1
|
Benício LFMA, Nascimento ÉCM, Martins JBL. Docking heparan sulfate-based ligands as a promising inhibitor for SARS-CoV-2. J Mol Model 2024; 31:19. [PMID: 39666205 DOI: 10.1007/s00894-024-06236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
CONTEXT Heparan sulfate (HS) linear polysaccharide glycosaminoglycan compound is linked to components from the cell surface and the extracellular matrix. HS mediates SARS-CoV-2 infection through spike protein binding to cell surface receptors and is required to bind ACE2, prompting the need for electronic structure and molecular docking evaluation of this core system to exploit this attachment in developing new derivatives. Therefore, we have studied five molecules based on HS using molecular docking and electronic structure analysis. Non-covalent interaction analysis shows hydrogen bonding and van der Waals interactions in the binding to RBD-ACE2 interface and 3CLpro. SDM3 and SDM1 molecules present the lowest gap, including solvent effect under 154.6 kcal/mol, and exhibit the most reactivity behavior in this group, potentially leading to enhanced interaction in docking studies. METHODS Heparan sulfate and four derivatives were optimized using B3LYP functional with two basis sets 6-31 + G(d,p) and def2SVP. Electronic structure was used to explore the main interactions and the reactivity of these molecules, and these optimized structures were used in the molecular docking study against 3CLpro, RBD, and ACE2.
Collapse
Affiliation(s)
- Luiz F M A Benício
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Érica C M Nascimento
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - João B L Martins
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil.
| |
Collapse
|
2
|
Chhabra M, Shanthamurthy CD, Kumar NV, Mardhekar S, Vishweshwara SS, Wimmer N, Modhiran N, Watterson D, Amarilla AA, Cha JS, Beckett JR, De Voss JJ, Kayal Y, Vlodavsky I, Dorsett LR, Smith RAA, Gandhi NS, Kikkeri R, Ferro V. Amphiphilic Heparinoids as Potent Antiviral Agents against SARS-CoV-2. J Med Chem 2024; 67:11885-11916. [PMID: 38995734 DOI: 10.1021/acs.jmedchem.4c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Herein, we report the synthesis and biological evaluation of a novel series of heparinoid amphiphiles as inhibitors of heparanase and SARS-CoV-2. By employing a tailor-made synthetic strategy, a library of highly sulfated homo-oligosaccharides bearing d-glucose or a C5-epimer (i.e., l-idose or l-iduronic acid) conjugated with various lipophilic groups was synthesized and investigated for antiviral activity. Sulfated higher oligosaccharides of d-glucose or l-idose with lipophilic aglycones displayed potent anti-SARS-CoV-2 and antiheparanse activity, similar to or better than pixatimod (PG545), and were more potent than their isosteric l-iduronic acid congeners. Lipophilic groups such as cholestanol and C18-aliphatic substitution are more advantageous than functional group appended lipophilic moieties. These findings confirm that fine-tuning of higher oligosaccharides, degree of sulfation, and lipophilic groups can yield compounds with potent anti-SARS-CoV-2 activity.
Collapse
Affiliation(s)
- Mohit Chhabra
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chethan D Shanthamurthy
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | | | - Sandhya Mardhekar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sharath S Vishweshwara
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Norbert Wimmer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jonathan S Cha
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - James R Beckett
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yasmin Kayal
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion─Israel Institute of Technology, Haifa 31096, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion─Israel Institute of Technology, Haifa 31096, Israel
| | - Lauren R Dorsett
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Raymond A A Smith
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Neha S Gandhi
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Ander SE, Parks MG, Davenport BJ, Li FS, Bosco-Lauth A, Carpentier KS, Sun C, Lucas CJ, Klimstra WB, Ebel GD, Morrison TE. Phagocyte-expressed glycosaminoglycans promote capture of alphaviruses from the blood circulation in a host species-specific manner. PNAS NEXUS 2024; 3:pgae119. [PMID: 38560529 PMCID: PMC10978064 DOI: 10.1093/pnasnexus/pgae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya, eastern- (EEEV), and Venezuelan- (VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology.
Collapse
Affiliation(s)
- Stephanie E Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - M Guston Parks
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bennett J Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Frances S Li
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angela Bosco-Lauth
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kathryn S Carpentier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chengqun Sun
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cormac J Lucas
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
4
|
He P, Song Y, Jin W, Li Y, Xia K, Kim SB, Dwivedi R, Farrag M, Bates J, Pomin VH, Wang C, Linhardt RJ, Dordick JS, Zhang F. Marine sulfated glycans inhibit the interaction of heparin with S-protein of SARS-CoV-2 Omicron XBB variant. Glycoconj J 2024; 41:163-174. [PMID: 38642280 DOI: 10.1007/s10719-024-10150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide COVID-19 pandemic, leading to 6.8 million deaths. Numerous variants have emerged since its outbreak, resulting in its significantly enhanced ability to spread among humans. As with many other viruses, SARS‑CoV‑2 utilizes heparan sulfate (HS) glycosaminoglycan (GAG) on the surface of host cells to facilitate viral attachment and initiate cellular entry through the ACE2 receptor. Therefore, interfering with virion-HS interactions represents a promising target to develop broad-spectrum antiviral therapeutics. Sulfated glycans derived from marine organisms have been proven to be exceptional reservoirs of naturally existing HS mimetics, which exhibit remarkable therapeutic properties encompassing antiviral/microbial, antitumor, anticoagulant, and anti-inflammatory activities. In the current study, the interactions between the receptor-binding domain (RBD) of S-protein of SARS-CoV-2 (both WT and XBB.1.5 variants) and heparin were applied to assess the inhibitory activity of 10 marine-sourced glycans including three sulfated fucans, three fucosylated chondroitin sulfates and two fucoidans derived from sea cucumbers, sea urchin and seaweed Saccharina japonica, respectively. The inhibitory activity of these marine derived sulfated glycans on the interactions between RBD of S-protein and heparin was evaluated using Surface Plasmon Resonance (SPR). The RBDs of S-proteins from both Omicrion XBB.1.5 and wild-type (WT) were found to bind to heparin, which is a highly sulfated form of HS. All the tested marine-sourced sulfated glycans exhibited strong inhibition of WT and XBB.1.5 S-protein binding to heparin. We believe the study on the molecular interactions between S-proteins and host cell glycosaminoglycans provides valuable insight for the development of marine-sourced, glycan-based inhibitors as potential anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Peng He
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- School of Oceanography, Beibu Gulf University, 535011, Qinzhou, China
| | - Yuefan Song
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
| | - Weihua Jin
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Yunran Li
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
| | - Seon Beom Kim
- Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, The University of Mississippi, Oxford, MS, USA
- Department of Food Science & Technology, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Rohini Dwivedi
- Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, The University of Mississippi, Oxford, MS, USA
| | - Marwa Farrag
- Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, The University of Mississippi, Oxford, MS, USA
| | - John Bates
- Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, The University of Mississippi, Oxford, MS, USA
| | - Vitor H Pomin
- Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, The University of Mississippi, Oxford, MS, USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
- Departments of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
| | - Jonathan S Dordick
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Departments of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA.
