1
|
Li C, Xu G, Wang Y, Huang L, Cai F, Meng L, Jin B, Jiang Z, Sun H, Zhao H, Lu X, Sang X, Huang P, Li F, Yang H, Mao Y, Zheng H. Acoustic-holography-patterned primary hepatocytes possess liver functions. Biomaterials 2024; 311:122691. [PMID: 38996673 DOI: 10.1016/j.biomaterials.2024.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Acoustic holography (AH), a promising approach for cell patterning, emerges as a powerful tool for constructing novel invitro 3D models that mimic organs and cancers features. However, understanding changes in cell function post-AH remains limited. Furthermore, replicating complex physiological and pathological processes solely with cell lines proves challenging. Here, we employed acoustical holographic lattice to assemble primary hepatocytes directly isolated from mice into a cell cluster matrix to construct a liver-shaped tissue sample. For the first time, we evaluated the liver functions of AH-patterned primary hepatocytes. The patterned model exhibited large numbers of self-assembled spheroids and superior multifarious core hepatocyte functions compared to cells in 2D and traditional 3D culture models. AH offers a robust protocol for long-term in vitro culture of primary cells, underscoring its potential for future applications in disease pathogenesis research, drug testing, and organ replacement therapy.
Collapse
Affiliation(s)
- Changcan Li
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China; Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Gang Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yinhan Wang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Laixin Huang
- Shenzhen Institute of Advanced Technology, And Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Feiyan Cai
- Shenzhen Institute of Advanced Technology, And Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Long Meng
- Shenzhen Institute of Advanced Technology, And Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Zhuoran Jiang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Hang Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xingting Sang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Pengyu Huang
- Institute of Biomedical Engineering, PUMC & Chinese Academy of Medical Sciences (CAMS), Tianjin, China
| | - Fei Li
- Shenzhen Institute of Advanced Technology, And Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China.
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China.
| | - Hairong Zheng
- Shenzhen Institute of Advanced Technology, And Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Yu W, Zhu H, Upreti N, Lu B, Xu X, Lee LP, Huang TJ. Acoustography by Beam Engineering and Acoustic Control Node: BEACON. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403742. [PMID: 39422067 DOI: 10.1002/advs.202403742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/26/2024] [Indexed: 10/19/2024]
Abstract
Acoustic manipulation has emerged as a valuable tool for precision controls and dynamic programming of cells and particles. However, conventional acoustic manipulation approaches lack the finesse necessary to form intricate, configurable, continuous, and 3D patterning of particles. Here, this study reports acoustography by Beam Engineering and Acoustic Control Node (BEACON), which delivers intricate, configurable patterns by guiding particles along custom paths with independent phase modulation. Leveraging analytical methods of orbital angular momentum beam via iterative Wirtinger hologram algorithm, this study accomplish acoustography by facilitating orbital angular momentum traps, enabling continuous 2D and 3D acoustic manipulation of microparticles in any desired geometry, with phase modulation independent of intensity. Utilizing on-chip acoustography, the BEACON platform markedly increases the space-bandwidth product to 31 000 while attaining an enhanced resolution with a pixel size of ≈25 µm, surpassing the typical resolution of over 200 µm in previous holographic particle manipulation methods. The capabilities of BEACON are demonstrated in creating intricate triple helical tracing structures using microdroplets (20 µm in diameter) and those carrying DNA to validate the effectiveness of the acoustography and phase control methods. This study offers new particle manipulation opportunities, paving the way for next-generation biomedical systems and the future of contact-free precision manufacturing.
Collapse
Affiliation(s)
- Wenjun Yu
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, 27708, USA
| | - Haodong Zhu
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, 27708, USA
| | - Neil Upreti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Brandon Lu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Xianchen Xu
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, 27708, USA
| | - Luke P Lee
- Harvard Medical School, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, South Korea, 16419
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
3
|
Li W, Yao Z, Ma T, Ye Z, He K, Wang L, Wang H, Fu Y, Xu X. Acoustofluidic precise manipulation: Recent advances in applications for micro/nano bioparticles. Adv Colloid Interface Sci 2024; 332:103276. [PMID: 39146580 DOI: 10.1016/j.cis.2024.103276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/30/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Acoustofluidic technologies that integrate acoustic waves and microfluidic chips have been widely used in bioparticle manipulation. As a representative technology, acoustic tweezers have attracted significant attention due to their simple manufacturing, contact-free operation, and low energy consumption. Recently, acoustic tweezers have enabled the efficient and smart manipulation of biotargets with sizes covering millimeters (such as zebrafish) and nanometers (such as DNA). In addition to acoustic tweezers, other related acoustofluidic chips including acoustic separating, mixing, enriching, and transporting chips, have also emerged to be powerful platforms to manipulate micro/nano bioparticles (cells in blood, extracellular vesicles, liposomes, and so on). Accordingly, some interesting applications were also developed, such as smart sensing. In this review, we firstly introduce the principles of acoustic tweezers and various related technologies. Second, we compare and summarize recent applications of acoustofluidics in bioparticle manipulation and sensing. Finally, we outlook the future development direction from the perspectives such as device design and interdisciplinary.
Collapse
Affiliation(s)
- Wanglu Li
- College of Life Science, China Jiliang University, Hangzhou 310018, China; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhihao Yao
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tongtong Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zihong Ye
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Kaiyu He
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Wang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hongmei Wang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Xiahong Xu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
4
|
Derayatifar M, Habibi M, Bhat R, Packirisamy M. Holographic direct sound printing. Nat Commun 2024; 15:6691. [PMID: 39107289 PMCID: PMC11303524 DOI: 10.1038/s41467-024-50923-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Direct sound printing (DSP), an alternative additive manufacturing process driven by sonochemical polymerization, has traditionally been confined to a single acoustic focal region, resulting in a voxel-by-voxel printing approach. To overcome this limitation, we introduce holographic direct sound printing (HDSP), where acoustic holograms, storing cross-sectional images of the desired parts, pattern acoustic waves to induce regional cavitation bubbles and on-demand regional polymerization. HDSP outperforms DSP in terms of printing speed by one order of magnitude and yields layerless printed structures. In our HDSP implementation, the hologram remains stationary while the printing platform moves along a three-dimensional path using a robotic arm. We present sono-chemiluminescence and high-speed imaging experiments to thoroughly investigate HDSP and demonstrate its versatility in applications such as remote ex-vivo in-body printing and complex robot trajectory planning. We showcase multi-object and multi-material printing and provide a comprehensive process characterization, including the effects of hologram design and manufacturing on the HDSP process, polymerization progression tracking, porosity tuning, and robotic trajectory computation. Our HDSP method establishes the integration of acoustic holography in DSP and related applications.
Collapse
Affiliation(s)
- Mahdi Derayatifar
- Optical Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada
| | - Mohsen Habibi
- Department of Mechanical and Aerospace Engineering, University of California at Davis, Davis, CA, USA
| | - Rama Bhat
- Optical Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada
| | - Muthukumaran Packirisamy
- Optical Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Zou HY, Ge Y, Zhao KQ, Lu YJ, Si QR, Yuan SQ, Chen H, Sun HX, Yang Y, Zhang B. Acoustic Metagrating Holograms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401738. [PMID: 38771624 DOI: 10.1002/adma.202401738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Metasurface holograms represent a common category of metasurface devices that utilize in-plane phase gradients to shape wavefronts, forming holographic images through the application of the generalized Snell's law (GSL). While conventional metasurfaces focus solely on phase gradients, metagratings, which incorporate higher-order wave diffraction, further expand the GSL's generality. Recent advances in certain acoustic metagratings demonstrate an updated GSL extension capable of reversing anomalous transmission and reflection, whose reversal is characterized by the parity of the number of wave propagation trips through the metagrating. However, the current extension of GSL remains limited to 1D metagratings, unable to access 2D holographic images in 3D spaces. Here, the GSL extension to 2D metagratings for manipulating waves within 3D spaces is investigated. Through this analysis, a series of acoustic metagrating holograms is experimentally demonstrated. These holographic images exhibit the unique ability to switch between transmission and reflection types independently. This study introduces an additional dimension to modern holography design and metasurface wavefront manipulation.
