb ER, Ajao O, Benali M, Vlachos DG, Ierapetritou M, Epps TH. Ambient-pressure lignin valorization to high-performance polymers by intensified reductive catalytic deconstruction. SCIENCE ADVANCES 2022; 8:eabj7523. [PMID: 35044829 PMCID: PMC8769544 DOI: 10.1126/sciadv.abj7523] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Chemocatalytic lignin valorization strategies are critical for a sustainable bioeconomy, as lignin, especially technical lignin, is one of the most available and underutilized aromatic feedstocks. Here, we provide the first report of an intensified reactive distillation–reductive catalytic deconstruction (RD-RCD) process to concurrently deconstruct technical lignins from diverse sources and purify the aromatic products at ambient pressure. We demonstrate the utility of RD-RCD bio-oils in high-performance additive manufacturing via stereolithography 3D printing and highlight its economic advantages over a conventional reductive catalytic fractionation/RCD process. As an example, our RD-RCD reduces the cost of producing a biobased pressure-sensitive adhesive from softwood Kraft lignin by up to 60% in comparison to the high-pressure RCD approach. Last, a facile screening method was developed to predict deconstruction yields using easy-to-obtain thermal decomposition data. This work presents an integrated lignin valorization approach for upgrading existing lignin streams toward the realization of economically viable biorefineries.
Collapse
Affiliation(s)
- Robert M. O’Dea
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Paula A. Pranda
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Yuqing Luo
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Alice Amitrano
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Elvis O. Ebikade
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Catalysis Center for Energy Innovation, 221 Academy St., Newark, DE 19716, USA
| | - Eric R. Gottlieb
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Olumoye Ajao
- Natural Resources Canada, CanmetENERGY, P.O. Box 4800, Varennes, Quebec J3X 1S6, Canada
| | - Marzouk Benali
- Natural Resources Canada, CanmetENERGY, P.O. Box 4800, Varennes, Quebec J3X 1S6, Canada
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Catalysis Center for Energy Innovation, 221 Academy St., Newark, DE 19716, USA
| | - Marianthi Ierapetritou
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Catalysis Center for Energy Innovation, 221 Academy St., Newark, DE 19716, USA
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
26
|
Spiegelberg B, Jiao H, Grauke R, Spannenberg A, Brandt A, Taden A, Beck H, Tin S, de Vries J. Use of Iridium‐Catalyzed Transfer Vinylation for the Synthesis of Bio‐Based (bis)‐Vinyl Ethers. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Kazama A, Kohsaka Y. Diverse chemically recyclable polymers obtained by cationic vinyl and ring-opening polymerizations of the cyclic ketene acetal ester “dehydroaspirin”. Polym Chem 2022. [DOI: 10.1039/d2py01181f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemically recyclable polymers composed of carbon and/or ester backbones were prepared by vinyl and ring-opening polymerizations of a cyclic ketene acetal ester.
Collapse
Affiliation(s)
- Akane Kazama
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Yasuhiro Kohsaka
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, Japan
| |
Collapse
|
28
|
Tavana J, Faysal A, Vithanage A, Gramlich WM, Schwartz TJ. Pathway to fully-renewable biobased polyesters derived from HMF and phenols. Polym Chem 2022. [DOI: 10.1039/d1py01441b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Building on previous work where 5-hydroxymethylfurfural (HMF) was selectively functionalized by etherification with phenols, we demonstrated that the oxidized versions of these HMF ethers can be converted to functionalized δ-hexalactones...
