1
|
Xiong Y, Mi BB, Shahbazi MA, Xia T, Xiao J. Microenvironment-responsive nanomedicines: a promising direction for tissue regeneration. Mil Med Res 2024; 11:69. [PMID: 39434177 PMCID: PMC11492517 DOI: 10.1186/s40779-024-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Severe tissue defects present formidable challenges to human health, persisting as major contributors to mortality rates. The complex pathological microenvironment, particularly the disrupted immune landscape within these defects, poses substantial hurdles to existing tissue regeneration strategies. However, the emergence of nanobiotechnology has opened a new direction in immunomodulatory nanomedicine, providing encouraging prospects for tissue regeneration and restoration. This review aims to gather recent advances in immunomodulatory nanomedicine to foster tissue regeneration. We begin by elucidating the distinctive features of the local immune microenvironment within defective tissues and its crucial role in tissue regeneration. Subsequently, we explore the design and functional properties of immunomodulatory nanosystems. Finally, we address the challenges and prospects of clinical translation in nanomedicine development, aiming to propose a potent approach to enhance tissue regeneration through synergistic immune modulation and nanomedicine integration.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
| | - Tian Xia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Pang X, Zhang T, Li J, Yu L, Liu Z, Liu Y, Li L, Cheng L, Zhu R. LDH nanoparticles-doped cellulose nanofiber scaffolds with aligned microchannels direct high-efficiency neural regeneration and organized neural circuit remodeling through RhoA/Rock/Myosin II pathway. Biomaterials 2024; 314:122873. [PMID: 39369670 DOI: 10.1016/j.biomaterials.2024.122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/23/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Spinal cord injury (SCI) triggers interconnected malignant pathological cascades culminating in structural abnormalities and composition changes of neural tissues and impairs spinal cord tissue function. Cellulose nanofibers (CNF) have considerable potential in mimicking tissue microstructure for nerve regeneration, but the effectiveness of CNF in repairing SCI remains poorly understood. In this study, we designed a Mg-Fe layered double hydroxide (LDH)-doped cellulose nanofiber (CNF) scaffold with aligned intact microchannels and homogeneously distributed pores (CNF-LDH), loaded with retinoic acid and sonic hedgehog (CNF-LDH-RS) for neuroregeneration. The aligned microchannel structure and chemical cues in the scaffold were designed further to enhance the differentiation of neural stem cells towards neurons and promote axon growth while inhibiting differentiation to astrocytes. Transplanting the scaffolds into a completely transected SCI mice model dramatically improved behavioral and electrophysiological outcomes underpinned by robust neuronal regeneration, significant axonal growth and orderly neural circuit remodeling. RNA-seq analysis revealed the pivotal roles of the RhoA/Rock/Myosin II pathway and neuroactive ligand-receptor interaction pathway in SCI repair by CNF-LDH-RS. Particularly, Myosin II emerged as a key gene for functional recovery, and its effect on negative regulation of axon growth was suppressed by the scaffolds, resulting in a distinctly oriented growth of the axons along the microchannel structure. The results indicate that CNF-LDH scaffolds rationally combined with physical and biochemical cues create promising tissue-engineered substrates to facilitate the repair of spinal cord injury.
Collapse
Affiliation(s)
- Xuening Pang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China; Frontier Science Center for Stem Cell Research, Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200065, China
| | - Tongling Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jiazheng Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China; Frontier Science Center for Stem Cell Research, Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200065, China
| | - Liqun Yu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China; Frontier Science Center for Stem Cell Research, Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200065, China
| | - Zhibo Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China
| | - Yuchen Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China
| | - Li Li
- Department of Respiratory Disease, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China; Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201999, China.
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China.
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China; Frontier Science Center for Stem Cell Research, Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
3
|
Ma D, Fu C, Li F, Ruan R, Lin Y, Li X, Li M, Zhang J. Functional biomaterials for modulating the dysfunctional pathological microenvironment of spinal cord injury. Bioact Mater 2024; 39:521-543. [PMID: 38883317 PMCID: PMC11179178 DOI: 10.1016/j.bioactmat.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 06/18/2024] Open
Abstract
Spinal cord injury (SCI) often results in irreversible loss of sensory and motor functions, and most SCIs are incurable with current medical practice. One of the hardest challenges in treating SCI is the development of a dysfunctional pathological microenvironment, which mainly comprises excessive inflammation, deposition of inhibitory molecules, neurotrophic factor deprivation, glial scar formation, and imbalance of vascular function. To overcome this challenge, implantation of functional biomaterials at the injury site has been regarded as a potential treatment for modulating the dysfunctional microenvironment to support axon regeneration, remyelination at injury site, and functional recovery after SCI. This review summarizes characteristics of dysfunctional pathological microenvironment and recent advances in biomaterials as well as the technologies used to modulate inflammatory microenvironment, regulate inhibitory microenvironment, and reshape revascularization microenvironment. Moreover, technological limitations, challenges, and future prospects of functional biomaterials to promote efficient repair of SCI are also discussed. This review will aid further understanding and development of functional biomaterials to regulate pathological SCI microenvironment.
Collapse
Affiliation(s)
- Dezun Ma
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Changlong Fu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Fenglu Li
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Renjie Ruan
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Yanming Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Min Li
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center, 966 Hengyu Road, Fuzhou, 350014, PR China
- Fujian Maternity and Child Health Hospital, 111 Daoshan Road, Fuzhou, 350005, PR China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 111 Daoshan Road, Fuzhou, 350005, PR China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| |
Collapse
|
4
|
Liu C, Sun Y, Li D, Wang F, Wang H, An S, Sun S. A multifunctional nanogel encapsulating layered double hydroxide for enhanced osteoarthritis treatment via protection of chondrocytes and ECM. Mater Today Bio 2024; 26:101034. [PMID: 38596826 PMCID: PMC11002310 DOI: 10.1016/j.mtbio.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Osteoarthritis (OA) is characterized by progressive and irreversible damage to the articular cartilage and a consecutive inflammatory response. However, the majority of clinical drugs for OA treatment only alleviate symptoms without addressing the fundamental pathology. To mitigate this issue, we developed an inflammation-responsive carrier and encapsulated bioactive material, namely, LDH@TAGel. The LDH@TAGel was designed with anti-inflammatory and antioxidative abilities, aiming to directly address the pathology of cartilage damage. In particular, LDH was confirmed to restore the ECM secretion function of damaged chondrocytes and attenuate the expression of catabolic matrix metalloproteinases (Mmps). While TAGel showed antioxidant properties by scavenging ROS directly. In vitro evaluation revealed that the LDH@TAGel could protect chondrocytes from inflammation-induced oxidative stress and apoptosis via the Nrf2/Keap1 system and Pi3k-Akt pathway. In vivo experiments demonstrated that the LDH@TAGel could alleviated the degeneration and degradation of cartilage induced by anterior cruciate ligament transection (ACLT). The OARSI scores indicating OA severity decreased significantly after three weeks of intervention. Moreover, the IVIS image revealed that LDH@TAGel enhances the controlled release of LDH in a manner that can be customized according to the severity of OA, allowing adaptive, precise treatment. In summary, this novel design effectively alleviates the underlying pathological causes of OA-related cartilage damage and has emerged as a promising biomaterial for adaptive, cause-targeted OA therapies.
Collapse
Affiliation(s)
- Changxing Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yawei Sun
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Dengju Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Fan Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Senbo An
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| |
Collapse
|
5
|
Verstappen K, Klymov A, Cicuéndez M, da Silva DM, Barroca N, Fernández-San-Argimiro FJ, Madarieta I, Casarrubios L, Feito MJ, Diez-Orejas R, Ferreira R, Leeuwenburgh SC, Portolés MT, Marques PA, Walboomers XF. Biocompatible adipose extracellular matrix and reduced graphene oxide nanocomposite for tissue engineering applications. Mater Today Bio 2024; 26:101059. [PMID: 38693996 PMCID: PMC11061343 DOI: 10.1016/j.mtbio.2024.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024] Open
Abstract
Despite the immense need for effective treatment of spinal cord injury (SCI), no successful repair strategy has yet been clinically implemented. Multifunctional biomaterials, based on porcine adipose tissue-derived extracellular matrix (adECM) and reduced graphene oxide (rGO), were recently shown to stimulate in vitro neural stem cell growth and differentiation. Nevertheless, their functional performance in clinically more relevant in vivo conditions remains largely unknown. Before clinical application of these adECM-rGO nanocomposites can be considered, a rigorous assessment of the cytotoxicity and biocompatibility of these biomaterials is required. For instance, xenogeneic adECM scaffolds could still harbour potential immunogenicity following decellularization. In addition, the toxicity of rGO has been studied before, yet often in experimental settings that do not bear relevance to regenerative medicine. Therefore, the present study aimed to assess both the in vitro as well as in vivo safety of adECM and adECM-rGO scaffolds. First, pulmonary, renal and hepato-cytotoxicity as well as macrophage polarization studies showed that scaffolds were benign invitro. Then, a laminectomy was performed at the 10th thoracic vertebra, and scaffolds were implanted directly contacting the spinal cord. For a total duration of 6 weeks, animal welfare was not negatively affected. Histological analysis demonstrated the degradation of adECM scaffolds and subsequent tissue remodeling. Graphene-based scaffolds showed a very limited fibrous encapsulation, while rGO sheets were engulfed by foreign body giant cells. Furthermore, all scaffolds were infiltrated by macrophages, which were largely polarized towards a pro-regenerative phenotype. Lastly, organ-specific histopathology and biochemical analysis of blood did not reveal any adverse effects. In summary, both adECM and adECM-rGO implants were biocompatible upon laminectomy while establishing a pro-regenerative microenvironment, which justifies further research on their therapeutic potential for treatment of SCI.
Collapse
Affiliation(s)
- Kest Verstappen
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 EX, Nijmegen, the Netherlands
| | - Alexey Klymov
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 EX, Nijmegen, the Netherlands
| | - Mónica Cicuéndez
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Daniela M. da Silva
- Centre for Mechanical Technology and Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Nathalie Barroca
- Centre for Mechanical Technology and Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | - Iratxe Madarieta
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009, Donostia-San Sebastian, Spain
| | - Laura Casarrubios
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - María José Feito
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Rosalía Diez-Orejas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sander C.G. Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 EX, Nijmegen, the Netherlands
| | - María Teresa Portolés
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III (ISCIII), 28040, Madrid, Spain
| | - Paula A.A.P. Marques
- Centre for Mechanical Technology and Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - X. Frank Walboomers
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 EX, Nijmegen, the Netherlands
| |
Collapse
|
6
|
Fischer G, Bättig L, Stienen MN, Curt A, Fehlings MG, Hejrati N. Advancements in neuroregenerative and neuroprotective therapies for traumatic spinal cord injury. Front Neurosci 2024; 18:1372920. [PMID: 38812974 PMCID: PMC11133582 DOI: 10.3389/fnins.2024.1372920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/10/2024] [Indexed: 05/31/2024] Open
Abstract
Traumatic spinal cord injuries (SCIs) continue to be a major healthcare concern, with a rising prevalence worldwide. In response to this growing medical challenge, considerable scientific attention has been devoted to developing neuroprotective and neuroregenerative strategies aimed at improving the prognosis and quality of life for individuals with SCIs. This comprehensive review aims to provide an up-to-date and thorough overview of the latest neuroregenerative and neuroprotective therapies currently under investigation. These strategies encompass a multifaceted approach that include neuropharmacological interventions, cell-based therapies, and other promising strategies such as biomaterial scaffolds and neuro-modulation therapies. In addition, the review discusses the importance of acute clinical management, including the role of hemodynamic management as well as timing and technical aspects of surgery as key factors mitigating the secondary injury following SCI. In conclusion, this review underscores the ongoing scientific efforts to enhance patient outcomes and quality of life, focusing on upcoming strategies for the management of traumatic SCI. Each section provides a working knowledge of the fundamental preclinical and patient trials relevant to clinicians while underscoring the pathophysiologic rationale for the therapies.