Collapse
Affiliation(s)
- Hong-Yu Zou
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yong Ge
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ke-Qi Zhao
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yu-Jing Lu
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Qiao-Rui Si
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shou-Qi Yuan
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Lab. of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, ZJU-UIUC Institute, Zhejiang University, Hangzhou, 310027, China
| | - Hong-Xiang Sun
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yihao Yang
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, ZJU-UIUC Institute, Zhejiang University, Hangzhou, 310027, China
| | - Baile Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Centre for Disruptive Photonic Technologies, The Photonics Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
6
|
Xu M, Vidler C, Wang J, Chen X, Pan Z, Harley WS, Lee PVS, Collins DJ. Micro-Acoustic Holograms for Detachable Microfluidic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307529. [PMID: 38174594 DOI: 10.1002/smll.202307529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Acoustic microfluidic devices have advantages for diagnostic applications, therapeutic solutions, and fundamental research due to their contactless operation, simple design, and biocompatibility. However, most acoustofluidic approaches are limited to forming simple and fixed acoustic patterns, or have limited resolution. In this study,a detachable microfluidic device is demonstrated employing miniature acoustic holograms to create reconfigurable, flexible, and high-resolution acoustic fields in microfluidic channels, where the introduction of a solid coupling layer makes these holograms easy to fabricate and integrate. The application of this method to generate flexible acoustic fields, including shapes, characters, and arbitrarily rotated patterns, within microfluidic channels, is demonstrated.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Callum Vidler
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Jizhen Wang
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Xi Chen
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Zijian Pan
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - William S Harley
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Peter V S Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
- Graeme Clarke Institute, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
- Graeme Clarke Institute, University of Melbourne, Parkville, Victoria, 3052, Australia
| |
Collapse
|
7
|
Li T, Li J, Bo L, Bachman H, Fan B, Cheng J, Tian Z. Robot-assisted chirality-tunable acoustic vortex tweezers for contactless, multifunctional, 4-DOF object manipulation. SCIENCE ADVANCES 2024; 10:eadm7698. [PMID: 38787945 PMCID: PMC11122681 DOI: 10.1126/sciadv.adm7698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Robotic manipulation of small objects has shown great potential for engineering, biology, and chemistry research. However, existing robotic platforms have difficulty in achieving contactless, high-resolution, 4-degrees-of-freedom (4-DOF) manipulation of small objects, and noninvasive maneuvering of objects in regions shielded by tissue and bone barriers. Here, we present chirality-tunable acoustic vortex tweezers that can tune acoustic vortex chirality, transmit through biological barriers, trap single micro- to millimeter-sized objects, and control object rotation. Assisted by programmable robots, our acoustic systems further enable contactless, high-resolution translation of single objects. Our systems were demonstrated by tuning acoustic vortex chirality, controlling object rotation, and translating objects along arbitrary-shaped paths. Moreover, we used our systems to trap single objects in regions with tissue and skull barriers and translate an object inside a Y-shaped channel of a thick biomimetic phantom. In addition, we showed the function of ultrasound imaging-assisted acoustic manipulation by monitoring acoustic object manipulation via live ultrasound imaging.
Collapse
Affiliation(s)
- Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Jiali Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Luyu Bo
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Hunter Bachman
- Department of Mechanical Engineering and Engineering Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Bei Fan
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Jiangtao Cheng
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
8
|
Jin G, Upreti N, Rich J, Xia J, Zhao C, Huang TJ. Acoustofluidic scanning fluorescence nanoscopy with a large field of view. MICROSYSTEMS & NANOENGINEERING 2024; 10:59. [PMID: 38736715 PMCID: PMC11081950 DOI: 10.1038/s41378-024-00683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/31/2024] [Accepted: 03/01/2024] [Indexed: 05/14/2024]
Abstract
Large-field nanoscale fluorescence imaging is invaluable for many applications, such as imaging subcellular structures, visualizing protein interactions, and high-resolution tissue imaging. Unfortunately, conventional fluorescence microscopy requires a trade-off between resolution and field of view due to the nature of the optics used to form the image. To overcome this barrier, we developed an acoustofluidic scanning fluorescence nanoscope that simultaneously achieves superior resolution, a large field of view, and strong fluorescent signals. The acoustofluidic scanning fluorescence nanoscope utilizes the superresolution capabilities of microspheres that are controlled by a programmable acoustofluidic device for rapid fluorescence enhancement and imaging. The acoustofluidic scanning fluorescence nanoscope resolves structures that cannot be resolved with conventional fluorescence microscopes with the same objective lens and enhances the fluorescent signal by a factor of ~5 without altering the field of view of the image. The improved resolution realized with enhanced fluorescent signals and the large field of view achieved via acoustofluidic scanning fluorescence nanoscopy provides a powerful tool for versatile nanoscale fluorescence imaging for researchers in the fields of medicine, biology, biophysics, and biomedical engineering.
Collapse
Affiliation(s)
- Geonsoo Jin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Neil Upreti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | | | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| |
Collapse
|
9
|
Ghavami Namin B, Hojjat Y. Remote control of fluid motion in a channel by acoustic holography. ULTRASONICS 2024; 140:107303. [PMID: 38537518 DOI: 10.1016/j.ultras.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 05/04/2024]
Abstract
A new method for manipulating fluid movement using sound waves is presented in this paper. The method relies on acoustic streaming near the free surface of the fluid in a channel with an open top. The sound waves are modulated in phase using acoustic phase holography, which creates a periodic phase pattern from 0 to 2π along a straight path on a target plane. The paper also describes an experimental design to study the main factors influencing the method, such as frequency, number of phase patterns in the path, and sound pressure amplitude. The paper shows that phase pitch and voltage significantly affects fluid speed and that there is a good match between the theoretical and experimental results. Furthermore, the article reports additional experiments with different channel shapes to demonstrate the versatility of the method in controlling fluid motion. The highest fluid speed observed was 0.4 mm/s at a frequency of 1300 kHz and a phase pitch of 5. The paper also investigates the effect of changing the frequency on reversing the flow direction in a U-shaped channel, both experimentally and theoretically. The paper concludes that this method could be a suitable alternative to other acoustic devices for inducing fluid motion because of its simple and flexible design, fabrication, accuracy, and ability to handle complex channels.
Collapse
Affiliation(s)
| | - Yousef Hojjat
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Yin Q, Luo Y, Yu X, Chen K, Li W, Huang H, Zhang L, Zhou Y, Zhu B, Ma Z, Zhang W. Acoustic Cell Patterning for Structured Cell-Laden Hydrogel Fibers/Tubules. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308396. [PMID: 38308105 PMCID: PMC11005686 DOI: 10.1002/advs.202308396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
Cell-laden hydrogel fibers/tubules are one of the fundamentals of tissue engineering. They have been proven as a promising method for constructing biomimetic tissues, such as muscle fibers, nerve conduits, tendon and vessels, etc. However, current hydrogel fiber/tubule production methods have limitations in ordered cell arrangements, thus impeding the biomimetic configurations. Acoustic cell patterning is a cell manipulation method that has good biocompatibility, wide tunability, and is contact-free. However, there are few studies on acoustic cell patterning for fiber production, especially on the radial figure cell arrangements, which mimic many native tissue-like cell arrangements. Here, an acoustic cell patterning system that can be used to produce hydrogel fibers/tubules with tunable cell patterns is shown. Cells can be pre-patterned in the liquid hydrogel before being extruded as cross-linked hydrogel fibers/tubules. The radial patterns can be tuned with different complexities based on the acoustic resonances. Cell viability assays after 72 h confirm good cell viability and proliferation. Considering the biocompatibility and reliability, the present method can be further used for a variety of biomimetic fabrications.
Collapse
Affiliation(s)
- Qiu Yin
- State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghai200240China
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityNo.800 Dongchuan RoadShanghai200240China
| | - Yucheng Luo
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityNo.800 Dongchuan RoadShanghai200240China
| | - Xianglin Yu
- SJTU Paris Elite Institute of TechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Keke Chen
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityNo.800 Dongchuan RoadShanghai200240China
| | - Wanlu Li
- School of Biomedical Engineering and Med‐X Research Institute and Shanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Hu Huang
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace EngineeringJilin UniversityChangchunJilin130022China
| | - Lin Zhang
- School of Mechatronic EngineeringChangchun University of TechnologyChangchun130012China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials EngineeringUniversity of Macau, Avenida da UniversidadeTaipa, Macau999078China
| | - Benpeng Zhu
- School of Integrated Circuit, Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityNo.800 Dongchuan RoadShanghai200240China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghai200240China
- SJTU Paris Elite Institute of TechnologyShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
11
|
Wu Y, Gai J, Zhao Y, Liu Y, Liu Y. Acoustofluidic Actuation of Living Cells. MICROMACHINES 2024; 15:466. [PMID: 38675277 PMCID: PMC11052308 DOI: 10.3390/mi15040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Acoutofluidics is an increasingly developing and maturing technical discipline. With the advantages of being label-free, non-contact, bio-friendly, high-resolution, and remote-controllable, it is very suitable for the operation of living cells. After decades of fundamental laboratory research, its technical principles have become increasingly clear, and its manufacturing technology has gradually become popularized. Presently, various imaginative applications continue to emerge and are constantly being improved. Here, we introduce the development of acoustofluidic actuation technology from the perspective of related manipulation applications on living cells. Among them, we focus on the main development directions such as acoustofluidic sorting, acoustofluidic tissue engineering, acoustofluidic microscopy, and acoustofluidic biophysical therapy. This review aims to provide a concise summary of the current state of research and bridge past developments with future directions, offering researchers a comprehensive overview and sparking innovation in the field.