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Departments of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA.
| |
Collapse
|
5
|
Maity S, Acharya A. Many Roles of Carbohydrates: A Computational Spotlight on the Coronavirus S Protein Binding. ACS APPLIED BIO MATERIALS 2024; 7:646-656. [PMID: 36947738 PMCID: PMC10880061 DOI: 10.1021/acsabm.2c01064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/08/2023] [Indexed: 03/24/2023]
Abstract
Glycosylation is one of the post-translational modifications with more than 50% of human proteins being glycosylated. The exact nature and chemical composition of glycans are inaccessible to X-ray or cryo-electron microscopy imaging techniques. Therefore, computational modeling studies and molecular dynamics must be used as a "computational microscope". The spike (S) protein of SARS-CoV-2 is heavily glycosylated, and a few glycans play a more functional role "beyond shielding". In this mini-review, we discuss computational investigations of the roles of specific S-protein and ACE2 glycans in the overall ACE2-S protein binding. We highlight different functions of specific glycans demonstrated in myriad computational models and simulations in the context of the SARS-CoV-2 virus binding to the receptor. We also discuss interactions between glycocalyx and the S protein, which may be utilized to design prophylactic polysaccharide-based therapeutics targeting the S protein. In addition, we underline the recent emergence of coronavirus variants and their impact on the S protein and its glycans.
Collapse
Affiliation(s)
- Suman Maity
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Atanu Acharya
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
6
|
Holmes SG, Desai UR. Assessing Genetic Algorithm-Based Docking Protocols for Prediction of Heparin Oligosaccharide Binding Geometries onto Proteins. Biomolecules 2023; 13:1633. [PMID: 38002315 PMCID: PMC10669598 DOI: 10.3390/biom13111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Although molecular docking has evolved dramatically over the years, its application to glycosaminoglycans (GAGs) has remained challenging because of their intrinsic flexibility, highly anionic character and rather ill-defined site of binding on proteins. GAGs have been treated as either fully "rigid" or fully "flexible" in molecular docking. We reasoned that an intermediate semi-rigid docking (SRD) protocol may be better for the recapitulation of native heparin/heparan sulfate (Hp/HS) topologies. Herein, we study 18 Hp/HS-protein co-complexes containing chains from disaccharide to decasaccharide using genetic algorithm-based docking with rigid, semi-rigid, and flexible docking protocols. Our work reveals that rigid and semi-rigid protocols recapitulate native poses for longer chains (5→10 mers) significantly better than the flexible protocol, while 2→4-mer poses are better predicted using the semi-rigid approach. More importantly, the semi-rigid docking protocol is likely to perform better when no crystal structure information is available. We also present a new parameter for parsing selective versus non-selective GAG-protein systems, which relies on two computational parameters including consistency of binding (i.e., RMSD) and docking score (i.e., GOLD Score). The new semi-rigid protocol in combination with the new computational parameter is expected to be particularly useful in high-throughput screening of GAG sequences for identifying promising druggable targets as well as drug-like Hp/HS sequences.
Collapse
Affiliation(s)
- Samuel G. Holmes
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
| |
Collapse
|
7
|
Carvalhal F, Magalhães AC, Rebelo R, Palmeira A, Resende DISP, Durães F, Maia M, Xavier CPR, Pereira L, Sousa E, Correia-da-Silva M, Vasconcelos MH. Evaluation of the Cytotoxic and Antiviral Effects of Small Molecules Selected by In Silico Studies as Inhibitors of SARS-CoV-2 Cell Entry. Molecules 2023; 28:7204. [PMID: 37894682 PMCID: PMC10609270 DOI: 10.3390/molecules28207204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) relies on host cell surface glycans to facilitate interaction with the angiotensin-converting enzyme 2 (ACE-2) receptor. This interaction between ACE2 and the spike protein is a gateway for the virus to enter host cells and may be targeted by antiviral drugs to inhibit viral infection. Therefore, targeting the interaction between these two proteins is an interesting strategy to prevent SARS-CoV-2 infection. A library of glycan mimetics and derivatives was selected for a virtual screening performed against both ACE2 and spike proteins. Subsequently, in vitro assays were performed on eleven of the most promising in silico compounds to evaluate: (i) their efficacy in inhibiting cell infection by SARS-CoV-2 (using the Vero CCL-81 cell line as a model), (ii) their impact on ACE2 expression (in the Vero CCL-81 and MDA-MB-231 cell lines), and (iii) their cytotoxicity in a human lung cell line (A549). We identified five synthetic compounds with the potential to block SARS-CoV-2 infection, three of them without relevant toxicity in human lung cells. Xanthene 1 stood out as the most promising anti-SARS-CoV-2 agent, inhibiting viral infection and viral replication in Vero CCL-81 cells, without causing cytotoxicity to human lung cells.
Collapse
Affiliation(s)
- Francisca Carvalhal
- FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal (R.R.); (A.P.); (D.I.S.P.R.); (F.D.); (M.M.); (E.S.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4408-208 Matosinhos, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (A.C.M.); (C.P.R.X.); (L.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Ana Cristina Magalhães
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (A.C.M.); (C.P.R.X.); (L.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Rita Rebelo
- FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal (R.R.); (A.P.); (D.I.S.P.R.); (F.D.); (M.M.); (E.S.)
