1
|
Zhang B, Huang J, Chen L, Sun Y, Tang C, Hu X, Liang Q, Zhao K, Wu Z, Tang Y. Aliphatic-acid coating and nano chitosan nucleator synergistically regulate the performance of PMMA "bone-Locking" foam dressing used for emergency fixation of clavicle fracture. Int J Biol Macromol 2025; 284:138112. [PMID: 39608526 DOI: 10.1016/j.ijbiomac.2024.138112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/04/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Clavicle emergency fixation can prevent fractured end from piercing heart and lung organs, which is crucial for wounded life. Clavicle with complex structure, great individual differences, and adjacent to important organs, which places high-requirements on performance of fixation materials. Developing advanced clavicle fixation material is a prominent hot-topic in the field of emergency-engineering. We prepared a Polymethyl-methacrylate (PMMA) "bone-Locking" foam dressing via novel polymer foaming process. Innovatively used aliphatic-acid and bio-polar macromolecule nanoparticles to adjust structure in non-traditional self-curing polymer melts to achieve high-performance. Stearic acid coating was prepared on the surface of foaming agent can delay nucleation period, increasing the initial Polymer-Bubble interface viscosity and effectively retard nuclei growth and escape. Nano-chitosan was compounded synchronously to induce in-situ nucleation and construct polar hydrogen bonds between chains, improve the crystallinity of PMMA matrix, reduce the relaxation ability of PMMA molecular chains and increase the interface viscosity again to inhibit nuclei growth and escape, realizing spontaneous coordination between viscosity and the bubble holes formation process. Obtained high-performance foam with uniform and regular bubble holes structure eventually. More, Dynamic Dual-Variable Field Bubble-Growth Dynamics was proposed, revealing the Bubble-Growth behavior synergistic driven by Viscosity and Temperature theoretically, providing reference for improving theory in polymer foaming field. Prepared foam dressing can be directly and softly coated on clavicle and spontaneously conform to the contour of clavicle with remarkable precision, then quickly (3.5 min) curing into a lightweight (0.57 g/cm3), high-strength (40.5 MPa), breathable (224.73 mm/s) "Armor", showing great application value in wound emergency engineering. The developed foaming method and theory provide technical and theoretical value for polymer foaming system. The foam dressing provides a promising new scheme for fixing various wound sites and ensuring the life safety of the wounded at the emergency scene.
Collapse
Affiliation(s)
- Bo Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Jinfeng Huang
- Institute of Orthopaedics, Xi'jing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Lei Chen
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yani Sun
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Chen Tang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China
| | - Xiaofan Hu
- Institute of Orthopaedics, Xi'jing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Qian Liang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Kang Zhao
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China
| | - Zixiang Wu
- Institute of Orthopaedics, Xi'jing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Yufei Tang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China.
| |
Collapse
|
2
|
Tian F, Zhao Y, Wang Y, Xu H, Liu Y, Liu R, Li H, Ning R, Wang C, Gao X, Luo R, Jia S, Zhu L, Hao D. Magnesium-Based Composite Calcium Phosphate Cement Promotes Osteogenesis and Angiogenesis for Minipig Vertebral Defect Regeneration. ACS Biomater Sci Eng 2024; 10:7577-7593. [PMID: 39575879 DOI: 10.1021/acsbiomaterials.4c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Calcium phosphate cement (CPC) is an injectable bone cement with excellent biocompatibility, widely used for filling bone defects of various shapes. However, its slow degradation, insufficient mechanical strength, and poor osteoinductivity limit its further clinical applications. In this study, we developed a novel composite magnesium-based calcium phosphate cement by integrating magnesium microspheres into PLGA fibers obtained through wet spinning and incorporating these fibers into CPC. The inclusion of magnesium-based PLGA fibers enhanced the compressive strength and degradation rate of CPC, with the degradation rate of the magnesium microspheres being controllable to allow for the sustained release of magnesium ions. In vitro experiments showed that magnesium-based CPC enhanced the proliferation and migration of MC3T3-E1 and HUVECs. Additionally, the magnesium-based composite CPC not only enhanced osteogenic differentiation of MC3T3-E1 cells but also promoted angiogenesis in HUVECs. In vivo experiments using a vertebral bone defect model in Bama miniature pigs showed that the magnesium-based composite CPC significantly increased new bone formation. Additionally, compared to the CPC group, this composite exhibited significantly higher levels of osteogenic and angiogenic markers, with no inflammation or necrosis observed in the heart, liver, or kidneys, indicating good biocompatibility. These results suggest that magnesium-based composite CPC, with its superior compressive strength, biodegradability, and ability to promote vascularized bone regeneration, holds promise as a minimally invasive injectable material for bone regeneration.
Collapse
Affiliation(s)
- Fang Tian
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Yuqi Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Yuhao Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Hailiang Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Youjun Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Hui Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Ruojie Ning
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Chengwen Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Xinlin Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Rongjin Luo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Shuaijun Jia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Dingjun Hao
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| |
Collapse
|
3
|
Si R, Hu T, Williams GR, Yang Y, Yang S, Yan D, Liang R, Ji W. Coupling Probiotics with CaO 2 Nanoparticle-Loaded CoFeCe-LDH Nanosheets to Remodel the Tumor Microenvironment for Precise Chemodynamic Therapy. Adv Healthc Mater 2024:e2403373. [PMID: 39648554 DOI: 10.1002/adhm.202403373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Indexed: 12/10/2024]
Abstract
Chemodynamic therapy (CDT) has become an emerging cancer treatment strategy with advantages of tumor-specificity, high selectivity, and low systemic toxicity. However, it usually suffers from low therapeutic efficacy. This is caused by low hydroxyl radical (·OH) yield arising because of the relatively high pH, overexpressed glutathione, and low H2O2 concentration in the tumor microenvironment (TME). Herein, a probiotic metabolism-initiated pH reduction and H2O2 supply-enhanced CDT strategy is reported to eradicate tumors by generating ·OH, in which Lactobacillus acidophilus is coupled with CoFeCe-layered double hydroxide nanosheets loaded with CaO2 nanoparticles (NPs) as a chemodynamic platform for high-efficiency CDT (CaO2/LDH@L. acidophilus). Owing to the hypoxia tropism of L. acidophilus, CaO2/LDH@L. acidophilus exhibits increased accumulation at tumor sites compared with the CaO2/LDH. The CaO2 NPs loaded on CoFeCe-LDH nanosheets are decomposed into H2O2 in the TME. L. acidophilus metabolite-induced pH reduction (<5.5) and CaO2-mediated in situ H2O2 generation synergistically boost ·OH generation activity of the CoFeCe-LDH nanosheets, effectively damaging cancer cells and ablating tumors with a tumor inhibition rate of 96.4%, 2.32-fold higher than that of CaO2/LDH. This work demonstrates that probiotics can function as a tumor-targeting platform to remodel the TME and amplify ROS generation for highly efficient and precise CDT.
Collapse
Affiliation(s)
- Ruxue Si
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P. R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Yu Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| | - Weiping Ji
- Department of Genaral Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324002, P. R. China
- Department of Genaral Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325088, P. R. China
| |
Collapse
|
4
|
Chen R, Hu T, Lu Y, Yang S, Zhang M, Tan C, Liang R, Wang Y. PAD4 Inhibitor-Loaded Layered Double Hydroxide Nanosheets as a Multifunctional Nanoplatform for Photodynamic Therapy-Mediated Tumor Metastasis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404211. [PMID: 39358959 PMCID: PMC11636073 DOI: 10.1002/smll.202404211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Photodynamic therapy (PDT) is demonstrated to be effective in inducing antitumor immune responses for tumor metastasis treatment. However, tumor hypoxia, inferior tissue penetration of light, and low singlet oxygen (1O2) quantum yield significantly hamper the efficacy of PDT, thus weakening its immune function. Moreover, PDT-mediated neutrophil extracellular traps (NETs) formation can further reduce the therapeutic effectiveness. Herein, the use of defect-rich CoMo-layered double hydroxide (DR-CoMo-LDH) nanosheets as a carrier to load a typical peptidyl arginine deiminase 4 inhibitor, i.e., YW4-03, to construct a multifunctional nanoagent (403@DR-LDH) for PDT/immunotherapy, is reported. Specifically, 403@DR-LDH inherits excellent 1O2 generation activity under 1550 nm laser irradiation and improves the half-life of YW4-03. Meanwhile, 403@DR-LDH plus 1550 nm laser irradiation can stimulate immunogenic cell death to promote the maturation of dendric cells and activation/infiltration of T cells and significantly downregulate H3cit protein expression to inhibit NETs formation, synergistically promoting the antitumor metastasis effect. Taken together, 403@DR-LDH can kill cancer cells and inhibit tumor growth/metastasis under 1550 nm laser irradiation. Single-cell analysis indicates that 403@DR-LDH can regulate the ratio of immune cells and immune-related proteins to improve the tumor immune microenvironment, showing strong efficacy to inhibit the tumor growth, metastasis, and recurrence.
Collapse
Affiliation(s)
- Rong Chen
- Department of Medicinal ChemistryCollege of Pharmaceutical Sciences of Capital Medical UniversityBeijing100069P. R. China
| | - Tingting Hu
- Department Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong SAR999077P. R. China
| | - Yu Lu
- Department of Medicinal ChemistryCollege of Pharmaceutical Sciences of Capital Medical UniversityBeijing100069P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Min Zhang
- Department of NephrologyAffiliated Beijing Chaoyang Hospital of Capital Medical UniversityBeijing100020P. R. China
| | - Chaoliang Tan
- Department Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong SAR999077P. R. China
- Department Electrical EngineeringCity University of Hong Kong83 Tat Chee Ave, Kowloon TongHong Kong SAR999077P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- Quzhou Institute for Innovation in Resource Chemical EngineeringQuzhou324000P. R. China
| | - Yuji Wang
- Department of Medicinal ChemistryCollege of Pharmaceutical Sciences of Capital Medical UniversityBeijing100069P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular DrugsEngineering Research Center of Endogenous Prophylactic of Ministry of Education of ChinaBeijing Laboratory of Biomedical MaterialsLaboratory for Clinical MedicineBeijing Laboratory of Oral HealthCapital Medical UniversityBeijing100069P. R. China
| |
Collapse
|
5
|
Ryu JH, Mangal U, Kwon JS, Seo JY, Byun SY, Lee YH, Jang S, Hwang G, Ku H, Shin Y, Kim D, Choi SH. Integrating Phosphate Enhances Biomineralization Effect of Methacrylate Cement in Vital Pulp Treatment with Improved Human Dental Pulp Stem Cells Stimulation. Adv Healthc Mater 2024; 13:e2402397. [PMID: 39367544 DOI: 10.1002/adhm.202402397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Indexed: 10/06/2024]
Abstract
Vital pulp treatment (VPT) is crucial for preserving the health and function of the tooth in cases where the pulp tissue remains vital despite exposure. Various materials are introduced for this purpose. However, challenges such as low strength, high solubility, and tooth discoloration persist. Methylmethacrylate-based cement (MC) offers excellent sealing ability, feasibility, and mechanical properties, making it a promising alternative for VPT. Phosphate-based glass (PBG) has the potential to promote hard tissue regeneration by releasing key inducers, phosphorus (P) and calcium (Ca), for reparative odontogenesis. This study investigates PBG-integrated MC (PIMC) by characterizing its properties, assessing human dental pulp stem cell activity related to initial inflammatory adaptation and odontogenic differentiation, and evaluating hard tissue formation using an in vivo dog pulpotomy model. Results indicate that a 5% PBG-integrated MC (5PIMC) maintains the physicochemical properties of MC. Furthermore, 5PIMC demonstrates cytocompatibility, excellent expression of osteo/odontogenic markers, and resistance to inflammatory markers, significantly outperforming MC. Enhanced hard tissue formation is observed in the dental pulp of mongrel dog teeth treated with 5PIMC. These findings suggest that 5PIMC could be an optimal and suitable material for reparative odontogenesis through VPT.