Collapse
|
29
|
Porwal MK, Reddi Y, Saxon DJ, Cramer CJ, Ellison CJ, Reineke TM. Stereoregular Functionalized Polysaccharides via Cationic Ring-Opening Polymerization of Biomass-derived Levoglucosan. Chem Sci 2022; 13:4512-4522. [PMID: 35656133 PMCID: PMC9019921 DOI: 10.1039/d2sc00146b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
We report the facile synthesis and characterization of 1,6-α linked functional stereoregular polysaccharides from biomass-derived levoglucosan via cationic ring-opening polymerization (cROP). Levoglucosan is a bicyclic acetal with rich hydroxyl functionality, which can be synthetically modified to install a variety of pendant groups for tailored properties. We have employed biocompatible and recyclable metal triflate catalysts – scandium and bismuth triflate – for green cROP of levoglucosan derivatives, even at very low catalyst loadings of 0.5 mol%. Combined experimental and computational studies provided key kinetic, thermodynamic, and mechanistic insights into the cROP of these derivatives with metal triflates. Computational studies reveal that ring-opening of levoglucosan derivatives is preferred at the 1,6 anhydro linkage and cROP proceeds in a regio- and stereo-specific manner to form 1,6-α glycosidic linkages. DFT calculations also show that biocompatible metal triflates efficiently coordinate with levoglucosan derivatives as compared to the highly toxic PF5 used previously. Post-polymerization modification of levoglucosan-based polysaccharides is readily performed via UV-initiated thiol–ene click reactions. The reported levoglucosan based polymers exhibit good thermal stability (Td > 250 °C) and a wide glass transition temperature (Tg) window (<−150 °C to 32 °C) that is accessible with thioglycerol and lauryl mercaptan pendant groups. This work demonstrates the utility of levoglucosan as a renewably-derived scaffold, enabling facile access to tailored polysaccharides that could be important in many applications ranging from sustainable materials to biologically active polymers. We demonstrate the facile synthesis and characterization of stereoregular polysaccharides from the biomass-derived platform molecule levoglucosan via metal-triflate mediated cationic-ring opening polymerization.![]()
Collapse
Affiliation(s)
- Mayuri K Porwal
- Department of Chemical Engineering and Materials Science, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Yernaidu Reddi
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Derek J Saxon
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Christopher J Cramer
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
- Underwriters Laboratories Inc. 333 Pfingsten Rd. Northbrook Illinois 60620 USA
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| |
Collapse
|
30
|
Gandini A, M. Lacerda T. Monomers and Macromolecular Materials from Renewable Resources: State of the Art and Perspectives. Molecules 2021; 27:159. [PMID: 35011391 PMCID: PMC8746301 DOI: 10.3390/molecules27010159] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
A progressively increasing concern about the environmental impacts of the whole polymer industry has boosted the design of less aggressive technologies that allow for the maximum use of carbon atoms, and reduced dependence on the fossil platform. Progresses related to the former approach are mostly based on the concept of the circular economy, which aims at a thorough use of raw materials, from production to disposal. The latter, however, has been considered a priority nowadays, as short-term biological processes can efficiently provide a myriad of chemicals for the polymer industry. Polymers from renewable resources are widely established in research and technology facilities from all over the world, and a broader consolidation of such materials is expected in a near future. Herein, an up-to-date overview of the most recent and relevant contributions dedicated to the production of monomers and polymers from biomass is presented. We provide some basic issues related to the preparation of polymers from renewable resources to discuss ongoing strategies that can be used to achieve original polymers and systems thereof.
Collapse
Affiliation(s)
- Alessandro Gandini
- Graduate School of Engineering in Paper, Print Media and Biomaterials (Grenoble INP-Pagora), University Grenoble Alpes, LGP2, CEDEX 9, 38402 Saint Martin d’Hères, France
| | - Talita M. Lacerda
- Biotechnology Department, Lorena School of Engineering, University of São Paulo, Lorena CEP 12602-810, SP, Brazil;
| |
Collapse
|
31
|
Ramdani N, Zaimeche H, Derradji M. Biobased thermally-stable aromatic cyanate ester thermosets: A review. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Zhang Y, Zhang C, Wang Y. Recent progress in cellulose-based electrospun nanofibers as multifunctional materials. NANOSCALE ADVANCES 2021; 3:6040-6047. [PMID: 36133945 PMCID: PMC9417631 DOI: 10.1039/d1na00508a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
Cellulose, the most abundant natural polymer, has good biocompatibility, biodegradability, and non-toxicity, which make it and its derivatives promising candidates for the fabrication of multifunctional materials, while maintaining sustainability and environmental friendliness. The combination of electrospinning technology and cellulose (and its derivatives) provides a feasible approach to produce nanostructured porous materials with promising functionalities, flexibility, renewability and biodegradability. At the same time, it enables value-added applications of cellulose and its derivatives that are derived from nature or even biomass waste. This review summarizes and discusses the latest progress in cellulose-based electrospun nanofibers, including their construction methods and conditions, various available raw materials, and applications in multiple areas (water treatment, biomaterials, sensors, electro-conductive materials, active packaging, and so on), which are followed by the conclusion and prospects associated with future opportunities and challenges in this active research area.
