1
|
Uddin MM, Dip TM, Tushar SI, Sayam A, Anik HR, Aktar Arin MR, Talukder A, Sharma S. Triboelectric Nanogenerators for Self-Powered Degradation of Chemical Pollutants. ACS OMEGA 2025; 10:26-54. [PMID: 39829514 PMCID: PMC11740385 DOI: 10.1021/acsomega.4c07889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
Environmental and human health is severely threatened by wastewater and air pollution, which contain a broad spectrum of organic and inorganic pollutants. Organic contaminants include dyes, volatile organic compounds (VOCs), medical waste, antibiotics, pesticides, and chemical warfare agents. Inorganic gases such as CO2, SO2, and NO x are commonly found in polluted water and air. Traditional methods for pollutant removal, such as oxidation, physicochemical techniques, biotreatment, and enzymatic decomposition, often prove to be inefficient, costly, or energy-intensive. Contemporary solutions like nanofiber-based filters, activated carbon, and plant biomass also face challenges such as generating secondary contaminants and being time-consuming. In this context, triboelectric nanogenerators (TENGs) are emerging as promising alternatives. These devices harvest ambient mechanical energy and convert it to electrical energy, enabling the self-powered degradation of chemical pollutants. This Review summarizes recent progress and challenges in using TENGs as self-powered electrochemical systems (SPECs) for pollutant degradation via photocatalysis or electrocatalysis. The working principles of TENGs are discussed, focusing on their structural flexibility, operational modes, and ability to capture energy from low-frequency mechanical stimuli. The Review concludes with perspectives and suggestions for future research in this field, hoping to inspire further interest and innovation in developing TENG-based SPECs, which represent sustainable and eco-friendly solutions for pollutant treatment.
Collapse
Affiliation(s)
- Md Mazbah Uddin
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
| | - Tanvir Mahady Dip
- Department
of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
- Department
of Yarn Engineering, Bangladesh University
of Textiles, Dhaka 1208, Bangladesh
| | - Shariful Islam Tushar
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
- Department
of Design and Merchandising, Oklahoma State
University, Stillwater, Oklahoma 74078, United States
| | - Abdullah Sayam
- Department
of Textile Engineering, Ahsanullah University
of Science and Technology, Dhaka 1208, Bangladesh
| | - Habibur Rahman Anik
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
- Department
of Apparel Engineering, Bangladesh University
of Textiles, Dhaka 1208, Bangladesh
- Department
of Chemistry & Chemical and Biomedical Engineering, University of New Haven, New Haven, Connecticut 30605, United States
| | - Md. Reasat Aktar Arin
- Department
of Fabric Engineering, Bangladesh University
of Textiles, Dhaka 1208, Bangladesh
| | - Amit Talukder
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
| | - Suraj Sharma
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
He J, Wang X, Nan Y, Zhou H. Research Progress of Triboelectric Nanogenerators for Ocean Wave Energy Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2411074. [PMID: 39737754 DOI: 10.1002/smll.202411074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Indexed: 01/01/2025]
Abstract
The ocean wave energy is considered one of the most promising forms of marine blue energy due to its vast reserves and high energy density. However, traditional electromagnetic power generation technology suffers from drawbacks such as high maintenance costs, heavy structures, and low conversion efficiency, which restricts its application range. The triboelectric nanogenerator (TENG) uses Maxwell displacement current as its internal driving force, which can efficiently convert irregular, low-frequency, and dispersed mechanical energy into electrical energy. The generator utilizes the coupling effect between contact electrification and electrostatic induction, showing the significant advantages of light weight, high cost effectiveness, and easy expansion. Compared with traditional mechanical energy harvesting techniques such as electromagnetic generators, triboelectric nanogenerators exhibit higher efficiency and output performance in the low-frequency range. Thus, wave power generation technology based on triboelectric nanogenerators has emerged as a highly potential alternative in this field. Herein, recent progress to summarize the latest advancements in TENG-based ocean wave energy capture is reviewed. More importantly, the actual progress of TENG with different structures in wave energy harvesting is discussed, providing an overview of the current research status in this field for relevant researchers.
Collapse
Affiliation(s)
- Jingshun He
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiutong Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youbo Nan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhou
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Wu H, Li J, Du R, Liu L, Ou-Yang W. Study of Electrode Design and Inclination Angle for Superior Droplet-Driven TENG Performance. NANO LETTERS 2024; 24:15676-15682. [PMID: 39584745 DOI: 10.1021/acs.nanolett.4c04283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The urgent need for efficient water energy harvesting has led to the development of triboelectric nanogenerators (TENGs). In this study, considering the droplet spreading dynamics and the capacitive effects in a droplet-driven TENG (DD-TENG) device, an inverse relationship between the width of the top electrode and the output voltage was derived for the first time through a circuit model and was experimentally verified. Additionally, key performance parameters were optimized, including the types and widths of top electrodes, dropping height, inclination angle of the device, and solution types. A nonmonotonic relationship between the inclination angle of the device and the output voltage was established. Under optimal conditions, the output voltage of the DD-TENG achieved a 1133% increase compared to that of the device without a top electrode. The power density reached 1265 mW·m-2, which is among the state-of-the-art DD-TENG devices. These findings provide valuable insights for the performance improvement of DD-TENGs.
Collapse
Affiliation(s)
- Han Wu
- Department of Electronic Science and Technology, College of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
| | - Jun Li
- Department of Electronic Science and Technology, College of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
| | - Rui Du
- Department of Electronic Science and Technology, College of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
| | - Liqiang Liu
- Department of Electronic Science and Technology, College of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
| | - Wei Ou-Yang
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| |
Collapse
|
4
|
Dai K, Wang Y, Li B, Li P, Wang X, Gao L. Advancements in Solid-Liquid Nanogenerators: A Comprehensive Review and Future Prospects. Molecules 2024; 29:5716. [PMID: 39683874 DOI: 10.3390/molecules29235716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, the advent of the smart era has confronted a novel "energy crisis"-the challenge of distributed energy provision, necessitating an imperative for clean energy development. Encompassing 71% of the Earth's surface, water stands as the predominant conduit for energy transfer on our planet, effectively harnessing a fraction thereof to fulfill global energy demands. Modern hydropower technology primarily harnesses concentrated low-entropy water energy. However, the majority of natural water energy is widely dispersed in the environment as high-entropy distributed water energy, encompassing raindrop energy, stream energy, wave energy, evaporation energy, and other small-scale forms of water energy. While these energies are readily available, their collection poses significant challenges. Consequently, researchers initiated investigations into high-entropy water energy harvesting technology based on the electrodynamic effect, triboelectric effect, water volt effect, and other related phenomena. The present paper provides a comprehensive review of high-entropy water energy harvesting technologies, encompassing their underlying mechanisms, optimization strategies, and diverse applications. The current bottlenecks of these technologies are comprehensively analyzed, and their future development direction is prospectively discussed, thereby providing valuable guidance for future research on high-entropy water energy collection technology.