Collapse
Affiliation(s)
- Jeong-Hyun Ryu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Utkarsh Mangal
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae-Sung Kwon
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Seong-Yun Byun
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young-Hee Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, 54907, Republic of Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, 54907, Republic of Korea
| | - Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyemin Ku
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yooseok Shin
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| |
Collapse
|
6
|
Łuczak JW, Palusińska M, Matak D, Pietrzak D, Nakielski P, Lewicki S, Grodzik M, Szymański Ł. The Future of Bone Repair: Emerging Technologies and Biomaterials in Bone Regeneration. Int J Mol Sci 2024; 25:12766. [PMID: 39684476 DOI: 10.3390/ijms252312766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Bone defects and fractures present significant clinical challenges, particularly in orthopedic and maxillofacial applications. While minor bone defects may be capable of healing naturally, those of a critical size necessitate intervention through the use of implants or grafts. The utilization of traditional methodologies, encompassing autografts and allografts, is constrained by several factors. These include the potential for donor site morbidity, the restricted availability of suitable donors, and the possibility of immune rejection. This has prompted extensive research in the field of bone tissue engineering to develop advanced synthetic and bio-derived materials that can support bone regeneration. The optimal bone substitute must achieve a balance between biocompatibility, bioresorbability, osteoconductivity, and osteoinductivity while simultaneously providing mechanical support during the healing process. Recent innovations include the utilization of three-dimensional printing, nanotechnology, and bioactive coatings to create scaffolds that mimic the structure of natural bone and enhance cell proliferation and differentiation. Notwithstanding the advancements above, challenges remain in optimizing the controlled release of growth factors and adapting materials to various clinical contexts. This review provides a comprehensive overview of the current advancements in bone substitute materials, focusing on their biological mechanisms, design considerations, and clinical applications. It explores the role of emerging technologies, such as additive manufacturing and stem cell-based therapies, in advancing the field. Future research highlights the need for multidisciplinary collaboration and rigorous testing to develop advanced bone graft substitutes, improving outcomes and quality of life for patients with complex defects.
Collapse
Affiliation(s)
- Julia Weronika Łuczak
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8, Bldg. 23, 02-786 Warsaw, Poland
| | - Małgorzata Palusińska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Damian Matak
- European Biomedical Institute, 05-410 Jozefów, Poland
| | - Damian Pietrzak
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Sławomir Lewicki
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, Pl. Żelaznej Bramy 10, 00-136 Warsaw, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8, Bldg. 23, 02-786 Warsaw, Poland
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
- European Biomedical Institute, 05-410 Jozefów, Poland
| |
Collapse
|
7
|
Seesala VS, Sheikh L, Basu B, Mukherjee S. Mechanical and Bioactive Properties of PMMA Bone Cement: A Review. ACS Biomater Sci Eng 2024; 10:5939-5959. [PMID: 39240690 DOI: 10.1021/acsbiomaterials.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Over the past few decades, poly(methyl methacrylate) (PMMA) based bone cement has been clinically used extensively in orthopedics for arthroplasty and kyphoplasty, due to its biocompatibility and excellent primary fixation to the host bone. In this focused review, we discuss the use of various fillers and secondary chemical moieties to improve the bioactivity and the physicochemical properties. The viscosity of the PMMA blend formulations and working time are crucial to achieving intimate contact with the osseous tissue, which is highly sensitive to organic or inorganic fillers. Hydroxyapatite as a reinforcement resulted in compromised mechanical properties of the modified cement. The possible mechanisms of the additive- or filler-dependent strengthening or weakening of the PMMA blend are critically reviewed. The addition of layered double hydroxides with surface functionalization appears to be a promising approach to enhance the bonding of filler with the PMMA matrix. Such an approach consequently improves the mechanical properties, owing to enhanced dispersion as well as contributions from crack bridging. Finally, the use of emerging alternatives, such as nanoparticles, and the use of natural biomolecules were highlighted to improve bioactivity and antibacterial properties.
Collapse
Affiliation(s)
- Venkata Sundeep Seesala
- Advanced Materials and Characterization Group, Research and Development Division, Tata Steel Ltd, Jamshedpur 831001, India
| | - Lubna Sheikh
- Advanced Materials and Characterization Group, Research and Development Division, Tata Steel Ltd, Jamshedpur 831001, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bengaluru 560012, India
| | - Subrata Mukherjee
- Advanced Materials and Characterization Group, Research and Development Division, Tata Steel Ltd, Jamshedpur 831001, India
| |
Collapse
|
8
|
Wang N, Chen J, Chen Y, Chen L, Bao L, Huang Z, Han X, Lu J, Cai Z, Cui W, Huang Z. Kneadable dough-type hydrogel transforming from dynamic to rigid network to repair irregular bone defects. Bioact Mater 2024; 40:430-444. [PMID: 39007059 PMCID: PMC11245958 DOI: 10.1016/j.bioactmat.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
Irregular bone defects, characterized by unpredictable size, shape, and depth, pose a major challenge to clinical treatment. Although various bone grafts are available, none can fully meet the repair needs of the defective area. Here, this study fabricates a dough-type hydrogel (DR-Net), in which the first dynamic network is generated by coordination between thiol groups and silver ions, thereby possessing kneadability to adapt to various irregular bone defects. The second rigid covalent network is formed through photocrosslinking, maintaining the osteogenic space under external forces and achieving a better match with the bone regeneration process. In vitro, an irregular alveolar bone defect is established in the fresh porcine mandible, and the dough-type hydrogel exhibits outstanding shape adaptability, perfectly matching the morphology of the bone defect. After photocuring, the storage modulus of the hydrogel increases 8.6 times, from 3.7 kPa (before irradiation) to 32 kPa (after irradiation). Furthermore, this hydrogel enables effective loading of P24 peptide, which potently accelerates bone repair in Sprague-Dawley (SD) rats with critical calvarial defects. Overall, the dough-type hydrogel with kneadability, space-maintaining capability, and osteogenic activity exhibits exceptional potential for clinical translation in treating irregular bone defects.
Collapse
Affiliation(s)
- Ningtao Wang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, PR China
| | - Jie Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yanyang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Liang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Luhan Bao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Zhengmei Huang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Xiaoyu Han
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Jiangkuo Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, PR China
| |
Collapse
|
9
|
Bian Y, Hu T, Zhao K, Cai X, Li M, Tan C, Liang R, Weng X. A LDH-Derived Metal Sulfide Nanosheet-Functionalized Bioactive Glass Scaffold for Vascularized Osteogenesis and Periprosthetic Infection Prevention/Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403009. [PMID: 39159063 PMCID: PMC11497026 DOI: 10.1002/advs.202403009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Indexed: 08/21/2024]
Abstract
Periprosthetic infection and prosthetic loosing stand out as prevalent yet formidable complications following orthopedic implant surgeries. Synchronously addressing the two complications is long-time challenging. Herein, a bioactive glass scaffold (BGS) functionalized with MgCuFe-layered double hydroxide (LDH)-derived sulfide nanosheets (BGS/MCFS) is developed for vascularized osteogenesis and periprosthetic infection prevention/treatment. Apart from the antibacterial cations inhibiting bacterial energy and material metabolism, the exceptional near-infrared-II (NIR-II) photothermal performance empowers BGS/MCFS to eliminate periprosthetic infections, outperforming previously reported functionalized BGS. The rough surface topography and the presence of multi-bioactive metal ions bestow BGS/MCFS with exceptional osteogenic and angiogenic properties, with 8.5-fold and 2.3-fold enhancement in bone mass and neovascularization compared with BGS. Transcriptome sequencing highlights the involvement of the TGF-β signaling pathway in these processes, while single-cell sequencing reveals a significant increase in osteoblasts and endothelial cells around BGS/MCFS compared to BGS.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Tingting Hu
- Department Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong, SAR999077P. R. China
| | - Kexin Zhao
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xuejie Cai
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Mengyang Li
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Chaoliang Tan
- Department Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong, SAR999077P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- Quzhou Institute for Innovation in Resource Chemical EngineeringQuzhou324000P. R. China
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| |
Collapse
|
10
|
Wan Z, Gao Y, Wang Y, Zhang X, Gao X, Zhou T, Zhang Z, Li Z, Lin Y, Wang B, Chen K, Wang Y, Duan C, Yuan Z. High-purity butoxydibutylborane catalysts enable the low-exothermic polymerization of PMMA bone cement with enhanced biocompatibility and osseointegration. J Mater Chem B 2024; 12:8911-8918. [PMID: 39145600 DOI: 10.1039/d4tb00967c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Polymethyl methacrylate (PMMA) based biomaterials have been widely utilized in clinics. However, currently, PMMA catalyzed by benzoyl peroxide (BPO) exhibits disquieting disadvantages including an exothermic polymerization reaction and a lack of bioactivity. Here, we first designed three industrial-scale synthesis methods for high-purity butoxydibutylborane (BODBB), achieving purity levels greater than 95% (maximum: 97.6%) and ensuring excellent fire safety. By utilizing BODBB as a catalyst, the highest polymerization temperature of PMMA bone cement (PMMA-BODBB) reached only 36.05 °C, ensuring that no thermal damage occurred after implantation. Compared to PMMA catalyzed by BPO and partially oxidized tributylborane (TBBO, catalyst of Super Bond C&B), PMMA-BODBB exhibited superior cell adhesion, proliferation, and osteogenesis, attributed to the reduced release of free radicals and toxic monomer, and moderate bioactive boron release. After injection into a 5 mm defect in the rat cranial bone, PMMA-BODBB demonstrated the highest level of osteointegration. This work not only presents an industrial-scale synthesis of high-purity BODBB, but also offers an innovative PMMA biomaterial system with intrinsic biocompatibility and osseointegration, paving the way for the next generation of PMMA-based biomaterials with broader applications.
Collapse
Affiliation(s)
- Zhuo Wan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Yike Gao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, P. R. China
| | - Yingbo Wang
- Department of Oral and Maxillofacial Surgery, The First Clinical Division, The Third Clinical Division, and The Fifth Clinical Division, Peking University School of Stomatology, 100020 Beijing, P. R. China.
| | - Xianghao Zhang
- Department of Oral and Maxillofacial Surgery, The First Clinical Division, The Third Clinical Division, and The Fifth Clinical Division, Peking University School of Stomatology, 100020 Beijing, P. R. China.
| | - Xiyin Gao
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tuanfeng Zhou
- Department of Oral and Maxillofacial Surgery, The First Clinical Division, The Third Clinical Division, and The Fifth Clinical Division, Peking University School of Stomatology, 100020 Beijing, P. R. China.
| | - Zhishan Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Zijian Li
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Yunfei Lin
- Department of Orthopaedic Surgery, Peking University First Hospital, Beijing 100034, P. R. China
| | - Bing Wang
- Department of Orthopaedic Surgery, Peking University First Hospital, Beijing 100034, P. R. China
| | - Kun Chen
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Yang Wang
- Department of Oral and Maxillofacial Surgery, The First Clinical Division, The Third Clinical Division, and The Fifth Clinical Division, Peking University School of Stomatology, 100020 Beijing, P. R. China.
| | - Chenggang Duan
- Department of Oral and Maxillofacial Surgery, The First Clinical Division, The Third Clinical Division, and The Fifth Clinical Division, Peking University School of Stomatology, 100020 Beijing, P. R. China.