Collapse
Affiliation(s)
- Yue Wu
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
| | - Junyang Gai
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Yuwen Zhao
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA;
| | - Yi Liu
- School of Engineering, Dali University, Dali 671000, China
| | - Yaling Liu
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA;
| |
Collapse
|
12
|
Wang Q, Maramizonouz S, Stringer Martin M, Zhang J, Ong HL, Liu Q, Yang X, Rahmati M, Torun H, Ng WP, Wu Q, Binns R, Fu Y. Acoustofluidic patterning in glass capillaries using travelling acoustic waves based on thin film flexible platform. ULTRASONICS 2024; 136:107149. [PMID: 37703751 DOI: 10.1016/j.ultras.2023.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Surface acoustic wave (SAW) technology has been widely used to manipulate microparticles and biological species, based on acoustic radiation force (ARF) and drag force induced by acoustic streaming, either by standing SAWs (SSAWs) or travelling SAWs (TSAWs). These acoustofluidic patterning functions can be achieved within a polymer chamber or a glass capillary with various cross-sections positioned along the wave propagating paths. In this paper, we demonstrated that microparticles can be aligned, patterned, and concentrated within both circular and rectangular glass capillaries using TSAWs based on a piezoelectric thin film acoustic wave platform. The glass capillary was placed at different angles along with the interdigital transducer directions. We systematically investigated effects of tilting angles and wave characteristics using numerical simulations in both circular and square shaped capillaries, and the patterning mechanisms were discussed and compared with those agitated under the SSAWs. We then experimentally verified the particle patterns within different glass capillaries using thin film ZnO SAW devices on aluminum (Al) sheets. Results show that the propagating SAWs can generate acoustic pressures and patterns in the fluid due to the diffractive effects, drag forces and ARF, as functions of the SAW device's resonant frequency and tilting angle. We demonstrated potential applications using this multiplexing, integrated, and flexible thin film-based platform, including patterning particles (1) inside multiple and successively positioned circular tubes; (2) inside a solidified hydrogel in the glass capillary; and (3) by wrapping a flexible ZnO/Al SAW device around the glass capillary.
Collapse
Affiliation(s)
- Qiaoyun Wang
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, School of Control Engineering, Northeastern University at Qinhuangdao, 066004, PR China; Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Sadaf Maramizonouz
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK; School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Mercedes Stringer Martin
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| | - Jikai Zhang
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Hui Ling Ong
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Qiang Liu
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, School of Control Engineering, Northeastern University at Qinhuangdao, 066004, PR China; Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Xin Yang
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| | - Mohammad Rahmati
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Hamdi Torun
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Wai Pang Ng
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Qiang Wu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Richard Binns
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
13
|
Gu Y, Kumar V, Dayavansha EK, Schoen S, Feleppa E, Tadross R, Wang MH, Washburn MJ, Thomenius K, Samir AE. Acoustic diffraction-resistant adaptive profile technology (ADAPT) for elasticity imaging. SCIENCE ADVANCES 2023; 9:eadi6129. [PMID: 37910613 PMCID: PMC10619922 DOI: 10.1126/sciadv.adi6129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Acoustic beam shaping with high degrees of freedom is critical for applications such as ultrasound imaging, acoustic manipulation, and stimulation. However, the ability to fully control the acoustic pressure profile over its propagation path has not yet been achieved. Here, we demonstrate an acoustic diffraction-resistant adaptive profile technology (ADAPT) that can generate a propagation-invariant beam with an arbitrarily desired profile. By leveraging wave number modulation and beam multiplexing, we develop a general framework for creating a highly flexible acoustic beam with a linear array ultrasonic transducer. The designed acoustic beam can also maintain the beam profile in lossy material by compensating for attenuation. We show that shear wave elasticity imaging is an important modality that can benefit from ADAPT for evaluating tissue mechanical properties. Together, ADAPT overcomes the existing limitation of acoustic beam shaping and can be applied to various fields, such as medicine, biology, and material science.
Collapse
Affiliation(s)
- Yuyang Gu
- Department of Radiology, Massachusetts General Hospital, Center for Ultrasound Research and Translation, Boston, MA 02114, USA
- Harvard Medical School, Cambridge, MA 02115, USA
| | - Viksit Kumar
- Department of Radiology, Massachusetts General Hospital, Center for Ultrasound Research and Translation, Boston, MA 02114, USA
- Harvard Medical School, Cambridge, MA 02115, USA
| | - E. G. Sunethra K. Dayavansha
- Department of Radiology, Massachusetts General Hospital, Center for Ultrasound Research and Translation, Boston, MA 02114, USA
- Harvard Medical School, Cambridge, MA 02115, USA
| | - Scott Schoen
- Department of Radiology, Massachusetts General Hospital, Center for Ultrasound Research and Translation, Boston, MA 02114, USA
- Harvard Medical School, Cambridge, MA 02115, USA
| | - Ernest Feleppa
- Department of Radiology, Massachusetts General Hospital, Center for Ultrasound Research and Translation, Boston, MA 02114, USA
- Harvard Medical School, Cambridge, MA 02115, USA
| | - Rimon Tadross
- General Electric Healthcare, Wauwatosa, WI 53226, USA
| | | | | | - Kai Thomenius
- Department of Radiology, Massachusetts General Hospital, Center for Ultrasound Research and Translation, Boston, MA 02114, USA
- Harvard Medical School, Cambridge, MA 02115, USA
| | - Anthony E. Samir
- Department of Radiology, Massachusetts General Hospital, Center for Ultrasound Research and Translation, Boston, MA 02114, USA
- Harvard Medical School, Cambridge, MA 02115, USA
| |
Collapse
|
14
|
Kim J, Kasoji S, Durham PG, Dayton PA. Nanoparticle-Epoxy Composite Molding for Undeformed Acoustic Holograms With Tailored Acoustic Properties. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1554-1562. [PMID: 37561617 DOI: 10.1109/tuffc.2023.3303894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Acoustic hologram (AH) lenses are typically produced by high-resolution 3-D printing methods, such as stereolithography (SLA) printing. However, SLA printing of thin, plate-shaped lens structures has major limitations, including vulnerability to deformation during photocuring and limited control of acoustic impedance. To overcome these limitations, we demonstrated a nanoparticle-epoxy composite (NPEC) molding technique, and we tested its feasibility for AH lens fabrication. The characterized acoustic impedance of the 22.5% NPEC was 4.64 MRayl, which is 55% higher than the clear photopolymer (2.99 MRayl) used by SLA. Simulations demonstrated that the improved pressure transmission by the higher acoustic impedance of the NPEC resulted in 21% higher pressure amplitude in the region of interest (ROI, -6-dB pressure amplitude pixels) than the photopolymer. This improvement was experimentally demonstrated after prototyping NPEC lenses through a molding process. The NPEC lens showed no significant deformation and 72% lower thickness profile errors than the photopolymer, which otherwise experienced deformed edges due to thermal bending. Beam mapping results using the NPEC lens validated the predicted improvement, demonstrating 24% increased pressure amplitude on average and 10% improved structural similarity (SSIM) with the simulated pressure pattern compared to the photopolymer lens. This method can be used for AH lens applications with improved pressure output and accurate pressure field formation.
Collapse
|
15
|
Dumčius P, Mikhaylov R, Zhang X, Bareford M, Stringer M, Errington R, Sun C, Gonzalez E, Krukovski T, Falcon-Perez JM, Liang D, Fu YQ, Clayton A, Yang X. Dual-Wave Acoustofluidic Centrifuge for Ultrafast Concentration of Nanoparticles and Extracellular Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300390. [PMID: 37118859 DOI: 10.1002/smll.202300390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Extracellular vesicles (EVs) are secreted nanostructures that play various roles in critical cancer processes. They operate as an intercellular communication system, transferring complex sets of biomolecules from cell to cell. The concentration of EVs is difficult to decipher, and there is an unmet technological need for improved (faster, simpler, and gentler) approaches to isolate EVs from complex matrices. Herein, an acoustofluidic concentration of extracellular vesicles (ACEV) is presented, based on a thin-film printed circuit board with interdigital electrodes mounted on a piezoelectric substrate. An angle of 120° is identified between the electrodes and the reference flat of the piezoelectric substrate for simultaneous generation of Rayleigh and shear horizontal waves. The dual waves create a complex acoustic field in a droplet, resulting in effective concentration of nanoparticles and EVs. The ACEV is able to concentrate 20 nm nanospheres within 105 s and four EV dilutions derived from the human prostate cancer (Du145) cell line in approximately 30 s. Cryo-electron microscopy confirmed the preservation of EV integrity. The ACEV device holds great potential to revolutionize investigations of EVs. Its faster, simpler, and gentler approach to EV isolation and concentration can save time and effort in phenotypic and functional studies of EVs.