Collapse
Affiliation(s)
- Kejie Dai
- College of Electric and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Yan Wang
- College of Electric and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Baozeng Li
- College of Electric and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Pengfei Li
- College of Electric and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Xueqing Wang
- College of Electric and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Lingxiao Gao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
5
|
Wang W, Fu C, Du Y, Zheng H, Zhang Y, Song Y, Sun W, Wang X, Ma Q. Aqueous-Aqueous Triboelectric Nanogenerators Empowered Multifunctional Wound Healing System with Intensified Current Output for Accelerating Infected Wound Repair. Adv Healthc Mater 2024; 13:e2401676. [PMID: 38896055 DOI: 10.1002/adhm.202401676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Triboelectric nanogenerators (TENGs) have emerged as promising devices for generating self-powered therapeutic electrical stimulation over multiple aspects of wound healing. However, the challenge of achieving full 100% contact in conventional TENGs presents a substantial hurdle in the quest for higher current output, which is crucial for further improving healing efficacy. Here, a novel multifunctional wound healing system is presented by integrating the aqueous-aqueous triboelectric nanogenerators (A-A TENGs) with a functionalized conductive hydrogel, aimed at advancing infected wound therapy. The A-A TENGs are founded on a principle of 100% contact interface and efficient post-contact separation of the immiscible interface within the aqueous two-phase system (ATPS), enhancing charge transfer and subsequently increasing current performance. Leveraging this intensified current output, this system demonstrates efficient therapeutic efficacies over infected wounds both in vitro and in vivo, including stimulating fibroblast migration and proliferation, boosting angiogenesis, enhancing collagen deposition, eradicating bacteria, and reducing inflammatory cells. Moreover, the conductive hydrogel ensures the uniformity and integrity of the electric field covering the wound site, and exhibits multiple synergistic therapeutic effects. With the capability to realize accelerated wound healing, the developed "A-A TENGs empowered multifunctional wound healing system" presenting an excellent prospect in clinical wound therapy.
Collapse
Affiliation(s)
- Weijiang Wang
- School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Chongyang Fu
- College of Physics, Qingdao University, Qingdao, 266071, China
| | - Yanfeng Du
- College of Physics, Qingdao University, Qingdao, 266071, China
| | - Huiyuan Zheng
- School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Yage Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518055, China
| | - Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Xiaoxiong Wang
- College of Physics, Qingdao University, Qingdao, 266071, China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
6
|
Zhang Y, Su S, Zhang L, Gao Y, Wu C. Multifunctional Downhole Drilling Motor Speed Sensor Based on Triboelectric Nanogenerator. MICROMACHINES 2024; 15:1395. [PMID: 39597207 PMCID: PMC11596924 DOI: 10.3390/mi15111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
The measurement of downhole drilling motor rotational speed is crucial for optimizing drilling operations, improving work efficiency, and preventing equipment failures. However, traditional downhole rotational speed sensors suffer from power supply limitations, which can increase drilling costs. To address this issue, this study presents a novel multifunctional rotational speed sensor based on triboelectric nanogenerator (TENG) technology, enabling the self-powered measurement of rotational speed, direction, and angle. Our experimental results demonstrate that the sensor operates stably within a temperature range of 0 to 150 °C and a humidity range of 0 to 90%. It achieves rotational speed measurement with an accuracy of less than 2.5% error within a range of 0 to 1000 rpm, angular measurement with a resolution of 60 degrees and an error of less than 2% within a range of 0 to 360 degrees, and rotational direction measurement. Furthermore, the sensor exhibits self-powered functionality, achieving a maximum power output of 29.1 μW when the external load is 10 MΩ. Compared to conventional rotational speed sensors, this sensor possesses the unique advantage of integrating the measurement of rotational speed, angle, and direction, while simultaneously harnessing downhole working conditions for self-power generation. These characteristics make it highly suitable for practical downhole environments.
Collapse
Affiliation(s)
- Yanbo Zhang
- Shenhua Geological Exploration Co., Ltd., Beijing 100089, China; (Y.Z.); (L.Z.)
| | - Shida Su
- College of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Lei Zhang
- Shenhua Geological Exploration Co., Ltd., Beijing 100089, China; (Y.Z.); (L.Z.)
| | - Yulin Gao
- College of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chuan Wu
- Faculty of Mechanical and Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China;
| |
Collapse
|
7
|
Kulandaivel A, Potu S, Rajaboina RK, Khanapuram UK. Exploring Wettability: A Key to Optimizing Liquid-Solid Triboelectric Nanogenerators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58029-58059. [PMID: 39413400 DOI: 10.1021/acsami.4c10063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Nowadays, the liquid-solid triboelectric nanogenerator (L-S TENG) has gained much attention among researchers because of its ability to be a part of self-powering technology by harvesting ultra-low-frequency vibration in the environment. The L-S TENG works with the principle of contact electrification (CE) and electrostatic induction, in which CE takes place between the solid and liquid. The exact mechanism behind the CE at the L-S interface is still a debatable topic because many physical parameters of both solid and liquid triboelectric layers contribute to this process. In the L-S TENG device, water or solvents are commonly used as liquid triboelectric layers, for which their wettability over the solid triboelectric layer plays a significant role. Hence, this review is extensively focused on the influence of the wettability of solid surfaces on the CE and the corresponding impact on the output performance of L-S TENGs. The present review starts with introducing the L-S TENG, a mechanism that contributes to CE at the L-S interface, the significance of hydrophobic materials/surfaces in TENG devices, and their fabrication methods. Further, the impact of the contact angle over the electron/ion transfer over various surfaces has been extensively analyzed. Finally, the challenges and future prospects of the fabrication and utilization of superhydrophobic surfaces in the context of L-S TENGs have been included. This review serves as a foundation for future research aimed at optimizing the L-S TENG performance and inspiring new approaches in material design and multifunctional energy-harvesting systems.
Collapse
Affiliation(s)
- Anu Kulandaivel
- Energy Materials and Devices Laboratory, Department of Physics, National Institute of Technology, Warangal 506004, Telangana, India
| | - Supraja Potu
- Energy Materials and Devices Laboratory, Department of Physics, National Institute of Technology, Warangal 506004, Telangana, India
| | - Rakesh Kumar Rajaboina
- Energy Materials and Devices Laboratory, Department of Physics, National Institute of Technology, Warangal 506004, Telangana, India
| | - Uday Kumar Khanapuram
- Energy Materials and Devices Laboratory, Department of Physics, National Institute of Technology, Warangal 506004, Telangana, India
| |
Collapse
|
8
|
Chen H, Wang T, Sun Y, Chen Z, Yuan J, Luo L. Study on the Improvement of the Degradation Efficiency of Methylene Blue Using Pulsed Direct-Current Self-Power Supply. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20640-20647. [PMID: 39352040 DOI: 10.1021/acs.langmuir.4c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Effective treatment of dye wastewater is currently a great concern and a research hotspot. Electrocatalysis has unique advantages in treating toxic and harmful refractory dye wastewater; however, it requires an external power supply, which increases energy consumption and cost. As a new energy collection technology, triboelectric nanogenerators (TENGs) have gained considerable attention. In this study, an origami multilayer spherical friction nanogenerator (Q-TENG) was developed for the removal of methylene blue (MB) from dye wastewater. The current and voltage output performances of Q-TENG were explored, and the removal and degradation mechanisms of MB were discussed. Results indicated that when the water wave acceleration a = 3 m/s2, the open-circuit voltage and short-circuit current reached the maximum values of 179 V and 9.4 μA, respectively. The self-powered catalytic degradation of MB using Q-TENG can produce more •OH and SO4-•, and the free radicals increase with increasing action time of Q-TENG, thus increasing the degradation efficiency of MB. This study provides a new strategy for solving the problem of high energy consumption during electrochemical reactions in wastewater treatment.