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (A.C.M.); (C.P.R.X.); (L.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Andreia Palmeira
- FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal (R.R.); (A.P.); (D.I.S.P.R.); (F.D.); (M.M.); (E.S.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4408-208 Matosinhos, Portugal
| | - Diana I. S. P. Resende
- FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal (R.R.); (A.P.); (D.I.S.P.R.); (F.D.); (M.M.); (E.S.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4408-208 Matosinhos, Portugal
| | - Fernando Durães
- FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal (R.R.); (A.P.); (D.I.S.P.R.); (F.D.); (M.M.); (E.S.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4408-208 Matosinhos, Portugal
| | - Miguel Maia
- FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal (R.R.); (A.P.); (D.I.S.P.R.); (F.D.); (M.M.); (E.S.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4408-208 Matosinhos, Portugal
| | - Cristina P. R. Xavier
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (A.C.M.); (C.P.R.X.); (L.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Luísa Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (A.C.M.); (C.P.R.X.); (L.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Emília Sousa
- FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal (R.R.); (A.P.); (D.I.S.P.R.); (F.D.); (M.M.); (E.S.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4408-208 Matosinhos, Portugal
| | - Marta Correia-da-Silva
- FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal (R.R.); (A.P.); (D.I.S.P.R.); (F.D.); (M.M.); (E.S.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4408-208 Matosinhos, Portugal
| | - M. Helena Vasconcelos
- FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal (R.R.); (A.P.); (D.I.S.P.R.); (F.D.); (M.M.); (E.S.)
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (A.C.M.); (C.P.R.X.); (L.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
8
|
Abdulsalam H, Li J, Loka RS, Sletten ET, Nguyen HM. Heparan Sulfate-Mimicking Glycopolymers Bind SARS-CoV-2 Spike Protein in a Length- and Sulfation Pattern-Dependent Manner. ACS Med Chem Lett 2023; 14:1411-1418. [PMID: 37849547 PMCID: PMC10577887 DOI: 10.1021/acsmedchemlett.3c00319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
Heparan sulfate-mimicking glycopolymers, composed of glucosamine (GlcN)-glucuronic acid (GlcA) repeating units, bind to the receptor-binding subunit (S1) and spike glycoprotein (S) domains of the SARS-CoV-2 spike protein in a length- and sulfation pattern-dependent fashion. A glycopolymer composed of 12 repeating GlcNS6S-GlcA units exhibits a much higher affinity to the S1 protein (IC50 = 13 ± 1.1 nM) compared with the receptor-binding domain (RBD). This glycopolymer does not interfere in angiotensin-converting enzyme 2 binding of the RBD. Although this compound binds strongly to the S1/membrane-fusion subunit (S2) junction (KD = 29.7 ± 4.18 nM), it does not shield the S1/S2 site from cleavage by furin-a behavior contrary to natural heparin. This glycopolymer lacks iduronic acid, which accounts for 70% of heparin. Further, this compound, unlike natural heparin, is well defined in both sulfation pattern and length, which results in fewer off-target interactions with heparin-binding proteins. The results highlight the potential of using polymeric heparan sulfate (HS) mimetics for the therapeutic agent development.
Collapse
Affiliation(s)
- Hawau Abdulsalam
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jiayi Li
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Ravi S. Loka
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Eric T. Sletten
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Hien M. Nguyen
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
9
|
Bhoge PR, Raigawali R, Mardhekar S, Anand S, Kikkeri R. Synergestic interplay of uronic acid and sulfation composition of heparan sulfate on molecular recognition to activity. Carbohydr Res 2023; 532:108919. [PMID: 37557021 DOI: 10.1016/j.carres.2023.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Heparan sulfate (HS) is ubiquitous polysaccharide on the surface of all mammalian cells and extracellular matrices. The incredible structural complexity of HS arises from its sulfation patterns and disaccharide compositions, which orchestrate a wide range of biological activities. Researchers have developed elegant synthetic methods to obtain well-defined HS oligosaccharides to understand the structure-activity relationship. These studies revealed that specific sulfation codes and uronic acid variants could synergistically modulate HS-protein interactions (HSPI). Additionally, the conformational flexibility of l-Iduronic acid, a uronic acid unit has emerged as a critical factor in fine-tuning the microenvironment to modulate HSPI. This review delineates how uronic acid composition in HS modulates protein binding affinity, selectivity, and biological activity. Finally, the significance of sulfated homo-oligo uronic acid as heparin mimics in drug development is also discussed.
Collapse
Affiliation(s)
- Preeti Ravindra Bhoge
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India
| | - Rakesh Raigawali
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India
| | - Sandhya Mardhekar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India
| | - Saurabh Anand
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India.
| |
Collapse
|
10
|
Kellogg GE, Cen Y, Dukat M, Ellis KC, Guo Y, Li J, May AE, Safo MK, Zhang S, Zhang Y, Desai UR. Merging cultures and disciplines to create a drug discovery ecosystem at Virginia commonwealth university: Medicinal chemistry, structural biology, molecular and behavioral pharmacology and computational chemistry. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:255-269. [PMID: 36863508 PMCID: PMC10619687 DOI: 10.1016/j.slasd.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
The Department of Medicinal Chemistry, together with the Institute for Structural Biology, Drug Discovery and Development, at Virginia Commonwealth University (VCU) has evolved, organically with quite a bit of bootstrapping, into a unique drug discovery ecosystem in response to the environment and culture of the university and the wider research enterprise. Each faculty member that joined the department and/or institute added a layer of expertise, technology and most importantly, innovation, that fertilized numerous collaborations within the University and with outside partners. Despite moderate institutional support with respect to a typical drug discovery enterprise, the VCU drug discovery ecosystem has built and maintained an impressive array of facilities and instrumentation for drug synthesis, drug characterization, biomolecular structural analysis and biophysical analysis, and pharmacological studies. Altogether, this ecosystem has had major impacts on numerous therapeutic areas, such as neurology, psychiatry, drugs of abuse, cancer, sickle cell disease, coagulopathy, inflammation, aging disorders and others. Novel tools and strategies for drug discovery, design and development have been developed at VCU in the last five decades; e.g., fundamental rational structure-activity relationship (SAR)-based drug design, structure-based drug design, orthosteric and allosteric drug design, design of multi-functional agents towards polypharmacy outcomes, principles on designing glycosaminoglycans as drugs, and computational tools and algorithms for quantitative SAR (QSAR) and understanding the roles of water and the hydrophobic effect.