Collapse
Affiliation(s)
- Povilas Dumčius
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF243AA, UK
| | - Roman Mikhaylov
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF243AA, UK
| | - Xiaoyan Zhang
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF243AA, UK
| | - Matthew Bareford
- Tissue Micro-Environment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF144XN, UK
| | - Mercedes Stringer
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF243AA, UK
| | - Rachel Errington
- Tissue Micro-Environment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF144XN, UK
| | - Chao Sun
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Esperanza Gonzalez
- Exosomes Laboratory, CIC bioGUNE-BRTA, CIBERehd, Bizkaia Technology Park, Bilbao, 48160, Spain
| | - Tomaš Krukovski
- Department of Electrical Engineering and Sensor Technology, Institute of Engineering, Hanze University Groningen, AS Groningen, 119747, Netherlands
| | - Juan M Falcon-Perez
- Exosomes Laboratory, CIC bioGUNE-BRTA, CIBERehd, Bizkaia Technology Park, Bilbao, 48160, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, 28029, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Spain
| | - Dongfang Liang
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Yong-Qing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Aled Clayton
- Tissue Micro-Environment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF144XN, UK
| | - Xin Yang
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF243AA, UK
| |
Collapse
|
16
|
Xu M, Wang J, Harley WS, Lee PVS, Collins DJ. Programmable Acoustic Holography using Medium-Sound-Speed Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301489. [PMID: 37283454 PMCID: PMC10427405 DOI: 10.1002/advs.202301489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Acoustic holography offers the ability to generate designed acoustic fields to manipulate microscale objects. However, the static nature or large aperture sizes of 3D printed acoustic holographic phase plates limits the ability to rapidly alter generated fields. In this work, a programmable acoustic holography approach is demonstrated by which multiple discrete or continuously variable acoustic targets can be created. Here, the holographic phase plate encodes multiple images, where the desired field is produced by modifying the sound speed of an intervening fluid media. Its flexibility is demonstrated in generating various acoustic patterns, including continuous line segments, discrete letters and numbers, using this method as a sound speed indicator and fluid identification tool. This programmable acoustic holography approach has the advantages of generating reconfigurable and designed acoustic fields, with broad potential in microfluidics, cell/tissue engineering, real-time sensing, and medical ultrasound.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Jizhen Wang
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - William S. Harley
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Peter V. S. Lee
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
- Graeme Clarke InstituteUniversity of MelbourneParkvilleVictoria3052Australia
| | - David J. Collins
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
- Graeme Clarke InstituteUniversity of MelbourneParkvilleVictoria3052Australia
| |
Collapse
|
17
|
Seo JY, Park SB, Kim SY, Seo GJ, Jang HK, Lee TJ. Acoustic and Magnetic Stimuli-Based Three-Dimensional Cell Culture Platform for Tissue Engineering. Tissue Eng Regen Med 2023; 20:563-580. [PMID: 37052782 PMCID: PMC10313605 DOI: 10.1007/s13770-023-00539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
In a conventional two-dimensional (2D) culture method, cells are attached to the bottom of the culture dish and grow into a monolayer. These 2D culture methods are easy to handle, cost-effective, reproducible, and adaptable to growing many different types of cells. However, monolayer 2D cell culture conditions are far from those of natural tissue, indicating the need for a three-dimensional (3D) culture system. Various methods, such as hanging drop, scaffolds, hydrogels, microfluid systems, and bioreactor systems, have been utilized for 3D cell culture. Recently, external physical stimulation-based 3D cell culture platforms, such as acoustic and magnetic forces, were introduced. Acoustic waves can establish acoustic radiation force, which can induce suspended objects to gather in the pressure node region and aggregate to form clusters. Magnetic targeting consists of two components, a magnetically responsive carrier and a magnetic field gradient source. In a magnetic-based 3D cell culture platform, cells are aggregated by changing the magnetic force. Magnetic fields can manipulate cells through two different methods: positive magnetophoresis and negative magnetophoresis. Positive magnetophoresis is a way of imparting magnetic properties to cells by labeling them with magnetic nanoparticles. Negative magnetophoresis is a label-free principle-based method. 3D cell structures, such as spheroids, 3D network structures, and cell sheets, have been successfully fabricated using this acoustic and magnetic stimuli-based 3D cell culture platform. Additionally, fabricated 3D cell structures showed enhanced cell behavior, such as differentiation potential and tissue regeneration. Therefore, physical stimuli-based 3D cell culture platforms could be promising tools for tissue engineering.
Collapse
Affiliation(s)
- Ju Yeon Seo
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Song Bin Park
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Seo Yeon Kim
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Gyeong Jin Seo
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Hyeon-Ki Jang
- Division of Chemical Engineering and Bioengineering, College of Art Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Tae-Jin Lee
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
18
|
Jin G, Rich J, Xia J, Upreti N, Zhao C, Huang TJ. Acoustofluidic scanning fluorescence nanoscopy with large field of view. RESEARCH SQUARE 2023:rs.3.rs-3069123. [PMID: 37461478 PMCID: PMC10350121 DOI: 10.21203/rs.3.rs-3069123/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Nanoscale fluorescence imaging with a large-field view is invaluable for many applications such as imaging of subcellular structures, visualizing protein interaction, and high-resolution tissue imaging. Unfortunately, conventional fluorescence microscopy has to make a trade-off between resolution and field of view due to the nature of the optics used to form an image. To overcome this barrier, we have developed an acoustofluidic scanning fluorescence nanoscope that can simultaneously achieve superior resolution, a large field of view, and enhanced fluorescent signal. The acoustofluidic scanning fluorescence nanoscope utilizes the super-resolution capability of microspheres that are controlled by a programable acoustofluidic device for rapid fluorescent enhancement and imaging. The acoustofluidic scanning fluorescence nanoscope can resolve structures that cannot be achieved with a conventional fluorescent microscope with the same objective lens and enhances the fluorescent signal by a factor of ~5 without altering the field of view of the image. The improved resolution with enhanced fluorescent signal and large field of view via the acoustofluidic scanning fluorescence nanoscope provides a powerful tool for versatile nanoscale fluorescence imaging for researchers in the fields of medicine, biology, biophysics, and biomedical engineering.
Collapse
Affiliation(s)
- Geonsoo Jin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Neil Upreti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Chenglong Zhao
- Department of Physics, University of Dayton, 300 College Park, Dayton, OH 45469, USA
- Department of Electro-Optics and Photonics, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
19
|
Ren X, Zhou Q, Huang J, Xu Z, Liu X. Holographic generation of arbitrary ultrasonic fields by simultaneous modulation of amplitude and phase. ULTRASONICS 2023; 134:107074. [PMID: 37329671 DOI: 10.1016/j.ultras.2023.107074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/19/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
Acoustic holograms have been used widely to generate desired acoustic fields. Following the rapid development of 3D printing technology, the use of holographic lenses has become an efficient method to produce acoustic fields with high resolution and low cost. In this paper, we demonstrate a technique to modulate the amplitude and phase of ultrasonic waves simultaneously using a holographic method with high transmission efficiency and high accuracy. On this basis, we generate an Airy beam with high propagation invariance. We then discuss the advantages and disadvantages of the proposed method when compared with the conventional acoustic holographic method. Finally, we design a sinusoidal curve with a phase gradient and a constant pressure amplitude and realize transport of a particle on a water surface along a curve.