Collapse
Affiliation(s)
- Haoqiu Chen
- Key Laboratory of Clean Pulp and Papermaking and Pollution Control of Guangxi,College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Tingting Wang
- Key Laboratory of Clean Pulp and Papermaking and Pollution Control of Guangxi,College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yanfen Sun
- Key Laboratory of Clean Pulp and Papermaking and Pollution Control of Guangxi,College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhiwei Chen
- Key Laboratory of Clean Pulp and Papermaking and Pollution Control of Guangxi,College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Juan Yuan
- Key Laboratory of Clean Pulp and Papermaking and Pollution Control of Guangxi,College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lianxin Luo
- Key Laboratory of Clean Pulp and Papermaking and Pollution Control of Guangxi,College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Yang S, Larionova T, Kobykhno I, Klinkov V, Shalnova S, Tolochko O. Graphene-Doped Thermoplastic Polyurethane Nanocomposite Film-Based Triboelectric Nanogenerator for Self-Powered Sport Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1549. [PMID: 39404278 PMCID: PMC11477666 DOI: 10.3390/nano14191549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Triboelectric nanogenerators (TENGs), as novel electronic devices for converting mechanical energy into electrical energy, are better suited as signal-testing sensors or as components within larger wearable Internet of Things (IoT) or Artificial Intelligence (AI) systems, where they handle small-device power supply and signal acquisition. Consequently, TENGs hold promising applications in self-powered sensor technology. As global energy supplies become increasingly tight, research into self-powered sensors has become critical. This study presents a self-powered sport sensor system utilizing a triboelectric nanogenerator (TENG), which incorporates a thermoplastic polyurethane (TPU) film doped with graphene and polytetrafluoroethylene (PTFE) as friction materials. The graphene-doped TPU nanocomposite film-based TENG (GT-TENG) demonstrates excellent working durability. Furthermore, the GT-TENG not only consistently powers an LED but also supplies energy to a sports timer and an electronic watch. It serves additionally as a self-powered sensor for monitoring human movement. The design of this self-powered motion sensor system effectively harnesses human kinetic energy, integrating it seamlessly with sport sensing capabilities.
Collapse
Affiliation(s)
- Shujie Yang
- Department of Physics and Materials Technology, Institute of Machinery, Materials and Transport, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; (S.Y.)
| | - Tatiana Larionova
- Department of Physics and Materials Technology, Institute of Machinery, Materials and Transport, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; (S.Y.)
| | - Ilya Kobykhno
- Department of Physics and Materials Technology, Institute of Machinery, Materials and Transport, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; (S.Y.)
| | - Victor Klinkov
- Department of Physics and Materials Technology, Institute of Machinery, Materials and Transport, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; (S.Y.)
| | - Svetlana Shalnova
- World-Class Research Center “Advanced Digital Technologies”, State Marine Technical University, Saint Petersburg 190121, Russia
| | - Oleg Tolochko
- Department of Physics and Materials Technology, Institute of Machinery, Materials and Transport, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; (S.Y.)
| |
Collapse
|
10
|
Liu D, Yang P, Gao Y, Liu N, Ye C, Zhou L, Zhang J, Guo Z, Wang J, Wang ZL. A Dual-Mode Triboelectric Nanogenerator for Efficiently Harvesting Droplet Energy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400698. [PMID: 38446055 DOI: 10.1002/smll.202400698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Triboelectric nanogenerator (TENG) is a promising solution to harvest the low-frequency, low-actuation-force, and high-entropy droplet energy. Conventional attempts mainly focus on maximizing electrostatic energy harvest on the liquid-solid surface, but enormous kinetic energy of droplet hitting the substrate is directly dissipated, limiting the output performance. Here, a dual-mode TENG (DM-TENG) is proposed to efficiently harvest both electrostatic energy at liquid-solid surface from a droplet TENG (D-TENG) and elastic potential energy of the vibrated cantilever from a contact-separation TENG (CS-TENG). Triggered by small droplets, the flexible cantilever beam, rather than conventional stiff ones, can easily vibrate multiple times with large amplitude, enabling frequency multiplication of CS-TENG and producing amplified output charges. Combining with the top electrode design to sufficiently utilize charges at liquid-solid interface, a record-high output charge of 158 nC is realized by single droplet. The energy conversion efficiency of DM-TENG is 2.66-fold of D-TENG. An array system with the specially designed power management circuit is also demonstrated for building self-powered system, offering promising applications for efficiently harvesting raindrop energy.
Collapse
Affiliation(s)
- Di Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peiyuan Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Yikui Gao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nian Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Cuiying Ye
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Linglin Zhou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
| | - Jiayue Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Ziting Guo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, 30332, USA
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
11
|
Jang S, Shah SA, Lee J, Cho S, Kam D, Ra Y, Lee D, Khawar MR, Yoo D, Ahmad A, Choi D. Beyond Metallic Electrode: Spontaneous Formation of Fluidic Electrodes from Operational Liquid in Highly Functional Droplet-Based Electricity Generator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403090. [PMID: 38695508 DOI: 10.1002/adma.202403090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/14/2024] [Indexed: 07/03/2024]
Abstract
The droplet-based electricity generator (DEG) has facilitated efficient droplet energy harvesting, yet diversifying its applications necessitates the incorporation of various to the DEG. This study first proposes a methodology for advancing the DEG by substituting its conventional metallic electrode with electrically conductive water electrode (WE), which is spontaneously generated during the operation of the DEG with operating liquid. Due to the inherent conductive and fluidic nature of water, the introduction of the WE maintains the electrical output performance of the DEG while imparting functionalities such as high transparency and flexibility. So, the resultant WE applied DEG (WE-DEG) exhibits high optical transmittance (≈99%) and retains its electricity-generating capability under varying deformations, including bending and stretching. This innovation expands the versatility of the DEG, and especially, a sun-raindrop dual-mode energy harvester is demonstrated by hybridizing the WE-DEG and photovoltaic (PV) cell. This hybridization effectively addresses the weather-dependent limitations inherent in each energy harvester and enhances the temperature-induced inefficiencies typically observed in PV cells, thereby enhancing the overall efficiency. The introduction of the WE will be poised to catalyze new developments in DEG research, paving the way for broader applicability and enhanced efficiency in droplet energy harvesting technologies.