Collapse
Affiliation(s)
- Gregor Fischer
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| | - Linda Bättig
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| | - Martin N. Stienen
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Michael G. Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nader Hejrati
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| |
Collapse
|
7
|
Bai Y, Zhu Y, He X, Huang R, Xu X, Yang L, Wang Z, Zhu R. Size-Optimized Layered Double Hydroxide Nanoparticles Promote Neural Progenitor Cells Differentiation of Embryonic Stem Cells Through the Regulation of M 6A Methylation. Int J Nanomedicine 2024; 19:4181-4197. [PMID: 38766656 PMCID: PMC11100968 DOI: 10.2147/ijn.s463141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose The committed differentiation fate regulation has been a difficult problem in the fields of stem cell research, evidence showed that nanomaterials could promote the differentiation of stem cells into specific cell types. Layered double hydroxide (LDH) nanoparticles possess the regulation function of stem cell fate, while the underlying mechanism needs to be investigated. In this study, the process of embryonic stem cells (ESCs) differentiate to neural progenitor cells (NPCs) by magnesium aluminum LDH (MgAl-LDH) was investigated. Methods MgAl-LDH with diameters of 30, 50, and 100 nm were synthesized and characterized, and their effects on the cytotoxicity and differentiation of NPCs were detected in vitro. Dot blot and MeRIP-qPCR were performed to detect the level of m6A RNA methylation in nanoparticles-treated cells. Results Our work displayed that LDH nanoparticles of three different sizes were biocompatible with NPCs, and the addition of MgAl-LDH could significantly promote the process of ESCs differentiate to NPCs. 100 nm LDH has a stronger effect on promoting NPCs differentiation compared to 30 nm and 50 nm LDH. In addition, dot blot results indicated that the enhanced NPCs differentiation by MgAl-LDH was closely related to m6A RNA methylation process, and the major modification enzyme in LDH controlled NPCs differentiation may be the m6A RNA methyltransferase METTL3. The upregulated METTL3 by LDH increased the m6A level of Sox1 mRNA, enhancing its stability. Conclusion This work reveals that MgAl-LDH nanoparticles can regulate the differentiation of ESCs into NPCs by increasing m6A RNA methylation modification of Sox1.
Collapse
Affiliation(s)
- Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Xiaolie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Ruiqi Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Xu Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Li Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, People’s Republic of China
| |
Collapse
|
8
|
Sintakova K, Romanyuk N. The role of small extracellular vesicles and microRNA as their cargo in the spinal cord injury pathophysiology and therapy. Front Neurosci 2024; 18:1400413. [PMID: 38774785 PMCID: PMC11106386 DOI: 10.3389/fnins.2024.1400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with a complex pathology that affects a significant portion of the population and causes long-term consequences. After primary injury, an inflammatory cascade of secondary injury occurs, followed by neuronal cell death and glial scar formation. Together with the limited regenerative capacity of the central nervous system, these are the main reasons for the poor prognosis after SCI. Despite recent advances, there is still no effective treatment. Promising therapeutic approaches include stem cells transplantation, which has demonstrated neuroprotective and immunomodulatory effects in SCI. This positive effect is thought to be mediated by small extracellular vesicles (sEVs); membrane-bound nanovesicles involved in intercellular communication through transport of functional proteins and RNA molecules. In this review, we summarize the current knowledge about sEVs and microRNA as their cargo as one of the most promising therapeutic approaches for the treatment of SCI. We provide a comprehensive overview of their role in SCI pathophysiology, neuroprotective potential and therapeutic effect.
Collapse
Affiliation(s)
- Kristyna Sintakova
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Nataliya Romanyuk
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
9
|
Li L, Soyhan I, Warszawik E, van Rijn P. Layered Double Hydroxides: Recent Progress and Promising Perspectives Toward Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306035. [PMID: 38501901 PMCID: PMC11132086 DOI: 10.1002/advs.202306035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 03/20/2024]
Abstract
Layered double hydroxides (LDHs) have been widely studied for biomedical applications due to their excellent properties, such as good biocompatibility, degradability, interlayer ion exchangeability, high loading capacity, pH-responsive release, and large specific surface area. Furthermore, the flexibility in the structural composition and ease of surface modification of LDHs makes it possible to develop specifically functionalized LDHs to meet the needs of different applications. In this review, the recent advances of LDHs for biomedical applications, which include LDH-based drug delivery systems, LDHs for cancer diagnosis and therapy, tissue engineering, coatings, functional membranes, and biosensors, are comprehensively discussed. From these various biomedical research fields, it can be seen that there is great potential and possibility for the use of LDHs in biomedical applications. However, at the same time, it must be recognized that the actual clinical translation of LDHs is still very limited. Therefore, the current limitations of related research on LDHs are discussed by combining limited examples of actual clinical translation with requirements for clinical translation of biomaterials. Finally, an outlook on future research related to LDHs is provided.
Collapse
Affiliation(s)
- Lei Li
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| | - Irem Soyhan
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| | - Eliza Warszawik
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| | - Patrick van Rijn
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| |
Collapse
|
10
|
Yuan T, Wang T, Zhang J, Ye F, Gu Z, Li Y, Xu J. Functional Polyphenol-Based Nanoparticles Boosted the Neuroprotective Effect of Riluzole for Acute Spinal Cord Injury. Biomacromolecules 2024; 25:2607-2620. [PMID: 38530873 DOI: 10.1021/acs.biomac.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Riluzole is commonly used as a neuroprotective agent for treating traumatic spinal cord injury (SCI), which works by blocking the influx of sodium and calcium ions and reducing glutamate activity. However, its clinical application is limited because of its poor solubility, short half-life, potential organ toxicity, and insufficient bioabilities toward upregulated inflammation and oxidative stress levels. To address this issue, epigallocatechin gallate (EGCG), a natural polyphenol, was employed to fabricate nanoparticles (NPs) with riluzole to enhance the neuroprotective effects. The resulting NPs demonstrated good biocompatibility, excellent antioxidative properties, and promising regulation effects from the M1 to M2 macrophages. Furthermore, an in vivo SCI model was successfully established, and NPs could be obviously aggregated at the SCI site. More interestingly, excellent neuroprotective properties of NPs through regulating the levels of oxidative stress, inflammation, and ion channels could be fully demonstrated in vivo by RNA sequencing and sophisticated biochemistry evaluations. Together, the work provided new opportunities toward the design and fabrication of robust and multifunctional NPs for oxidative stress and inflammation-related diseases via biological integration of natural polyphenols and small-molecule drugs.
Collapse
Affiliation(s)
- Taoyang Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Ye
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Yang Y, Liu Q, Deng S, Shao Q, Peng L, Ling Y, Huang Y, Zheng S, Jiang Q, Nie D, Chen J. Human umbilical cord derived mesenchymal stem cells overexpressing HO-1 attenuate neural injury and enhance functional recovery by inhibiting inflammation in stroke mice. CNS Neurosci Ther 2024; 30:e14412. [PMID: 37592866 PMCID: PMC10848045 DOI: 10.1111/cns.14412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
AIMS The current evidence demonstrates that mesenchymal stem cells (MSCs) hold therapeutic potential for ischemic stroke. However, it remains unclear how changes in the secretion of MSC cytokines following the overexpression of heme oxygenase-1 (HO-1) impact excessive inflammatory activation in a mouse ischemic stroke model. This study investigated this aspect and provided further insights. METHODS The middle cerebral artery occlusion (MCAO) mouse model was established, and subsequent injections of MSC, MSCHO-1 , or PBS solutions of equal volume were administered via the mice's tail vein. Histopathological analysis was conducted on Days 3 and 28 post-MCAO to observe morphological changes in brain slices. mRNA expression levels of various factors, including IL-1β, IL-6, IL-17, TNF-α, IL-1Ra, IL-4, IL-10, TGF-β, were quantified. The effects of MSCHO-1 treatment on neurons, microglia, and astrocytes were observed using immunofluorescence after transplantation. The polarization direction of macrophages/microglia was also detected using flow cytometry. RESULTS The results showed that the expression of anti-inflammatory factors in the MSCHO-1 group increased while that of pro-inflammatory factors decreased. Small animal fluorescence studies and immunofluorescence assays showed that the homing function of MSCsHO-1 was unaffected, leading to a substantial accumulation of MSCsHO-1 in the cerebral ischemic region within 24 h. Neurons were less damaged, activation and proliferation of microglia were reduced, and polarization of microglia to the M2 type increased after MSCHO-1 transplantation. Furthermore, after transplantation of MSCsHO-1 , the mortality of mice decreased, and motor function improved significantly. CONCLUSION The findings indicate that MSCs overexpressing HO-1 exhibited significant therapeutic effects against hyper-inflammatory injury after stroke in mice, ultimately promoting recovery after ischemic stroke.
Collapse
Affiliation(s)
- Yu Yang
- Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Qianqian Liu
- Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Song Deng
- Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Qian Shao
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
| | - Long Peng
- Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Yuejuan Ling
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
| | - Yue Huang
- Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Siqi Zheng
- Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Qiaoji Jiang
- Department of Neurosurgery, The Yancheng Clinical College of Xuzhou Medical UniversityThe First People's Hospital of YanchengYanchengChina
| | - Dekang Nie
- Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
- Department of Neurosurgery, The Yancheng Clinical College of Xuzhou Medical UniversityThe First People's Hospital of YanchengYanchengChina
| | - Jian Chen
- Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| |
Collapse
|
12
|
Ma CW, Wang ZQ, Ran R, Liao HY, Lyu JY, Ren Y, Lei ZY, Zhang HH. TGF-β signaling pathway in spinal cord injury: Mechanisms and therapeutic potential. J Neurosci Res 2024; 102:e25255. [PMID: 37814990 DOI: 10.1002/jnr.25255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/15/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Spinal cord injury (SCI) is a highly disabling central nervous system injury with a complex pathological process, resulting in severe sensory and motor dysfunction. The current treatment modalities only alleviate its symptoms and cannot effectively intervene or treat its pathological process. Many studies have reported that the transforming growth factor (TGF)-β signaling pathway plays an important role in neuronal differentiation, growth, survival, and axonal regeneration after central nervous system injury. Furthermore, the TGF-β signaling pathway has a vital regulatory role in SCI pathophysiology and neural regeneration. Following SCI, regulation of the TGF-β signaling pathway can suppress inflammation, reduce apoptosis, prevent glial scar formation, and promote neural regeneration. Due to its role in SCI, the TGF-β signaling pathway could be a potential therapeutic target. This article reported the pathophysiology of SCI, the characteristics of the TGF-β signaling pathway, the role of the TGF-β signaling pathway in SCI, and the latest evidence for targeting the TGF-β signaling pathway for treating SCI. In addition, the limitations and difficulties in TGF-β signaling pathway research in SCI are discussed, and solutions are provided to address these potential challenges. We hope this will provide a reference for the TGF-β signaling pathway and SCI research, offering a theoretical basis for targeted therapy of SCI.