Collapse
Affiliation(s)
- Xuemei Ren
- Institute of Acoustics, Tongji University, Shanghai 200092, China
| | - Qinxin Zhou
- Institute of Acoustics, Tongji University, Shanghai 200092, China
| | - Jie Huang
- Institute of Acoustics, Tongji University, Shanghai 200092, China
| | - Zheng Xu
- Institute of Acoustics, Tongji University, Shanghai 200092, China.
| | - Xiaojun Liu
- Key Laboratory of Modern Acoustics, School of Physics, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
20
|
Ghanem MA, Maxwell AD, Dalecki D, Sapozhnikov OA, Bailey MR. Phase holograms for the three-dimensional patterning of unconstrained microparticles. Sci Rep 2023; 13:9160. [PMID: 37280230 PMCID: PMC10244404 DOI: 10.1038/s41598-023-35337-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Acoustic radiation forces can remotely manipulate particles. Forces from a standing wave field align microscale particles along the nodal or anti-nodal locations of the field to form three-dimensional (3D) patterns. These patterns can be used to form 3D microstructures for tissue engineering applications. However, standing wave generation requires more than one transducer or a reflector, which is challenging to implement in vivo. Here, a method is developed and validated to manipulate microspheres using a travelling wave from a single transducer. Diffraction theory and an iterative angular spectrum approach are employed to design phase holograms to shape the acoustic field. The field replicates a standing wave and aligns polyethylene microspheres in water, which are analogous to cells in vivo, at pressure nodes. Using Gor'kov potential to calculate the radiation forces on the microspheres, axial forces are minimized, and transverse forces are maximized to create stable particle patterns. Pressure fields from the phase holograms and resulting particle aggregation patterns match predictions with a feature similarity index > 0.92, where 1 is a perfect match. The resulting radiation forces are comparable to those produced from a standing wave, which suggests opportunities for in vivo implementation of cell patterning toward tissue engineering applications.
Collapse
Affiliation(s)
- Mohamed A Ghanem
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA, 98105, USA.
| | - Adam D Maxwell
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Diane Dalecki
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Oleg A Sapozhnikov
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA, 98105, USA
- Physics Faculty, Moscow State University, Moscow, 119991, Russia
| | - Michael R Bailey
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA, 98105, USA
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
21
|
Kolesnik K, Segeritz P, Scott DJ, Rajagopal V, Collins DJ. Sub-wavelength acoustic stencil for tailored micropatterning. LAB ON A CHIP 2023; 23:2447-2457. [PMID: 37042175 DOI: 10.1039/d3lc00043e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Acoustofluidic devices are ideal for biomedical micromanipulation applications, with high biocompatibility and the ability to generate force gradients down to the scale of cells. However, complex and designed patterning at the microscale remains challenging. In this work we report an acoustofluidic approach to direct particles and cells within a structured surface in arbitrary configurations. Wells, trenches and cavities are embedded in this surface. Combined with a half-wavelength acoustic field, together these form an 'acoustic stencil' where arbitrary cell and particle arrangements can be reversibly generated. Here a bulk-wavemode lithium niobate resonator generates multiplexed parallel patterning via a multilayer resonant geometry, where cell-scale resolution is accomplished via structured sub-wavelength microfeatures. Uniquely, this permits simultaneous manipulation in a unidirectional, device-spanning single-node field across scalable ∼cm2 areas in a microfluidic device. This approach is demonstrated via patterning of 5, 10 and 15 μm particles and 293-F cells in a variety of arrangements, where these activities are enabling for a range of cell studies and tissue engineering applications via the generation of highly complex and designed acoustic patterns at the microscale.
Collapse
Affiliation(s)
- Kirill Kolesnik
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Victoria, Australia.
| | - Philipp Segeritz
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Victoria, Australia.
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Vijay Rajagopal
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Victoria, Australia.
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Victoria, Australia.
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
22
|
Lan H, Qian J, Liu Y, Lu S, Zhang B, Huang L, Hu X, Zhang W. Swirl-like Acoustofluidic Stirring Facilitates Microscale Reactions in Sessile Droplets. MICROMACHINES 2023; 14:837. [PMID: 37421070 DOI: 10.3390/mi14040837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 04/08/2023] [Indexed: 07/09/2023]
Abstract
Sessile droplets play a crucial role in the microreactors of biochemical samples. Acoustofluidics provide a non-contact and label-free method for manipulating particles, cells, and chemical analytes in droplets. In the present study, we propose a micro-stirring application based on acoustic swirls in sessile droplets. The acoustic swirls are formed inside the droplets by asymmetric coupling of surface acoustic waves (SAWs). With the merits of the slanted design of the interdigital electrode, the excitation position of SAWs is selective by sweeping in wide frequency ranges, allowing for the droplet position to be customized within the aperture region. We verify the reasonable existence of acoustic swirls in sessile droplets by a combination of simulations and experiments. The different periphery of the droplet meeting with SAWs will produce acoustic streaming phenomena with different intensities. The experiments demonstrate that acoustic swirls formed after SAWs encountering droplet boundaries will be more obvious. The acoustic swirls have strong stirring abilities to rapidly dissolve the yeast cell powder granules. Therefore, acoustic swirls are expected to be an effective means for rapid stirring of biomolecules and chemicals, providing a new approach to micro-stirring in biomedicine and chemistry.
Collapse
Affiliation(s)
- Huaize Lan
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Jingui Qian
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Yansong Liu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Shanshan Lu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Bowei Zhang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xuefeng Hu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Wei Zhang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
23
|
Vachon P, Merugu S, Sharma J, Lal A, Ng EJ, Koh Y, Lee JEY, Lee C. Microfabricated acoustofluidic membrane acoustic waveguide actuator for highly localized in-droplet dynamic particle manipulation. LAB ON A CHIP 2023; 23:1865-1878. [PMID: 36852544 DOI: 10.1039/d2lc01192a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Precision manipulation techniques in microfluidics often rely on ultrasonic actuators to generate displacement and pressure fields in a liquid. However, strategies to enhance and confine the acoustofluidic forces often work against miniaturization and reproducibility in fabrication. This study presents microfabricated piezoelectric thin film membranes made via silicon diffusion for guided flexural wave generation as promising acoustofluidic actuators with low frequency, voltage, and power requirements. The guided wave propagation can be dynamically controlled to tune and confine the induced acoustofluidic radiation force and streaming. This provides for highly localized dynamic particle manipulation functionalities such as multidirectional transport, patterning, and trapping. The device combines the advantages of microfabrication and advanced acoustofluidic capabilities into a miniature "drop-and-actuate" chip that is mechanically robust and features a high degree of reproducibility for large-scale production. The membrane acoustic waveguide actuators offer a promising pathway for acoustofluidic applications such as biosensing, organoid production, and in situ analyte transport.
Collapse
Affiliation(s)
- Philippe Vachon
- Institute of Microelectronics, A*STAR, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore.
| | | | | | - Amit Lal
- Institute of Microelectronics, A*STAR, Singapore
- SonicMEMS Laboratory, School of Electrical and Computer Engineering, Cornell University, Ithaca, USA
| | - Eldwin J Ng
- Institute of Microelectronics, A*STAR, Singapore
| | - Yul Koh
- Institute of Microelectronics, A*STAR, Singapore
| | | | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore.
| |
Collapse
|
24
|
Melde K, Kremer H, Shi M, Seneca S, Frey C, Platzman I, Degel C, Schmitt D, Schölkopf B, Fischer P. Compact holographic sound fields enable rapid one-step assembly of matter in 3D. SCIENCE ADVANCES 2023; 9:eadf6182. [PMID: 36753553 PMCID: PMC9908023 DOI: 10.1126/sciadv.adf6182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Acoustic waves exert forces when they interact with matter. Shaping ultrasound fields precisely in 3D thus allows control over the force landscape and should permit particulates to fall into place to potentially form whole 3D objects in "one shot." This is promising for rapid prototyping, most notably biofabrication, since conventional methods are typically slow and apply mechanical or chemical stress on biological cells. Here, we realize the generation of compact holographic ultrasound fields and demonstrate the one-step assembly of matter using acoustic forces. We combine multiple holographic fields that drive the contactless assembly of solid microparticles, hydrogel beads, and biological cells inside standard labware. The structures can be fixed via gelation of the surrounding medium. In contrast to previous work, this approach handles matter with positive acoustic contrast and does not require opposing waves, supporting surfaces or scaffolds. We envision promising applications of 3D holographic ultrasound fields in tissue engineering and additive manufacturing.