Collapse
Affiliation(s)
- Sunmin Jang
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Soban Ali Shah
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jaehyun Lee
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Sumin Cho
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Dongik Kam
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Yoonsang Ra
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Donghan Lee
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Muhammad Ramzan Khawar
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Donghyeon Yoo
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Awais Ahmad
- Department of Chemistry, University of Lahore, Lahore, 54590, Pakistan
| | - Dongwhi Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| |
Collapse
|
12
|
Wang N, Jiang W, Yang J, Feng H, Zheng Y, Wang S, Li B, Heng JZX, Ong WC, Tan HR, Zhang YW, Wang D, Ye E, Li Z. Contact-electro-catalytic CO 2 reduction from ambient air. Nat Commun 2024; 15:5913. [PMID: 39003260 PMCID: PMC11246423 DOI: 10.1038/s41467-024-50118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/20/2024] [Indexed: 07/15/2024] Open
Abstract
Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO2 reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO2 adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO2 on quaternized CNF allows efficient CO2 capture at low concentrations, thus enabling the CO2 reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO2 reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 μmol g-1 h-1. This technique provides a solution for reducing airborne CO2 emissions while advancing chemical sustainability strategy.
Collapse
Affiliation(s)
- Nannan Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Wenbin Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Jing Yang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Haisong Feng
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Youbin Zheng
- Department of Electrical Engineering & Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 7GJ, UK
| | - Sheng Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Bofan Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Jerry Zhi Xiong Heng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Wai Chung Ong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Hui Ru Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Daoai Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 265503, China.
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore.
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore.
| |
Collapse
|
13
|
Wang W, Zhang Y, Wu G, Zhao Z, Wu Y, Zheng H. Triboelectric-electromagnetic hybrid nanogenerator for harvesting blue energy and creating an ocean wave warning system. NANOSCALE ADVANCES 2024; 6:3566-3572. [PMID: 38989526 PMCID: PMC11232546 DOI: 10.1039/d4na00222a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/06/2024] [Indexed: 07/12/2024]
Abstract
The abundant water wave energy on Earth stands as one of the most promising renewable blue energy sources, as it exhibits minimal dependence on weather, time and temperature. However, the low fluctuation frequency and extremely irregular nature of the wave energy restrict both the methods and efficiency of energy harvesting. In this study, a packed box-like hybrid nanogenerator was designed, comprising two single-electrode triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs). The outputs of both the TENG and EMG were demonstrated under different fluctuation frequencies and swing amplitudes, inspiring the development of a wave warning system. The maximum output voltage, current, and transferred charge of the single TENG, as part of hybrid nanogenerator (HG), reach approximately 110 V, 2.3 μA, and 50 nC, respectively. Its peak power reaches 85.3 μW under a resistance load of 20 MΩ at a frequency of 2 Hz. The EMG component produced maximum output voltages and currents of up to 0.45 V and 1.2 mA, respectively. The peak power is approximately 95.6 μW with a resistance load of 200 Ω. The output performances of the TENG and EMG increase linearly with the increase in the swing angle. Most importantly, a packed box-like hybrid nanogenerator can be conveniently packaged for harvesting energy from water waves. A wave energy collection array floating on the sea is proposed for harvesting blue energy and creating a self-powered ocean wave warning system.
Collapse
Affiliation(s)
- Weichao Wang
- School of Science, Xuchang University Xuchang 461000 China
| | - Yaju Zhang
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University Kaifeng 475004 China
| | - Guoxi Wu
- School of Science, Xuchang University Xuchang 461000 China
| | - Zhengyin Zhao
- School of Science, Xuchang University Xuchang 461000 China
| | - Yonghui Wu
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University Kaifeng 475004 China
| | - Haiwu Zheng
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University Kaifeng 475004 China
| |
Collapse
|
14
|
Zhang Y, Zhang J, Liu J, Chen Y, Zhou Y, Zhao Y, Zheng H, Liu X. Elastic Droplet-Based Magnetoelectric Generator for High-performance Energy Collection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33494-33503. [PMID: 38889354 DOI: 10.1021/acsami.4c05359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Conventional magnetoelectric generators are regarded as effective devices for harvesting concentrated hydraulic power but are ineffective for dispersed hydropower (e.g., raindrops) due to their bulkiness and immobility. Here, we propose a superhydrophobic magnetoelectric generator (MSMEG) based on an elastic magnetic film that can efficiently convert the energy of lightweight water droplets into electricity. The MSMEG consists of five parts: a superhydrophobic magnetic material-based film (SMMF), a coil, a NdFeB magnet, an acrylic housing, and an expandable polystyrene (EPS) base. The SMMF with coil can deform/recover when droplets impact/leave the MSMEG, resulting in a peak current, peak charge density, and peak power density of ∼13.02 mA, ∼1826.5 mC/m2, and ∼1413.0 mW/m2, respectively, with a load resistance of 47 Ω. Related working mechanism is analyzed through Maxwell numerical simulation, which is used for further guidance on increasing the electrical output of the MSMEG. Furthermore, the MSMEG can quickly charge a commercial capacitor with 2.7 V/1 F to 1.18 V within 200 s and power diverse electronic devices (e.g., light emitting diodes (LEDs), fans) with constant excitation by water droplets. We believe that such an MSMEG is expected to provide a promising strategy for efficiently harvesting dispersed raindrop energy.
Collapse
Affiliation(s)
- Yonghui Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiahao Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiyu Liu
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150000, P. R. China
| | - Yang Chen
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yuyang Zhou
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yue Zhao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Huanxi Zheng
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xin Liu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
15
|
Baraily M, Baro B, Boruah R, Bayan S. PVDF-HFP encapsulated WS 2nanosheets in droplet-based triboelectric nanogenerators for possible detection of human Na +/K +ion concentration. NANOTECHNOLOGY 2024; 35:365502. [PMID: 38861959 DOI: 10.1088/1361-6528/ad5684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Here we report the liquid-solid interaction in droplet-based triboelectric nanogenerators (TENG) for estimation of human Na+/K+levels. The exploitation of PVDF-HFP encapsulated WS2as active layer in the droplet-based TENG (DTENG) leads to the generation of electrical signal during the impact of water droplet. Comparison over the control devices indicates that surface quality and dielectric nature of the PVDF-HFP/WS2composite largely dictates the performance of the DTENG. The demonstration of excellent sensitivity of the DTENG towards water quality indicates its promising application towards water testing. In addition, the alteration in output signal with slightest variation in ionic concentration (Na+or K+) in water has been witnessed and is interpreted with charge transfer and ion transfer processes during liquid-solid interaction. The study reveals that the ion mobility largely affects the ion adsorption process on the active layer of PVDF-HFP/WS2and thus generates distinct output profiles for diverse ions like Na+and K+. Following that, the DTENG characteristics have been exploited to artificial urine where the varying output signals have been recorded for variation in urinary Na+ion concentration. Therefore, the deployment of PVDF-HFP/WS2in DTENG holds promising application towards the analyse of ionic characteristics of body fluids.