Collapse
Affiliation(s)
- Chun-Wei Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhi-Qiang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Rui Ran
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jia-Yang Lyu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yi Ren
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ze-Yuan Lei
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hai-Hong Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Byun MJ, Seo HS, Lee J, Ban K, Oh S, Lee YY, Lim J, Lee NK, Wang CPJ, Kim M, Han JH, Park J, Paik T, Park HH, Park TE, Park W, Kim SN, Park DH, Park CG. Biofunctional Inorganic Layered Double Hydroxide Nanohybrid Enhances Immunotherapeutic Effect on Atopic Dermatitis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304862. [PMID: 38050931 DOI: 10.1002/smll.202304862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/08/2023] [Indexed: 12/07/2023]
Abstract
Atopic dermatitis (AD) is a widespread, recurrent, and chronic inflammatory skin condition that imposes a major burden on patients. Conventional treatments, such as corticosteroids, are associated with various side effects, underscoring the need for innovative therapeutic approaches. In this study, the possibility of using indole-3-acetic acid-loaded layered double hydroxides (IAA-LDHs) is evaluated as a novel treatment for AD. IAA is an auxin-class plant hormone with antioxidant and anti-inflammatory effects. Following the synthesis of IAA-LDH nanohybrids, their ability to induce M2-like macrophage polarization in macrophages obtained from mouse bone marrow is assessed. The antioxidant activity of IAA-LDH is quantified by assessing the decrease in intracellular reactive oxygen species levels. The anti-inflammatory and anti-atopic characteristics of IAA-LDH are evaluated in a mouse model of AD by examining the cutaneous tissues, immunological organs, and cells. The findings suggest that IAA-LDH has great therapeutic potential as a candidate for AD treatment based on its in vitro and in vivo modulation of AD immunology, enhancement of macrophage polarization, and antioxidant activity. This inorganic drug delivery technology represents a promising new avenue for the development of safe and effective AD treatments.
Collapse
Affiliation(s)
- Min Ji Byun
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Hee Seung Seo
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Joonghak Lee
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kitae Ban
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Serim Oh
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Yun Young Lee
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Na Kyeong Lee
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Chi-Pin James Wang
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Minjeong Kim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jun-Hyeok Han
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii, 96813, USA
| | - Taejong Paik
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Se-Na Kim
- Research and Development Center, MediArk Inc., Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Dae-Hwan Park
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Synchrotron Radiation Science and Technology, College of Bio-Health University System, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- LANG SCIENCE Inc, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
14
|
Wu YF, Sun J, Chen M, Lin Q, Jin KY, Su SH, Hai J. Combined VEGF and bFGF loaded nanofiber membrane protects against neuronal injury and hypomyelination in a rat model of chronic cerebral hypoperfusion. Int Immunopharmacol 2023; 125:111108. [PMID: 37890380 DOI: 10.1016/j.intimp.2023.111108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Currently, there are no effective therapeutic targets for the treatment of chronic cerebral hypoperfusion(CCH)-induced cerebral ischemic injury. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are discovered as the inducers of neurogenesis and angiogenesis. We previously made a nanofiber membrane (NFM), maintaining a long-term release of VEGF and bFGF up to 35 days, which might make VEGF and bFGF NFM as the potential protective agents against cerebral ischemic insult. In this study, the effects of VEGF and bFGF delivered by NFM into brain were investigated as well as their underlying mechanismsin a rat model of CCH. VEGF + bFGF NFM application increased the expressions of tight junction proteins, maintained BBB integrity, and alleviated vasogenic cerebral edema. Furthermore, VEGF + bFGF NFM sticking enhanced angiogenesis and elevated CBF. Besides, VEGF + bFGF NFM treatment inhibited neuronal apoptosis and decreased neuronal loss. Moreover, roofing of VEGF + bFGF NFM attenuated microglial activation and blocked the launch of NLRP3/caspase-1/IL-1β pathway. In addition, VEGF + bFGF NFM administration prevented disruption to the pre/postsynaptic membranes and loss of myelin sheath, relieving synaptic injury and demyelination. Oligodendrogenesis, neurogenesis and PI3K/AKT/mTOR pathway were involved in the treatment of VEGF + bFGF NFM against CCH-induced neuronal injury and hypomyelination. These findings supported that VEGF + bFGF NFM application constitutes a neuroprotective strategy for the treatment of CCH, which may be worth further clinical translational research as a novel neuroprotective approach, benifiting indirect surgical revascularization.
Collapse
Affiliation(s)
- Yi-Fang Wu
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jun Sun
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ming Chen
- Department of Neurosurgery, Xinhua hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Kai-Yan Jin
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shao-Hua Su
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Jian Hai
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
15
|
Rahmanian M, Ghahremani A, Kesharwani P, Oroojalian F, Sahebkar A. Nanomedicine innovations in spinal cord injury management: Bridging the gap. ENVIRONMENTAL RESEARCH 2023; 235:116563. [PMID: 37423366 DOI: 10.1016/j.envres.2023.116563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Spinal cord injury (SCI) has devastating effects on a person's physical, social, and professional well-being. It is a life-altering neurological condition that significantly impacts individuals and their caregivers on a socioeconomic level. Recent advancements in medical therapy have greatly improved the diagnosis, stability, survival rates, and overall well-being of SCI patients. However, there are still limited options available for enhancing neurological outcomes in these patients. The complex pathophysiology of SCI, along with the numerous biochemical and physiological changes that occur in the damaged spinal cord, contribute to this gradual improvement. Currently, there are no therapies that offer the possibility of recovery for SCI, although several therapeutic approaches are being developed. However, these therapies are still in the early stages and have not yet demonstrated effectiveness in repairing the damaged fibers, which hinders cellular regeneration and the full restoration of motor and sensory functions. Considering the importance of nanotechnology and tissue engineering in treating neural tissue injuries, this review focuses on the latest advancements in nanotechnology for SCI therapy and tissue healing. It examines research articles from the PubMed database that specifically address SCI in the field of tissue engineering, with an emphasis on nanotechnology as a therapeutic approach. The review evaluates the biomaterials used for treating this condition and the techniques employed to create nanostructured biomaterials.
Collapse
Affiliation(s)
- Mohsen Rahmanian
- School of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
| | - Amirali Ghahremani
- Department of Neurology, North Khorasan University of Medical Sciences, Bojnord, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Yuan T, Wang T, Zhang J, Liu P, Xu J, Gu Z, Xu J, Li Y. Robust and Multifunctional Nanoparticles Assembled from Natural Polyphenols and Metformin for Efficient Spinal Cord Regeneration. ACS NANO 2023; 17:18562-18575. [PMID: 37708443 DOI: 10.1021/acsnano.3c06991] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The treatment of spinal cord injury (SCI) remains unsatisfactory owing to the complex pathophysiological microenvironments at the injury site and the limited regenerative potential of the central nervous system. Metformin has been proven in clinical and animal experiments to repair damaged structures and functions by promoting endogenous neurogenesis. However, in the early stage of acute SCI, the adverse pathophysiological microenvironment of the injury sites, such as reactive oxygen species and inflammatory factor storm, can prevent the activation of endogenous neural stem cells (NSCs) and the differentiation of NSCs into neurons, decreasing the whole repair effect. To address those issues, a series of robust and multifunctional natural polyphenol-metformin nanoparticles (polyphenol-Met NPs) were fabricated with pH-responsiveness and excellent antioxidative capacities. The resulting NPs possessed several favorable advantages: First, the NPs were composed of active ingredients with different biological properties, without the need for carriers; second, the pH-responsiveness feature could allow targeted drug delivery at the injured site; more importantly, NPs enabled drugs with different performances to exhibit strong synergistic effects. The results demonstrated that the improved microenvironment by natural polyphenols boosted the differentiation of activated NSCs into neurons and oligodendrocytes, which could efficiently repair the injured nerve structures and enhance the functional recovery of the SCI rats. This work highlighted the design and fabrication of robust and multifunctional NPs for SCI treatment via efficient microenvironmental regulation and targeted NSCs activation.