Collapse
Affiliation(s)
- Kai Melde
- Micro, Nano and Molecular Systems Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Heiner Kremer
- Empirical Inference Department, Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tübingen, Germany
| | - Minghui Shi
- Micro, Nano and Molecular Systems Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Senne Seneca
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Christoph Frey
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Ilia Platzman
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Christian Degel
- Technical Ultrasound Department, Fraunhofer Institute for Biomedical Engineering, Ensheimer Straße 48, 66386 St. Ingbert, Germany
| | - Daniel Schmitt
- Technical Ultrasound Department, Fraunhofer Institute for Biomedical Engineering, Ensheimer Straße 48, 66386 St. Ingbert, Germany
| | - Bernhard Schölkopf
- Empirical Inference Department, Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tübingen, Germany
| | - Peer Fischer
- Micro, Nano and Molecular Systems Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
Zhang B, Wu H, Kim H, Welch PJ, Cornett A, Stocker G, Nogueira RG, Kim J, Owens G, Dayton PA, Xu Z, Shi C, Jiang X. A Model of High-Speed Endovascular Sonothrombolysis with Vortex Ultrasound-Induced Shear Stress to Treat Cerebral Venous Sinus Thrombosis. RESEARCH (WASHINGTON, D.C.) 2023; 6:0048. [PMID: 37040522 PMCID: PMC10078321 DOI: 10.34133/research.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
This research aims to demonstrate a novel vortex ultrasound enabled endovascular thrombolysis method designed for treating cerebral venous sinus thrombosis (CVST). This is a topic of substantial importance since current treatment modalities for CVST still fail in as many as 20% to 40% of the cases, and the incidence of CVST has increased since the outbreak of the coronavirus disease 2019 pandemic. Compared with conventional anticoagulant or thrombolytic drugs, sonothrombolysis has the potential to remarkably shorten the required treatment time owing to the direct clot targeting with acoustic waves. However, previously reported strategies for sonothrombolysis have not demonstrated clinically meaningful outcomes (e.g., recanalization within 30 min) in treating large, completely occluded veins or arteries. Here, we demonstrated a new vortex ultrasound technique for endovascular sonothrombolysis utilizing wave-matter interaction-induced shear stress to enhance the lytic rate substantially. Our in vitro experiment showed that the lytic rate was increased by at least 64.3% compared with the nonvortex endovascular ultrasound treatment. A 3.1-g, 7.5-cm-long, completely occluded in vitro 3-dimensional model of acute CVST was fully recanalized within 8 min with a record-high lytic rate of 237.5 mg/min for acute bovine clot in vitro. Furthermore, we confirmed that the vortex ultrasound causes no vessel wall damage over ex vivo canine veins. This vortex ultrasound thrombolysis technique potentially presents a new life-saving tool for severe CVST cases that cannot be efficaciously treated using existing therapies.
Collapse
Affiliation(s)
- Bohua Zhang
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Huaiyu Wu
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Howuk Kim
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
- Department of Mechanical Engineering, Inha University, Incheon, Republic of Korea
| | - Phoebe J. Welch
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ashley Cornett
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Greyson Stocker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Raul G. Nogueira
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jinwook Kim
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Gabe Owens
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Paul A. Dayton
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Chengzhi Shi
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Xiaoning Jiang
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
26
|
Wei W, Wang Y, Wang Z, Duan X. Microscale acoustic streaming for biomedical and bioanalytical applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Wu Z, Pan M, Wang J, Wen B, Lu L, Ren H. Acoustofluidics for cell patterning and tissue engineering. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
28
|
Wu R, Zhu Y, Cai X, Wu S, Xu L, Yu T. Recent Process in Microrobots: From Propulsion to Swarming for Biomedical Applications. MICROMACHINES 2022; 13:1473. [PMID: 36144096 PMCID: PMC9503943 DOI: 10.3390/mi13091473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Recently, robots have assisted and contributed to the biomedical field. Scaling down the size of robots to micro/nanoscale can increase the accuracy of targeted medications and decrease the danger of invasive operations in human surgery. Inspired by the motion pattern and collective behaviors of the tiny biological motors in nature, various kinds of sophisticated and programmable microrobots are fabricated with the ability for cargo delivery, bio-imaging, precise operation, etc. In this review, four types of propulsion-magnetically, acoustically, chemically/optically and hybrid driven-and their corresponding features have been outlined and categorized. In particular, the locomotion of these micro/nanorobots, as well as the requirement of biocompatibility, transportation efficiency, and controllable motion for applications in the complex human body environment should be considered. We discuss applications of different propulsion mechanisms in the biomedical field, list their individual benefits, and suggest their potential growth paths.
Collapse
|
29
|
Cox L, Croxford A, Drinkwater BW. Dynamic patterning of microparticles with acoustic impulse control. Sci Rep 2022; 12:14549. [PMID: 36008430 PMCID: PMC9411184 DOI: 10.1038/s41598-022-18554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
This paper describes the use of impulse control of an acoustic field to create complex and precise particle patterns and then dynamically manipulate them. We first demonstrate that the motion of a particle in an acoustic field depends on the applied impulse and three distinct regimes can be identified. The high impulse regime is the well established mode where particles travel to the force minima of an applied continuous acoustic field. In contrast acoustic field switching in the low impulse regime results in a force field experienced by the particle equal to the time weighted average of the constituent force fields. We demonstrate via simulation and experiment that operating in the low impulse regime facilitates an intuitive and modular route to forming complex patterns of particles. The intermediate impulse regime is shown to enable more localised manipulation of particles. In addition to patterning, we demonstrate a set of impulse control tools to clear away undesired particles to further increase the contrast of the pattern against background. We combine these tools to create high contrast patterns as well as moving and re-configuring them. These techniques have applications in areas such as tissue engineering where they will enable complex, high fidelity cell patterns.
Collapse
Affiliation(s)
- Luke Cox
- Department of Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK.
| | - Anthony Croxford
- Department of Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK
| | - Bruce W Drinkwater
- Department of Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK
| |
Collapse
|
30
|
Yang Y, Zhang L, Jin K, He M, Wei W, Chen X, Yang Q, Wang Y, Pang W, Ren X, Duan X. Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles. SCIENCE ADVANCES 2022; 8:eabn8440. [PMID: 35905179 PMCID: PMC9337757 DOI: 10.1126/sciadv.abn8440] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/14/2022] [Indexed: 05/30/2023]
Abstract
The transport, enrichment, and purification of nanoparticles are fundamental activities in the fields of biology, chemistry, material science, and medicine. Here, we demonstrate an approach for manipulating nanospecimens in which a virtual channel with a diameter that can be spontaneously self-adjusted from dozens to a few micrometers based on the concentration of samples is formed by acoustic waves and streams that are triggered and stabilized by a gigahertz bulk acoustic resonator and microfluidics, respectively. By combining a specially designed arc-shaped resonator and lateral flow, the in situ enrichment, focusing, displacement, and continuous size-based separation of nanoparticles were achieved, with the ability to capture 30-nm polystyrene nanoparticles and continuously focus 150-nm polystyrene nanoparticles. Furthermore, exosome separation was also demonstrated. This technology overcomes the limitation of continuously manipulating particles under 200 nm and has the potential to be useful for a wide range of applications in chemistry, life sciences, and medicine.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Lin Zhang
- Tianjin Medical University Cancer Institute & Hospital, Tianjin 300072, China
| | - Ke Jin
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Meihang He
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Wei Wei
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xuejiao Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Qingrui Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute & Hospital, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
31
|
Hu X, Zheng J, Hu Q, Liang L, Yang D, Cheng Y, Li SS, Chen LJ, Yang Y. Smart acoustic 3D cell construct assembly with high-resolution. Biofabrication 2022; 14. [PMID: 35764072 DOI: 10.1088/1758-5090/ac7c90] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/12/2022]
Abstract
Precise and flexible three-dimensional (3D) cell construct assembly using external forces or fields can produce micro-scale cellular architectures with intercellular connections, which is an important prerequisite to reproducing the structures and functions of biological systems. Currently, it is also a substantial challenge in the bioengineering field. Here, we propose a smart acoustic 3D cell assembly strategy that utilizes a 3D printed module and hydrogel sheets. Digitally controlled six wave beams offer a high degree of freedom (including wave vector combination, frequency, phase, and amplitude) that enables versatile biomimetic micro cellular patterns in hydrogel sheets. Further, replaceable frames can be used to fix the acoustic-built micro-scale cellular structures in these sheets, enabling user-defined hierarchical or heterogeneous constructs through layer-by-layer assembly. This strategy can be employed to construct vasculature with different diameters and lengths, composed of human umbilical vein endothelial cells and smooth muscle cells. These constructs can also induce controllable vascular network formation. Overall, the findings of this work extend the capabilities of acoustic cell assembly into 3D space, offering advantages including innovative, flexible, and precise patterning, and displaying great potential for the manufacture of various artificial tissue structures that duplicate in vivo functions.