Collapse
Affiliation(s)
- Yirong Zhang
- Department of Food Science and Agricultural Chemistry, McGill University 21111 Lakeshore Ste Anne de Bellevue Quebec H9X 3V9 Canada
| | - Cunzhi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University 21111 Lakeshore Ste Anne de Bellevue Quebec H9X 3V9 Canada
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology Guangzhou 510640 China
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University 21111 Lakeshore Ste Anne de Bellevue Quebec H9X 3V9 Canada
| |
Collapse
|
33
|
Affiliation(s)
- Cristian P. Woroch
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Andrew W. Lankenau
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Matthew W. Kanan
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| |
Collapse
|
34
|
Pishavar E, Khosravi F, Naserifar M, Rezvani Ghomi E, Luo H, Zavan B, Seifalian A, Ramakrishna S. Multifunctional and Self-Healable Intelligent Hydrogels for Cancer Drug Delivery and Promoting Tissue Regeneration In Vivo. Polymers (Basel) 2021; 13:2680. [PMID: 34451220 PMCID: PMC8399012 DOI: 10.3390/polym13162680] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022] Open
Abstract
Regenerative medicine seeks to assess how materials fundamentally affect cellular functions to improve retaining, restoring, and revitalizing damaged tissues and cancer therapy. As potential candidates in regenerative medicine, hydrogels have attracted much attention due to mimicking of native cell-extracellular matrix (ECM) in cell biology, tissue engineering, and drug screening over the past two decades. In addition, hydrogels with a high capacity for drug loading and sustained release profile are applicable in drug delivery systems. Recently, self-healing supramolecular hydrogels, as a novel class of biomaterials, are being used in preclinical trials with benefits such as biocompatibility, native tissue mimicry, and injectability via a reversible crosslink. Meanwhile, the localized therapeutics agent delivery is beneficial due to the ability to deliver more doses of therapeutic agents to the targeted site and the ability to overcome post-surgical complications, inflammation, and infections. These highly potential materials can help address the limitations of current drug delivery systems and the high clinical demand for customized drug release systems. To this aim, the current review presents the state-of-the-art progress of multifunctional and self-healable hydrogels for a broad range of applications in cancer therapy, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Elham Pishavar
- Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran;
| | - Fatemeh Khosravi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Mahshid Naserifar
- Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran;
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China;
| | - Barbara Zavan
- Department of Morphology, Experimental Medicine and Surgery, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Amelia Seifalian
- UCL Medical School, University College London, London WC1E 6BT, UK;
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| |
Collapse
|
35
|
Ganesh K, Jung J, Woo Park J, Kim BS, Seo S. Effect of Substituents in Mussel-inspired Surface Primers on their Oxidation and Priming Efficiency. ChemistryOpen 2021; 10:852-859. [PMID: 34437767 PMCID: PMC8389193 DOI: 10.1002/open.202100158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Indexed: 11/09/2022] Open
Abstract
Marine mussels contain an abundant catechol moiety, 3,4-dihydroxyphenylalanine (DOPA), in their interfacial foot proteins. DOPA contributes to both surface adhesion and bridging between the surface and overhead proteins (surface priming) by taking advantage of the unique redox properties of catechol. Inspired by the mussel surface priming mechanism, herein we synthesized a series of DOPA-mimetic analogs - a bifunctional group molecule, consisting of a catechol group and an acrylic group at the opposite ends. The surface primers with differently substituted (-COOH, -CH3 ) alkyl chains in the middle spacer were synthesized. Time-dependent oxidation and redox potentials of the surface primers were studied in an oxidizing environment to gain a better understanding of the mussel's redox chemistry. The thickness and degree of priming of the surface primers on silicon-based substrates were analyzed by ellipsometry and UV/Vis absorption spectroscopy. The post-reactivity of the acrylic groups of the primed layer was first visualized through a reaction with an acrylic group-reactive dye.
Collapse
Affiliation(s)
- Karuppasamy Ganesh
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jaewon Jung
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jun Woo Park
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| |
Collapse
|
36
|
Korley LTJ, Epps TH, Helms BA, Ryan AJ. Toward polymer upcycling-adding value and tackling circularity. Science 2021; 373:66-69. [PMID: 34210879 DOI: 10.1126/science.abg4503] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plastics have revolutionized modern life, but have created a global waste crisis driven by our reliance and demand for low-cost, disposable materials. New approaches are vital to address challenges related to plastics waste heterogeneity, along with the property reductions induced by mechanical recycling. Chemical recycling and upcycling of polymers may enable circularity through separation strategies, chemistries that promote closed-loop recycling inherent to macromolecular design, and transformative processes that shift the life-cycle landscape. Polymer upcycling schemes may enable lower-energy pathways and minimal environmental impacts compared with traditional mechanical and chemical recycling. The emergence of industrial adoption of recycling and upcycling approaches is encouraging, solidifying the critical role for these strategies in addressing the fate of plastics and driving advances in next-generation materials design.