Collapse
Affiliation(s)
- Madhav Baraily
- Department of Physics, Rajiv Gandhi University, Doimukh, Arunachal Pradesh 791112, India
| | - Bikash Baro
- Department of Physics, Rajiv Gandhi University, Doimukh, Arunachal Pradesh 791112, India
| | - Ratan Boruah
- Sophisticated Analytical Instrumentation Centre, Tezpur University, Tezpur, Assam 782028, India
| | - Sayan Bayan
- Department of Physics, Rajiv Gandhi University, Doimukh, Arunachal Pradesh 791112, India
| |
Collapse
|
16
|
Yang R. A multifunctional triboelectric nanogenerator based on PDMS/MXene for bio-mechanical energy harvesting and volleyball training monitoring. Heliyon 2024; 10:e32361. [PMID: 38961958 PMCID: PMC11219322 DOI: 10.1016/j.heliyon.2024.e32361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Within the domain of wearable devices that are self-powered and sensory, triboelectric nanogenerators (TENGs) have surfaced as a notable solution to meet the growing needs for energy harvesting. This study unveils an innovative wearable and stretchable multifunctional double-layered TENG, based on PDMS/MXene, known as PM-TENG. Furthermore, PM-TENG can also be used as a joint sensor to monitor the movement of athletes' joints during volleyball training. By augmenting the matrix with PDMS/MXene, which possesses dual capabilities-namely, charge capture and charge movement-the intermediary layer is integrated. This leads to a two fold increase in the ability to trap charges and the overall triboelectric performance. With a power density reaching 11.27 mW, it notably exceeds the performance of its counterparts that solely utilize PDMS, by nearly 11 times. This academic effort elucidates the important role of PM-TENG in biomechanical energy capture and autonomous wearable sports motion sensing.
Collapse
Affiliation(s)
- Renwei Yang
- Ministry of Public Foundation, Shanghai University of Finance and Economics, Zhejiang College, 321013, Jinhua, China
| |
Collapse
|
17
|
Li Y, Ma G, Li Y, Fu J, Wang M, Gong K, Li W, Wang X, Zhu L, Dong J. Droplet Energy Harvesting System Based on Total-Current Nanogenerator. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27339-27351. [PMID: 38749766 DOI: 10.1021/acsami.4c02607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The droplet-based nanogenerator (DNG) is a highly promising technology for harvesting high-entropy water energy in the era of the Internet of Things. Yet, despite the exciting progress made in recent years, challenges have emerged unexpectedly for the AC-type DNG-based energy system as it transitions from laboratory demonstrations to real-world applications. In this work, we propose a high-performance DNG system based on the total-current nanogenerator concept to address these challenges. This system utilizes the water-charge-shuttle architecture for easy scale-up, employs the field effect to boost charge density of the triboelectric layer, adopts an on-solar-panel design to improve compatibility with solar energy, and is equipped with a novel DC-DC buck converter as power management circuit. These features allow the proposed system to overcome the existing bottlenecks of DNG and empower the system with superior performances compared with previous ones. Notably, with the core architecture measuring only 15 cm × 12.5 cm × 0.3 cm in physical dimensions, this system reaches a record-high open-circuit voltage of 4200 V, capable of illuminating 1440 LEDs, and can charge a 4.7 mF capacitor to 4.5 V in less than 24 min. In addition, the practical potential of the proposed DNG system is further demonstrated through a self-powered, smart greenhouse application scenario. These demonstrations include the continuous operation of a thermohygrometer, the operation of a Bluetooth plant monitor, and the all-weather energy harvesting capability. This work will provide valuable inspiration and guidance for the systematic design of next-generation DNG to unlock the sustainable potential of distributed water energy for real-world applications.
Collapse
Affiliation(s)
- Yuanhang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Jie Fu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Meishan Wang
- School of Integrated Circuits, Ludong University, Yantai 264025, China
| | - Kuiliang Gong
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weimin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaobo Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lili Zhu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
- School of Integrated Circuits, Ludong University, Yantai 264025, China
| | - Jun Dong
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
- School of Integrated Circuits, Ludong University, Yantai 264025, China
| |
Collapse
|
18
|
Yuan Z, Guo L. Recent advances in solid-liquid triboelectric nanogenerator technologies, affecting factors, and applications. Sci Rep 2024; 14:10456. [PMID: 38714821 PMCID: PMC11076572 DOI: 10.1038/s41598-024-60823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/27/2024] [Indexed: 05/10/2024] Open
Abstract
Converting dispersed mechanical energy into electrical energy can effectively improve the global energy shortage problem. The dispersed mechanical energy generated by liquid flow has a good application prospect as one of the most widely used renewable energy sources. Solid-liquid triboelectric nanogenerator (S-L TENG) is an inspiring device that can convert dispersed mechanical energy of liquids into electrical energy. In order to promote the design and applications of S-L TENG, it is of vital importance to understand the underlying mechanisms of energy conversion and electrical energy output affecters. The current research mainly focuses on the selection of materials, structural characteristics, the liquid droplet type, and the working environment parameters, so as to obtain different power output and meet the power supply needs of diversified scenarios. There are also studies to construct a theoretical model of S-L TENG potential distribution mechanism through COMSOL software, as well as to obtain the adsorption status of different kinds of ions with functional groups on the surface of friction power generation layer through molecular dynamics simulation. In this review, we summarize the main factors affecting the power output from four perspectives: working environment, friction power generation layer, conductive part, and substrate shape. Also summarized are the latest applications of S-L TENG in energy capture, wearable devices, and medical applications. Ultimately, this review suggests the research directions that S-L TENG should focus on in the future to enhance electrical energy output, as well as to expand the diversity of application scenarios.
Collapse
Affiliation(s)
- Zhuochao Yuan
- Energy Research Institute, Qilu University of Technology, Jinan, 250014, China
| | - Lin Guo
- Energy Research Institute, Qilu University of Technology, Jinan, 250014, China.
| |
Collapse
|
19
|
Pan C, Meng J, Jia L, Pu X. Droplet-Based Direct-Current Electricity Generation Induced by Dynamic Electric Double Layers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17649-17656. [PMID: 38552212 DOI: 10.1021/acsami.4c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Harvesting energy from water droplets has received tremendous attention due to the pursuit of sustainable and green energy resources. The droplet-based electricity generator (DEG) provides an admirable strategy to harvest energy from droplets into electricity. However, most of the DEGs merely generate electricity of alternating current (AC) output rather than direct current (DC) without the utilization of rectifiers, impeding its practical applications in energy storage and power supply. Here, a direct current droplet-based electricity generator (DC-DEG) is developed by the simple configuration of the electrodes. The DC output originates from the dynamical electric double layer (EDL) formed at two electrodes and droplet interfaces where the charging/discharging process of EDL capacitance occurs. Several experiments are exhibited to demonstrate the rationality of the proposed principle. The influence of some factors on the output is investigated for further insight into the DC-DEG device. This work provides a novel strategy to harvest energy from water droplets directly into DC electricity and may expand the application of DEGs in powering electronic devices without the help of rectifiers.