Collapse
Affiliation(s)
- Xuejia Hu
- School of Electronic Science and Engineering, Xiamen University, Xiamen University, No. 422 Siming south road, Xiamen, Fujian, 361005, CHINA
| | - Jingjing Zheng
- School of physics and engineering, Wuhan University, luojia mountain street, Wuhan, Wuhan, Hubei, 430072, CHINA
| | - Qinghao Hu
- School of physics and engineering, Wuhan University, luojia street, Wuhan, Wuhan, Hubei, 430072, CHINA
| | - Li Liang
- School of Physics and Electronic Technology, Anhui Normal University, No. 189 of jiuhua south road, Wuhu, Wuhu, Anhui, 241000, CHINA
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, No. 238, Jiefang road, Wuhan, Hubei, 430060, CHINA
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, No. 238, Jiefang road, Wuhan, Hubei, 430060, CHINA
| | - Sen-Sen Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen University, No. 422 Siming south road, Xiamen, Fujian, 361005, CHINA
| | - Lu-Jian Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen University, No. 422 Siming south road, Xiamen, Fujian, 361005, CHINA
| | - Yi Yang
- School of physics and engineering, Wuhan University, luojia street, Wuhan, Wuhan, Hubei, 430072, CHINA
| |
Collapse
|
32
|
A sound approach to advancing healthcare systems: the future of biomedical acoustics. Nat Commun 2022; 13:3459. [PMID: 35710904 PMCID: PMC9200942 DOI: 10.1038/s41467-022-31014-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
Newly developed acoustic technologies are playing a transformational role in life science and biomedical applications ranging from the activation and inactivation of mechanosensitive ion channels for fundamental physiological processes to the development of contact-free, precise biofabrication protocols for tissue engineering and large-scale manufacturing of organoids. Here, we provide our perspective on the development of future acoustic technologies and their promise in addressing critical challenges in biomedicine.
Collapse
|
33
|
Enhanced Detection in Droplet Microfluidics by Acoustic Vortex Modulation of Particle Rings and Particle Clusters via Asymmetric Propagation of Surface Acoustic Waves. BIOSENSORS 2022; 12:bios12060399. [PMID: 35735547 PMCID: PMC9221473 DOI: 10.3390/bios12060399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
As a basis for biometric and chemical analysis, issues of how to dilute or concentrate substances such as particles or cells to specific concentrations have long been of interest to researchers. In this study, travelling surface acoustic wave (TSAW)-based devices with three frequencies (99.1, 48.8, 20.4 MHz) have been used to capture the suspended Polystyrene (PS) microspheres of various sizes (5, 20, 40 μm) in sessile droplets, which are controlled by acoustic field-induced fluid vortex (acoustic vortex) and aggregate into clusters or rings with particles. These phenomena can be explained by the interaction of three forces, which are drag force caused by ASF, ARF caused by Leaky-SAW and varying centrifugal force. Eventually, a novel approach of free transition between the particle ring and cluster was approached via modulating the acoustic amplitude of TSAW. By this method, multilayer particles agglomerate with 20 μm wrapped around 40 μm and 20 μm wrapped around 5 μm can be obtained, which provides the possibility to dilute or concentrate the particles to a specific concentration.
Collapse
|
34
|
Liu P, Tian Z, Yang K, Naquin TD, Hao N, Huang H, Chen J, Ma Q, Bachman H, Zhang P, Xu X, Hu J, Huang TJ. Acoustofluidic black holes for multifunctional in-droplet particle manipulation. SCIENCE ADVANCES 2022; 8:eabm2592. [PMID: 35363512 PMCID: PMC10938576 DOI: 10.1126/sciadv.abm2592] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Acoustic black holes offer superior capabilities for slowing down and trapping acoustic waves for various applications such as metastructures, energy harvesting, and vibration and noise control. However, no studies have considered the linear and nonlinear effects of acoustic black holes on micro/nanoparticles in fluids. This study presents acoustofluidic black holes (AFBHs) that leverage controlled interactions between AFBH-trapped acoustic wave energy and particles in droplets to enable versatile particle manipulation functionalities, such as translation, concentration, and patterning of particles. We investigated the AFBH-enabled wave energy trapping and wavelength shrinking effects, as well as the trapped wave energy-induced acoustic radiation forces on particles and acoustic streaming in droplets. This study not only fills the gap between the emerging fields of acoustofluidics and acoustic black holes but also leads to a class of AFBH-based in-droplet particle manipulation toolsets with great potential for many applications, such as biosensing, point-of-care testing, and drug screening.
Collapse
Affiliation(s)
- Pengzhan Liu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS 39762, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Ty Downing Naquin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Nanjing Hao
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Huiyu Huang
- State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jinyan Chen
- State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qiuxia Ma
- State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hunter Bachman
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Peiran Zhang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junhui Hu
- State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
35
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
36
|
Hao N, Wang Z, Liu P, Becker R, Yang S, Yang K, Pei Z, Zhang P, Xia J, Shen L, Wang L, Welsh-Bohmer KA, Sanders L, Lee LP, Huang TJ. Acoustofluidic multimodal diagnostic system for Alzheimer's disease. Biosens Bioelectron 2022; 196:113730. [PMID: 34736099 PMCID: PMC8643320 DOI: 10.1016/j.bios.2021.113730] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/13/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative brain disorder that affects tens of millions of older adults worldwide and has significant economic and societal impacts. Despite its prevalence and severity, early diagnosis of AD remains a considerable challenge. Here we report an integrated acoustofluidics-based diagnostic system (ADx), which combines triple functions of acoustics, microfluidics, and orthogonal biosensors for clinically accurate, sensitive, and rapid detection of AD biomarkers from human plasma. We design and fabricate a surface acoustic wave-based acoustofluidic separation device to isolate and purify AD biomarkers to increase the signal-to-noise ratio. Multimodal biosensors within the integrated ADx are fabricated by in-situ patterning of the ZnO nanorod array and deposition of Ag nanoparticles onto the ZnO nanorods for surface-enhanced Raman scattering (SERS) and electrochemical immunosensors. We obtain the label-free detections of SERS and electrochemical immunoassay of clinical plasma samples from AD patients and healthy controls with high sensitivity and specificity. We believe that this efficient integration provides promising solutions for the early diagnosis of AD.
Collapse
Affiliation(s)
- Nanjing Hao
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zeyu Wang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Pengzhan Liu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ryan Becker
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhichao Pei
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Peiran Zhang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Liang Shen
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Lin Wang
- Ascent Bio-Nano Technologies, Inc., Morrisville, NC, 27560, USA
| | | | - Laurie Sanders
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, 94720, USA; Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
37
|
Chen J, Huang X, Xu X, Wang R, Wei M, Han W, Cao J, Xuan W, Ge Y, Wang J, Sun L, Luo JK. Microfluidic particle separation and detection system based on standing surface acoustic wave and lensless imaging. IEEE Trans Biomed Eng 2021; 69:2165-2175. [PMID: 34951837 DOI: 10.1109/tbme.2021.3138086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Separation and detection of micro-particles or cells from bio-samples by point-of-care (POC) systems are critical for biomedical and healthcare diagnostic applications. Among the microfluidic separation techniques, the acoustophoresis-based microfluidic separation technique has the advantages of label-free, contactless, and good biocompatibility. However, most of the separation techniques are bulky, requiring additional equipment for analysis, not suitable for POC-based in-field real-time applications. Therefore, we proposed a platform, which integrates an acoustophoresis-based separation device and a lensless imaging sensor into a compact standalone system to solve the problem. METHODS In this system, Standing Surface Acoustic Wave (SSAW) is utilized for label-free particle separation, while lensless imaging is employed for seamless particle detection and counting using self-developed dual-threshold motion detection algorithms. In particular, the microfluidic channel and interdigital transducers (IDTs) were specially optimized; a heat dissipation system was custom designed to suppress the rise of the fluid temperature; a novel frequency-temperature-curve based method was proposed to determine the appropriate signal driving frequency for the system; an effective treatment protocol that improves the bonding strength between LiNbO3 and PDMS was proposed. RESULTS At 2 L/min sample flow rate, the separation efficiency of 93.52% and purity of 94.29% for 15 m microbead were achieved in mixed 5m and 15m microbead solution at a 25 dBm RF driving power, the separation efficiency of 92.75% and purity of 91.43% were obtained for 15 m microbead from mixed 10 m and 15 m microbead solution at a driving power of 24 dBm. CONCLUSIONS The results showed that the integrated platform has an excellent capability to seamlessly separate, distinguish, and count microbeads of different sizes. SIGNIFICANCE Such a platform and the design methodologies offer a promising POC solution for label-free cell separation and detection in biomedical diagnostics.
Collapse
|
38
|
Zhong R, Yang S, Ugolini GS, Naquin T, Zhang J, Yang K, Xia J, Konry T, Huang TJ. Acoustofluidic Droplet Sorter Based on Single Phase Focused Transducers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103848. [PMID: 34658129 PMCID: PMC8686687 DOI: 10.1002/smll.202103848] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Indexed: 05/13/2023]
Abstract
Droplet microfluidics has revolutionized the biomedical and drug development fields by allowing for independent microenvironments to conduct drug screening at the single cell level. However, current microfluidic sorting devices suffer from drawbacks such as high voltage requirements (e.g., >200 Vpp), low biocompatibility, and/or low throughput. In this article, a single-phase focused transducer (SPFT)-based acoustofluidic chip is introduced, which outperforms many microfluidic droplet sorting devices through high energy transmission efficiency, high accuracy, and high biocompatibility. The SPFT-based sorter can be driven with an input power lower than 20 Vpp and maintain a postsorting cell viability of 93.5%. The SPFT sorter can achieve a throughput over 1000 events per second and a sorting purity up to 99.2%. The SPFT sorter is utilized here for the screening of doxorubicin cytotoxicity on cancer and noncancer cells, proving its drug screening capability. Overall, the SPFT droplet sorting device shows great potential for fast, precise, and biocompatible drug screening.