Collapse
Affiliation(s)
- Glen E Kellogg
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA.
| | - Yana Cen
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Malgorzata Dukat
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Keith C Ellis
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Aaron E May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA.
| |
Collapse
|
11
|
Ander SE, Parks MG, Davenport BJ, Li FS, Bosco-Lauth A, Carpentier KS, Sun C, Lucas CJ, Klimstra WB, Ebel GD, Morrison TE. Phagocyte-expressed glycosaminoglycans promote capture of alphaviruses from the blood circulation in a host species-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552690. [PMID: 37609165 PMCID: PMC10441409 DOI: 10.1101/2023.08.09.552690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya (CHIKV), eastern-(EEEV), and Venezuelan-(VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate (HS) impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology. Significance Statement Previously, evidence of arbovirus-GAG interactions in vivo has been limited to associations between viral residues shown to promote enhanced GAG-binding phenotypes in vitro and in vivo phenotypes of viral dissemination and pathogenesis. By directly manipulating host GAG expression, we identified virion-GAG interactions in vivo and discovered a role for phagocyte-expressed GAGs in viral vascular clearance. Moreover, we observe species-specific differences in viral vascular clearance of enhanced GAG-binding virions between murine and avian hosts. These data suggest species-specific variation in GAG structure is a mechanism to distinguish amplifying from dead-end hosts for arbovirus transmission.
Collapse
|
12
|
Cheong KL, Chen S, Teng B, Veeraperumal S, Zhong S, Tan K. Oligosaccharides as Potential Regulators of Gut Microbiota and Intestinal Health in Post-COVID-19 Management. Pharmaceuticals (Basel) 2023; 16:860. [PMID: 37375807 DOI: 10.3390/ph16060860] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The COVID-19 pandemic has had a profound impact worldwide, resulting in long-term health effects for many individuals. Recently, as more and more people recover from COVID-19, there is an increasing need to identify effective management strategies for post-COVID-19 syndrome, which may include diarrhea, fatigue, and chronic inflammation. Oligosaccharides derived from natural resources have been shown to have prebiotic effects, and emerging evidence suggests that they may also have immunomodulatory and anti-inflammatory effects, which could be particularly relevant in mitigating the long-term effects of COVID-19. In this review, we explore the potential of oligosaccharides as regulators of gut microbiota and intestinal health in post-COVID-19 management. We discuss the complex interactions between the gut microbiota, their functional metabolites, such as short-chain fatty acids, and the immune system, highlighting the potential of oligosaccharides to improve gut health and manage post-COVID-19 syndrome. Furthermore, we review evidence of gut microbiota with angiotensin-converting enzyme 2 expression for alleviating post-COVID-19 syndrome. Therefore, oligosaccharides offer a safe, natural, and effective approach to potentially improving gut microbiota, intestinal health, and overall health outcomes in post-COVID-19 management.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shutong Chen
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Bo Teng
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535000, China
| |
Collapse
|
13
|
Sun L, Chopra P, Tomris I, van der Woude R, Liu L, de Vries RP, Boons GJ. Well-Defined Heparin Mimetics Can Inhibit Binding of the Trimeric Spike of SARS-CoV-2 in a Length-Dependent Manner. JACS AU 2023; 3:1185-1195. [PMID: 37101566 PMCID: PMC10089289 DOI: 10.1021/jacsau.3c00042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The emergence of new SARS-CoV-2 variants and the dangers of long-covid necessitate the development of broad-acting therapeutics that can reduce viral burden. SARS-CoV-2 employs heparan sulfate (HS) as an initial cellular attachment factor, and therefore, there is interest in developing heparin as a therapeutic for SARS-CoV-2. Its use is, however, complicated by structural heterogeneity and the risk of causing bleeding and thrombocytopenia. Here, we describe the preparation of well-defined heparin mimetics by a controlled head-to-tail assembly of HS oligosaccharides having an alkyne or azide moiety by copper-catalyzed azide-alkyne cycloaddition (CuAAC). Alkyne- and azide-containing sulfated oligosaccharides were prepared from a common precursor by modifying an anomeric linker with 4-pentynoic acid and by enzymatic extension with an N-acetyl-glucosamine having an azide moiety at C-6 (GlcNAc6N3), respectively, followed by CuAAC. The process of enzymatic extension with GlcNAc6N3 followed by CuAAC with the desired alkyne-containing oligosaccharides could be repeated to give compounds composed of 20 and 27 monosaccharides, respectively. The heparin mimetics could inhibit the binding of the SARS-CoV-2 spike or RBD to immobilized heparin or to Vero E6 cells. The inhibitory potency increased with increasing chain length, and a compound composed of four sulfated hexasaccharides linked by triazoles had a similar potency as unfractionated heparin. Sequence analysis and HS microarray binding studies with a wide range of RBDs of variants of concern indicate that they have maintained HS-binding capabilities and selectivities. The heparin mimetics exhibit no or reduced binding to antithrombin-III and platelet factor 4, respectively, which are associated with side effects.
Collapse
Affiliation(s)
- Lifeng Sun
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Pradeep Chopra
- Complex
Carbohydrate Research Center, The University
of Georgia, Athens, Georgia 30602, United States
| | - Ilhan Tomris
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Roosmarijn van der Woude
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Lin Liu
- Complex
Carbohydrate Research Center, The University
of Georgia, Athens, Georgia 30602, United States
| | - Robert P. de Vries
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Complex
Carbohydrate Research Center, The University
of Georgia, Athens, Georgia 30602, United States
- Bijvoet
Center for Biomolecular Research, Utrecht
University, 3584 CG Utrecht, The Netherlands
- Chemistry
Department, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
14
|
Perez S, Makshakova O, Angulo J, Bedini E, Bisio A, de Paz JL, Fadda E, Guerrini M, Hricovini M, Hricovini M, Lisacek F, Nieto PM, Pagel K, Paiardi G, Richter R, Samsonov SA, Vivès RR, Nikitovic D, Ricard Blum S. Glycosaminoglycans: What Remains To Be Deciphered? JACS AU 2023; 3:628-656. [PMID: 37006755 PMCID: PMC10052243 DOI: 10.1021/jacsau.2c00569] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
Glycosaminoglycans (GAGs) are complex polysaccharides exhibiting a vast structural diversity and fulfilling various functions mediated by thousands of interactions in the extracellular matrix, at the cell surface, and within the cells where they have been detected in the nucleus. It is known that the chemical groups attached to GAGs and GAG conformations comprise "glycocodes" that are not yet fully deciphered. The molecular context also matters for GAG structures and functions, and the influence of the structure and functions of the proteoglycan core proteins on sulfated GAGs and vice versa warrants further investigation. The lack of dedicated bioinformatic tools for mining GAG data sets contributes to a partial characterization of the structural and functional landscape and interactions of GAGs. These pending issues will benefit from the development of new approaches reviewed here, namely (i) the synthesis of GAG oligosaccharides to build large and diverse GAG libraries, (ii) GAG analysis and sequencing by mass spectrometry (e.g., ion mobility-mass spectrometry), gas-phase infrared spectroscopy, recognition tunnelling nanopores, and molecular modeling to identify bioactive GAG sequences, biophysical methods to investigate binding interfaces, and to expand our knowledge and understanding of glycocodes governing GAG molecular recognition, and (iii) artificial intelligence for in-depth investigation of GAGomic data sets and their integration with proteomics.