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, P. R. China
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, P. R. China.
| |
Collapse
|
11
|
Wagener N, Pumberger M, Hardt S. Impact of fixation method on femoral bone loss: a retrospective evaluation of stem loosening in first-time revision total hip arthroplasty among two hundred and fifty five patients. INTERNATIONAL ORTHOPAEDICS 2024; 48:2339-2350. [PMID: 38822836 PMCID: PMC11347471 DOI: 10.1007/s00264-024-06230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
PURPOSE Implant loosening represent the most common indication for stem revision in hip revision arthroplasty. This study compares femoral bone loss and the risk of initial revisions between cemented and uncemented loosened primary stems, investigating the impact of fixation method at primary implantation on femoral bone defects. METHODS This retrospective study reviewed 255 patients who underwent their first revision for stem loosening from 2010 to 2022, receiving either cemented or uncemented stem implants. Femoral bone loss was preoperatively measured using the Paprosky classification through radiographic evaluations. Kaplan-Meier analysis estimated the survival probability of the original stem, and the hazard ratio assessed the relative risk of revision for uncemented versus cemented stems in the first postoperative year and the following two to ten years. RESULTS Cemented stems showed a higher prevalence of significant bone loss (type 3b and 4 defects: 32.39% vs. 2.72%, p < .001) compared to uncemented stems, which more commonly had type 1 and 2 defects (82.07% vs. 47.89%, p < .001). In our analysis of revision cases, primary uncemented stems demonstrated a 20% lower incidence of stem loosening in the first year post-implantation compared to cemented stems (HR 0.8; 95%-CI 0.3-2.0). However, the incidence in uncemented stems increased by 20% during the subsequent years two to ten (HR 1.2; 95%-CI 0.7-1.8). Septic loosening was more common in cemented stems (28.17% vs. 10.87% in uncemented stems, p = .001). Kaplan-Meier analysis indicated a modestly longer revision-free period for cemented stems within the first ten years post-implantation (p < .022). CONCLUSION During first-time revision, cemented stems show significantly larger femoral bone defects than uncemented stems. Septic stem loosening occurred 17.30% more in cemented stems.
Collapse
Affiliation(s)
- Nele Wagener
- Center for Musculoskeletal Surgery, Department of Orthopaedic Surgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Matthias Pumberger
- Center for Musculoskeletal Surgery, Department of Orthopaedic Surgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sebastian Hardt
- Center for Musculoskeletal Surgery, Department of Orthopaedic Surgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
12
|
Bian Y, Zhao K, Hu T, Tan C, Liang R, Weng X. A Se Nanoparticle/MgFe-LDH Composite Nanosheet as a Multifunctional Platform for Osteosarcoma Eradication, Antibacterial and Bone Reconstruction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403791. [PMID: 38958509 PMCID: PMC11434235 DOI: 10.1002/advs.202403791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Despite advances in treating osteosarcoma, postoperative tumor recurrence, periprosthetic infection, and critical bone defects remain critical concerns. Herein, the growth of selenium nanoparticles (SeNPs) onto MgFe-LDH nanosheets (LDH) is reported to develop a multifunctional nanocomposite (LDH/Se) and further modification of the nanocomposite on a bioactive glass scaffold (BGS) to obtain a versatile platform (BGS@LDH/Se) for comprehensive postoperative osteosarcoma management. The uniform dispersion of negatively charged SeNPs on the LDH surface restrains toxicity-inducing aggregation and inactivation, thus enhancing superoxide dismutase (SOD) activation and superoxide anion radical (·O2 -)-H2O2 conversion. Meanwhile, Fe3+ within the LDH nanosheets can be reduced to Fe2+ by depleting glutathione (GSH) in the tumor microenvironments (TME), which can catalyze H2O2 into highly toxic reactive oxygen species. More importantly, incorporating SeNPs significantly promotes the anti-bacterial and osteogenic properties of BGS@LDH/Se. Thus, the developed BGS@LDH/Se platform can simultaneously inhibit tumor recurrence and periprosthetic infection as well as promote bone regeneration, thus holding great potential for postoperative "one-stop-shop" management of patients who need osteosarcoma resection and scaffold implantation.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Kexin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| |
Collapse
|
13
|
Dai Y, Wu J, Wang J, Wang H, Guo B, Jiang T, Cai Z, Han J, Zhang H, Xu B, Zhou X, Wang C. Magnesium Ions Promote the Induction of Immunosuppressive Bone Microenvironment and Bone Repair through HIF-1α-TGF-β Axis in Dendritic Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311344. [PMID: 38661278 DOI: 10.1002/smll.202311344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/22/2024] [Indexed: 04/26/2024]
Abstract
The effect of immunoinflammation on bone repair during the recovery process of bone defects needs to be further explored. It is reported that Mg2+ can promote bone repair with immunoregulatory effect, but the underlying mechanism on adaptive immunity is still unclear. Here, by using chitosan and hyaluronic acid-coated Mg2+ (CSHA-Mg) in bone-deficient mice, it is shown that Mg2+ can inhibit the activation of CD4+ T cells and increase regulatory T cell formation by inducing immunosuppressive dendritic cells (imDCs). Mechanistically, Mg2+ initiates the activation of the MAPK signaling pathway through TRPM7 channels on DCs. This process subsequently induces the downstream HIF-1α expression, a transcription factor that amplifies TGF-β production and inhibits the effective T cell function. In vivo, knock-out of HIF-1α in DCs or using a HIF-1α inhibitor PX-478 reverses inhibition of bone inflammation and repair promotion upon Mg2+-treatment. Moreover, roxadustat, which stabilizes HIF-1α protein expression, can significantly promote immunosuppression and bone repair in synergism with CSHA-Mg. Thus, the findings identify a key mechanism for DCs and its HIF-1α-TGF-β axis in the induction of immunosuppressive bone microenvironment, providing potential targets for bone regeneration.
Collapse
Affiliation(s)
- Yuya Dai
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Jinhui Wu
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haoze Wang
- Nation Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Bingqing Guo
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, China
| | - Tao Jiang
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, China
| | - Zhuyun Cai
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Junjie Han
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Haoyu Zhang
- Nation Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Bangzhe Xu
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xuhui Zhou
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Ce Wang
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| |
Collapse
|
14
|
Zheng H, Liu J, Sun L, Meng Z. The role of N-acetylcysteine in osteogenic microenvironment for bone tissue engineering. Front Cell Dev Biol 2024; 12:1435125. [PMID: 39055649 PMCID: PMC11269162 DOI: 10.3389/fcell.2024.1435125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Bone defect is a common clinical symptom which can arise from various causes. Currently, bone tissue engineering has demonstrated positive therapeutic effects for bone defect repair by using seeding cells such as mesenchymal stem cells and precursor cells. N-acetylcysteine (NAC) is a stable, safe and highly bioavailable antioxidant that shows promising prospects in bone tissue engineering due to the ability to attenuate oxidative stress and enhance the osteogenic potential and immune regulatory function of cells. This review systematically introduces the antioxidant mechanism of NAC, analyzes the advancements in NAC-related research involving mesenchymal stem cells, precursor cells, innate immune cells and animal models, discusses its function using the classic oral microenvironment as an example, and places particular emphasis on the innovative applications of NAC-modified tissue engineering biomaterials. Finally, current limitations and future prospects are proposed, with the aim of providing inspiration for targeted readers in the field.
Collapse
Affiliation(s)
- Haowen Zheng
- School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Jiacheng Liu
- School of Dentistry, Tianjin Medical University, Tianjin, China
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Lanxin Sun
- School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Zhaosong Meng
- Department of Oral and Maxillofacial Surgery, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| |
Collapse
|
15
|
Zhu D, Lu Y, Yang S, Hu T, Tan C, Liang R, Wang Y. PAD4 Inhibitor-Functionalized Layered Double Hydroxide Nanosheets for Synergistic Sonodynamic Therapy/Immunotherapy Of Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401064. [PMID: 38708711 PMCID: PMC11234469 DOI: 10.1002/advs.202401064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Sonodynamic therapy (SDT) is demonstrated to trigger the systemic immune response of the organism and facilitate the treatment of metastatic tumors. However, SDT-mediated neutrophil extracellular traps (NETs) formation can promote tumor cell spread, thus weakening the therapeutic effectiveness of metastatic tumors. Herein, the amorphous CoW-layered double hydroxide (a-CoW-LDH) nanosheets are functionalized with a peptidyl arginine deiminase 4 (PAD4) inhibitor, i.e., YW3-56, to construct a multifunctional nanoagent (a-LDH@356) for synergistic SDT/immunotherapy. Specifically, a-CoW-LDH nanosheets can act as a sonosensitizer to generate abundant reactive oxygen species (ROS) under US irradiation. After loading with YW3-56, a-LDH@356 plus US irradiation not only effectively induces ROS generation and immunogenic cell death, but also inhibits the elevation of citrullinated histone H3 (H3cit) and the release of NETs, enabling a synergistic enhancement of anti-tumor metastasis effect. Using 4T1 tumor model, it is demonstrated that combining a-CoW-LDH with YW3-56 stimulates an anti-tumor response by upregulating the proportion of immune-activated cells and inducing polarization of M1 macrophages, and inhibits immune escape by downregulating the expression of PD-1 on immune cells under US irradiation, which not only arrests primary tumor progression with a tumor inhibition rate of 69.5% but also prevents tumor metastasis with the least number of lung metastatic nodules.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing Laboratory of Oral Health, Beijing, 100069, P. R. China
| |
Collapse
|
16
|
Liu Y, Zheng L, Li S, Zhang Z, Lin Z, Ma W. Finite element study on the micromechanics of cement-augmented proximal femoral nail anti-rotation (PFNA) for intertrochanteric fracture treatment. Sci Rep 2024; 14:10322. [PMID: 38710745 DOI: 10.1038/s41598-024-61122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Blade cut-out is a common complication when using proximal femoral nail anti-rotation (PFNA) for the treatment of intertrochanteric fractures. Although cement augmentation has been introduced to overcome the cut-out effect, the micromechanics of this approach remain to be clarified. While previous studies have developed finite element (FE) models based on lab-prepared or cadaveric samples to study the cement-trabeculae interface, their demanding nature and inherent disadvantages limit their application. The aim of this study was to develop a novel 'one-step forming' method for creating a cement-trabeculae interface FE model to investigate its micromechanics in relation to PFNA with cement augmentation. A human femoral head was scanned using micro-computed tomography, and four volume of interest (VOI) trabeculae were segmented. The VOI trabeculae were enclosed within a box to represent the encapsulated region of bone cement using ANSYS software. Tetrahedral meshing was performed with Hypermesh software based on Boolean operation. Finally, four cement-trabeculae interface FE models comprising four interdigitated depths and five FE models comprising different volume fraction were established after element removal. The effects of friction contact, frictionless contact, and bond contact properties between the bone and cement were identified. The maximum micromotion and stress in the interdigitated and loading bones were quantified and compared between the pre- and post-augmentation situations. The differences in micromotion and stress with the three contact methods were minimal. Micromotion and stress decreased as the interdigitation depth increased. Stress in the proximal interdigitated bone showed a correlation with the bone volume fraction (R2 = 0.70); both micromotion (R2 = 0.61) and stress (R2 = 0.93) at the most proximal loading region exhibited a similar correlation tendency. When comparing the post- and pre-augmentation situations, micromotion reduction in the interdigitated bone was more effective than stress reduction, particularly near the cement border. The cementation resulted in a significant reduction in micromotion within the loading bone, while the decrease in stress was minimal. Noticeable gradients of displacement and stress reduction can be observed in models with lower bone volume fraction (BV/TV). In summary, cement augmentation is more effective at reducing micromotion rather than stress. Furthermore, the reinforcing impact of bone cement is particularly prominent in cases with a low BV/TV. The utilization of bone cement may contribute to the stabilization of trabecular bone and PFNA primarily by constraining micromotion and partially shielding stress.