Collapse
Affiliation(s)
- Taoyang Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Pengyu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiayi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
17
|
Li Y, Cheng S, Wen H, Xiao L, Deng Z, Huang J, Zhang Z. Coaxial 3D printing of hierarchical structured hydrogel scaffolds for on-demand repair of spinal cord injury. Acta Biomater 2023; 168:400-415. [PMID: 37479156 DOI: 10.1016/j.actbio.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/24/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
After spinal cord injury (SCI), endogenous neural stem cells (NSCs) near the damaged site are activated, but few NSCs migrate to the injury epicenter and differentiate into neurons because of the harsh microenvironment. It has demonstrated that implantation of hydrogel scaffold loaded with multiple cues can enhance the function of endogenous NSCs. However, programming different cues on request remains a great challenge. Herein, a time-programmed linear hierarchical structure scaffold is developed for spinal cord injury recovery. The scaffold is obtained through coaxial 3D printing by encapsulating a dual-network hydrogel (composed of hyaluronic acid derivatives and N-cadherin modified sodium alginate, inner layer) into a temperature responsive gelatin/cellulose nanofiber hydrogel (Gel/CNF, outer layer). The reactive species scavenger, metalloporphyrin, loaded in the outer layer is released rapidly by the degradation of Gel/CNF, inhibiting the initial oxidative stress at lesion site to protect endogenous NSCs; while the inner hydrogel with appropriate mechanical support, linear topology structure and bioactive cues facilitates the migration and neuronal differentiation of NSCs at the later stage of SCI treatment, thereby promoting motor functional restorations in SCI rats. This study offers an innovative strategy for fabrication of multifunctional nerve regeneration scaffold, which has potential for clinical treatment of SCI. STATEMENT OF SIGNIFICANCE: Two major challenges facing the recovery from spinal cord injury (SCI) are the low viability of endogenous neural stem cells (NSCs) within the damaged microenvironment, as well as the difficulty of neuronal regeneration at the injured site. To address these issues, a spinal cord-like coaxial scaffold was fabricated with free radical scavenging agent metalloporphyrin Mn (III) tetrakis (4-benzoic acid) porphyrin and chemokine N-cadherin. The scaffold was constructed by 3D bioprinting for time-programmed protection and modulation of NSCs to effectively repair SCI. This 3D coaxially bioprinted biomimetic construct enables multi-factor on-demand repair and may be a promising therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shengnan Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Huilong Wen
- The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Longyi Xiao
- The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Zongwu Deng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
18
|
Bian Y, Cai X, Lv Z, Xu Y, Wang H, Tan C, Liang R, Weng X. Layered Double Hydroxides: A Novel Promising 2D Nanomaterial for Bone Diseases Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301806. [PMID: 37329200 PMCID: PMC10460877 DOI: 10.1002/advs.202301806] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/07/2023] [Indexed: 06/18/2023]
Abstract
Bone diseases including bone defects, bone infections, osteoarthritis, and bone tumors seriously affect life quality of the patient and bring serious economic burdens to social health management, for which the current clinical treatments bear dissatisfactory therapeutic effects. Biomaterial-based strategies have been widely applied in the treatment of orthopedic diseases but are still plagued by deficient bioreactivity. With the development of nanotechnology, layered double hydroxides (LDHs) with adjustable metal ion composition and alterable interlayer structure possessing charming physicochemical characteristics, versatile bioactive properties, and excellent drug loading and delivery capabilities arise widespread attention and have achieved considerable achievements for bone disease treatment in the last decade. However, to the authors' best knowledge, no review has comprehensively summarized the advances of LDHs in treating bone disease so far. Herein, the advantages of LDHs for orthopedic disorders treatment are outlined and the corresponding state-of-the-art achievements are summarized for the first time. The potential of LDHs-based nanocomposites for extended therapeutics for bone diseases is highlighted and perspectives for LDHs-based scaffold design are proposed for facilitated clinical translation.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Xuejie Cai
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Yiming Xu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Han Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong KongP. R. China
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| |
Collapse
|
19
|
Shang Z, Wanyan P, Wang M, Zhang B, Cui X, Wang X. Bibliometric analysis of stem cells for spinal cord injury: current status and emerging frontiers. Front Pharmacol 2023; 14:1235324. [PMID: 37533634 PMCID: PMC10392836 DOI: 10.3389/fphar.2023.1235324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023] Open
Abstract
Background: This study aimed to conduct a bibliometric analysis of the literature on stem cell therapy for spinal cord injury to visualize the research status, identify hotspots, and explore the development trends in this field. Methods: We searched the Web of Science Core Collection database using relevant keywords ("stem cells" and "spinal cord injury") and retrieved the published literature between 2000 and 2022. Data such as journal title, author information, institutional affiliation, country, and keywords were extracted. Afterwards, we performed bibliometric analysis of the retrieved data using Bibliometrix, VOSviewer, and CiteSpace. Results: A total of 5375 articles related to stem cell therapy for spinal cord injury were retrieved, and both the annual publication volume and the cumulative publication volume showed an upward trend. neural regeneration research was the journal with the most publications and the fastest cumulative publication growth (162 articles), Okano Hideyuki was the author with the highest number of publications and citations (114 articles), Sun Yat-sen University was the institution with the highest number of publications (420 articles), and China was the country with the highest number of publications (5357 articles). However, different authors, institutions, and countries need to enhance their cooperation in order to promote the generation of significant academic achievements. Current research in this field has focused on stem cell transplantation, neural regeneration, motor function recovery, exosomes, and tissue engineering. Meanwhile, future research directions are primarily concerned with the molecular mechanisms, safety, clinical trials, exosomes, scaffolds, hydrogels, and inflammatory responses of stem cell therapy for spinal cord injuries. Conclusion: In summary, this study provided a comprehensive analysis of the current research status and frontiers of stem cell therapy for spinal cord injury. The findings provide a foundation for future research and clinical translation efforts of stem cell therapy in this field.
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Pingping Wanyan
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Department of Nephrology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Mingchuan Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaoqian Cui
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Chengren Institute of Traditional Chinese Medicine, Lanzhou, Gansu, China
- Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
20
|
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:245. [PMID: 37357239 DOI: 10.1038/s41392-023-01477-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/27/2023] Open
Abstract
Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.
Collapse
Affiliation(s)
- Xiao Hu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Xiaolie He
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| |
Collapse
|
21
|
Luo Y, Yin M, Mu C, Hu X, Xie H, Li J, Cao T, Chen N, Wu J, Fan C. Engineering Female Germline Stem Cells with Exocytotic Polymer Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210458. [PMID: 37046183 DOI: 10.1002/adma.202210458] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/30/2023] [Indexed: 06/16/2023]
Abstract
Germline stem cells (GSCs) are the only cell population capable of passing genetic information to offspring, making them attractive targets in reproductive biology and fertility research. However, it is generally more difficult to introduce exogenous biomolecules into GSCs than other cell types, impeding the exploration and manipulation of these cells for biomedical purposes. Herein, semiconductor polymer dots (Pdots)-based nanocomplex Pdot-siRNA is developed and achieves effective knockdown of target genes in female germline stem cells (FGSCs). Advantage of high fluorescence brightness of Pdots is taken for comprehensive investigation of their cellular uptake, intracellular trafficking, and exocytosis in FGSCs. Importantly, Pdots show excellent biocompatibility and minimally disturb the differentiation of FGSCs. Intracellular Pdots escape from the lysosomes and undergo active exocytosis, which makes them ideal nanocarriers for bioactive cargos. Moreover, Pdot-siRNA can penetrate into 3D ovarian organoids derived from FGSCs and down-regulate the expression levels of target genes. This study investigates the interface between a type of theranostic nanoparticles and FGSCs for the first time and sheds light on the manipulation and medical application of FGSCs.
Collapse
Affiliation(s)
- Yao Luo
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Yin
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Chunlan Mu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Xingjie Hu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui Xie
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Jingyi Li
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Tingting Cao
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Nan Chen
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
22
|
Li B, Wang G, Miao K, Zhang A, Sun L, Yu X, Lei JH, Xie L, Yan J, Li W, Deng CX, Dai Y. Fueling sentinel node via reshaping cytotoxic T lymphocytes with a flex-patch for post-operative immuno-adjuvant therapy. Nat Commun 2023; 14:2518. [PMID: 37130873 PMCID: PMC10154421 DOI: 10.1038/s41467-023-38245-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Clinical updates suggest conserving metastatic sentinel lymph nodes (SLNs) of breast cancer (BC) patients during surgery; however, the immunoadjuvant potential of this strategy is unknown. Here we leverage an immune-fueling flex-patch to animate metastatic SLNs with personalized antitumor immunity. The flex-patch is implanted on the postoperative wound and spatiotemporally releases immunotherapeutic anti-PD-1 antibodies (aPD-1) and adjuvants (magnesium iron-layered double hydroxide, LDH) into the SLN. Genes associated with citric acid cycle and oxidative phosphorylation are enriched in activated CD8+ T cells (CTLs) from metastatic SLNs. Delivered aPD-1 and LDH confer CTLs with upregulated glycolytic activity, promoting CTL activation and cytotoxic killing via metal cation-mediated shaping. Ultimately, CTLs in patch-driven metastatic SLNs could long-termly maintain tumor antigen-specific memory, protecting against high-incidence BC recurrence in female mice. This study indicates a clinical value of metastatic SLN in immunoadjuvant therapy.
Collapse
Affiliation(s)
- Bei Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Guohao Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Kai Miao
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Aiping Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Liangyu Sun
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Xinwang Yu
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Josh Haipeng Lei
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Lisi Xie
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Jie Yan
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Wenxi Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Chu-Xia Deng
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China.
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China.
| |
Collapse
|
23
|
Xiao X, Deng H, Lin X, Ali ASM, Viscardi A, Guo Z, Qiao L, He Y, Han J. Selenium nanoparticles: Properties, preparation methods, and therapeutic applications. Chem Biol Interact 2023; 378:110483. [PMID: 37044285 DOI: 10.1016/j.cbi.2023.110483] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Selenium nanoparticles (SeNPs) are a unique type of nano-sized elemental selenium that have recently found wide application in biomedicine. It has been shown that the properties of SeNPs can be varied by different fabrication methods. Moreover, SeNPs have various therapeutic effects in medical applications due to their excellent biological and adaptable physical properties. At the same time, SeNPs can be used as a carrier medium for various therapeutic substances, which can bring out the full curative effects of the drugs. In this review, the differences in bioactivity properties of SeNPs prepared from different substances were reviewed; the therapeutic effects and mechanisms of SeNPs in cancer, inflammation, neurodegenerative diseases, diabetes, reproductive diseases, cardiovascular diseases, and other diseases were discussed; and the importance of the development of SeNPs was further emphasized.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Huan Deng
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Xue Lin
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Ahmed Sameir Mohamed Ali
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Angelo Viscardi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Ziwei Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Lichun Qiao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Yujie He
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Jing Han
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
24
|
Wang Z, Yang H, Xu X, Hu H, Bai Y, Hai J, Cheng L, Zhu R. Ion elemental-optimized layered double hydroxide nanoparticles promote chondrogenic differentiation and intervertebral disc regeneration of mesenchymal stem cells through focal adhesion signaling pathway. Bioact Mater 2023; 22:75-90. [PMID: 36203960 PMCID: PMC9520222 DOI: 10.1016/j.bioactmat.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022] Open
Abstract
Chronic low back pain and dyskinesia caused by intervertebral disc degeneration (IDD) are seriously aggravated and become more prevalent with age. Current clinical treatments do not restore the biological structure and inherent function of the disc. The emergence of tissue engineering and regenerative medicine has provided new insights into the treatment of IDD. We synthesized biocompatible layered double hydroxide (LDH) nanoparticles and optimized their ion elemental compositions to promote chondrogenic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs). The chondrogenic differentiation of LDH-treated MSCs was validated using Alcian blue staining, qPCR, and immunofluorescence analyses. LDH-pretreated hUC-MSCs were differentiated prior to transplantation into the degenerative site of a needle puncture IDD rat model. Repair and regeneration evaluated using X-ray, magnetic resonance imaging, and tissue immunostaining 4–12 weeks after transplantation showed recovery of the disc space height and integrated tissue structure. Transcriptome sequencing revealed significant regulatory roles of the extracellular matrix (ECM) and integrin receptors of focal adhesion signaling pathway in enhancing chondrogenic differentiation and thus prompting tissue regeneration. The construction of ion-specific LDH nanomaterials for in situ intervertebral disc regeneration through the focal adhesion signaling pathway provides theoretical basis for clinical transformation in IDD treatment. LDH nanoparticles with different elemental compositions are constructed to optimize the chondrogenic differentiation of hUC-MSCs. Optimized-LDH pretreated hUC-MSCs transplantation show recovery of disc space height and integrated tissue structure. ECM and focal adhesion signaling pathway play significant roles in LDH-promoted cell differentiation and tissue regeneration. Ion-specific optimizing LDH provides theoretical basis for clinical transformation on IDD treatment.