Collapse
Affiliation(s)
- Serge Perez
- Centre
de Recherche sur les Macromolecules, Vegetales,
University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041 France
| | - Olga Makshakova
- FRC
Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| | - Jesus Angulo
- Insituto
de Investigaciones Quimicas, CIC Cartuja, CSIC and Universidad de Sevilla, Sevilla, SP 41092, Spain
| | - Emiliano Bedini
- Department
of Chemical Sciences, University of Naples
Federico II, Naples,I-80126, Italy
| | - Antonella Bisio
- Istituto
di Richerche Chimiche e Biochimiche, G. Ronzoni, Milan I-20133, Italy
| | - Jose Luis de Paz
- Insituto
de Investigaciones Quimicas, CIC Cartuja, CSIC and Universidad de Sevilla, Sevilla, SP 41092, Spain
| | - Elisa Fadda
- Department
of Chemistry and Hamilton Institute, Maynooth
University, Maynooth W23 F2H6, Ireland
| | - Marco Guerrini
- Istituto
di Richerche Chimiche e Biochimiche, G. Ronzoni, Milan I-20133, Italy
| | - Michal Hricovini
- Institute
of Chemistry, Slovak Academy of Sciences, Bratislava SK-845 38, Slovakia
| | - Milos Hricovini
- Institute
of Chemistry, Slovak Academy of Sciences, Bratislava SK-845 38, Slovakia
| | - Frederique Lisacek
- Computer
Science Department & Section of Biology, University of Geneva & Swiss Institue of Bioinformatics, Geneva CH-1227, Switzerland
| | - Pedro M. Nieto
- Insituto
de Investigaciones Quimicas, CIC Cartuja, CSIC and Universidad de Sevilla, Sevilla, SP 41092, Spain
| | - Kevin Pagel
- Institut
für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Berlin 14195, Germany
| | - Giulia Paiardi
- Molecular
and Cellular Modeling Group, Heidelberg Institute for Theoretical
Studies, Heidelberg University, Heidelberg 69118, Germany
| | - Ralf Richter
- School
of Biomedical Sciences, Faculty of Biological Sciences, School of
Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology and Bragg Centre for
Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sergey A. Samsonov
- Department
of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Gdsank 80-309, Poland
| | - Romain R. Vivès
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, Grenoble F-38044, France
| | - Dragana Nikitovic
- School
of Histology-Embriology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Sylvie Ricard Blum
- University
Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry,
UMR 5246, Villeurbanne F 69622 Cedex, France
| |
Collapse
|
15
|
HS, an Ancient Molecular Recognition and Information Storage Glycosaminoglycan, Equips HS-Proteoglycans with Diverse Matrix and Cell-Interactive Properties Operative in Tissue Development and Tissue Function in Health and Disease. Int J Mol Sci 2023; 24:ijms24021148. [PMID: 36674659 PMCID: PMC9867265 DOI: 10.3390/ijms24021148] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate is a ubiquitous, variably sulfated interactive glycosaminoglycan that consists of repeating disaccharides of glucuronic acid and glucosamine that are subject to a number of modifications (acetylation, de-acetylation, epimerization, sulfation). Variable heparan sulfate chain lengths and sequences within the heparan sulfate chains provide structural diversity generating interactive oligosaccharide binding motifs with a diverse range of extracellular ligands and cellular receptors providing instructional cues over cellular behaviour and tissue homeostasis through the regulation of essential physiological processes in development, health, and disease. heparan sulfate and heparan sulfate-PGs are integral components of the specialized glycocalyx surrounding cells. Heparan sulfate is the most heterogeneous glycosaminoglycan, in terms of its sequence and biosynthetic modifications making it a difficult molecule to fully characterize, multiple ligands also make an elucidation of heparan sulfate functional properties complicated. Spatio-temporal presentation of heparan sulfate sulfate groups is an important functional determinant in tissue development and in cellular control of wound healing and extracellular remodelling in pathological tissues. The regulatory properties of heparan sulfate are mediated via interactions with chemokines, chemokine receptors, growth factors and morphogens in cell proliferation, differentiation, development, tissue remodelling, wound healing, immune regulation, inflammation, and tumour development. A greater understanding of these HS interactive processes will improve therapeutic procedures and prognoses. Advances in glycosaminoglycan synthesis and sequencing, computational analytical carbohydrate algorithms and advanced software for the evaluation of molecular docking of heparan sulfate with its molecular partners are now available. These advanced analytic techniques and artificial intelligence offer predictive capability in the elucidation of heparan sulfate conformational effects on heparan sulfate-ligand interactions significantly aiding heparan sulfate therapeutics development.