Collapse
Affiliation(s)
- LaShanda T J Korley
- Center for Plastics Innovation, University of Delaware, Newark, DE 19716, USA. .,Center for Research in Soft matter and Polymers, and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.,Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Thomas H Epps
- Center for Plastics Innovation, University of Delaware, Newark, DE 19716, USA. .,Center for Research in Soft matter and Polymers, and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.,Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Brett A Helms
- The Molecular Foundry, Materials Sciences Division, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Anthony J Ryan
- Grantham Centre for Sustainable Futures and the Department of Chemistry, The University of Sheffield, Brookhill, Sheffield S3 7HF, UK
| |
Collapse
|
37
|
Yu Y, Fang LM, Liu Y, Lu XB. Chemical Synthesis of CO 2-Based Polymers with Enhanced Thermal Stability and Unexpected Recyclability from Biosourced Monomers. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01376] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yan Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, People’s Republic of China
| | - Li-Ming Fang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, People’s Republic of China
| | - Ye Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, People’s Republic of China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, People’s Republic of China
| |
Collapse
|
38
|
Amitrano A, Mahajan JS, Korley LTJ, Epps TH. Estrogenic activity of lignin-derivable alternatives to bisphenol A assessed via molecular docking simulations. RSC Adv 2021; 11:22149-22158. [PMID: 35480830 PMCID: PMC9034231 DOI: 10.1039/d1ra02170b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/14/2021] [Indexed: 01/01/2023] Open
Abstract
Lignin-derivable bisphenols are potential alternatives to bisphenol A (BPA), a suspected endocrine disruptor; however, a greater understanding of structure-activity relationships (SARs) associated with such lignin-derivable building blocks is necessary to move replacement efforts forward. This study focuses on the prediction of bisphenol estrogenic activity (EA) to inform the design of potentially safer BPA alternatives. To achieve this goal, the binding affinities to estrogen receptor alpha (ERα) of lignin-derivable bisphenols were calculated via molecular docking simulations and correlated to median effective concentration (EC50) values using an empirical correlation curve created from known EC50 values and binding affinities of commercial (bis)phenols. Based on the correlation curve, lignin-derivable bisphenols with binding affinities weaker than ∼-6.0 kcal mol-1 were expected to exhibit no EA, and further analysis suggested that having two methoxy groups on an aromatic ring of the bio-derivable bisphenol was largely responsible for the reduction in binding to ERα. Such dimethoxy aromatics are readily sourced from the depolymerization of hardwood biomass. Additionally, bulkier substituents on the bridging carbon of lignin-bisphenols, like diethyl or dimethoxy, were shown to weaken binding to ERα. And, as the bio-derivable aromatics maintain major structural similarities to BPA, the resultant polymeric materials should possess comparable/equivalent thermal (e.g., glass transition temperatures, thermal decomposition temperatures) and mechanical (e.g., tensile strength, modulus) properties to those of polymers derived from BPA. Hence, the SARs established in this work can facilitate the development of sustainable polymers that maintain the performance of existing BPA-based materials while simultaneously reducing estrogenic potential.