Collapse
|
25
|
Yu H, Yang S, Li H, Wu R, Lai B, Zheng Q. Activating Endogenous Neurogenesis for Spinal Cord Injury Repair: Recent Advances and Future Prospects. Neurospine 2023; 20:164-180. [PMID: 37016865 PMCID: PMC10080446 DOI: 10.14245/ns.2245184.296] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/29/2022] [Indexed: 04/03/2023] Open
Abstract
After spinal cord injury (SCI), endogenous neural stem cells are activated and migrate to the injury site where they differentiate into astrocytes, but they rarely differentiate into neurons. It is difficult for brain-derived information to be transmitted through the injury site after SCI because of the lack of neurons that can relay neural information through the injury site, and the functional recovery of adult mammals is difficult to achieve. The development of bioactive materials, tissue engineering, stem cell therapy, and physiotherapy has provided new strategies for the treatment of SCI and shown broad application prospects, such as promoting endogenous neurogenesis after SCI. In this review, we focus on novel approaches including tissue engineering, stem cell technology, and physiotherapy to promote endogenous neurogenesis and their therapeutic effects on SCI. Moreover, we explore the mechanisms and challenges of endogenous neurogenesis for the repair of SCI.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shangbin Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haotao Li
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Rongjie Wu
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Biqin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Co-corresponding Author Biqin Lai Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Southern Medical University, Guangzhou, China
- Corresponding Author Qiujian Zheng Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Bai Y, Wang Z, Yu L, Dong K, Cheng L, Zhu R. The enhanced generation of motor neurons from mESCs by MgAl layered double hydroxide nanoparticles. Biomed Mater 2023; 18. [PMID: 36898160 DOI: 10.1088/1748-605x/acc375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/10/2023] [Indexed: 03/12/2023]
Abstract
The committed differentiation of stem cells into neurons is a promising therapeutic strategy for neurological diseases. Predifferentiation of transplanted stem cells into neural precursors could enhance their utilization and control the direction of differentiation. Embryonic stem cells with totipotency can differentiate into specific nerve cells under appropriate external induction conditions. Layered double hydroxide (LDH) nanoparticles have been proven to regulate the pluripotency of mouse ESCs (mESCs), and LDH could be used as carrier in neural stem cells for nerve regeneration. Hence, we sought to study the effects of LDH without loaded factors on mESCs neurogenesis in this work. A series of characteristics analyses indicated the successful construction of LDH nanoparticles. LDH nanoparticles that may adhere to the cell membranes had insignificant effect on cell proliferation and apoptosis. The enhanced differentiation of mESCs into motor neurons by LDH was systematically validated by immunofluorescent staining, quantitative real-time PCR analysis and western blot analysis. In addition, transcriptome sequencing analysis and mechanism verification elucidated the significant regulatory roles of focal adhesion signaling pathway in the enhanced mESCs neurogenesis by LDH. Taken together, the functional validation of inorganic LDH nanoparticles promoting motor neurons differentiation provide a novel strategy and therapeutic prospect for the clinical transition of neural regeneration.
Collapse
Affiliation(s)
- Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200065, People's Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, People's Republic of China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200065, People's Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, People's Republic of China
| | - Liqun Yu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200065, People's Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, People's Republic of China
| | - Kun Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200065, People's Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, People's Republic of China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200065, People's Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, People's Republic of China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200065, People's Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, People's Republic of China
| |
Collapse
|
27
|
Lee CY, Chooi WH, Ng S, Chew SY. Modulating neuroinflammation through molecular, cellular and biomaterial-based approaches to treat spinal cord injury. Bioeng Transl Med 2023; 8:e10389. [PMID: 36925680 PMCID: PMC10013833 DOI: 10.1002/btm2.10389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022] Open
Abstract
The neuroinflammatory response that is elicited after spinal cord injury contributes to both tissue damage and reparative processes. The complex and dynamic cellular and molecular changes within the spinal cord microenvironment result in a functional imbalance of immune cells and their modulatory factors. To facilitate wound healing and repair, it is necessary to manipulate the immunological pathways during neuroinflammation to achieve successful therapeutic interventions. In this review, recent advancements and fresh perspectives on the consequences of neuroinflammation after SCI and modulation of the inflammatory responses through the use of molecular-, cellular-, and biomaterial-based therapies to promote tissue regeneration and functional recovery will be discussed.
Collapse
Affiliation(s)
- Cheryl Yi‐Pin Lee
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Wai Hon Chooi
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Shi‐Yan Ng
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Sing Yian Chew
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
28
|
Jin M, Liu Y, Hu G, Li X, Jia N, Cui X, Li Z, Ai L, Xie M, Xue F, Yang Y, Li W, Zhang M, Yu Q. Establishment of a schizophrenia classifier based on peripheral blood signatures and investigation of pathogenic miRNA-mRNA regulation. J Psychiatr Res 2023; 159:172-184. [PMID: 36738648 DOI: 10.1016/j.jpsychires.2023.01.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
To date, the diagnosis of schizophrenia (SCZ) mainly relies on patients' or guardians' self-reports and clinical observation, and the pathogenesis of SCZ remains elusive. In this study, we sought to develop a reliable classifier for diagnosing SCZ patients and provide clues to the etiology and pathogenesis of SCZ. Based on the high throughput sequencing analysis of peripheral blood miRNA expression profile and weighted gene co-expression network analysis (WGCNA) in our previous study, we selected eleven hub miRNAs for validation by qRT-PCR in 51 SCZ patients and 51 controls. miR-939-5p, miR-4732-3p let-7d-3p, and miR-142-3p were confirmed to be significantly up-regulated, and miR-30e-3p and miR-23a-3p were down-regulated in SCZ patients. miR-30e-3p with the most considerable fold change and statistically significance was selected for targeting validation. We first performed bioinformatics prediction followed by qRT-PCR and verified the up-regulation of potential target mRNAs (ABI1, NMT1, HMGB1) expression. Next, we found that the expression level of ABI1 was significantly up-regulated in SH-SY5Y cells transfected with miR-30e-3p mimics. Lastly, we conducted a luciferase assay in 293T cells confirming that miR-30e-3p could directly bind with the 3'untranslated region (3'-UTR) of ABI1, revealing that miR-30e-3p might play a role in the polymerization of neuronal actin and the reconstruction of the cytoskeleton via the downstream regulation of ABI1. In addition, we constructed a classifier by a series of bioinformatics algorithms and evaluated its diagnostic performance. It appears that the classifier consists of miRNAs and mRNAs possess a better discrimination performance than individual miRNA or mRNA in SCZ.
Collapse
Affiliation(s)
- Mengdi Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yane Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Guoyan Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xinwei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ningning Jia
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xingyao Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Zhijun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lizhe Ai
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Mengtong Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Fengyu Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yuqing Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Weizhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Min Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
29
|
Wu W, Jia S, Xu H, Gao Z, Wang Z, Lu B, Ai Y, Liu Y, Liu R, Yang T, Luo R, Hu C, Kong L, Huang D, Yan L, Yang Z, Zhu L, Hao D. Supramolecular Hydrogel Microspheres of Platelet-Derived Growth Factor Mimetic Peptide Promote Recovery from Spinal Cord Injury. ACS NANO 2023; 17:3818-3837. [PMID: 36787636 DOI: 10.1021/acsnano.2c12017] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neural stem cells (NSCs) are considered to be prospective replacements for neuronal cell loss as a result of spinal cord injury (SCI). However, the survival and neuronal differentiation of NSCs are strongly affected by the unfavorable microenvironment induced by SCI, which critically impairs their therapeutic ability to treat SCI. Herein, a strategy to fabricate PDGF-MP hydrogel (PDGF-MPH) microspheres (PDGF-MPHM) instead of bulk hydrogels is proposed to dramatically enhance the efficiency of platelet-derived growth factor mimetic peptide (PDGF-MP) in activating its receptor. PDGF-MPHM were fabricated by a piezoelectric ceramic-driven thermal electrospray device, had an average size of 9 μm, and also had the ability to activate the PDGFRβ of NSCs more effectively than PDGF-MPH. In vitro, PDGF-MPHM exerted strong neuroprotective effects by maintaining the proliferation and inhibiting the apoptosis of NSCs in the presence of myelin extracts. In vivo, PDGF-MPHM inhibited M1 macrophage infiltration and extrinsic or intrinsic cells apoptosis on the seventh day after SCI. Eight weeks after SCI, the T10 SCI treatment results showed that PDGF-MPHM + NSCs significantly promoted the survival of NSCs and neuronal differentiation, reduced lesion size, and considerably improved motor function recovery in SCI rats by stimulating axonal regeneration, synapse formation, and angiogenesis in comparison with the NSCs graft group. Therefore, our findings provide insights into the ability of PDGF-MPHM to be a promising therapeutic agent for SCI repair.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Shuaijun Jia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Hailiang Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Ziheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Zhiyuan Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Botao Lu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Yixiang Ai
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Youjun Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Tong Yang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Rongjin Luo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Chunping Hu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| |
Collapse
|
30
|
Bian N, Chu C, Rung S, Huangphattarakul V, Man Y, Lin J, Hu C. Immunomodulatory Biomaterials and Emerging Analytical Techniques for Probing the Immune Micro-Environment. Tissue Eng Regen Med 2023; 20:11-24. [PMID: 36241939 PMCID: PMC9852373 DOI: 10.1007/s13770-022-00491-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 02/01/2023] Open
Abstract
After implantation of a biomaterial, both the host immune system and properties of the material determine the local immune response. Through triggering or modulating the local immune response, materials can be designed towards a desired direction of promoting tissue repair or regeneration. High-throughput sequencing technologies such as single-cell RNA sequencing (scRNA-seq) emerging as a powerful tool for dissecting the immune micro-environment around biomaterials, have not been fully utilized in the field of soft tissue regeneration. In this review, we first discussed the procedures of foreign body reaction in brief. Then, we summarized the influences that physical and chemical modulation of biomaterials have on cell behaviors in the micro-environment. Finally, we discussed the application of scRNA-seq in probing the scaffold immune micro-environment and provided some reference to designing immunomodulatory biomaterials. The foreign body response consists of a series of biological reactions. Immunomodulatory materials regulate immune cell activation and polarization, mediate divergent local immune micro-environments and possess different tissue engineering functions. The manipulation of physical and chemical properties of scaffolds can modulate local immune responses, resulting in different outcomes of fibrosis or tissue regeneration. With the advancement of technology, emerging techniques such as scRNA-seq provide an unprecedented understanding of immune cell heterogeneity and plasticity in a scaffold-induced immune micro-environment at high resolution. The in-depth understanding of the interaction between scaffolds and the host immune system helps to provide clues for the design of biomaterials to optimize regeneration and promote a pro-regenerative local immune micro-environment.