Collapse
|
16
|
Li B, Zhang T, Li J, Yu M. Antiviral Disaccharide Lead Compounds against SARS-CoV-2 through Computer-Aided High-Throughput Screen. Chembiochem 2022; 23:e202200461. [PMID: 36265004 PMCID: PMC9874536 DOI: 10.1002/cbic.202200461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/20/2022] [Indexed: 01/27/2023]
Abstract
SARS-CoV-2 infects human epithelial cells through specific interaction with angiotensin-converting enzyme 2 (ACE2). In addition, heparan sulfate proteoglycans act as the attachment factor to promote the binding of viral spike protein receptor binding domain (RBD) to ACE2 on host cells. Though the rapid development of vaccines has contributed significantly to preventing severe disease, mutated SARS-CoV-2 strains, especially the SARS-CoV-2 Omicron variant, show increased affinity of RBD binding to ACE2, leading to immune escape. Thus, there is still an unmet need for new antiviral drugs. In this study, we constructed pharmacophore models based on the spike RBD of SARS-CoV-2 and SARS-CoV-2 Omicron variant and performed virtual screen for best-hit compounds from our disaccharide library. Screening of 96 disaccharide structures identified two disaccharides that displayed higher binding affinity to RBD in comparison to reported small molecule antiviral drugs. Further, screening PharmMapper demonstrated interactions of the disaccharides with a number of inflammatory cytokines, suggesting a potential for disaccharides with multiple-protein targets.
Collapse
Affiliation(s)
- Binjie Li
- Beijing Advanced Innovation Center forSoft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Tianji Zhang
- Division of Chemistry and Analytical ScienceNational Institute of MetrologyBeijing100029P. R. China
| | - Jin‐ping Li
- Beijing Advanced Innovation Center forSoft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsala75123Sweden
| | - Ming‐jia Yu
- School of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
17
|
Kearns FL, Sandoval DR, Casalino L, Clausen TM, Rosenfeld MA, Spliid CB, Amaro RE, Esko JD. Spike-heparan sulfate interactions in SARS-CoV-2 infection. Curr Opin Struct Biol 2022; 76:102439. [PMID: 35926454 PMCID: PMC9257145 DOI: 10.1016/j.sbi.2022.102439] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 12/03/2022]
Abstract
Recent biochemical, biophysical, and genetic studies have shown that heparan sulfate, a major component of the cellular glycocalyx, participates in infection of SARS-CoV-2 by facilitating the so-called open conformation of the spike protein, which is required for binding to ACE2. This review highlights the involvement of heparan sulfate in the SARS-CoV-2 infection cycle and argues that there is a high degree of coordination between host cell heparan sulfate and asparagine-linked glycans on the spike in enabling ACE2 binding and subsequent infection. The discovery that spike protein binding and infection depends on both viral and host glycans provides insights into the evolution, spread and potential therapies for SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Fiona L Kearns
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. https://twitter.com/fiona_chembot
| | - Daniel R Sandoval
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. https://twitter.com/LCasalino88
| | - Thomas M Clausen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mia A Rosenfeld
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. https://twitter.com/mia_rosenfeld
| | - Charlotte B Spliid
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA. https://twitter.com/RommieAmaro
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Parafioriti M, Ni M, Petitou M, Mycroft-West CJ, Rudd TR, Gandhi NS, Ferro V, Turnbull JE, Lima MA, Skidmore MA, Fernig DG, Yates EA, Bisio A, Guerrini M, Elli S. Evidence for Multiple Binding Modes in the Initial Contact Between SARS-CoV-2 Spike S1 Protein and Cell Surface Glycans. Chemistry 2022; 29:e202202599. [PMID: 36134621 PMCID: PMC9537976 DOI: 10.1002/chem.202202599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 01/05/2023]
Abstract
Infection of host cells by SARS-CoV-2 begins with recognition by the virus S (spike) protein of cell surface heparan sulfate (HS), tethering the virus to the extracellular matrix environment, and causing the subunit S1-RBD to undergo a conformational change into the 'open' conformation. These two events promote the binding of S1-RBD to the angiotensin converting enzyme 2 (ACE2) receptor, a preliminary step toward viral-cell membrane fusion. Combining ligand-based NMR spectroscopy with molecular dynamics, oligosaccharide analogues were used to explore the interactions between S1-RBD of SARS CoV-2 and HS, revealing several low-specificity binding modes and previously unidentified potential sites for the binding of extended HS polysaccharide chains. The evidence for multiple binding modes also suggest that highly specific inhibitors will not be optimal against protein S but, rather, diverse HS-based structures, characterized by high affinity and including multi-valent compounds, may be required.
Collapse
Affiliation(s)
- Michela Parafioriti
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni'NMR and carbohydratesvia Giuseppe Colombo 8120133MilanoITALY
| | - Minghong Ni
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni'Organic Chemistryvia Giuseppe Colombo 8120133MilanoITALY
| | - Maurice Petitou
- Istituto di Ricerche Chimiche e Biochimiche 'G Ronzoni'Organic chemistryvia Giuseppe Colombo 8120133MilanoITALY
| | | | - Timothy R. Rudd
- National Institute for Biological Standards and ControlAnalytical and Biological Sciences DivisionPotters Bar, Hertfordshire, United KingdomPotters Bar, HertfordshireUNITED KINGDOM
| | - Neha S. Gandhi
- Queensland University of Technology Institute of Health and Biomedical InnovationSchool of Chemistry and Physics2 George StBrisbaneAUSTRALIA
| | - Vito Ferro
- The University of Queensland School of Chemistry and Molecular BiosciencesSchool of Chemistry and Molecular BiosciencesBrisbaneAUSTRALIA
| | - Jeremy E. Turnbull
- University of Liverpool Institute of Integrative BiologyInstitute of Systems, Molecular and Integrative BiologyCrown StreetL69 7ZBLiverpoolUNITED KINGDOM
| | - Marcelo A. Lima
- Keele University School of Life SciencesCentre for GlycoscienceHuxley Building 203ST5 5BGNewcastle-Under-LymeUNITED KINGDOM
| | - Mark A. Skidmore
- Keele University School of Life SciencesCentre for GlycoscienceHuxley Building 174ST5 5BGNewcastle-Under-LymeUNITED KINGDOM
| | - David G. Fernig
- University of Liverpool Institute of Integrative BiologyInstitute of Systems, Molecular and Integrative BiologyCrown StreetL69 7BELiverpoolUNITED KINGDOM
| | - Edwin A. Yates
- University of Liverpool Institute of Integrative BiologyDepartment of Biochemistry and Systems BiologyCrown StreetL69 7ZBLiverpoolUNITED KINGDOM