Collapse
Affiliation(s)
- Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Giovanni Stefano Ugolini
- Department of Pharmaceutical Sciences, Faculty, School of Pharmacy, Northeastern University, Palo Alto, CA, 94301, USA
| | - Ty Naquin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Jinxin Zhang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Tania Konry
- Department of Pharmaceutical Sciences, Faculty, School of Pharmacy, Northeastern University, Palo Alto, CA, 94301, USA
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
39
|
Tayebi M, Yang D, Collins DJ, Ai Y. Deterministic Sorting of Submicrometer Particles and Extracellular Vesicles Using a Combined Electric and Acoustic Field. NANO LETTERS 2021; 21:6835-6842. [PMID: 34355908 DOI: 10.1021/acs.nanolett.1c01827] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Sorting of extracellular vesicles has important applications in early stage diagnostics. Current exosome isolation techniques, however, suffer from being costly, having long processing times, and producing low purities. Recent work has shown that active sorting via acoustic and electric fields are useful techniques for microscale separation activities, where combining these has the potential to take advantage of multiple force mechanisms simultaneously. In this work, we demonstrate an approach using both electrical and acoustic forces to manipulate bioparticles and submicrometer particles for deterministic sorting, where we find that the concurrent application of dielectrophoretic (DEP) and acoustophoretic forces decreases the critical diameter at which particles can be separated. We subsequently utilize this approach to sort subpopulations of extracellular vesicles, specifically exosomes (<200 nm) and microvesicles (>300 nm). Using our combined acoustic/electric approach, we demonstrate exosome purification with more than 95% purity and 81% recovery, well above comparable approaches.
Collapse
Affiliation(s)
- Mahnoush Tayebi
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Dahou Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Vitctoria 3010, Australia
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
40
|
Kolesnik K, Xu M, Lee PVS, Rajagopal V, Collins DJ. Unconventional acoustic approaches for localized and designed micromanipulation. LAB ON A CHIP 2021; 21:2837-2856. [PMID: 34268539 DOI: 10.1039/d1lc00378j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Acoustic fields are ideal for micromanipulation, being biocompatible and with force gradients approaching the scale of single cells. They have accordingly found use in a variety of microfluidic devices, including for microscale patterning, separation, and mixing. The bulk of work in acoustofluidics has been predicated on the formation of standing waves that form periodic nodal positions along which suspended particles and cells are aligned. An evolving range of applications, however, requires more targeted micromanipulation to create unique patterns and effects. To this end, recent work has made important advances in improving the flexibility with which acoustic fields can be applied, impressively demonstrating generating arbitrary arrangements of pressure fields, spatially localizing acoustic fields and selectively translating individual particles in ways that are not achievable via traditional approaches. In this critical review we categorize and examine these advances, each of which open the door to a wide range of applications in which single-cell fidelity and flexible micromanipulation are advantageous, including for tissue engineering, diagnostic devices, high-throughput sorting and microfabrication.
Collapse
Affiliation(s)
- Kirill Kolesnik
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Mingxin Xu
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Peter V S Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
41
|
Zhang P, Rufo J, Chen C, Xia J, Tian Z, Zhang L, Hao N, Zhong Z, Gu Y, Chakrabarty K, Huang TJ. Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials. Nat Commun 2021; 12:3844. [PMID: 34158489 PMCID: PMC8219664 DOI: 10.1038/s41467-021-24101-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/04/2021] [Indexed: 11/25/2022] Open
Abstract
The ability to precisely manipulate nano-objects on a large scale can enable the fabrication of materials and devices with tunable optical, electromagnetic, and mechanical properties. However, the dynamic, parallel manipulation of nanoscale colloids and materials remains a significant challenge. Here, we demonstrate acoustoelectronic nanotweezers, which combine the precision and robustness afforded by electronic tweezers with versatility and large-field dynamic control granted by acoustic tweezing techniques, to enable the massively parallel manipulation of sub-100 nm objects with excellent versatility and controllability. Using this approach, we demonstrated the complex patterning of various nanoparticles (e.g., DNAs, exosomes, ~3 nm graphene flakes, ~6 nm quantum dots, ~3.5 nm proteins, and ~1.4 nm dextran), fabricated macroscopic materials with nano-textures, and performed high-resolution, single nanoparticle manipulation. Various nanomanipulation functions, including transportation, concentration, orientation, pattern-overlaying, and sorting, have also been achieved using a simple device configuration. Altogether, acoustoelectronic nanotweezers overcome existing limitations in nano-manipulation and hold great potential for a variety of applications in the fields of electronics, optics, condensed matter physics, metamaterials, and biomedicine. Precise and dynamic manipulation of nano-objects on a large scale has been challenging. Here, the authors introduce acoustoelectronic nanotweezers, combining precision of electronic tweezers with large-field dynamic control of acoustic tweezers, demonstrating complex patterning of sub-100 nm objects.
Collapse
Affiliation(s)
- Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Joseph Rufo
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Chuyi Chen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Jianping Xia
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Liying Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Nanjing Hao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Zhanwei Zhong
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | | | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
42
|
Lao Z, Xia N, Wang S, Xu T, Wu X, Zhang L. Tethered and Untethered 3D Microactuators Fabricated by Two-Photon Polymerization: A Review. MICROMACHINES 2021; 12:465. [PMID: 33924199 PMCID: PMC8074609 DOI: 10.3390/mi12040465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Microactuators, which can transform external stimuli into mechanical motion at microscale, have attracted extensive attention because they can be used to construct microelectromechanical systems (MEMS) and/or microrobots, resulting in extensive applications in a large number of fields such as noninvasive surgery, targeted delivery, and biomedical machines. In contrast to classical 2D MEMS devices, 3D microactuators provide a new platform for the research of stimuli-responsive functional devices. However, traditional planar processing techniques based on photolithography are inadequate in the construction of 3D microstructures. To solve this issue, researchers have proposed many strategies, among which 3D laser printing is becoming a prospective technique to create smart devices at the microscale because of its versatility, adjustability, and flexibility. Here, we review the recent progress in stimulus-responsive 3D microactuators fabricated with 3D laser printing depending on different stimuli. Then, an outlook of the design, fabrication, control, and applications of 3D laser-printed microactuators is propounded with the goal of providing a reference for related research.
Collapse
Affiliation(s)
- Zhaoxin Lao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China; (N.X.); (S.W.)
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230022, China
| | - Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China; (N.X.); (S.W.)
| | - Shijie Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China; (N.X.); (S.W.)
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (T.X.); (X.W.)
| | - Xinyu Wu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (T.X.); (X.W.)
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China; (N.X.); (S.W.)
| |
Collapse
|
43
|
Chen C, Gu Y, Philippe J, Zhang P, Bachman H, Zhang J, Mai J, Rufo J, Rawls JF, Davis EE, Katsanis N, Huang TJ. Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae. Nat Commun 2021; 12:1118. [PMID: 33602914 PMCID: PMC7892888 DOI: 10.1038/s41467-021-21373-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
Modern biomedical research and preclinical pharmaceutical development rely heavily on the phenotyping of small vertebrate models for various diseases prior to human testing. In this article, we demonstrate an acoustofluidic rotational tweezing platform that enables contactless, high-speed, 3D multispectral imaging and digital reconstruction of zebrafish larvae for quantitative phenotypic analysis. The acoustic-induced polarized vortex streaming achieves contactless and rapid (~1 s/rotation) rotation of zebrafish larvae. This enables multispectral imaging of the zebrafish body and internal organs from different viewing perspectives. Moreover, we develop a 3D reconstruction pipeline that yields accurate 3D models based on the multi-view images for quantitative evaluation of basic morphological characteristics and advanced combinations of metrics. With its contactless nature and advantages in speed and automation, our acoustofluidic rotational tweezing system has the potential to be a valuable asset in numerous fields, especially for developmental biology, small molecule screening in biochemistry, and pre-clinical drug development in pharmacology.
Collapse
Affiliation(s)
- Chuyi Chen
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Julien Philippe
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Peiran Zhang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Hunter Bachman
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Jinxin Zhang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Joseph Rufo
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA.
| |
Collapse
|