Collapse
Affiliation(s)
- Nanyan Bian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenyu Chu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Shengan Rung
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Vicha Huangphattarakul
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Jie Lin
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section, Renmin South Road, Chengdu, 610041, Sichuan, China.
| | - Chen Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section, Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
31
|
Huang T, Wu J, Mu J, Gao J. Advanced Therapies for Traumatic Central Nervous System Injury: Delivery Strategy Reinforced Efficient Microglial Manipulation. Mol Pharm 2023; 20:41-56. [PMID: 36469398 DOI: 10.1021/acs.molpharmaceut.2c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traumatic central nervous system (CNS) injuries, including spinal cord injury and traumatic brain injury, are challenging enemies of human health. Microglia, the main component of the innate immune system in CNS, can be activated postinjury and are key participants in the pathological procedure and development of CNS trauma. Activated microglia can be typically classified into pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Reducing M1 polarization while promoting M2 polarization is thought to be promising for CNS injury treatment. However, obstacles such as the low permeability of the blood-brain barrier and short retention time in circulation limit the therapeutic outcomes of administrated drugs, and rational delivery strategies are necessary for efficient microglial regulation. To this end, proper administration methods and delivery systems like nano/microcarriers and scaffolds are investigated to augment the therapeutic effects of drugs, while some of these delivery systems have self-efficacies in microglial manipulation. Besides, systems based on cell and cell-derived exosomes also show impressive effects, and some underlying targeting mechanisms of these delivery systems have been discovered. In this review, we introduce the roles of microglia play in traumatic CNS injuries, discuss the potential targets for the polarization regulation of microglial phenotype, and summarize recent studies and clinical trials about delivery strategies on enhancing the effect of microglial regulation and therapeutic outcome, as well as targeting mechanisms post CNS trauma.
Collapse
Affiliation(s)
- Tianchen Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahe Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer, Pharmacology and Toxicology Research of Zhejiang Province, Affiliated, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jiafu Mu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Jinhua Institute of Zhejiang University, Jinhua 321002, China
| |
Collapse
|
32
|
Wang Z, Duan H, Hao F, Hao P, Zhao W, Gao Y, Gu Y, Song J, Li X, Yang Z. Circuit reconstruction of newborn neurons after spinal cord injury in adult rats via an NT3-chitosan scaffold. Prog Neurobiol 2023; 220:102375. [PMID: 36410665 DOI: 10.1016/j.pneurobio.2022.102375] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
An implanted neurotrophin-3 (NT3)-chitosan scaffold can recruit endogenous neural stem cells to migrate to a lesion region and differentiate into mature neurons after adult spinal cord injury (SCI). However, the identities of these newborn neurons and whether they can form functional synapses and circuits to promote recovery after paraplegia remain unknown. By using combined advanced technologies, we revealed here that the newborn neurons of several subtypes received synaptic input from the corticospinal tract (CST), rubrospinal tract (RST), and supraspinal tracts. They formed a functional neural circuit at the injured spinal region, further driving the local circuits beneath the lesion. Our results showed that the NT3-chitosan scaffold facilitated the maturation of spinal neurons and the reestablishment of the spinal neural circuit in the lesion region 12 weeks after SCI. Transsynaptic virus experiments revealed that these newborn spinal neurons received synaptic connections from the CST and RST and drove the neural circuit beneath the lesion via newly formed synapses. These re-established circuits successfully recovered the formation and function of the neuromuscular junction (NMJ) beneath the lesion spinal segments. These findings suggest that the NT3-chitosan scaffold promotes the formation of relay neural circuits to accommodate various types of brain descending inputs and facilitate functional recovery after paraplegia.
Collapse
Affiliation(s)
- Zijue Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yiming Gu
- Physical Education Department, Capital University of Economics and Business, Beijing 100070, China
| | - Jianren Song
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China.
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
33
|
Li Z, Zhao T, Ding J, Gu H, Wang Q, Wang Y, Zhang D, Gao C. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury. Bioact Mater 2023; 19:550-568. [PMID: 35600969 PMCID: PMC9108756 DOI: 10.1016/j.bioactmat.2022.04.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 10/29/2022] Open
Abstract
Spinal cord injury (SCI) is an overwhelming and incurable disabling event accompanied by complicated inflammation-related pathological processes, such as excessive reactive oxygen species (ROS) produced by the infiltrated inflammatory immune cells and released to the extracellular microenvironment, leading to the widespread apoptosis of the neuron cells, glial and oligodendroctyes. In this study, a thioketal-containing and ROS-scavenging hydrogel was prepared for encapsulation of the bone marrow derived mesenchymal stem cells (BMSCs), which promoted the neurogenesis and axon regeneration by scavenging the overproduced ROS and re-building a regenerative microenvironment. The hydrogel could effectively encapsulate BMSCs, and played a remarkable neuroprotective role in vivo by reducing the production of endogenous ROS, attenuating ROS-mediated oxidative damage and downregulating the inflammatory cytokines such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), resulting in a reduced cell apoptosis in the spinal cord tissue. The BMSCs-encapsulated ROS-scavenging hydrogel also reduced the scar formation, and improved the neurogenesis of the spinal cord tissue, and thus distinctly enhanced the motor functional recovery of SCI rats. Our work provides a combinational strategy against ROS-mediated oxidative stress, with potential applications not only in SCI, but also in other central nervous system diseases with similar pathological conditions.
Collapse
|
34
|
Xia Y, Yang R, Wang H, Hou Y, Li Y, Zhu J, Xu F, Fu C. Biomaterials delivery strategies to repair spinal cord injury by modulating macrophage phenotypes. J Tissue Eng 2022; 13:20417314221143059. [PMID: 36600997 PMCID: PMC9806413 DOI: 10.1177/20417314221143059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/17/2022] [Indexed: 12/28/2022] Open
Abstract
Spinal cord injury (SCI) causes tremendous harm to a patient's physical, mental, and financial health. Moreover, recovery of SCI is affected by many factors, inflammation is one of the most important as it engulfs necrotic tissue and cells during the early stages of injury. However, excessive inflammation is not conducive to damage repair. Macrophages are classified into either blood-derived macrophages or resident microglia based on their origin, their effects on SCI being two-sided. Microglia first activate and recruit blood-derived macrophages at the site of injury-blood-borne macrophages being divided into pro-inflammatory M1 phenotypes and anti-inflammatory M2 phenotypes. Among them, M1 macrophages secrete inflammatory factors such as interleukin-β (IL-β), tumor necrosis factor-α (TNF-α), IL-6, and interferon-γ (IFN-γ) at the injury site, which aggravates SCIs. M2 macrophages secrete IL-4, IL-10, IL-13, and neurotrophic factors to inhibit the inflammatory response and inhibit neuronal apoptosis. Consequently, modulating phenotypic differentiation of macrophages appears to be a meaningful therapeutic target for the treatment of SCI. Biomaterials are widely used in regenerative medicine and tissue engineering due to their targeting and bio-histocompatibility. In this review, we describe the effects of biomaterials applied to modulate macrophage phenotypes on SCI recovery and provide an outlook.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Ruohan Yang
- Cancer Center, The First Hospital of
Jilin University, Changchun, PR China
| | - Hengyi Wang
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Yulin Hou
- Depattment of Cardiology, Guangyuan
Central Hospital, Guangyuan, PR China
| | - Yuehong Li
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Jianshu Zhu
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Feng Xu
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Changfeng Fu
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China,Changfeng Fu, Department of Spine Surgery,
The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, PR
China.
| |
Collapse
|
35
|
Shen Y, Cao X, Lu M, Gu H, Li M, Posner DA. Current treatments after spinal cord injury: Cell engineering, tissue engineering, and combined therapies. SMART MEDICINE 2022; 1:e20220017. [PMID: 39188731 PMCID: PMC11235943 DOI: 10.1002/smmd.20220017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
Both traumatic and non-traumatic spinal cord injuries (SCIs) can be categorized as damages done to our central nervous system (CNS). The patients' physical and mental health may suffer greatly because of traumatic SCI. With the widespread use of motor vehicles and increasingly aged population, the occurrence of SCI is more frequent than before, creating a considerable burden to global public health. The regeneration process of the spinal cord is hampered by a series of events that occur following SCI like edema, hemorrhage, formation of cystic cavities, and ischemia. An effective strategy for the treatment of SCI and functional recovery still has not been discovered; however, recent advances have been made in bioengineering fields that therapies based on cells, biomaterials, and biomolecules have proved effective in the repair of the spinal cord. In the light of worldwide importance of treatments for SCI, this article aims to provide a review of recent advances by first introducing the physiology, etiology, epidemiology, and mechanisms of SCI. We then put emphasis on the widely used clinical treatments and bioengineering strategies (cell-based, biomaterial-based, and biomolecule-based) for the functional regeneration of the spinal cord as well as challenges faced by scientists currently. This article provides scientists and clinicians with a comprehensive outlook on the recent advances of preclinical and clinical treatments of SCI, hoping to help them find keys to the functional regeneration of SCI.
Collapse
Affiliation(s)
- Yingbo Shen
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Xinyue Cao
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minhui Lu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Hongcheng Gu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minli Li
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - David A. Posner
- Molecular Immunity UnitCambridge Institute of Therapeutic Immunology and Infectious DiseasesDepartment of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
36
|
Wang G, Lv Z, Wang T, Hu T, Bian Y, Yang Y, Liang R, Tan C, Weng X. Surface Functionalization of Hydroxyapatite Scaffolds with MgAlEu-LDH Nanosheets for High-Performance Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204234. [PMID: 36394157 PMCID: PMC9811441 DOI: 10.1002/advs.202204234] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/14/2022] [Indexed: 05/10/2023]
Abstract
Although artificial bone repair scaffolds, such as titanium alloy, bioactive glass, and hydroxyapatite (HAp), have been widely used for treatment of large-size bone defects or serious bone destruction, they normally exhibit unsatisfied bone repair efficiency because of their weak osteogenic and angiogenesis performance as well as poor cell crawling and adhesion properties. Herein, the surface functionalization of MgAlEu-layered double hydroxide (MAE-LDH) nanosheets on porous HAp scaffolds is reported as a simple and effective strategy to prepare HAp/MAE-LDH scaffolds for enhanced bone regeneration. The surface functionalization of MAE-LDHs on the porous HAp scaffold can significantly improve its surface roughness, specific surface, and hydrophilicity, thus effectively boosting the cells adhesion and osteogenic differentiation. Importantly, the MAE-LDHs grown on HAp scaffolds enable the sustained release of Mg2+ and Eu3+ ions for efficient bone repair and vascular regeneration. In vitro experiments suggest that the HAp/MAE-LDH scaffold presents much enhanced osteogenesis and angiogenesis properties in comparison with the pristine HAp scaffold. In vivo assays further reveal that the new bone mass and mineral density of HAp/MAE-LDH scaffold increased by 3.18- and 2.21-fold, respectively, than that of pristine HAp scaffold. The transcriptome sequencing analysis reveals that the HAp/MAE-LDH scaffold can activate the Wnt/β-catenin signaling pathway to promote the osteogenic and angiogenic abilities.