Collapse
Affiliation(s)
- Alice Amitrano
- Department of Chemical and Biomolecular Engineering, University of Delaware Newark Delaware 19716 USA
| | - Jignesh S Mahajan
- Department of Materials Science and Engineering, University of Delaware Newark Delaware 19716 USA
| | - LaShanda T J Korley
- Department of Chemical and Biomolecular Engineering, University of Delaware Newark Delaware 19716 USA
- Department of Materials Science and Engineering, University of Delaware Newark Delaware 19716 USA
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware Newark Delaware 19716 USA
| | - Thomas H Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware Newark Delaware 19716 USA
- Department of Materials Science and Engineering, University of Delaware Newark Delaware 19716 USA
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware Newark Delaware 19716 USA
| |
Collapse
|
39
|
Chen X, Zhou Z, Zhang H, Mao Y, Luo Z, Li X, Sha Y. Sustainable Thermoplastic Elastomers Derived from Lignin Bio‐Oils via an ABA Triblock Copolymer Strategy. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaofan Chen
- Department of Chemistry and Material Science College of Science Nanjing Forestry University Nanjing 210037 China
| | - Zhou Zhou
- Department of Chemistry and Material Science College of Science Nanjing Forestry University Nanjing 210037 China
| | - Hao Zhang
- Department of Chemistry and Material Science College of Science Nanjing Forestry University Nanjing 210037 China
| | - Yipeng Mao
- Department of Chemistry and Material Science College of Science Nanjing Forestry University Nanjing 210037 China
| | - Zhenyang Luo
- Department of Chemistry and Material Science College of Science Nanjing Forestry University Nanjing 210037 China
| | - Xiang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Ye Sha
- Department of Chemistry and Material Science College of Science Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
40
|
Bing RG, Sulis DB, Wang JP, Adams MW, Kelly RM. Thermophilic microbial deconstruction and conversion of natural and transgenic lignocellulose. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:272-293. [PMID: 33684253 PMCID: PMC10519370 DOI: 10.1111/1758-2229.12943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The potential to convert renewable plant biomasses into fuels and chemicals by microbial processes presents an attractive, less environmentally intense alternative to conventional routes based on fossil fuels. This would best be done with microbes that natively deconstruct lignocellulose and concomitantly form industrially relevant products, but these two physiological and metabolic features are rarely and simultaneously observed in nature. Genetic modification of both plant feedstocks and microbes can be used to increase lignocellulose deconstruction capability and generate industrially relevant products. Separate efforts on plants and microbes are ongoing, but these studies lack a focus on optimal, complementary combinations of these disparate biological systems to obtain a convergent technology. Improving genetic tools for plants have given rise to the generation of low-lignin lines that are more readily solubilized by microorganisms. Most focus on the microbiological front has involved thermophilic bacteria from the genera Caldicellulosiruptor and Clostridium, given their capacity to degrade lignocellulose and to form bio-products through metabolic engineering strategies enabled by ever-improving molecular genetics tools. Bioengineering plant properties to better fit the deconstruction capabilities of candidate consolidated bioprocessing microorganisms has potential to achieve the efficient lignocellulose deconstruction needed for industrial relevance.
Collapse
Affiliation(s)
- Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Daniel B. Sulis
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695
| | - Jack P. Wang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695
| | - Michael W.W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
41
|
|
42
|
Nahar Y, Thickett SC. Greener, Faster, Stronger: The Benefits of Deep Eutectic Solvents in Polymer and Materials Science. Polymers (Basel) 2021; 13:447. [PMID: 33573280 PMCID: PMC7866798 DOI: 10.3390/polym13030447] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
Deep eutectic solvents (DESs) represent an emergent class of green designer solvents that find numerous applications in different aspects of chemical synthesis. A particularly appealing aspect of DES systems is their simplicity of preparation, combined with inexpensive, readily available starting materials to yield solvents with appealing properties (negligible volatility, non-flammability and high solvation capacity). In the context of polymer science, DES systems not only offer an appealing route towards replacing hazardous volatile organic solvents (VOCs), but can serve multiple roles including those of solvent, monomer and templating agent-so called "polymerizable eutectics." In this review, we look at DES systems and polymerizable eutectics and their application in polymer materials synthesis, including various mechanisms of polymer formation, hydrogel design, porous monoliths, and molecularly imprinted polymers. We provide a comparative study of these systems alongside traditional synthetic approaches, highlighting not only the benefit of replacing VOCs from the perspective of environmental sustainability, but also the materials advantage with respect to mechanical and thermal properties of the polymers formed.