Collapse
Affiliation(s)
- Chongxiang Pan
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Jia Meng
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Luyao Jia
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Science, Beijing 100049, P. R. China
| | - Xiong Pu
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Science, Beijing 100049, P. R. China
| |
Collapse
|
20
|
Wang T, Jin T, Lin W, Lin Y, Liu H, Yue T, Tian Y, Li L, Zhang Q, Lee C. Multimodal Sensors Enabled Autonomous Soft Robotic System with Self-Adaptive Manipulation. ACS NANO 2024; 18:9980-9996. [PMID: 38387068 DOI: 10.1021/acsnano.3c11281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Human hands are amazingly skilled at recognizing and handling objects of different sizes and shapes. To date, soft robots rarely demonstrate autonomy equivalent to that of humans for fine perception and dexterous operation. Here, an intelligent soft robotic system with autonomous operation and multimodal perception ability is developed by integrating capacitive sensors with triboelectric sensor. With distributed multiple sensors, our robot system can not only sense and memorize multimodal information but also enable an adaptive grasping method for robotic positioning and grasp control, during which the multimodal sensory information can be captured sensitively and fused at feature level for crossmodally recognizing objects, leading to a highly enhanced recognition capability. The proposed system, combining the performance and physical intelligence of biological systems (i.e., self-adaptive behavior and multimodal perception), will greatly advance the integration of soft actuators and robotics in many fields.
Collapse
Affiliation(s)
- Tianhong Wang
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200444, People's Republic of China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
- School of Artificial Intelligence, Shanghai University, Shanghai 200444, People's Republic of China
- Advanced Robotics Centre, National University of Singapore, Singapore 117608, Singapore
| | - Tao Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
- School of Artificial Intelligence, Shanghai University, Shanghai 200444, People's Republic of China
- Advanced Robotics Centre, National University of Singapore, Singapore 117608, Singapore
| | - Weiyang Lin
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Yangqiao Lin
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200444, People's Republic of China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Hongfei Liu
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200444, People's Republic of China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Tao Yue
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
- School of Artificial Intelligence, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yingzhong Tian
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200444, People's Republic of China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Long Li
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200444, People's Republic of China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
- School of Artificial Intelligence, Shanghai University, Shanghai 200444, People's Republic of China
| | - Quan Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
- School of Artificial Intelligence, Shanghai University, Shanghai 200444, People's Republic of China
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| |
Collapse
|
21
|
Jiang F, Zhan L, Lee JP, Lee PS. Triboelectric Nanogenerators Based on Fluid Medium: From Fundamental Mechanisms toward Multifunctional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308197. [PMID: 37842933 DOI: 10.1002/adma.202308197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Fluid-based triboelectric nanogenerators (FB-TENGs) are at the forefront of promising energy technologies, demonstrating the ability to generate electricity through the dynamic interaction between two dissimilar materials, wherein at least one is a fluidic medium (such as gas or liquid). By capitalizing on the dynamic and continuous properties of fluids and their interface interactions, FB-TENGs exhibit a larger effective contact area and a longer-lasting triboelectric effect in comparison to their solid-based counterparts, thereby affording longer-term energy harvesting and higher-precision self-powered sensors in harsh conditions. In this review, various fluid-based mechanical energy harvesters, including liquid-solid, gas-solid, liquid-liquid, and gas-liquid TENGs, have been systematically summarized. Their working mechanism, optimization strategies, respective advantages and applications, theoretical and simulation analysis, as well as the existing challenges, have also been comprehensively discussed, which provide prospective directions for device design and mechanism understanding of FB-TENGs.
Collapse
Affiliation(s)
- Feng Jiang
- Institute of Flexible Electronics Technology of Tsinghua, Jiaxing, Zhejiang, 314000, China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Liuxiang Zhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jin Pyo Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
22
|
Yang X, Zheng H, Ren H, An G, Zhang Y, Yang W. A tuned triboelectric nanogenerator using a magnetic liquid for low-frequency vibration energy harvesting. NANOSCALE 2024; 16:1915-1923. [PMID: 38170856 DOI: 10.1039/d3nr04574a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Wireless sensor networks have developed quickly in recent years, and the use of self-powered technology to replace traditional external power sources to power sensor nodes has become an urgent problem that needs to be solved. As an entirely novel type of self-powered technology, the triboelectric nanogenerator (TENG) has attracted widespread attention, but the inability to achieve adaptive adjustment based on the vibration environment has restricted the development of TENGs. Here, a magnetic liquid triboelectric nanogenerator (ML-TENG) is designed to harvest vibration energy to power sensing nodes, and ML-TENG tuning is achieved using a magnetic liquid to adapt to different vibration environments. The electrical performance of the ML-TENG was investigated by theoretical, experimental, and numerical research. According to the results, the developed ML-TENG responds well to low-frequency vibration, and the instantaneous power is up to 5.40 nW. The tuning function is achieved by adjusting the magnetic field, and the natural frequency can be adjusted between 6.6 Hz and 7.6 Hz. The strong linear connection between the output voltage of the ML-TENG and the external environment's vibration amplitude promotes the monitoring of the vibration environment and lays the groundwork for the creation of wireless sensor networks.
Collapse
Affiliation(s)
- Xiaorui Yang
- Department of Electrical Engineering, Hebei University of Science and Technology, Hebei 050000, China
| | - Hao Zheng
- Department of Electrical Engineering, Hebei University of Science and Technology, Hebei 050000, China
| | - Haobo Ren
- Department of Electrical Engineering, Hebei University of Science and Technology, Hebei 050000, China
| | - Guoqing An
- Department of Electrical Engineering, Hebei University of Science and Technology, Hebei 050000, China
| | - Yumeng Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300000, China
| | - Wenrong Yang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300000, China
| |
Collapse
|
23
|
Hu H, Shang S, Liu J, Zhu P. Silk fibroin based flexible and self-powered sensor for real-time monitoring of abdominal respiration. Int J Biol Macromol 2024; 254:127723. [PMID: 37907181 DOI: 10.1016/j.ijbiomac.2023.127723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Personal health monitoring is very important for the health operation of special populations, like newborns and the old. But how to construct a sensor that can achieve real-time monitoring without the need for an external power supply still faces serious challenges. In this paper, a flexible, breathable and self-powered sensor based on triboelectric nanogenerators (TENG) was designed. Silk fibroin (SF) and poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fiber membranes were prepared by electro-spinning, and a u-shaped circuit was sprayed on one side of the fiber membrane as the electrode. Separating by an elastic silicone ring of the two fiber membranes, the all-fiber and self-powered sensor with a simple structure, good stability, and high output performance was developed. The as prepared sensor can instantly light up hundreds of LEDs by hand tapping. The sensor prepared in this work may have some potential applications in wearable devices and energy systems for real-time monitoring of abdominal breathing.