| | - Antonella Bisio
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni'Biochemistry and molecular biologyvia Giuseppe Colombo 8120133MilanoITALY
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni'NMR and Carbohydratevia Giuseppe Colombo 8120133MilanoITALY
| | - Stefano Elli
- Istituto di ricerche chimiche e biochimiche G Ronzoni (Milano)NMR and Carbohydratesvia Giuseppe Colombo 8120133MilanoITALY
| |
Collapse
|
19
|
Hoffmann M, Snyder NL, Hartmann L. Polymers Inspired by Heparin and Heparan Sulfate for Viral Targeting. Macromolecules 2022; 55:7957-7973. [PMID: 36186574 PMCID: PMC9520969 DOI: 10.1021/acs.macromol.2c00675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Miriam Hoffmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L. Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Hoffmann M, Snyder NL, Hartmann L. Glycosaminoglycan Mimetic Precision Glycomacromolecules with Sequence-Defined Sulfation and Rigidity Patterns. Biomacromolecules 2022; 23:4004-4014. [PMID: 35959886 DOI: 10.1021/acs.biomac.2c00829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sulfated glycosaminoglycans (sGAGs) such as heparan sulfate (HS) are structurally diverse linear polysaccharides that are involved in many biological processes and have gained interest as antiviral compounds. Their recognition is driven by a complex orchestra of structural parameters that are still under intense investigation. One distinct characteristic is the incorporation of sulfation patterns including highly sulfated and non-sulfated sequences that provide variations in flexibility and conformation, which in turn impact the biological function of sGAGs. However, these distinct features have not yet been fully realized in the synthetic preparation of sGAG mimetics. Here, we present the synthesis of three groups of sulfated glycomacromolecules as sGAG mimetics: (i) globally sulfated glycooligomers, (ii) glycooligomers with sequence-defined sulfation patterns, and (iii) a globally sulfated glycooligomer-oligo-L-proline hybrid structure. The complete synthesis, including chemical sulfation, was conducted on solid support, enabled by the introduction of a commercially available photocleavable linker allowing for the preservation of sensitive sulfates during cleavage of the products. Structures were obtained in good purity and with high degrees of sulfation demonstrating the wide applicability of this methodology to prepare tailor-made sulfated glycomacromolecules and similar sGAG mimetics. Structures were tested for their anticoagulant properties showing activity similar to their natural HS counterpart and significantly lower than HP.
Collapse
Affiliation(s)
- Miriam Hoffmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Holmes SG, Nagarajan B, Desai UR. 3- O-Sulfation induces sequence-specific compact topologies in heparan sulfate that encode a dynamic sulfation code. Comput Struct Biotechnol J 2022; 20:3884-3898. [PMID: 35891779 PMCID: PMC9309406 DOI: 10.1016/j.csbj.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Heparan sulfate (HS) is arguably the most diverse linear biopolymer that is known to modulate hundreds of proteins. Whereas the configurational and conformational diversity of HS is well established in terms of varying sulfation patterns and iduronic acid (IdoA) puckers, a linear helical topology resembling a cylindrical rod is the only topology thought to be occupied by the biopolymer. We reasoned that 3-O-sulfation, a rare modification in natural HS, may induce novel topologies that contribute to selective recognition of proteins. In this work, we studied a library of 24 distinct HS hexasaccharides using molecular dynamics (MD). We discovered novel compact (C) topologies that are populated significantly by a unique group of 3-O-sulfated sequences containing IdoA residues. 3-O-sulfated sequences containing glucuronic acid (GlcA) residue and sequences devoid of 3-O-sulfate groups did not exhibit high levels of the C topology and primarily exhibited only the canonical linear (L) form. The C topology arises under dynamical conditions due to rotation around an IdoA → GlcN glycosidic linkage, especially in psi (Ψ) torsion. At an atomistic level, the L → C transformation is a multi-factorial phenomenon engineered to reduce like-charge repulsion, release one or more HS-bound water molecules, and organize a bi-dentate "IdoA-cation-IdoA" interaction. These forces also drive an L → C transformation in a 3-O-sulfated octasaccharide, which has shown evidence of the unique C topology in the co-crystallized state. The 3-O-sulfate-based generation of unique, sequence-specific, compact topologies indicate that natural HS encodes a dynamic sulfation code that could be exploited for selective recognition of target proteins.
Collapse
Affiliation(s)
- Samuel G. Holmes
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Balaji Nagarajan
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
- Corresponding author at: Institute for Structural Biology, Drug Discovery, and Development, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA.
| |
Collapse
|
22
|
Molecular dynamics simulations to understand glycosaminoglycan interactions in the free- and protein-bound states. Curr Opin Struct Biol 2022; 74:102356. [DOI: 10.1016/j.sbi.2022.102356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 11/18/2022]
|
23
|
Ling J, Li J, Khan A, Lundkvist Å, Li JP. Is heparan sulfate a target for inhibition of RNA virus infection? Am J Physiol Cell Physiol 2022; 322:C605-C613. [PMID: 35196165 PMCID: PMC8977144 DOI: 10.1152/ajpcell.00028.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Heparan sulfate (HS) is a linear polysaccharide attached to a core protein, forming heparan sulfate proteoglycans (HSPGs) that are ubiquitously expressed on the surface of almost all mammalian cells and the extracellular matrix. HS orchestrates the binding of various signal molecules to their receptors, thus, regulating many biological processes, including homeostasis, metabolism, and various pathological processes. Due to its wide distribution and negatively charged properties, HS is exploited by many viruses as a co-factor to attach to host cells. Therefore, inhibition of the interaction between virus and HS is proposed as a promising approach to mitigate viral infection, including SARS-CoV-2. In this review, we summarize the interaction manners of HS with viruses with focus on significant pathogenic RNA viruses, including alphaviruses, flaviviruses, and coronaviruses. We also provide an overview of the challenges we may face when using HS-mimetics as antivirals for clinical treatment. More studies are needed to provide a further understanding of the interplay between HS and viruses both in vitro and in vivo, which will favor the development of specific antiviral inhibitors.