Collapse
Affiliation(s)
- Yurui Liu
- Department of Anesthesiology, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Liqin Zheng
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaobin Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhengze Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziling Lin
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wuhua Ma
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
17
|
Li L, Soyhan I, Warszawik E, van Rijn P. Layered Double Hydroxides: Recent Progress and Promising Perspectives Toward Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306035. [PMID: 38501901 PMCID: PMC11132086 DOI: 10.1002/advs.202306035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 03/20/2024]
Abstract
Layered double hydroxides (LDHs) have been widely studied for biomedical applications due to their excellent properties, such as good biocompatibility, degradability, interlayer ion exchangeability, high loading capacity, pH-responsive release, and large specific surface area. Furthermore, the flexibility in the structural composition and ease of surface modification of LDHs makes it possible to develop specifically functionalized LDHs to meet the needs of different applications. In this review, the recent advances of LDHs for biomedical applications, which include LDH-based drug delivery systems, LDHs for cancer diagnosis and therapy, tissue engineering, coatings, functional membranes, and biosensors, are comprehensively discussed. From these various biomedical research fields, it can be seen that there is great potential and possibility for the use of LDHs in biomedical applications. However, at the same time, it must be recognized that the actual clinical translation of LDHs is still very limited. Therefore, the current limitations of related research on LDHs are discussed by combining limited examples of actual clinical translation with requirements for clinical translation of biomaterials. Finally, an outlook on future research related to LDHs is provided.
Collapse
Affiliation(s)
- Lei Li
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| | - Irem Soyhan
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| | - Eliza Warszawik
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| | - Patrick van Rijn
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| |
Collapse
|
18
|
Wang Z, Luo S, Yang L, Wu Z, Zhang C, Teng J, Zou Z, Ye C. Intelligent and Bioactive Osseointegration of the Implanted Piezoelectric Bone Cement with the Host Bone Is Realized by Biomechanical Energy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38607363 DOI: 10.1021/acsami.4c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Poly methyl methacrylate (PMMA) bone cement is widely used in orthopedic surgeries, including total hip/knee arthroplasty and vertebral compression fracture treatment. However, loosening due to bone resorption is a common mid-to-late complication. Therefore, developing bioactive bone cement that promotes bone growth and integration is key to reducing aseptic loosening. In this study, we developed a piezoelectric bone cement comprising PMMA and BaTiO3 with excellent electrobioactivity and further analyzed its ability to promote bone integration. Experiments demonstrate that the PMMA and 15 wt % BaTiO3 cement generated an open-circuit voltage of 37.109 V under biomimetic mechanical stress, which effectively promoted bone regeneration and interfacial bone integration. In vitro experiments showed that the protein expression levels of ALP and RUNX-2 in the 0.65 Hz and 20 min group increased by 1.74 times and 2.31 times. In vivo experiments confirmed the osteogenic ability of PMMA and 15 wt % BaTiO3, with the increment of bone growth in the non-movement and movement groups being 4.67 and 4.64 times, respectively, at the second month after surgery. Additionally, Fluo-4 AM fluorescence staining and protein blotting experiments verified that PMMA and 15 wt % BaTiO3 electrical stimulation promoted osteogenic differentiation of BMSCs by activating calcium-sensitive receptors and increasing calcium ion inflow by 1.41 times when the stimulation reached 30 min. Therefore, piezoelectric bioactive PMMA and 15 wt % BaTiO3 cement has excellent application value in orthopedic surgery systems where stress transmission is prevalent.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China
- National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang 550004, China
| | - Siwei Luo
- Clinical College of Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Long Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117583, Singapore
| | - Zhanyu Wu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China
| | - Chike Zhang
- Clinical College of Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Jianxiang Teng
- Clinical College of Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Zihao Zou
- Clinical College of Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Chuan Ye
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China
- Clinical College of Medicine, Guizhou Medical University, Guiyang 550004, China
- National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang 550004, China
| |
Collapse
|
19
|
Fu H, Guo Y, Fang W, Wang J, Hu P, Shi J. Anti-Acidification and Immune Regulation by Nano-Ceria-Loaded Mg-Al Layered Double Hydroxide for Rheumatoid Arthritis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307094. [PMID: 38064119 PMCID: PMC10853726 DOI: 10.1002/advs.202307094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Indexed: 02/10/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease featuring an abnormal immune microenvironment and resultant accumulation of hydrogen ions (H+ ) produced by activated osteoclasts (OCs). Currently, clinic RA therapy can hardly achieve sustained or efficient therapeutic outcomes due to the failures in generating sufficient immune modulation and manipulating the accumulation of H+ that deteriorates bone damage. Herein, a highly effective immune modulatory nanocatalytic platform, nanoceria-loaded magnesium aluminum layered double hydroxide (LDH-CeO2 ), is proposed for enhanced immune modulation based on acid neutralization and metal ion inherent bioactivity. Specifically, the mild alkaline LDH initiates significant M2 repolarization of macrophages triggered by the elevated antioxidation effect of CeO2 via neutralizing excessive H+ in RA microenvironment, thus resulting in the efficient recruitment of regulatory T cell (Treg) and suppressions on T helper 17 cell (Th 17) and plasma cells. Moreover, the osteogenic activity is stimulated by the Mg ion released from LDH, thereby promoting the damaged bone healing. The encouraging therapeutic outcomes in adjuvant-induced RA model mice demonstrate the high feasibility of such a therapeutic concept, which provides a novel and efficient RA therapeutic modality by the immune modulatory and bone-repairing effects of inorganic nanocatalytic material.
Collapse
Affiliation(s)
- Hao Fu
- Shanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Yuedong Guo
- Platform of Nanomedicine TranslationShanghai Tenth People's HospitalMedical School of Tongji University38 Yun‐xin RoadShanghai200435P. R. China
| | - Wenming Fang
- Shanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Jiaxing Wang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong UniversityShanghai200233P. R. China
| | - Ping Hu
- Shanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Platform of Nanomedicine TranslationShanghai Tenth People's HospitalMedical School of Tongji University38 Yun‐xin RoadShanghai200435P. R. China
| | - Jianlin Shi
- Shanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Platform of Nanomedicine TranslationShanghai Tenth People's HospitalMedical School of Tongji University38 Yun‐xin RoadShanghai200435P. R. China
| |
Collapse
|
20
|
Li Q, Tang B, Liu X, Chen B, Wang X, Xiao H, Zheng Z. Overcoming the Dilemma of In Vivo Stable Adhesion and Sustained Degradation by the Molecular Design of Polyurethane Adhesives for Bone Fracture Repair. Adv Healthc Mater 2024; 13:e2301870. [PMID: 38145973 DOI: 10.1002/adhm.202301870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/27/2023] [Indexed: 12/27/2023]
Abstract
Bone adhesive is a promising candidate to revolutionize the clinical treatment of bone repairs. However, several drawbacks have limited its further clinical application, such as unreliable wet adhesive performance leading to fixation failure and poor biodegradability inhibiting bone tissue growth. By incorporating catechol groups and disulfide bonds into polyurethane (PU) molecules, an injectable and porous PU adhesive is developed with both superior wet adhesion and biodegradability to facilitate the reduction and fixation of comminuted fractures and the subsequent regeneration of bone tissue. The bone adhesive can be cured within a reasonable time acceptable to a surgeon, and then the wet bone adhesive strength is near 1.30 MPa in 1 h. Finally, the wet adhesive strength to the cortical bone will achieve about 1.70 MPa, which is also five times more than nonresorbable poly(methyl methacrylate) bone cement. Besides, the cell culture experiments also indicate that the adhesives show excellent biocompatibility and osteogenic ability in vitro. Especially, it can degrade in vivo gradually and promote fracture healing in the rabbit iliac fracture model. These results demonstrate that this ingenious bone adhesive exhibits great potential in the treatment of comminuted fractures, providing fresh insights into the development of clinically applicable bone adhesives.
Collapse
Affiliation(s)
- Qiang Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bo Tang
- Department of Orthopedics, Central Hospital of Fengxian District, Sixth People's Hospital of Shanghai, Shanghai, 201400, China
- The Third Clinical Medical College of Southern Medical University, Guangzhou, 510630, China
| | - Xinchang Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Buyun Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinling Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haijun Xiao
- Department of Orthopedics, Central Hospital of Fengxian District, Sixth People's Hospital of Shanghai, Shanghai, 201400, China
- The Third Clinical Medical College of Southern Medical University, Guangzhou, 510630, China
| | - Zhen Zheng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
21
|
Ramanathan S, Lin YC, Thirumurugan S, Hu CC, Duann YF, Chung RJ. Poly(methyl methacrylate) in Orthopedics: Strategies, Challenges, and Prospects in Bone Tissue Engineering. Polymers (Basel) 2024; 16:367. [PMID: 38337256 DOI: 10.3390/polym16030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Poly(methyl methacrylate) (PMMA) is widely used in orthopedic applications, including bone cement in total joint replacement surgery, bone fillers, and bone substitutes due to its affordability, biocompatibility, and processability. However, the bone regeneration efficiency of PMMA is limited because of its lack of bioactivity, poor osseointegration, and non-degradability. The use of bone cement also has disadvantages such as methyl methacrylate (MMA) release and high exothermic temperature during the polymerization of PMMA, which can cause thermal necrosis. To address these problems, various strategies have been adopted, such as surface modification techniques and the incorporation of various bioactive agents and biopolymers into PMMA. In this review, the physicochemical properties and synthesis methods of PMMA are discussed, with a special focus on the utilization of various PMMA composites in bone tissue engineering. Additionally, the challenges involved in incorporating PMMA into regenerative medicine are discussed with suitable research findings with the intention of providing insightful advice to support its successful clinical applications.
Collapse
Affiliation(s)
- Susaritha Ramanathan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linko, Taoyuan City 33305, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linko, Taoyuan City 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Yeh-Fang Duann
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
- High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
22
|
Zhu Z, Lin Y, Li L, Liu K, Wen W, Ding S, Liu M, Lu L, Zhou C, Luo B. 3D Printing Drug-Free Scaffold with Triple-Effect Combination Induced by Copper-Doped Layered Double Hydroxides for the Treatment of Bone Defects. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58196-58211. [PMID: 38079497 DOI: 10.1021/acsami.3c13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Tissue-engineered poly(l-lactide) (PLLA) scaffolds have been widely used to treat bone defects; however, poor biological activities have always been key challenges for its further application. To address this issue, introducing bioactive drugs or factors is the most commonly used method, but there are often many problems such as high cost, uncontrollable and monotonous drug activity, and poor bioavailability. Here, a drug-free 3D printing PLLA scaffold with a triple-effect combination induced by surface-modified copper-doped layered double hydroxides (Cu-LDHs) is proposed. In the early stage of scaffold implantation, Cu-LDHs exert a photothermal therapy (PTT) effect to generate high temperature to effectively prevent bacterial infection. In the later stage, Cu-LDHs can further have a mild hyperthermia (MHT) effect to stimulate angiogenesis and osteogenic differentiation, demonstrating excellent vascularization and osteogenic activity. More importantly, with the degradation of Cu-LDHs, the released Cu2+ and Mg2+ provide an ion microenvironment effect and further synergize with the MHT effect to stimulate angiogenesis and osteogenic differentiation, thus more effectively promoting the healing of bone tissue. This triple-effect combined scaffold exhibits outstanding antibacterial, osteogenic, and angiogenic activities, as well as the advantages of low cost, convenient procedure, and long-term efficacy, and is expected to provide a promising strategy for clinical repair of bone defects.