Collapse
Affiliation(s)
- Huifang Hu
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Shenglong Shang
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China.
| | - Jie Liu
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Ping Zhu
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
24
|
Dong S, Xu Y, Li M, Yang X, Xing F, Di Y, Liu C, Zheng Y, Liu Y, Yang G, Gan Z. A droplet friction/solar-thermal hybrid power generation device for energy harvesting in both rainy and sunny weathers. NANOTECHNOLOGY 2023; 34:505405. [PMID: 37748450 DOI: 10.1088/1361-6528/acfcc0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Photovoltaic device is highly dependent on the weather, which is completely ineffective on rainy days. Therefore, it is very significant to design an all-weather power generation system that can utilize a variety of natural energy. This work develops a water droplet friction power generation (WDFG)/solar-thermal power generation (STG) hybrid system. The WDFG consists of two metal electrodes and a candle soot/polymer composite film, which also can be regarded as a capacitor. Thus, the capacitor coupled power generation (C-WDFG) device can achieve a sustainable and stable direct-current (DC) output under continuous dripping without external conversion circuits. A single device can produce an open-circuit voltage of ca.0.52 V and a short-circuit current of ca.0.06 mA, which can be further scaled up through series or parallel connection to drive commercial electronics. Moreover, we demonstrate that the C-WDFG is highly compatible with the thermoelectric device. The excellent photothermal performance of soot/polymer composite film can efficiently convert solar into heat, which is then converted to electricity by the thermoelectric device. Therefore, this C-WDFG/STG hybrid system can work in both rainy and sunny days.
Collapse
Affiliation(s)
- Suwei Dong
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yunfan Xu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Mingchao Li
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Xifeng Yang
- College of Electronic and Information Engineering, Changshu Institute of Technology, Suzhou 215500, People's Republic of China
| | - Fangjian Xing
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yunsong Di
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Cihui Liu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yubin Zheng
- Dalian University of Technology Corporation of Changshu Research Institution, Suzhou 215500, People's Republic of China
| | - Yushen Liu
- College of Electronic and Information Engineering, Changshu Institute of Technology, Suzhou 215500, People's Republic of China
| | - Guofeng Yang
- School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhixing Gan
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, People's Republic of China
- Dalian University of Technology Corporation of Changshu Research Institution, Suzhou 215500, People's Republic of China
- Suzhou Kundao New Material Technology Co., Ltd, Suzhou 215500, People's Republic of China
| |
Collapse
|
25
|
Jimidar ISM, Kwiecinski W, Roozendaal G, Kooij ES, Gardeniers HJGE, Desmet G, Sotthewes K. Influence of Wettability and Geometry on Contact Electrification between Nonionic Insulators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42004-42014. [PMID: 37389550 PMCID: PMC10485807 DOI: 10.1021/acsami.3c05729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Contact electrification is an interfacial process in which two surfaces exchange electrical charges when they are in contact with one another. Consequently, the surfaces may gain opposite polarity, inducing an electrostatic attraction. Therefore, this principle can be exploited to generate electricity, which has been precisely done in triboelectric nanogenerators (TENGs) over the last decades. The details of the underlying mechanisms are still ill-understood, especially the influence of relative humidity (RH). Using the colloidal probe technique, we convincingly show that water plays an important role in the charge exchange process when two distinct insulators with different wettability are contacted and separated in <1 s at ambient conditions. The charging process is faster, and more charge is acquired with increasing relative humidity, also beyond RH = 40% (at which TENGs have their maximum power generation), due to the geometrical asymmetry (curved colloid surface vs planar substrate) introduced in the system. In addition, the charging time constant is determined, which is found to decrease with increasing relative humidity. Altogether, the current study adds to our understanding of how humidity levels affect the charging process between two solid surfaces, which is even enhanced up to RH = 90% as long as the curved surface is hydrophilic, paving the way for designing novel and more efficient TENGs, eco-energy harvesting devices which utilize water and solid charge interaction mechanism, self-powered sensors, and tribotronics.
Collapse
Affiliation(s)
- Ignaas S. M. Jimidar
- Department
of Chemical Engineering, Vrije Universiteit
Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Mesoscale
Chemical Systems, MESA+ Institute for Nanotechnology and Faculty of
Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wojciech Kwiecinski
- Physics
of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Gijs Roozendaal
- Physics
of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - E. Stefan Kooij
- Physics
of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Han J. G. E. Gardeniers
- Mesoscale
Chemical Systems, MESA+ Institute for Nanotechnology and Faculty of
Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Gert Desmet
- Department
of Chemical Engineering, Vrije Universiteit
Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Kai Sotthewes
- Physics
of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
26
|
Zhou Y, Ding T, Cheng Y, Huang Y, Wang W, Yang J, Xie L, Ho GW, He J. Non-planar dielectrics derived thermal and electrostatic field inhomogeneity for boosted weather-adaptive energy harvesting. Natl Sci Rev 2023; 10:nwad186. [PMID: 37565206 PMCID: PMC10411684 DOI: 10.1093/nsr/nwad186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 08/12/2023] Open
Abstract
Weather-adaptive energy harvesting of omnipresent waste heat and rain droplets, though promising in the field of environmental energy sustainability, is still far from practice due to its low electrical output owing to dielectric structure irrationality and unscalability. Here we present atypical upcycling of ambient heat and raindrop energy via an all-in-one non-planar energy harvester, simultaneously increasing solar pyroelectricity and droplet-based triboelectricity by two-fold, in contrast to conventional counterparts. The delivered non-planar dielectric with high transmittance confines the solar irradiance onto a focal hotspot, offering transverse thermal field propagation towards boosted inhomogeneous polarization with a generated power density of 6.1 mW m-2 at 0.2 sun. Moreover, the enlarged lateral surface area of curved architecture promotes droplet spreading/separation, thus travelling the electrostatic field towards increased triboelectricity. These enhanced pyroelectric and triboelectric outputs, upgraded with advanced manufacturing, demonstrate applicability in adaptive sustainable energy harvesting on sunny, cloudy, night, and rainy days. Our findings highlight a facile yet efficient strategy, not only for weather-adaptive environmental energy recovery but also in providing key insights for spatial thermal/electrostatic field manipulation in thermoelectrics and ferroelectrics.