Collapse
Affiliation(s)
- Jiaxin Ling
- Department of Medical Biochemistry and Microbiology & The Biomedical Center; Zoonosis Science Center, University of Uppsala, Uppsala, Sweden.,Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Jinlin Li
- Department of Medical Biochemistry and Microbiology & The Biomedical Center; Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Asifa Khan
- Department of Medical Biochemistry and Microbiology & The Biomedical Center; Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology & The Biomedical Center; Zoonosis Science Center, University of Uppsala, Uppsala, Sweden.,Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology & The Biomedical Center; Zoonosis Science Center, University of Uppsala, Uppsala, Sweden.,SciLifeLab Uppsala, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
24
|
Kim SH, Kearns FL, Rosenfeld MA, Casalino L, Papanikolas MJ, Simmerling C, Amaro RE, Freeman R. GlycoGrip: Cell Surface-Inspired Universal Sensor for Betacoronaviruses. ACS CENTRAL SCIENCE 2022; 8:22-42. [PMID: 35106370 PMCID: PMC8796303 DOI: 10.1021/acscentsci.1c01080] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Indexed: 05/02/2023]
Abstract
Inspired by the role of cell-surface glycoproteins as coreceptors for pathogens, we report the development of GlycoGrip: a glycopolymer-based lateral flow assay for detecting SARS-CoV-2 and its variants. GlycoGrip utilizes glycopolymers for primary capture and antispike antibodies labeled with gold nanoparticles for signal-generating detection. A lock-step integration between experiment and computation has enabled efficient optimization of GlycoGrip test strips which can selectively, sensitively, and rapidly detect SARS-CoV-2 and its variants in biofluids. Employing the power of the glycocalyx in a diagnostic assay has distinct advantages over conventional immunoassays as glycopolymers can bind to antigens in a multivalent capacity and are highly adaptable for mutated strains. As new variants of SARS-CoV-2 are identified, GlycoGrip will serve as a highly reconfigurable biosensor for their detection. Additionally, via extensive ensemble-based docking simulations which incorporate protein and glycan motion, we have elucidated important clues as to how heparan sulfate and other glycocalyx components may bind the spike glycoprotein during SARS-CoV-2 host-cell infection. GlycoGrip is a promising and generalizable alternative to costly, labor-intensive RT-PCR, and we envision it will be broadly useful, including for rural or low-income populations that are historically undertested and under-reported in infection statistics.
Collapse
Affiliation(s)
- Sang Hoon Kim
- University
of North Carolina−Chapel Hill, Department of Applied Physical Sciences, 1112 Murray Hall, CB#3050, Chapel Hill, North Carolina 27599-2100, United States
| | - Fiona L. Kearns
- University
of California−San Diego, Department of Chemistry and Biochemistry, 3234 Urey Hall, MC-0340, La Jolla, California 92093-0340, United States
| | - Mia A. Rosenfeld
- University
of California−San Diego, Department of Chemistry and Biochemistry, 3234 Urey Hall, MC-0340, La Jolla, California 92093-0340, United States
| | - Lorenzo Casalino
- University
of California−San Diego, Department of Chemistry and Biochemistry, 3234 Urey Hall, MC-0340, La Jolla, California 92093-0340, United States
| | - Micah J. Papanikolas
- University
of North Carolina−Chapel Hill, Department of Applied Physical Sciences, 1112 Murray Hall, CB#3050, Chapel Hill, North Carolina 27599-2100, United States
| | - Carlos Simmerling
- SUNY
Stony Brook, Department of Chemistry, 537 Chemistry/119 Laufer Center,
100 Nicolls Road, 104 Chemistry, Stony Brook, New York 11790-3400, United States
| | - Rommie E. Amaro
- University
of California−San Diego, Department of Chemistry and Biochemistry, 3234 Urey Hall, MC-0340, La Jolla, California 92093-0340, United States
| | - Ronit Freeman
- University
of North Carolina−Chapel Hill, Department of Applied Physical Sciences, 1112 Murray Hall, CB#3050, Chapel Hill, North Carolina 27599-2100, United States
| |
Collapse
|
25
|
Overview of Memory NK Cells in Viral Infections: Possible Role in SARS-CoV-2 Infection. IMMUNO 2022. [DOI: 10.3390/immuno2010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
NK cells have usually been defined as cells of the innate immune system, although they are also involved in adaptative responses. These cells belong to the innate lymphocyte cells (ILC) family. They remove unwanted cells, tumoral cells and pathogens. NK cells are essential for viral infection clearance and are involved in tolerogenic responses depending on the dynamic balance of the repertoire of activating and inhibitory receptors. NK plasticity is crucial for tissue function and vigilant immune responses. They directly eliminate virus-infected cells by recognising viral protein antigens using a non-MHC dependent mechanism, recognising viral glycan structures and antigens by NCR family receptors, inducing apoptosis by Fas-Fas ligand interaction, and killing cells by antibody-dependent cell cytotoxicity via the FcγIII receptor. Activating receptors are responsible for the clearance of virally infected cells, while inhibitory KIR receptor activation impairs NK responses and facilitates virus escape. Effective NK memory cells have been described and characterised by a low NKG2A and high NKG2C or NKG2D expression. NK cells have also been used in cell therapy. In SARS-CoV-2 infection, several contradicting reports about the role of NK cells have been published. A careful analysis of the current data and possible implications will be discussed.
Collapse
|
26
|
Omicron SARS-CoV-2 Variant Spike Protein Shows an Increased Affinity to the Human ACE2 Receptor: An In Silico Analysis. Pathogens 2021; 11:pathogens11010045. [PMID: 35055993 PMCID: PMC8779645 DOI: 10.3390/pathogens11010045] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
The rise of SARS-CoV-2 variants, with changes that could be related to an increased virus pathogenicity, have received the interest of the scientific and medical community. In this study, we evaluated the changes that occurred in the viral spike of the SARS-CoV-2 Omicron variant and whether these changes modulate the interactions with the angiotensin-converting enzyme 2 (ACE2) host receptor. The mutations associated with the Omicron variant were retrieved from the GISAID and covariants.org databases, and a structural model was built using the SWISS-Model server. The interaction between the spike and the human ACE2 was evaluated using two different docking software, Zdock and Haddock. We found that the binding free energy was lower for the Omicron variant as compared to the WT spike. In addition, the Omicron spike protein showed an increased number of electrostatic interactions with ACE2 than the WT spike, especially the interactions related to charged residues. This study contributes to a better understanding of the changes in the interaction between the Omicron spike and the human host ACE2 receptor.
Collapse
|