Collapse
Affiliation(s)
- Zelin Zhu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Yating Lin
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Lin Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Wei Wen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Shan Ding
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Mingxian Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Lu Lu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| |
Collapse
|
23
|
Yang C, Chen L, Yang P, Li S, Li R, Liu H, Peng F, Li M, Zhang D, Zheng D, Wang D, Zhong H. Chlorite-incorporated clay nanosheets as acid and H2O2-activated gas-bombs for combating peri-implant infection. APPLIED CLAY SCIENCE 2023; 245:107140. [DOI: 10.1016/j.clay.2023.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
|
24
|
Sui P, Yu T, Sun S, Chao B, Qin C, Wang J, Wang E, Zheng C. Advances in materials used for minimally invasive treatment of vertebral compression fractures. Front Bioeng Biotechnol 2023; 11:1303678. [PMID: 37954022 PMCID: PMC10634476 DOI: 10.3389/fbioe.2023.1303678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Vertebral compression fractures are becoming increasingly common with aging of the population; minimally invasive materials play an essential role in treating these fractures. However, the unacceptable processing-performance relationships of materials and their poor osteoinductive performance have limited their clinical application. In this review, we describe the advances in materials used for minimally invasive treatment of vertebral compression fractures and enumerate the types of bone cement commonly used in current practice. We also discuss the limitations of the materials themselves, and summarize the approaches for improving the characteristics of bone cement. Finally, we review the types and clinical efficacy of new vertebral implants. This review may provide valuable insights into newer strategies and methods for future research; it may also improve understanding on the application of minimally invasive materials for the treatment of vertebral compression fractures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changjun Zheng
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Yang S, Chen Z, Zhuang P, Tang Y, Chen Z, Wang F, Cai Z, Wei J, Cui W. Seamlessly Adhesive Bionic Periosteum Patches Via Filling Microcracks for Defective Bone Healing. SMALL METHODS 2023; 7:e2300370. [PMID: 37356079 DOI: 10.1002/smtd.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/30/2023] [Indexed: 06/27/2023]
Abstract
Current artificial designs of the periosteum focus on osteogenic or angiogenic properties, while ignoring the filling and integration with bone microcracks, which trigger a prolonged excessive inflammatory reaction and lead to failure of bone regeneration. In this study, seamless adhesive biomimetic periosteum patches (HABP/Sr-PLA) were prepared to fill microcracks in defective bone via interfacial self-assembly induced by Sr ions mediated metal-ligand interactions among pamidronate disodium-modified hyaluronic acid (HAPD), black phosphorus (BP), and hydrophilic polylactic acid (PLA). In vitro, HABP/Sr-PLA exhibited excellent self-healing properties, seamlessly filled bone microcracks, and significantly enhanced osteogenesis and angiogenesis. Furthermore, in a rat cranial defect model, HABP/Sr-PLA was demonstrated to significantly promote the formation of blood vessels and new bone under mild 808 nm photothermal stimulation (42.8 °C), and the highest protein expression of CD31 and OPN was five times higher than that of the control group and other groups. Therefore, the proposed seamless microcrack-filled bionic periosteum patch is a promising clinical strategy for promoting bone repair.
Collapse
Affiliation(s)
- Shu Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhijie Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Pengzhen Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zehao Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| |
Collapse
|
26
|
Cao Z, Bian Y, Hu T, Yang Y, Cui Z, Wang T, Yang S, Weng X, Liang R, Tan C. Recent advances in two-dimensional nanomaterials for bone tissue engineering. JOURNAL OF MATERIOMICS 2023; 9:930-958. [DOI: 10.1016/j.jmat.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Bian Y, Cai X, Lv Z, Xu Y, Wang H, Tan C, Liang R, Weng X. Layered Double Hydroxides: A Novel Promising 2D Nanomaterial for Bone Diseases Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301806. [PMID: 37329200 PMCID: PMC10460877 DOI: 10.1002/advs.202301806] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/07/2023] [Indexed: 06/18/2023]
Abstract
Bone diseases including bone defects, bone infections, osteoarthritis, and bone tumors seriously affect life quality of the patient and bring serious economic burdens to social health management, for which the current clinical treatments bear dissatisfactory therapeutic effects. Biomaterial-based strategies have been widely applied in the treatment of orthopedic diseases but are still plagued by deficient bioreactivity. With the development of nanotechnology, layered double hydroxides (LDHs) with adjustable metal ion composition and alterable interlayer structure possessing charming physicochemical characteristics, versatile bioactive properties, and excellent drug loading and delivery capabilities arise widespread attention and have achieved considerable achievements for bone disease treatment in the last decade. However, to the authors' best knowledge, no review has comprehensively summarized the advances of LDHs in treating bone disease so far. Herein, the advantages of LDHs for orthopedic disorders treatment are outlined and the corresponding state-of-the-art achievements are summarized for the first time. The potential of LDHs-based nanocomposites for extended therapeutics for bone diseases is highlighted and perspectives for LDHs-based scaffold design are proposed for facilitated clinical translation.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Xuejie Cai
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Yiming Xu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Han Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong KongP. R. China
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| |
Collapse
|
28
|
Miao X, Yang S, Zhu J, Gong Z, Wu D, Hong J, Cai K, Wang J, Fang X, Lu J, Jiang G. Bioactive mineralized small intestinal submucosa acellular matrix/PMMA bone cement for vertebral bone regeneration. Regen Biomater 2023; 10:rbad040. [PMID: 37250976 PMCID: PMC10224805 DOI: 10.1093/rb/rbad040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 05/31/2023] Open
Abstract
Polymethylmethacrylate (PMMA) bone cement extensively utilized for the treatment of osteoporotic vertebral compression fractures due to its exceptional handleability and mechanical properties. Nevertheless, the clinical application of PMMA bone cement is restricted by its poor bioactivity and excessively high modulus of elasticity. Herein, mineralized small intestinal submucosa (mSIS) was incorporated into PMMA to prepare a partially degradable bone cement (mSIS-PMMA) that provided suitable compressive strength and reduced elastic modulus compared to pure PMMA. The ability of mSIS-PMMA bone cement to promote the attachment, proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells was shown through cellular experiments carried out in vitro, and an animal osteoporosis model validated its potential to improve osseointegration. Considering these benefits, mSIS-PMMA bone cement shows promising potential as an injectable biomaterial for orthopedic procedures that require bone augmentation.
Collapse
Affiliation(s)
| | | | | | - Zhe Gong
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System, Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Dongze Wu
- Department of Spinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang, China
| | - Juncong Hong
- Department of Anesthesiology, The First People’s Hospital of Linping District, Hangzhou 311100, Zhejiang, China
| | - Kaiwen Cai
- Department of Spinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang, China
| | - Jiying Wang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System, Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | | | - Jiye Lu
- Correspondence address. E-mail: (G.J.); (J.L.); (X.F.)
| | | |
Collapse
|
29
|
Bian Y, Hu T, Lv Z, Xu Y, Wang Y, Wang H, Zhu W, Feng B, Liang R, Tan C, Weng X. Bone tissue engineering for treating osteonecrosis of the femoral head. EXPLORATION (BEIJING, CHINA) 2023; 3:20210105. [PMID: 37324030 PMCID: PMC10190954 DOI: 10.1002/exp.20210105] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/12/2022] [Indexed: 06/16/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a devastating and complicated disease with an unclear etiology. Femoral head-preserving surgeries have been devoted to delaying and hindering the collapse of the femoral head since their introduction in the last century. However, the isolated femoral head-preserving surgeries cannot prevent the natural progression of ONFH, and the combination of autogenous or allogeneic bone grafting often leads to many undesired complications. To tackle this dilemma, bone tissue engineering has been widely developed to compensate for the deficiencies of these surgeries. During the last decades, great progress has been made in ingenious bone tissue engineering for ONFH treatment. Herein, we comprehensively summarize the state-of-the-art progress made in bone tissue engineering for ONFH treatment. The definition, classification, etiology, diagnosis, and current treatments of ONFH are first described. Then, the recent progress in the development of various bone-repairing biomaterials, including bioceramics, natural polymers, synthetic polymers, and metals, for treating ONFH is presented. Thereafter, regenerative therapies for ONFH treatment are also discussed. Finally, we give some personal insights on the current challenges of these therapeutic strategies in the clinic and the future development of bone tissue engineering for ONFH treatment.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Tingting Hu
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yiming Xu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yingjie Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Han Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Wei Zhu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Bin Feng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Chaoliang Tan
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARChina
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
30
|
Wang Z, Yang H, Xu X, Hu H, Bai Y, Hai J, Cheng L, Zhu R. Ion elemental-optimized layered double hydroxide nanoparticles promote chondrogenic differentiation and intervertebral disc regeneration of mesenchymal stem cells through focal adhesion signaling pathway. Bioact Mater 2023; 22:75-90. [PMID: 36203960 PMCID: PMC9520222 DOI: 10.1016/j.bioactmat.2022.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022] Open
Abstract
Chronic low back pain and dyskinesia caused by intervertebral disc degeneration (IDD) are seriously aggravated and become more prevalent with age. Current clinical treatments do not restore the biological structure and inherent function of the disc. The emergence of tissue engineering and regenerative medicine has provided new insights into the treatment of IDD. We synthesized biocompatible layered double hydroxide (LDH) nanoparticles and optimized their ion elemental compositions to promote chondrogenic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs). The chondrogenic differentiation of LDH-treated MSCs was validated using Alcian blue staining, qPCR, and immunofluorescence analyses. LDH-pretreated hUC-MSCs were differentiated prior to transplantation into the degenerative site of a needle puncture IDD rat model. Repair and regeneration evaluated using X-ray, magnetic resonance imaging, and tissue immunostaining 4–12 weeks after transplantation showed recovery of the disc space height and integrated tissue structure. Transcriptome sequencing revealed significant regulatory roles of the extracellular matrix (ECM) and integrin receptors of focal adhesion signaling pathway in enhancing chondrogenic differentiation and thus prompting tissue regeneration. The construction of ion-specific LDH nanomaterials for in situ intervertebral disc regeneration through the focal adhesion signaling pathway provides theoretical basis for clinical transformation in IDD treatment. LDH nanoparticles with different elemental compositions are constructed to optimize the chondrogenic differentiation of hUC-MSCs. Optimized-LDH pretreated hUC-MSCs transplantation show recovery of disc space height and integrated tissue structure. ECM and focal adhesion signaling pathway play significant roles in LDH-promoted cell differentiation and tissue regeneration. Ion-specific optimizing LDH provides theoretical basis for clinical transformation on IDD treatment.