Collapse
Affiliation(s)
| | - Stuart C. Thickett
- School of Natural Sciences—Chemistry, University of Tasmania, Hobart, TAS 7001, Australia;
| |
Collapse
|
43
|
Fagnani DE, Tami JL, Copley G, Clemons MN, Getzler YDYL, McNeil AJ. 100th Anniversary of Macromolecular Science Viewpoint: Redefining Sustainable Polymers. ACS Macro Lett 2021; 10:41-53. [PMID: 35548997 DOI: 10.1021/acsmacrolett.0c00789] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although Staudinger realized makromoleküles had enormous potential, he likely did not anticipate the consequences of their universal adoption. With 6.3 billion metric tons of plastic waste now contaminating our land, water, and air, we are facing an environmental and public health crisis. Synthetic polymer chemists can help create a more sustainable future, but are we on the right path to do so? Herein, a comprehensive literature survey reveals that there has been an increased focus on "sustainable polymers" in recent years, but most papers focus on biomass-derived feedstocks. In contrast, there is less focus on polymer end-of-life fates. Moving forward, we suggest an increased emphasis on chemical recycling, which sees value in plastic waste and promotes a closed-loop plastic economy. To help keep us on the path to sustainability, the synthetic polymer community should routinely seek the systems perspective offered by life cycle assessment.
Collapse
Affiliation(s)
- Danielle E. Fagnani
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jessica L. Tami
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Graeme Copley
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Mackenzie N. Clemons
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | | | - Anne J. McNeil
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
44
|
Ji L, Zhang F, Zhu L, Jiang J. An in-situ fabrication of bamboo bacterial cellulose/sodium alginate nanocomposite hydrogels as carrier materials for controlled protein drug delivery. Int J Biol Macromol 2021; 170:459-468. [PMID: 33359254 DOI: 10.1016/j.ijbiomac.2020.12.139] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Sodium alginate-bacterial cellulose (SA-BC) is a nanocomposite hydrogel with multi-layered porous surfaces fabricated using an in-situ biosynthesis modification method. The enzymatic hydrolysate (EH) of glycerol-pretreated Moso bamboo (MBEH) was the carbon source for glucose substitution to generate SA-bamboo-BC. SA, a natural biological polysaccharide, was combined with BC at dosages of 0.25%, 0.5%, 0.75% and 1% through hydrogen bonding. Compared to the native BC, the addition of 0.75% SA, termed as SA-bamboo-BC-0.75, enhanced the thermal properties. The dynamic swelling/de-swelling were pH-dependent, with an increased swelling ratio (SR) of 613% observed at pH 7.4 but a lower SR of 366% observed at pH 1.2. These differences were attributable to the electrostatic repulsion of -COO-. Two protein-based model drugs were compared to estimate their drug-release properties. Bovine serum albumin (BSA) was adsorbed on lignin from MBEH through hydrophobic interactions, resulting in poor drug release. Lysozyme (LYZ) exhibited a higher drug release rate (92.79%) over 60 h at pH 7.4 due to the static attraction between LYZ and -COO- of SA-bamboo-BC-0.75. As such, SA-bamboo-BC nanocomposite hydrogel was shown to possess sufficient swelling, drug-release and biocompatibility for substrate use.
Collapse
Affiliation(s)
- Li Ji
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 210042, China
| | - Liwei Zhu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
45
|
Pospiech D, Korwitz A, Komber H, Jehnichen D, Arnhold K, Brünig H, Scheibner H, Müller MT, Voit B. Polyesters with bio-based ferulic acid units: crosslinking paves the way to property consolidation. Polym Chem 2021. [DOI: 10.1039/d1py00851j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bio-based ferulic acid monomer is inserted in random terpolyesters with high molar mass and offers the possibility of crosslinking after processing. Both ferulate monomer and solvent-free polycondensation make the new materials more sustainable.
Collapse
Affiliation(s)
- Doris Pospiech
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Andreas Korwitz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Dieter Jehnichen
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Kerstin Arnhold
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Harald Brünig
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Holger Scheibner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Michael T. Müller
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
46
|
Papadopoulos L, Klonos PA, Kluge M, Zamboulis A, Terzopoulou Z, Kourtidou D, Magaziotis A, Chrissafis K, Kyritsis A, Bikiaris DN, Robert T. Unlocking the potential of furan-based poly(ester amide)s: an investigation of crystallization, molecular dynamics and degradation kinetics of novel poly(ester amide)s based on renewable poly(propylene furanoate). Polym Chem 2021. [DOI: 10.1039/d1py00713k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, novel polyester amides (PEAs) based on renewable poly(propylene furanoate) (PPF) were prepared via traditional melt polycondensation utilizing a preformed symmetric amido diol (AD) containing two internal amide bonds.