Collapse
Affiliation(s)
- Guanyun Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| | - Tao Wang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| | - Yu Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong Kong SARChina
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| |
Collapse
|
37
|
Awassa J, Soulé S, Cornu D, Ruby C, El-Kirat-Chatel S. Understanding the role of surface interactions in the antibacterial activity of layered double hydroxide nanoparticles by atomic force microscopy. NANOSCALE 2022; 14:10335-10348. [PMID: 35833371 DOI: 10.1039/d2nr02395d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the mechanisms of the interactions between zinc-based layered double hydroxides (LDHs) and bacterial surfaces is of great importance to improve the efficiency of these antibiotic-free antibacterial agents. In fact, the role of surface interactions in the antibacterial activity of zinc-based LDH nanoparticles compared to that of dissolution and generation of reactive oxygen species (ROS) is still not well documented. In this study, we show that ZnAl LDH nanoparticles exhibit a strong antibacterial effect against Staphylococcus aureus by inducing serious cell wall damages as revealed by the antibacterial activity tests and atomic force microscopy (AFM) imaging, respectively. The comparison of the antibacterial properties of ZnAl LDH nanoparticles and micron-sized ZnAl LDHs also demonstrated that the antibacterial activity of Zn-based LDHs goes beyond the simple dissolution into Zn2+ antibacterial ions. Furthermore, we developed an original approach to functionalize AFM tips with LDH films in order to probe their interactions with living S. aureus cells by means of AFM-based force spectroscopy (FS). The force spectroscopy analysis revealed that antibacterial ZnAl LDH nanoparticles show specific recognition of S. aureus cells with high adhesion frequency and remarkable force magnitudes. This finding provides a first insight into the antibacterial mechanism of Zn-based LDHs through direct surface interactions by which they are able to recognize and adhere to bacterial surfaces, thus damaging them and leading to subsequent growth inhibition.
Collapse
Affiliation(s)
- Jazia Awassa
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Samantha Soulé
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Damien Cornu
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Christian Ruby
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | | |
Collapse
|
38
|
Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev 2022; 51:6126-6176. [PMID: 35792076 DOI: 10.1039/d2cs00236a] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Against the backdrop of increased public health awareness, inorganic nanomaterials have been widely explored as promising nanoagents for various kinds of biomedical applications. Layered double hydroxides (LDHs), with versatile physicochemical advantages including excellent biocompatibility, pH-sensitive biodegradability, highly tunable chemical composition and structure, and ease of composite formation with other materials, have shown great promise in biomedical applications. In this review, we comprehensively summarize the recent advances in LDH-based nanomaterials for biomedical applications. Firstly, the material categories and advantages of LDH-based nanomaterials are discussed. The preparation and surface modification of LDH-based nanomaterials, including pristine LDHs, LDH-based nanocomposites and LDH-derived nanomaterials, are then described. Thereafter, we systematically describe the great potential of LDHs in biomedical applications including drug/gene delivery, bioimaging diagnosis, cancer therapy, biosensing, tissue engineering, and anti-bacteria. Finally, on the basis of the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Margarita Strimaite
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiajia Zha
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong. .,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
39
|
Jing G, Yang L, Wang H, Niu J, Li Y, Wang S. Interference of layered double hydroxide nanoparticles with pathways for biomedical applications. Adv Drug Deliv Rev 2022; 188:114451. [PMID: 35843506 DOI: 10.1016/j.addr.2022.114451] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/18/2022] [Accepted: 07/09/2022] [Indexed: 11/01/2022]
Abstract
Recent decades have witnessed a surge of explorations into the application of multifarious materials, especially biomedical applications. Among them, layered double hydroxides (LDHs) have been widely developed as typical inorganic layer materials to achieve remarkable advancements. Multiple physicochemical properties endow LDHs with excellent merits in biomedical applications. Moreover, LDH nanoplatforms could serve as "molecular switches", which are capable of the controlled release of payloads under specific physiological pH conditions but are stable during circulation in the bloodstream. In addition, LDHs themselves are composed of several specific cations and possess favorable biological effects or regulatory roles in various cellular functions. These advantages have caused LDHs to become increasingly of interest in the area of nanomedicine. Recent efforts have been devoted to revealing the potential factors that interfere with the biological pathways of LDH-based nanoparticles, such as their applications in shaping the functions of immune cells and in determining the fate of stem cells and tumor treatments, which are comprehensively described herein. In addition, several intracellular signaling pathways interfering with by LDHs in the above applications were also systematically expatiated. Finally, the future development and challenges of LDH-based nanomedicine are discussed in the context of the ultimate goal of practical clinical application.
Collapse
Affiliation(s)
- Guoxin Jing
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Linnan Yang
- Central Laboratory, First Affiliated Hospital, Anhui Medical University, Hefei, PR China
| | - Hong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Jintong Niu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Youyuan Li
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China.
| |
Collapse
|
40
|
Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev 2022; 186:114270. [PMID: 35421521 DOI: 10.1016/j.addr.2022.114270] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Despite the exceptional physicochemical and morphological characteristics, the pristine layered double hydroxides (LDHs), or two-dimensional (2D) hydrotalcite clays, often suffer from various shortcomings in biomedicine, such as deprived thermal and chemical stabilities, acid-prone degradation, as well as lack of targeting ability, hampering their scale-up and subsequent clinical translation. Accordingly, diverse nanocomposites of LDHs have been fabricated by surface coating of organic species, impregnation of inorganic species, and generation of core-shell architectures, resulting in the complex state-of-the-art architectures. In this article, we initially emphasize various bothering limitations and the chemistry of these pristine LDHs, followed by discussions on the engineering strategies of different LDHs-based nanocomposites. Further, we give a detailed note on diverse LDH nanocomposites and their performance efficacy in various biomedical applications, such as drug delivery, bioimaging, biosensing, tissue engineering and cell patterning, deoxyribonucleic acid (DNA) extraction, as well as photoluminescence, highlighting the influence of various properties of installed supramolecular assemblies on their performance efficacy. In summary, we conclude with interesting perspectives concerning the lessons learned to date and the strategies to be followed to further advance their scale-up processing and applicability in medicine.
Collapse
|
41
|
Ye Z, Wei J, Zhan C, Hou J. Role of Transforming Growth Factor Beta in Peripheral Nerve Regeneration: Cellular and Molecular Mechanisms. Front Neurosci 2022; 16:917587. [PMID: 35769702 PMCID: PMC9234557 DOI: 10.3389/fnins.2022.917587] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Peripheral nerve injury (PNI) is one of the most common concerns in trauma patients. Despite significant advances in repair surgeries, the outcome can still be unsatisfactory, resulting in morbidities such as loss of sensory or motor function and reduced quality of life. This highlights the need for more supportive strategies for nerve regrowth and adequate recovery. Multifunctional cytokine transforming growth factor-β (TGF-β) is essential for the development of the nervous system and is known for its neuroprotective functions. Accumulating evidence indicates its involvement in multiple cellular and molecular responses that are critical to peripheral nerve repair. Following PNI, TGF-β is released at the site of injury where it can initiate a series of phenotypic changes in Schwann cells (SCs), modulate immune cells, activate neuronal intrinsic growth capacity, and regulate blood nerve barrier (BNB) permeability, thus enhancing the regeneration of the nerves. Notably, TGF-β has already been applied experimentally in the treatment of PNI. These treatments with encouraging outcomes further demonstrate its regeneration-promoting capacity. Herein, we review the possible roles of TGF-β in peripheral nerve regeneration and discuss the underlying mechanisms, thus providing new cues for better treatment of PNI.
Collapse
Affiliation(s)
- Zhiqian Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junbin Wei
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoning Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jin Hou,
| |
Collapse
|
42
|
Bioactive 2D nanomaterials for neural repair and regeneration. Adv Drug Deliv Rev 2022; 187:114379. [PMID: 35667464 DOI: 10.1016/j.addr.2022.114379] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 12/18/2022]
Abstract
Biomaterials have provided promising strategies towards improving the functions of injured tissues of the nervous system. Recently, 2D nanomaterials, such as graphene, layered double hydroxides (LDHs), and black phosphorous, which are characterized by ultrathin film structures, have attracted much attention in the fields of neural repair and regeneration. 2D nanomaterials have extraordinary physicochemical properties and excellent biological activities, such as a large surface-area-to-thickness ratio, high levels of adhesion, and adjustable flexibility. In addition, they can be designed to have superior biocompatibility and electrical or nano-carrier properties. To date, many 2D nanomaterials have been used for synaptic modulation, neuroinflammatory reduction, stem cell fate regulation, and injured neural cell/tissue repair. In this review, we discuss the advances in 2D nanomaterial technology towards novel neurological applications and the mechanisms underlying their unique features. In addition, the future outlook of functional 2D nanomaterials towards addressing the difficult issues of neuropathy has been explored to introduce a promising strategy towards repairing and regenerating the injured nervous system.
Collapse
|
43
|
Li D, Xu M, Li G, Zheng Y, Zhang Y, Xia D, Wang S, Chen Y. Mg/Al-LDH as a nano-adjuvant for pertussis vaccine: a evaluation compared with aluminum hydroxide adjuvant. NANOTECHNOLOGY 2022; 33:235102. [PMID: 35189608 DOI: 10.1088/1361-6528/ac56f3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Background. Layered double hydroxide (LDH) has been demonstrated as a highly efficient antigen platform to induce effective and durable immune response. However, whether LDH nanoparticles could act as an adjuvant for pertussis vaccines is still unknown. Here we evaluated the potential of Mg/Al-LDH as a nano-adjuvant to improve immune response against pertussis and compared it with commercial aluminum hydroxide (AH) adjuvant.Method. The Mg/Al-LDH nanoparticles were synthesized by a hydrothermal reaction. The morphology, structure and size of Mg/Al-LDH were characterized by transmission electron microscope, x-ray diffraction and MALVERN particle analysis. The ovalbumin and Pertussis toxin (PTd) was adsorbed to Mg/Al-LDH. The immune response of antigen-LDH complex was evaluated in mice, compared with commercial adjuvant alum. Hematoxylin-eosin staining was used to evaluate the inflammatory response at injection site.Results. The synthetic Mg/Al-LDH nanoparticles showed a typical hexagonal lamellar structure. The average size of synthetic nanoparticles was 102.9 nm with PDI of 0.13 and zeta potential was 44.4 mV. Mg/Al-LDH nanoparticles effectively adsorbed protein antigen and mediated antigen uptake by DC cells. Animal experiments showed that Mg/Al-LDH gave enhancement in anti-pertussis toxin (PTd) humoral immune response, which was considerable to commercial AH adjuvant. Finally, Mg/Al-LDH produced a slighter inflammatory response than AH at injection site and this injury was quickly recovered.Conclusion. Our study demonstrated the potential of Mg/Al-LDH as an effective adjuvant for pertussis vaccine, which induced comparable antibody response and had a better safety compared with commercial AH adjuvant.