Collapse
|
31
|
Hu T, Shen W, Meng F, Yang S, Yu S, Li H, Zhang Q, Gu L, Tan C, Liang R. Boosting the Sonodynamic Cancer Therapy Performance of 2D Layered Double Hydroxide Nanosheet-Based Sonosensitizers Via Crystalline-to-Amorphous Phase Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209692. [PMID: 36780890 DOI: 10.1002/adma.202209692] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/15/2023] [Indexed: 05/17/2023]
Abstract
Sonodynamic therapy (SDT) has been a promising therapeutic modality for cancer because of its superior advantages compared with other therapeutic strategies. However, the current sonosensitizers used for SDT normally exhibit low activity for ultrasound (US)-induced reactive oxygen species (ROS) generation. Herein, the crystalline-to-amorphous phase transformation is reported as a simple but powerful strategy to engineer ultrathin 2D CoW-LDH and NiW-LDH nanosheets as highly efficient sonosensitizers for SDT. The phase transformation of CoW-LDH and NiW-LDH nanosheets from polycrystalline to amorphous ones is achieved through a simple acid etching treatment. Importantly, compared with the polycrystalline one, the amorphous CoW-LDH (a-CoW-LDH) nanosheets possess higher ROS generation activity under US irradiation, which is ≈17 times of the commercial TiO2 sonosensitizer. The results suggest that the enhanced performance of ultrathin a-CoW-LDH nanosheets for US-induced ROS generation may be attributed to the phase transformation-induced defect generation and electronic structure changes. After polyethylene glycol modification, the a-CoW-LDH nanosheets can serve as a high-efficiency sonosensitizer for SDT to achieve cell death in vitro and tumor eradication in vivo under US irradiation.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Weicheng Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shilong Yu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Hai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lin Gu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
32
|
Cai P, Lu S, Yu J, Xiao L, Wang J, Liang H, Huang L, Han G, Bian M, Zhang S, Zhang J, Liu C, Jiang L, Li Y. Injectable nanofiber-reinforced bone cement with controlled biodegradability for minimally-invasive bone regeneration. Bioact Mater 2023; 21:267-283. [PMID: 36157242 PMCID: PMC9477970 DOI: 10.1016/j.bioactmat.2022.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022] Open
Abstract
Injectable materials show their special merits in regeneration of damaged/degenerated bones in minimally-invasive approach. Injectable calcium phosphate bone cement (CPC) has attracted broad attention for its bioactivity, as compared to non-degradable polymethyl methacrylate cement. However, its brittleness, poor anti-washout property and uncontrollable biodegradability are the main challenges to limit its further clinical application mainly because of its stone-like dense structure and fragile inorganic-salt weakness. Herein, we developed a kind of injectable CPC bone cement with porous structure and improved robustness by incorporating poly(lactide-co-glycolic acid) (PLGA) nanofiber into CPC, with carboxymethyl cellulose (CMC) to offer good injectability as well as anti-wash-out capacity. Furthermore, the introduction of PLGA and CMC also enabled a formation of initial porous structure in the cements, where PLGA nanofiber endowed the cement with a dynamically controllable biodegradability which provided room for cell movement and bone ingrowth. Interestingly, the reinforced biodegradable cement afforded a sustainable provision of Ca2+ bioactive components, together with its porous structure, to improve synergistically new bone formation and osteo-integration in vivo by using a rat model of femur condyle defect. Further study on regenerative mechanisms indicated that the good minimally-invasive bone regeneration may come from the synergistic enhanced osteogenic effect of calcium ion enrichment and the improved revascularization capacity contributed from the porosity as well as the lactic acid released from PLGA nanofiber. These results indicate the injectable bone cement with high strength, anti-washout property and controllable biodegradability is a promising candidate for bone regeneration in a minimally-invasive approach. Poly (lactide-co-glycolide) nanofiber incorporation reinforces the brittle CPC bone cement. The introduction of carboxymethyl cellulose offers good injectability and anti-washout resistance. PLGA nanofiber controllable biodegradability dynamically creates potential pores for bone formation and ingrowth. The cement continuously releases Ca2+ and lactic acid to improve bone regeneration and revascularization efficacy.
Collapse
|
33
|
Wang T, Liu K, Wang J, Xiang G, Hu X, Bai H, Lei W, Tao TH, Feng Y. Spatiotemporal Regulation of Injectable Heterogeneous Silk Gel Scaffolds for Accelerating Guided Vertebral Repair. Adv Healthc Mater 2023; 12:e2202210. [PMID: 36465008 DOI: 10.1002/adhm.202202210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Osteoporotic vertebral fracture is jeopardizing the health of the aged population around the world, while the hypoxia microenvironment and oxidative damage of bone defect make it difficult to perform effective tissue regeneration. The balance of oxidative stress and the coupling of vessel and bone ingrowth are critical for bone regeneration. In this study, an injectable heterogeneous silk gel scaffold which can spatiotemporally and sustainedly release bone mesenchymal stem cell-derived small extracellular vesicles, HIF-1α pathway activator, and inhibitor is developed for bone repair and vertebral reinforcement. The initial enhancement of HIF-1α upregulates the expression of VEGF to promote angiogenesis, and the balance of reactive oxygen species level is regulated to effectively eliminate oxidative damage and abnormal microenvironment. The subsequent inhibition of HIF-1α avoids the overexpression of VEGF and vascular overgrowth. Meanwhile, complex macroporous structures and suitable mechanical support can be obtained within the silk gel scaffolds, which will promote in situ bone regeneration. These findings provide a new clinical translation strategy for osteoporotic vertebral augmentation on basis of hypoxia microenvironment improvement.
Collapse
Affiliation(s)
- Tianji Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Keyin Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jing Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Geng Xiang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaofan Hu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Bai
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China.,Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, 200031, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 200031, China
| | - Yafei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
34
|
Zhu B, Qu F, Bi D, Geng R, Chen S, Zhu J. Monolayer LDH Nanosheets with Ultrahigh ICG Loading for Phototherapy and Ca 2+-Induced Mitochondrial Membrane Potential Damage to Co-Enhance Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9135-9149. [PMID: 36753759 DOI: 10.1021/acsami.2c22338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tumor recurrence and metastasis are the main causes of cancer mortality; traditional chemotherapeutic drugs have severe toxicity and side effects in cancer treatment. To overcome these issues, here, we present a pH-responsive, self-destructive intelligent nanoplatform for magnetic resonance/fluorescence dual-mode image-guided mitochondrial membrane potential damage (MMPD)/photodynamic (PDT)/photothermal (PTT)/immunotherapy for breast cancer treatment with external near infrared (NIR) light irradiation. To do so, we construct multifunctional monolayer-layered double hydroxide (LDH) nanosheets (MICaP), co-loading indocyanine green (ICG) with ultrahigh loading content realized via electrostatic interactions, and calcium phosphate (Ca3(PO4)2) coating via biomineralization. Such a combined therapy design is featured by the outstanding biocompatibility and provokes immunogenic cell death (ICD) of tumors toward cancer immunotherapy. The active transport of excess Ca2+ released from pH-sensitive Ca3(PO4)2 can induce MMPD of tumor cells to minimize oxygen consumption in the tumor microenvironment (TME). The presence of ICG not only generates singlet oxygen (1O2) to induce apoptosis by photodynamic therapy (PDT) but also initiates tumor cell necrosis by photothermal therapy (PTT) under near-infrared (NIR) light radiation. Eventually, the immune response generated by MMPD/PDT/PTT greatly promotes a cytotoxic T lymphocyte (CTL) response that can limit tumor growth and metastasis. Both in vitro and in vivo studies indeed illustrate outstanding antitumor efficiency and outcomes. We anticipate that such precisely designed nanoformulations can contribute in a useful and advantageous way that is conducive to explore novel nanomedicines with notable values in antitumor therapy.
Collapse
Affiliation(s)
- Bengao Zhu
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Fei Qu
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Duohang Bi
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Rui Geng
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Senbin Chen
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| |
Collapse
|
35
|
Lv Z, Hu T, Bian Y, Wang G, Wu Z, Li H, Liu X, Yang S, Tan C, Liang R, Weng X. A MgFe-LDH Nanosheet-Incorporated Smart Thermo-Responsive Hydrogel with Controllable Growth Factor Releasing Capability for Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206545. [PMID: 36426823 DOI: 10.1002/adma.202206545] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Although growth factor (GF)-loaded hydrogels have been explored as promising materials in repairing bone defects, it still remains challenging to construct smart hydrogels with excellent gelation/mechanical properties as well as controllable GF releasing capability. Herein, the incorporation of bone morphogenetic protein 2 (BMP-2)-functionalized MgFe-layered double hydroxide (LDH) nanosheets into chitosan/silk fibroin (CS) hydrogels loaded with platelet-derived growth factor-BB (PDGF-BB) to construct a smart injectable thermo-responsive hydrogel (denoted as CSP-LB), which can achieve a burst release of PDGF-BB and a sustained release of BMP-2, for highly efficient bone regeneration is reported. The incorporation of MgFe-LDH in CS hydrogel not only shortens the gelation time and decreases sol-gel transition temperature, but also enhances the mechanical property of the hydrogel. Because of the sequential release of dual-GFs and sustained release of bioactive Mg2+ /Fe3+ ions, the in vitro experiments prove that the CSP-LB hydrogel exhibits excellent angiogenic and osteogenic properties compared with the CS hydrogel. In vivo experiments further prove that the CSP-LB hydrogel can significantly enhance bone regeneration with higher bone volume and mineral density than that of the CS hydrogel. This smart thermo-sensitive CSP-LB hydrogel possesses excellent gelation capability and angiogenic and osteogenic properties, thus providing a promising minimally invasive solution for bone defect treatment.
Collapse
Affiliation(s)
- Zehui Lv
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yixin Bian
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Guanyun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhikang Wu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Hai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xueyan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| |
Collapse
|
36
|
Liu J, Li L, Zhang R, Xu ZP. The adjacent effect between Gd(III) and Cu(II) in layered double hydroxide nanoparticles synergistically enhances T1-weighted magnetic resonance imaging contrast. NANOSCALE HORIZONS 2023; 8:279-290. [PMID: 36606452 DOI: 10.1039/d2nh00478j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Magnetic resonance imaging (MRI) is one key technology in modern diagnostic medicine. However, the development of high-relaxivity contrast agents with favorable properties for imaging applications remains a challenging task. In this work, dual Gd(III) and Cu(II) doped-layered double hydroxide (GdCu-LDH) nanoparticles show significantly higher longitudinal relaxivity compared with sole-metal-based LDH (Gd-LDH and Cu-LDH) nanoparticles. This relaxation enhancement in GdCu-LDH is also much greater than the simple addition of the relaxivity rate of the two paramagnetic ions in Gd-LDH and Cu-LDH, presumably attributed to synergistic T1 shortening between adjacent Gd(III) and Cu(II) in the LDH host layers (adjacent effect). Moreover, our GdCu-LDH nanoparticles exhibit a pH-ultrasensitive property in MRI performance and show much clearer MR imaging for tumor tissues in mice than Gd-LDH and Cu-LDH at the equivalent doses. Thus, these novel Gd/Cu-co-doped LDH nanoparticles provide higher potential for accurate cancer diagnosis in clinic application. To the best of our knowledge, this is the first report that two paramagnetic metal ions in one nanoparticle synergistically improve the T1-MRI contrast.
Collapse
Affiliation(s)
- Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia.
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, P. R. China, 518107
| |
Collapse
|
37
|
Constantino VRL, Figueiredo MP, Magri VR, Eulálio D, Cunha VRR, Alcântara ACS, Perotti GF. Biomaterials Based on Organic Polymers and Layered Double Hydroxides Nanocomposites: Drug Delivery and Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020413. [PMID: 36839735 PMCID: PMC9961265 DOI: 10.3390/pharmaceutics15020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
The development of biomaterials has a substantial role in pharmaceutical and medical strategies for the enhancement of life quality. This review work focused on versatile biomaterials based on nanocomposites comprising organic polymers and a class of layered inorganic nanoparticles, aiming for drug delivery (oral, transdermal, and ocular delivery) and tissue engineering (skin and bone therapies). Layered double hydroxides (LDHs) are 2D nanomaterials that can intercalate anionic bioactive species between the layers. The layers can hold metal cations that confer intrinsic biological activity to LDHs as well as biocompatibility. The intercalation of bioactive species between the layers allows the formation of drug delivery systems with elevated loading capacity and modified release profiles promoted by ion exchange and/or solubilization. The capacity of tissue integration, antigenicity, and stimulation of collagen formation, among other beneficial characteristics of LDH, have been observed by in vivo assays. The association between the properties of biocompatible polymers and LDH-drug nanohybrids produces multifunctional nanocomposites compatible with living matter. Such nanocomposites are stimuli-responsive, show appropriate mechanical properties, and can be prepared by creative methods that allow a fine-tuning of drug release. They are processed in the end form of films, beads, gels, monoliths etc., to reach orientated therapeutic applications. Several studies attest to the higher performance of polymer/LDH-drug nanocomposite compared to the LDH-drug hybrid or the free drug.