Collapse
Affiliation(s)
- Lazaros Papadopoulos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780, Athens, Greece
| | - Marcel Kluge
- Fraunhofer Institute for Wood Research – Wilhelm-Klauditz-Institut WKI, Bienroder Weg 54E, 38108 Braunschweig, Germany
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Zoi Terzopoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Dimitra Kourtidou
- Laboratory of X-ray, Optical Characterization and Thermal Analysis, Physics Department, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Andreas Magaziotis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Konstantinos Chrissafis
- Laboratory of X-ray, Optical Characterization and Thermal Analysis, Physics Department, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780, Athens, Greece
| | - Dimitrios N. Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Tobias Robert
- Fraunhofer Institute for Wood Research – Wilhelm-Klauditz-Institut WKI, Bienroder Weg 54E, 38108 Braunschweig, Germany
| |
Collapse
|
47
|
Abstract
This review examines recent strategies, challenges, and future opportunities in preparing high-performance polymeric materials from lignin and its derivable compounds.
Collapse
Affiliation(s)
- Garrett F. Bass
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark
- USA
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark
- USA
- Department of Materials Science and Engineering
| |
Collapse
|
48
|
Mohammad SA, Dolui S, Kumar D, Mane SR, Banerjee S. Facile access to functional polyacrylates with dual stimuli response and tunable surface hydrophobicity. Polym Chem 2021. [DOI: 10.1039/d1py00378j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Well-defined functional polyacrylates with dual stimuli response and tunable surface hydrophobicity were synthesized via the recyclable Ni–Co alloy catalyzed reversible deactivation radical polymerization technique at ambient temperature.
Collapse
Affiliation(s)
- Sk Arif Mohammad
- Department of Chemistry
- Indian Institute of Technology Bhilai
- Raipur 492015
- India
| | - Subrata Dolui
- Department of Chemistry
- Indian Institute of Technology Bhilai
- Raipur 492015
- India
| | - Devendra Kumar
- Department of Chemistry
- Indian Institute of Technology Bhilai
- Raipur 492015
- India
| | - Shivshankar R. Mane
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune
- India
| | - Sanjib Banerjee
- Department of Chemistry
- Indian Institute of Technology Bhilai
- Raipur 492015
- India
| |
Collapse
|
49
|
Yarolimek MR, Coia BM, Bookbinder HR, Kennemur JG. Investigating the effect of α-pinene on the ROMP of δ-pinene. Polym Chem 2021. [DOI: 10.1039/d1py00931a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ring opening metathesis polymerization of δ-pinene with varying amounts of α-pinene is explored.
Collapse
Affiliation(s)
- Mark R. Yarolimek
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Brianna M. Coia
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Heather R. Bookbinder
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Justin G. Kennemur
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
50
|
Nishida T, Satoh K, Kamigaito M. Biobased Polymers via Radical Homopolymerization and Copolymerization of a Series of Terpenoid-Derived Conjugated Dienes with exo-Methylene and 6-Membered Ring. Molecules 2020; 25:E5890. [PMID: 33322773 PMCID: PMC7763260 DOI: 10.3390/molecules25245890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/28/2023] Open
Abstract
A series of exo-methylene 6-membered ring conjugated dienes, which are directly or indirectly obtained from terpenoids, such as β-phellandrene, carvone, piperitone, and verbenone, were radically polymerized. Although their radical homopolymerizations were very slow, radical copolymerizations proceeded well with various common vinyl monomers, such as methyl acrylate (MA), acrylonitrile (AN), methyl methacrylate (MMA), and styrene (St), resulting in copolymers with comparable incorporation ratios of bio-based cyclic conjugated monomer units ranging from 40 to 60 mol% at a 1:1 feed ratio. The monomer reactivity ratios when using AN as a comonomer were close to 0, whereas those with St were approximately 0.5 to 1, indicating that these diene monomers can be considered electron-rich monomers. Reversible addition fragmentation chain-transfer (RAFT) copolymerizations with MA, AN, MMA, and St were all successful when using S-cumyl-S'-butyl trithiocarbonate (CBTC) as the RAFT agent resulting in copolymers with controlled molecular weights. The copolymers obtained with AN, MMA, or St showed glass transition temperatures (Tg) similar to those of common vinyl polymers (Tg ~ 100 °C), indicating that biobased cyclic structures were successfully incorporated into commodity polymers without losing good thermal properties.
Collapse
Affiliation(s)
- Takenori Nishida
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (T.N.); (K.S.)
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (T.N.); (K.S.)
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, School of Materials and Chemical Technology, 2-12-1-H120 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (T.N.); (K.S.)
| |
Collapse
|