Collapse
Affiliation(s)
- Dongdong Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, No. 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Mengjie Xu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, No. 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Gaotian Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, No. 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Yu Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, No. 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, No. 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Dandan Xia
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 26, Huatuo Street, Benxi 117004, People's Republic of China
| | - Shaoning Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 26, Huatuo Street, Benxi 117004, People's Republic of China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, No. 2699 Qianjin Street, Changchun 130012, People's Republic of China
| |
Collapse
|
44
|
Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury. Signal Transduct Target Ther 2022; 7:65. [PMID: 35232960 PMCID: PMC8888618 DOI: 10.1038/s41392-022-00885-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) involves diverse injury responses in different cell types in a temporally and spatially specific manner. Here, using single-cell transcriptomic analyses combined with classic anatomical, behavioral, electrophysiological analyses, we report, with single-cell resolution, temporal molecular and cellular changes in crush-injured adult mouse spinal cord. Data revealed pathological changes of 12 different major cell types, three of which infiltrated into the spinal cord at distinct times post-injury. We discovered novel microglia and astrocyte subtypes in the uninjured spinal cord, and their dynamic conversions into additional stage-specific subtypes/states. Most dynamic changes occur at 3-days post-injury and by day-14 the second wave of microglial activation emerged, accompanied with changes in various cell types including neurons, indicative of the second round of attacks. By day-38, major cell types are still substantially deviated from uninjured states, demonstrating prolonged alterations. This study provides a comprehensive mapping of cellular/molecular pathological changes along the temporal axis after SCI, which may facilitate the development of novel therapeutic strategies, including those targeting microglia.
Collapse
|
45
|
Zhu X, Wang Z, Sun YE, Liu Y, Wu Z, Ma B, Cheng L. Neuroprotective Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells From Different Donors on Spinal Cord Injury in Mice. Front Cell Neurosci 2022; 15:768711. [PMID: 35087378 PMCID: PMC8787356 DOI: 10.3389/fncel.2021.768711] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is caused by an external force, leading to severe dysfunction of the limbs below the injured segment. The inflammatory response plays a vital role in the prognosis of SCI. Human umbilical cord mesenchymal stem cell (hUCMSC) transplantation can promote repair of SCI by reducing the inflammatory response. We previously showed that hUCMSCs from 32 donors had different inhibitory abilities on BV2 cell proliferation. In this study, three experimental groups were established, and the mice were injected with different lines of hUCMSCs. Hind limb motor function, hematoxylin-eosin (H&E) staining, immunohistochemistry, Western blot (WB), qualitative real-time polymerase chain reaction (qRT-PCR), and RNA sequencing and correlation analysis were used to investigate the effects of hUCMSC transplantation on SCI mice and the underlying mechanisms. The results showed that the therapeutic effects of the three hUCMSC lines were positively correlated with their inhibitory abilities of BV2 cell proliferation rates in vitro. The MSC_A line had a better therapeutic effect on improving the hind limb motor function and greater effect on reducing the expression of glial fibrillary acidic protein (Gfap) and ionized calcium binding adaptor molecule 1 (Iba1) and increasing the expression of neuronal nuclei (NeuN). Differentially expressed genes including Zbtb16, Per3, and Hif3a were probably the key genes involved in the protective mechanism by MSC_A after nerve injury. qRT-PCR results further verified that Zbtb16, Per3, and Hif3a expressions reduced by SCI could be reversed by MSC_A application. These results suggest that the effect of hUCMSCs transplantation on acute SCI depends on their inhibitory abilities to inflammation reaction after nerve injury, which may help to shape future use of hUCMSCs combined with improving the effectiveness of clinical transformation.
Collapse
Affiliation(s)
- Xu Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Zhen Wang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Yi Eve Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Yuchen Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Bei Ma
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
- *Correspondence: Bei Ma,
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
- Liming Cheng,
| |
Collapse
|
46
|
Kakwere H, Harriman R, Pirir M, Avila C, Chan K, Lewis J. Engineering immunomodulatory nanoplatforms from commensal bacteria-derived polysaccharide A. J Mater Chem B 2022; 10:1210-1225. [DOI: 10.1039/d1tb02590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Capsular zwitterionic polysaccharides (CZPs), typically found on the surfaces of commensal gut bacteria, are important immunomodulatory molecules due to their ability to produce a T-cell dependent immune response upon processing...
Collapse
|
47
|
Wang Z, Yang H, Bai Y, Cheng L, Zhu R. rBMSC osteogenic differentiation enhanced by graphene quantum dots loaded with immunomodulatory layered double hydroxide nanoparticles. Biomed Mater 2021; 17. [PMID: 34905741 DOI: 10.1088/1748-605x/ac4324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/14/2021] [Indexed: 11/11/2022]
Abstract
Bone tissue defects caused by disease, trauma, aging or genetic factors emerged as one of the main factors that endanger human health. At present, advanced development of bone tissue engineering and regenerative medicine focused on the biomaterials regulated stem cell for responsive differentiation. In vivo transplantation of allogeneic bone materials has the needs of both osteogenic and immune regulation function. In this study, we utilized the extensively proved biocompatible layered double hydroxide (LDH) nanoparticles as the nanocarrier of graphene quantum dots (GQD), the functional loading was validated by characteristics analysis of scanning electron microscopy, surface zeta potential, X-ray diffraction and fourier transform infrared spectroscopy. Further, we investigated the cellular uptake of nanoparticles in rat bone marrow derived mesenchymal stem cells, the significant enhanced endocytosis was occurred in LDH-GQD treated groups. The enhanced osteogenic differentiation abilities of LDH-GQD were systematically investigated through alkaline phosphatase staining, alizarin red staining and qPCR analysis. In addition, the anti-inflammatory regulation of LDH facilitated the phenotypic transition of macrophage in LDH-GQD nanocomposites. Overall, the successful construction and functional validation of nanomaterials in this study will provide clinical therapeutic potential in bone defects regeneration.
Collapse
Affiliation(s)
- Zhaojie Wang
- Tongji University, 1239 Siping Road, Shanghai, 200092, CHINA
| | - Huiyi Yang
- Tongji University, 1239 Siping Road, Shanghai, 200092, CHINA
| | - Yuxin Bai
- Tongji University, 1239 Siping Road, Shanghai, 200092, CHINA
| | - Liming Cheng
- Tongji University, 1239 Siping Road, Shanghai, 200092, CHINA
| | - Rongrong Zhu
- Tongji University, 1239 Siping Road, Shanghai, 200092, CHINA
| |
Collapse
|
48
|
Wu C, Chen S, Zhou T, Wu K, Qiao Z, Zhang Y, Xin N, Liu X, Wei D, Sun J, Luo H, Zhou L, Fan H. Antioxidative and Conductive Nanoparticles-Embedded Cell Niche for Neural Differentiation and Spinal Cord Injury Repair. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52346-52361. [PMID: 34699166 DOI: 10.1021/acsami.1c14679] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following spinal cord injury (SCI), the transmission of electrical signals is interrupted, and an oxidative microenvironment is generated, hindering nerve regeneration and functional recovery. The strategies of regulating oxidative pathological microenvironment while restoring endogenous electrical signal transmission hold promise for SCI treatment. However, challenges are still faced in simply fabricating bioactive scaffolds with both antioxidation and conductivity. Herein, aiming to construct an antioxidative and conductive microenvironment for nerve regeneration, the difunctional polypyrrole (PPy) nanoparticles were developed and incorporated into bioactive collagen/hyaluronan hydrogel. Owing to the embedded PPy in hydrogel, the encapsulated bone marrow mesenchymal stem cells (BMSCs) can be protected from oxidative damage, and their neuronal differentiation was promoted by the synergy between conductivity and electrical stimulation, which is proved to be related to PI3K/Akt and the mitogen-activated protein kinase (MAPK) pathway. In SCI rats, the BMSC-laden difunctional hydrogel restored the transmission of bioelectric signals and inhibited secondary damage, thereby facilitating neurogenesis, resulting in prominent nerve regeneration and functional recovery. Overall, taking advantage of a difunctional nanomaterial to meet two essential requirements in SCI repair, this work provides intriguing insights into the design of biomaterials for nerve regeneration and tissue engineering.
Collapse
Affiliation(s)
- Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Suping Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ting Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Kai Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zi Qiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Nini Xin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
49
|
Abstract
Organ regeneration is an important, fascinating, and old topic while much remains unknown in spite of extensive investigations for decades. From March 25th to 27th, 2021, the Third Chinese Symposium on Organ Regeneration took place in the beautiful ocean city of Zhoushan, Zhejiang, China. This biennial conference attracted ~ 300 academic attendees: students, postdoctoral fellows, and principal investigators, in addition to few industrial investigators. The mixed live and virtual talks covered the broad field of organ regeneration from different animal organisms to human organoids, and concluded with some impressive advances on inflammatory signaling, regenerative signaling mechanisms, new technologies, and applications for organ regeneration.
Collapse
|
50
|
Yang L, He X, Jing G, Wang H, Niu J, Qian Y, Wang S. Layered Double Hydroxide Nanoparticles with Osteogenic Effects as miRNA Carriers to Synergistically Promote Osteogenesis of MSCs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48386-48402. [PMID: 34618442 DOI: 10.1021/acsami.1c14382] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inefficient differentiation and poor engraftment hinder the clinical applications of mesenchymal stem cell (MSC)-based cell therapies in regenerative medicine. Layered double hydroxide (LDH) nanoparticles are sheet-like materials with desirable biocompatibility and anion-exchange properties and have been widely applied as drug and nucleotide carriers in the field of tissue repair. However, few studies have focused on the biological effects of LDH itself. In this study, we demonstrated the novel function of LDH in stimulating osteogenic differentiation of bone marrow-derived MSCs (BMSCs). The expression of osteogenic-related genes, alkaline phosphatase (ALP) activity, and calcium deposits were significantly increased after LDH treatment. Mechanistic analysis performed with RNA sequencing revealed that LDH promoted osteogenesis by targeting the LGR5/β-catenin axis. LDH also inactivated IKK/NF-κB signaling under LPS-triggered inflamed conditions, suggesting the dual benefits of LDH in enhancing bone regeneration and alleviating the inflammatory response. Furthermore, we utilized LDH as the transport vehicle of the osteoinductive miRNA let-7d to synergistically regulate BMSCs toward the osteoblastic lineage. The LDH/let-7d complex resulted in a better induction of osteogenesis than LDH alone. For cell transplantation, BMSCs were seeded in LDH/let-7d-incorporated fibrin scaffolds, which proved enhanced osteoinduction capability in the subcutaneous ectopic osteogenesis model in nude mice. Taken together, this study provides a novel strategy for effective and synergistic improvement of osteogenesis via LDH-mediated delivery of miRNA let-7d, thus shedding light on the future application of LDH in regenerative medicine.
Collapse
Affiliation(s)
- Li Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolie He
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guoxin Jing
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jintong Niu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yechang Qian
- Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201900, China
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|