Collapse
Affiliation(s)
- Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
- Correspondence: ; Tel.: +55-11-3091-9152
| | - Mariana Pires Figueiredo
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Vagner Roberto Magri
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Denise Eulálio
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Vanessa Roberta Rodrigues Cunha
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso (IFMT), Linha J, s/n–Zona Rural, Juína 78320-000, MT, Brazil
| | | | - Gustavo Frigi Perotti
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Itacoatiara 69103-128, AM, Brazil
| |
Collapse
|
38
|
Zhao X, Ma H, Han H, Zhang L, Tian J, Lei B, Zhang Y. Precision medicine strategies for spinal degenerative diseases: Injectable biomaterials with in situ repair and regeneration. Mater Today Bio 2022; 16:100336. [PMID: 35799898 PMCID: PMC9254127 DOI: 10.1016/j.mtbio.2022.100336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022]
Abstract
As the population ages, spinal degeneration seriously affects quality of life in middle-aged and elderly patients, and prevention and treatment remain challenging for clinical surgeons. In recent years, biomaterials-based injectable therapeutics have attracted much attention for spinal degeneration treatment due to their minimally invasive features and ability to perform precise repair of irregular defects. However, the precise design and functional control of bioactive injectable biomaterials for efficient spinal degeneration treatment remains a challenge. Although many injectable biomaterials have been reported for the treatment of spinal degeneration, there are few reviews on the advances and effects of injectable biomaterials for spinal degeneration treatment. This work reviews the current status of the design and fabrication of injectable biomaterials, including hydrogels, bone cements and scaffolds, microspheres and nanomaterials, and the current progress in applications for treating spinal degeneration. Additionally, registered clinical trials were also summarized and key challenges and clinical translational prospects for injectable materials for the treatment of spinal degenerative diseases are discussed.
Collapse
|
39
|
Ge YW, Fan ZH, Ke QF, Guo YP, Zhang CQ, Jia WT. SrFe12O19-doped nano-layered double hydroxide/chitosan layered scaffolds with a nacre-mimetic architecture guide in situ bone ingrowth and regulate bone homeostasis. Mater Today Bio 2022; 16:100362. [PMID: 35937572 PMCID: PMC9352545 DOI: 10.1016/j.mtbio.2022.100362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 07/09/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoporotic bone defects result from an imbalance in bone homeostasis, excessive osteoclast activity, and the weakening of osteogenic mineralization, resulting in impaired bone regeneration. Herein, inspired by the hierarchical structures of mollusk nacre, nacre exhibits outstanding high-strength mechanical properties, which are in part due to its delicate layered structure. SrFe12O19 nanoparticles and nano-layered double hydroxide (LDH) were incorporated into a bioactive chitosan (CS) matrix to form multifunctional layered nano-SrFe12O19-LDH/CS scaffolds. The compressive stress value of the internal ordered layer structure matches the trabecular bone (0.18 MPa). The as-released Mg2+ ions from the nano-LDH can inhibit bone resorption in osteoclasts by inhibiting the NFκB signaling pathway. At the same time, the as-released Sr2+ ions promote the high expression of osteoblast collagen 1 proteins and accelerate bone mineralization by activating the BMP-2/SMAD signaling pathway. In vivo, the Mg2+ ions released from the SrFe12O19-LDH/CS scaffolds inhibited the release of pro-inflammatory factors (IL-1β and TNF-α), while the as-released Sr2+ ions promoted osteoblastic proliferation and the mineralization of osteoblasts inside the layered SrFe12O19-LDH/CS scaffolds. Immunofluorescence for OPG, RANKL, and CD31, showed that stable vasculature could be formed inside the layered SrFe12O19-LDH/CS scaffolds. Hence, this study on multifunctional SrFe12O19-LDH/CS scaffolds clarifies the regulatory mechanism of osteoporotic bone regeneration and is expected to provide a theoretical basis for the research, development, and clinical application of this scaffold on osteoporotic bone defects. 1, SrFe12O19 nanoparticles and LDH were incorporated into a bioactive CS matrix. 2, SrFe12O19-LDH/CS scaffolds were prepared as a layered scaffold to increase mechanical strength. 3, The slow release of Mg2+ and Sr2+ could maintain bone homeostasis. 4, The scaffolds also promote the formation of new blood vessels.
Collapse
|
40
|
Tschauner S, Singer G, Weitzer CU, Castellani C, Till H, Sorantin E, Wegmann H. Does Calcium Phosphate Cement Kyphoplasty Cause Intervertebral Disk Degeneration in Adolescents? Cartilage 2022; 13:77-86. [PMID: 36254621 PMCID: PMC9924988 DOI: 10.1177/19476035221126354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Balloon kyphoplasty with polymethylmethacrylate (PMMA) represents the standard procedure for the treatment of thoracic and lumbar type A compression fractures. However, an increased degeneration in adjacent intervertebral disks following PMMA kyphoplasty has been demonstrated in elderly patients. Calcium phosphate cement (CPC) appears to be superior to PMMA for the intravertebral stabilization in younger patients. It remains unkown whether CPC kyphoplasty causes degeneration of adjacent disks in adolescents. DESIGN Seven adolescents with thoracolumbar spine fractures underwent kyphoplasty at a mean age of 14.5 years (range 10-18). At a mean follow-up of 3.7 years (range 1 to 4.8) postoperatively, 3.0 Tesla magnetic resonance imaging (MRI) of the spine was performed to assess intervertebral disk degeneration by quantitative T2 relaxation maps and subjective ratings using modified Pfirrmann scores. A total of 56 intervertebral disks was analyzed. Initial computed tomography (CT) examinations served as basis to assess the severity of adjacent endplate injuries in terms of articular step-offs. RESULTS Initial imaging detected 18 thoracolumbar vertebral body fractures of which 9 were treated with CPC kyphoplasty. Quantitative follow-up MRI revealed signs of degeneration in 10 (17.9%) of the examined 56 intervertebral disks, 7 of them adjacent to a previously fractured vertebral body. Signs of disk degeneration were significantly higher in caudal endplates with articular step-offs larger than 5 mm compared to fractured vertebral bodies without endplate step-offs. CONCLUSIONS Quantitative MRI follow-ups did not suggest CPC-related intervertebral disk degradations following thoracolumbar kyphoplasty in adolescents, but indicated disk alterations correlating to adjacent endplate fracture severity.
Collapse
Affiliation(s)
- Sebastian Tschauner
- Division of Pediatric Radiology,
Department of Radiology, Medical University of Graz, Graz, Austria
| | - Georg Singer
- Department of Pediatric and Adolescent
Surgery, Medical University of Graz, Graz, Austria,Georg Singer, Department of Pediatric and
Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz,
Austria.
| | - Claus-Uwe Weitzer
- Department of Pediatric and Adolescent
Surgery, Medical University of Graz, Graz, Austria
| | - Christoph Castellani
- Department of Pediatric and Adolescent
Surgery, Medical University of Graz, Graz, Austria
| | - Holger Till
- Department of Pediatric and Adolescent
Surgery, Medical University of Graz, Graz, Austria
| | - Erich Sorantin
- Division of Pediatric Radiology,
Department of Radiology, Medical University of Graz, Graz, Austria
| | - Helmut Wegmann
- Department of Pediatric and Adolescent
Surgery, Medical University of Graz, Graz, Austria,Department of Trauma Surgery, Klinikum
Rechts Der Isar, School of Medicine, Technical University of Munich, Munich,
Germany
| |
Collapse
|
41
|
Zhang H, Cui Y, Zhuo X, Kim J, Li H, Li S, Yang H, Su K, Liu C, Tian P, Li X, Li L, Wang D, Zhao L, Wang J, Cui X, Li B, Pan H. Biological Fixation of Bioactive Bone Cement in Vertebroplasty: The First Clinical Investigation of Borosilicate Glass (BSG) Reinforced PMMA Bone Cement. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51711-51727. [PMID: 36354323 DOI: 10.1021/acsami.2c15250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
PMMA bone cement has been clinically used for decades in vertebroplasty due to its high mechanical strength and satisfactory injectability. However, the interface between bone and PMMA is fragile and more prone to refracture in situ because PMMA lacks a proper biological response from the host bone with minimal bone integration and dense fibrous tissue formation. Here, we modified PMMA by incoporating borosilicate glass (BSG) with a dual glass network of [BO3] and [SiO4], which spontaneously modulates immunity and osteogenesis. In particular, the BSG modified PMMA bone cement (abbreviated as BSG/PMMA cement) provided an alkaline microenvironment that spontaneously balanced the activities between osteoclasts and osteoblasts. Furthermore, the trace elements released from the BSGs enhanced the osteogenesis to strengthen the interface between the host bone and the implant. This study shows the first clinical case after implantation of BSG/PMMA for three months using the dual-energy CT, which found apatite nucleation around PMMA instead of fibrous tissues, indicating the biological interface was formed. Therefore, BSG/PMMA is promising as a biomaterial in vertebroplasty, overcoming the drawback of PMMA by improving the biological response from the host bone.
Collapse
Affiliation(s)
- Hao Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yinglin Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xianglong Zhuo
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, Guangxi, China
| | - Jua Kim
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Honglong Li
- Shenzhen Healthemes Biotechnology Co., Ltd, Shenzhen 518120, China
| | - Shuaijie Li
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Hongsheng Yang
- Shenzhen Healthemes Biotechnology Co., Ltd, Shenzhen 518120, China
| | - Kun Su
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chunyu Liu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pengfei Tian
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian Li
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Li
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, Guangxi, China
| | - Deping Wang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Limin Zhao
- Shenzhen Longhua District Central Hospital/The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen 518110, China
| | - Jianyun Wang
- Shenzhen Healthemes Biotechnology Co., Ltd, Shenzhen 518120, China
| | - Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bing Li
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, Guangxi, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
42
|
Wang G, Lv Z, Wang T, Hu T, Bian Y, Yang Y, Liang R, Tan C, Weng X. Surface Functionalization of Hydroxyapatite Scaffolds with MgAlEu-LDH Nanosheets for High-Performance Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204234. [PMID: 36394157 PMCID: PMC9811441 DOI: 10.1002/advs.202204234] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/14/2022] [Indexed: 05/10/2023]
Abstract
Although artificial bone repair scaffolds, such as titanium alloy, bioactive glass, and hydroxyapatite (HAp), have been widely used for treatment of large-size bone defects or serious bone destruction, they normally exhibit unsatisfied bone repair efficiency because of their weak osteogenic and angiogenesis performance as well as poor cell crawling and adhesion properties. Herein, the surface functionalization of MgAlEu-layered double hydroxide (MAE-LDH) nanosheets on porous HAp scaffolds is reported as a simple and effective strategy to prepare HAp/MAE-LDH scaffolds for enhanced bone regeneration. The surface functionalization of MAE-LDHs on the porous HAp scaffold can significantly improve its surface roughness, specific surface, and hydrophilicity, thus effectively boosting the cells adhesion and osteogenic differentiation. Importantly, the MAE-LDHs grown on HAp scaffolds enable the sustained release of Mg2+ and Eu3+ ions for efficient bone repair and vascular regeneration. In vitro experiments suggest that the HAp/MAE-LDH scaffold presents much enhanced osteogenesis and angiogenesis properties in comparison with the pristine HAp scaffold. In vivo assays further reveal that the new bone mass and mineral density of HAp/MAE-LDH scaffold increased by 3.18- and 2.21-fold, respectively, than that of pristine HAp scaffold. The transcriptome sequencing analysis reveals that the HAp/MAE-LDH scaffold can activate the Wnt/β-catenin signaling pathway to promote the osteogenic and angiogenic abilities.
Collapse
Affiliation(s)
- Guanyun Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| | - Tao Wang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| | - Yu Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong Kong SARChina
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| |
Collapse
|
43
|
Wang X, Fang X, Gao X, Wang H, Li S, Li C, Qing Y, Qin Y. Strong adhesive and drug-loaded hydrogels for enhancing bone-implant interface fixation and anti-infection properties. Colloids Surf B Biointerfaces 2022; 219:112817. [PMID: 36084513 DOI: 10.1016/j.colsurfb.2022.112817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/19/2022]
Abstract
The bonding strength of the bone-titanium (Ti) implant interface is critical for patients undergoing joint replacement. However, current bone adhesives used in clinic have shortcomings, such as biological inertness, cytotoxicity, and lack of osteogenic ability. In this study, a simple and low-cost hydrogel-based bone adhesive was prepared to improve the osseointegration ability and anti-infection ability of the bone-implant interface. A multifunctional hydrogel was prepared by incorporating nano-hydroxyapatite (HA) on polyethyleneimine (PEI) and polyacrylic acid (PAA) (PEI/PAA-HA). It was shown that PEI/PAA-HA hydrogel exhibited good self-healing and strong adhesive ability. The adhesive strengths of bone-Ti and Ti-Ti were measured as 2.30 ± 0.15 MPa and 1.07 ± 0.07 MPa, respectively. Vancomycin (VAN) was loaded into the PEI/PAA-HA hydrogel (PEI/PAA-HA-VAN) via a simple immersion method. The PEI/PAA-HA-VAN showed excellent antibacterial effect by sustained release of VAN. In addition, the PEI/PAA-HA-VAN hydrogel exhibited excellent cytocompatibility promoting the expression of osteogenic genes and the deposition of mineralized matrix. Collectively, this strong adhesive hydrogel showed great potential in enhancing bone-implant interface fixation.
Collapse
Affiliation(s)
- Xingyue Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xu Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xin Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hao Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shihuai Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chen Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yunan Qing
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China.
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
44
|
Zhou Z, Li X, Hu T, Xue B, Chen H, Ma L, Liang R, Tan C. Molybdenum‐Based Nanomaterials for Photothermal Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Xiangqian Li
- School of Chemical and Environmental Engineering (Key Lab of Ecological Restoration in Hilly Areas) Pingdingshan University Pingdingshan 467000 P.R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| | - Baoli Xue
- Luoyang Key Laboratory of Organic Functional Molecules College of Food and Drug Luoyang Normal University Luoyang 471934 P.R. China
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang 443002 P.R. China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules College of Food and Drug Luoyang Normal University Luoyang 471934 P.R. China
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang 443002 P.R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| | - Chaoliang Tan
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Kowloon Hong Kong SAR 999077 P.R. China
- Department of Electrical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR 999077 P.R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P.R. China
| |
Collapse
|
45
|
Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev 2022; 51:6126-6176. [PMID: 35792076 DOI: 10.1039/d2cs00236a] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Against the backdrop of increased public health awareness, inorganic nanomaterials have been widely explored as promising nanoagents for various kinds of biomedical applications. Layered double hydroxides (LDHs), with versatile physicochemical advantages including excellent biocompatibility, pH-sensitive biodegradability, highly tunable chemical composition and structure, and ease of composite formation with other materials, have shown great promise in biomedical applications. In this review, we comprehensively summarize the recent advances in LDH-based nanomaterials for biomedical applications. Firstly, the material categories and advantages of LDH-based nanomaterials are discussed. The preparation and surface modification of LDH-based nanomaterials, including pristine LDHs, LDH-based nanocomposites and LDH-derived nanomaterials, are then described. Thereafter, we systematically describe the great potential of LDHs in biomedical applications including drug/gene delivery, bioimaging diagnosis, cancer therapy, biosensing, tissue engineering, and anti-bacteria. Finally, on the basis of the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Margarita Strimaite
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiajia Zha
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong. .,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
46
|
Jing G, Yang L, Wang H, Niu J, Li Y, Wang S. Interference of layered double hydroxide nanoparticles with pathways for biomedical applications. Adv Drug Deliv Rev 2022; 188:114451. [PMID: 35843506 DOI: 10.1016/j.addr.2022.114451] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/18/2022] [Accepted: 07/09/2022] [Indexed: 11/01/2022]
Abstract
Recent decades have witnessed a surge of explorations into the application of multifarious materials, especially biomedical applications. Among them, layered double hydroxides (LDHs) have been widely developed as typical inorganic layer materials to achieve remarkable advancements. Multiple physicochemical properties endow LDHs with excellent merits in biomedical applications. Moreover, LDH nanoplatforms could serve as "molecular switches", which are capable of the controlled release of payloads under specific physiological pH conditions but are stable during circulation in the bloodstream. In addition, LDHs themselves are composed of several specific cations and possess favorable biological effects or regulatory roles in various cellular functions. These advantages have caused LDHs to become increasingly of interest in the area of nanomedicine. Recent efforts have been devoted to revealing the potential factors that interfere with the biological pathways of LDH-based nanoparticles, such as their applications in shaping the functions of immune cells and in determining the fate of stem cells and tumor treatments, which are comprehensively described herein. In addition, several intracellular signaling pathways interfering with by LDHs in the above applications were also systematically expatiated. Finally, the future development and challenges of LDH-based nanomedicine are discussed in the context of the ultimate goal of practical clinical application.
Collapse
Affiliation(s)
- Guoxin Jing
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Linnan Yang
- Central Laboratory, First Affiliated Hospital, Anhui Medical University, Hefei, PR China
| | - Hong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Jintong Niu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Youyuan Li
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China.
| |
Collapse
|
47
|
Lin Z, Xiong Y, Meng W, Hu Y, Chen L, Chen L, Xue H, Panayi AC, Zhou W, Sun Y, Cao F, Liu G, Hu L, Yan C, Xie X, Lin C, Cai K, Feng Q, Mi B, Liu G. Exosomal PD-L1 induces osteogenic differentiation and promotes fracture healing by acting as an immunosuppressant. Bioact Mater 2022; 13:300-311. [PMID: 35224310 PMCID: PMC8844834 DOI: 10.1016/j.bioactmat.2021.10.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
A moderate inflammatory response at the early stages of fracture healing is necessary for callus formation. Over-active and continuous inflammation, however, impairs fracture healing and leads to excessive tissue damage. Adequate fracture healing could be promoted through suppression of local over-active immune cells in the fracture site. In the present study, we achieved an enriched concentration of PD-L1 from exosomes (Exos) of a genetically engineered Human Umbilical Vein Endothelial Cell (HUVECs), and demonstrated that exosomes overexpressing PD-L1 specifically bind to PD-1 on the T cell surface, suppressing the activation of T cells. Furthermore, exosomal PD-L1 induced Mesenchymal Stem Cells (MSCs) towards osteogenic differentiation when pre-cultured with T cells. Moreover, embedding of Exos into an injectable hydrogel allowed Exos delivery to the surrounding microenvironment in a time-released manner. Additionally, exosomal PD-L1, embedded in a hydrogel, markedly promoted callus formation and fracture healing in a murine model at the early over-active inflammation phase. Importantly, our results suggested that activation of T cells in the peripheral lymphatic tissues was inhibited after local administration of PD-L1-enriched Exos to the fracture sites, while T cells in distant immune organs such as the spleen were not affected. In summary, this study provides the first example of using PD-L1-enriched Exos for bone fracture repair, and highlights the potential of Hydrogel@Exos systems for bone fracture therapy through immune inhibitory effects.
Collapse
Affiliation(s)
- Ze Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Weilin Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Lili Chen
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yun Sun
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guodong Liu
- Medical Center of Trauma and War Injuries, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chenchen Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xudong Xie
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
48
|
Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy. Nat Commun 2022; 13:3384. [PMID: 35697679 PMCID: PMC9192653 DOI: 10.1038/s41467-022-31106-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/31/2022] [Indexed: 01/17/2023] Open
Abstract
Although two-dimensional (2D) layered double hydroxides (LDHs) have been widely used as efficient nanoagents for biological diagnosis and treatment, they have been found to be inert as photosensitizers (PSs) for photodynamic therapy (PDT). Herein, we report the defect engineering of ultrathin 2D CoMo-LDH and NiMo-LDH nanosheets as highly active inorganic PSs for PDT in the third near-infrared (NIR-III) window. Hydrothermal-synthesized 2D CoMo-LDH and NiMo-LDH nanosheets are etched via a simple acid treatment to obtain defect-rich CoMo-LDH and NiMo-LDH nanosheets. Importantly, the defect-rich CoMo-LDH nanosheets exhibit much higher activity (~97 times) for generation of reactive oxygen species than that of the pristine CoMo-LDH nanosheets under a NIR-III 1567 nm laser irradiation. Therefore, after modification with polyethylene glycol, the defect-rich CoMo-LDH nanosheets can be used as an efficient inorganic PS for PDT to efficiently induce cancer cells apoptosis in vitro and eradicate tumors in vivo under 1567 nm laser irradiation. Defect engineering of 2 dimensional layered double hydroxide sheets improves their photocatalytic activity. Here, the authors etch sheets in acid and show that the etched sheets generate substantially more reactive oxygen species that untreated sheets and the treated sheets can be used to kill cancer cells in vitro and in vivo.
Collapse
|
49
|
Biomimetic glycopeptide hydrogel coated PCL/nHA scaffold for enhanced cranial bone regeneration via macrophage M2 polarization-induced osteo-immunomodulation. Biomaterials 2022; 285:121538. [DOI: 10.1016/j.biomaterials.2022.121538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/29/2022] [Accepted: 04/20/2022] [Indexed: 01/11/2023]
|
50
|
Mei P, Jiang S, Mao L, Zhou Y, Gu K, Zhang C, Wang X, Lin K, Zhao C, Zhu M. In situ construction of flower-like nanostructured calcium silicate bioceramics for enhancing bone regeneration mediated via FAK/p38 signaling pathway. J Nanobiotechnology 2022; 20:162. [PMID: 35351145 PMCID: PMC8962168 DOI: 10.1186/s12951-022-01361-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/08/2022] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
The repair of tissue defects has attracted considerable attention and remained a substantial challenge. Calcium silicate (CaSiO3, CS) bioceramics have attracted the interest of researchers due to their excellent biodegradability. Recent studies have demonstrated that nanoscale-modified bioactive materials with favorable biodegradability could promote bone tissue regeneration, providing an alternative approach for the repair of bone defects. However, the direct construction of biodegradable nanostructures in situ on CS bioceramics was still difficult.
Results
In this study, flower-like nanostructures were flexibly prepared in situ on biodegradable CS bioceramics via hydrothermal treatment. The flower-like nanostructure surfaces exhibited better hydrophilicity and more significantly stimulated cell adhesion, alkaline phosphatase (ALP) activity, and osteogenic differentiation. Furthermore, the CS bioceramics with flower-like nanostructures effectively promoted bone regeneration and were gradually replaced with newly formed bone due to the favorable biodegradability of these CS bioceramics. Importantly, we revealed an osteogenesis-related mechanism by which the FAK/p38 signaling pathway could be involved in the regulation of bone mesenchymal stem cell (BMSC) osteogenesis by the flower-like nanostructure surfaces.
Conclusions
Flower-like nanostructure surfaces on CS bioceramics exerted a strong effect on promoting bone repair and regeneration, suggesting their excellent potential as bone implant candidates for improving bone regeneration.
Graphical Abstract
Collapse
|