Collapse
Affiliation(s)
- Yi Zhou
- Shenzhen Key Laboratory of Thermoelectric Materials and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117581, Singapore
| | - Tianpeng Ding
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117581, Singapore
- School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yin Cheng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117581, Singapore
| | - Yi Huang
- Shenzhen Key Laboratory of Thermoelectric Materials and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wu Wang
- Shenzhen Key Laboratory of Thermoelectric Materials and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianmin Yang
- Shenzhen Key Laboratory of Thermoelectric Materials and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Lin Xie
- Shenzhen Key Laboratory of Thermoelectric Materials and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117581, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Jiaqing He
- Shenzhen Key Laboratory of Thermoelectric Materials and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
27
|
Huang J, Wang S, Zhao X, Zhang W, Chen Z, Liu R, Li P, Li H, Gui C. Fabrication of a textile-based triboelectric nanogenerator toward high-efficiency energy harvesting and material recognition. MATERIALS HORIZONS 2023; 10:3840-3853. [PMID: 37431538 DOI: 10.1039/d3mh00618b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Textile-based triboelectric nanogenerator (T-TENG) devices, particularly, narrow-gap mode, have been conceived and developed for obtaining energy harvesting and tactile sensing devices unaffected by the external environment. Enhancing the interfacial area of T-TENG materials offers exciting opportunities to improve the device output performance. In this work, a narrow-gap T-TENG was fabricated with a facile process, and a new strategy for improving the device output is proposed. The new structural sensor (polydimethylsiloxane (PDMS)-encapsulated electroless copper plating (EP-Cu) cotton) with multiple electricity generation mechanism was designed and fabricated for enhancing recognition accuracy. The result shows that only PDMS layer strain was established at an external stress of 1.24-12.4 kPa and the fibers laterally slip at a stress of 12.4-139 kPa; more importantly, the output performance of the TENG displayed a linear relationship under corresponding stress ranges. The as-fabricated device demonstrated the ability to convert different energies such as vibration, raindrops, wind and human motions into electrical energy with excellent sensitivity. Interestingly, the output signal of the as-fabricated TENG device is a combination of output signals from PDMS/EP-Cu and PDMS/recognition object devices. To be precise, there are two TENG devices (PDMS/EP-Cu and PDMS/recognition object) that work when the as-fabricated TENG device is under 12.4-139 kPa stress. Accompanied by unique characteristics, the generated TENG signals are capable of recognition of contact materials. Combining the TENG signal and deep learning technology, we explore a strategy that can enable the as-fabricated device to recognize 8 different materials with 99.48% recognition accuracy in the natural environment.
Collapse
Affiliation(s)
- Junjun Huang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City, 230601, China.
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City, 542899, China.
| | - Sanlong Wang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City, 230601, China.
- School of Chemistry and Chemical Engineering, Chaohu University, Hefei City, 230009, China
| | - Xingke Zhao
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City, 230601, China.
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City, 542899, China.
| | - Wenqing Zhang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City, 230601, China.
- School of Chemistry and Chemical Engineering, Chaohu University, Hefei City, 230009, China
| | - Zhenming Chen
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City, 230601, China.
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City, 542899, China.
| | - Rui Liu
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City, 230601, China.
- School of Chemistry and Chemical Engineering, Chaohu University, Hefei City, 230009, China
| | - Peng Li
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City, 542899, China.
| | - Honglin Li
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City, 230601, China.
- School of Chemistry and Chemical Engineering, Chaohu University, Hefei City, 230009, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City, 542899, China.
| | - Chengmei Gui
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City, 230601, China.
- School of Chemistry and Chemical Engineering, Chaohu University, Hefei City, 230009, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City, 542899, China.
| |
Collapse
|
28
|
Wei X, Wang B, Cao X, Zhou H, Wu Z, Wang ZL. Dual-sensory fusion self-powered triboelectric taste-sensing system towards effective and low-cost liquid identification. NATURE FOOD 2023; 4:721-732. [PMID: 37563492 DOI: 10.1038/s43016-023-00817-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Infusing human taste perception into smart sensing devices to mimic the processing ability of gustatory organs to perceive liquid substances remains challenging. Here we developed a self-powered droplet-tasting sensor system based on the dynamic morphological changes of droplets and liquid-solid contact electrification. The sensor system has achieved accuracies of liquid recognition higher than 90% in five different applications by combining triboelectric fingerprint signals and deep learning. Furthermore, an image sensor is integrated to extract the visual features of liquids, and the recognition capability of the liquid-sensing system is improved to up to 96.0%. The design of this dual-sensory fusion self-powered liquid-sensing system, along with the droplet-tasting sensor that can autonomously generate triboelectric signals, provides a promising technological approach for the development of effective and low-cost liquid sensing for liquid food safety identification and management.
Collapse
Affiliation(s)
- Xuelian Wei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Baocheng Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaole Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hanlin Zhou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhiyi Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, P. R. China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China.
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, P. R. China.
- Georgia Institute of Technology, Atlanta, GA, USA.
- Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Huang T, Sun W, Liao L, Zhang K, Lu M, Jiang L, Chen S, Qin A. Detection of Microplastics Based on a Liquid-Solid Triboelectric Nanogenerator and a Deep Learning Method. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35014-35023. [PMID: 37459456 DOI: 10.1021/acsami.3c06256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Microplastics are sub-millimeter-sized fragments of plastics, which have been found in environments to a great extent. They are relatively new pollutants that are difficult to be degraded. They not only cause irreversible adverse effects on microorganisms, animals, and plants but also enter the human body through the food chain and affect human health. However, due to their small size, variety, and differences in physical and chemical properties of microplastics, traditional detection and identification still face challenges. This work provides a method for detecting and classifying microplastics in liquids using a liquid-solid triboelectric nanogenerator (LS-TENG) in combination with a deep learning model. The experiment showed that the type and content of microplastics in the liquid had a great effect on the contact electrification between the liquid and the perfluoroethylene-propylene copolymer. After adding polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, and polystyrene microplastics to the liquids, it was found that the type and content of different microplastics have a significant impact on the output voltage signal of the LS-TENG sensor. When the mass fraction of microplastics ranged from 0.025 to 0.25 wt %, the voltage output of the LS-TENG sensor had a linear relationship with the mass fraction of microplastics. Therefore, a method for quantitatively detecting the content of microplastics using the LS-TENG sensor has been established. Based on the LS-TENG output voltage signal, a convolutional neural network deep learning model was used to identify different types of labels, and high recognition accuracy was achieved. These are of great significance for expanding the application prospect of LS-TENG and realizing the detection of microplastics in liquids.
Collapse
Affiliation(s)
- Tao Huang
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, Guangxi Key Lab of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Wei Sun
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, Guangxi Key Lab of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Lei Liao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Kaiyou Zhang
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, Guangxi Key Lab of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Manli Lu
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, Guangxi Key Lab of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Li Jiang
- College of Science, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Shuoping Chen
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, Guangxi Key Lab of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Aimiao Qin
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, Guangxi Key Lab of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| |
Collapse
|
30
|
Deng Y, Meng G, Tai Y, Liu Z. Noncontact liquid-solid nanogenerators as self-powered droplet sensors. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN ELECTRONICS 2023; 34:1033. [PMID: 38625192 PMCID: PMC10127196 DOI: 10.1007/s10854-023-10389-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/01/2023] [Indexed: 04/07/2024]
Abstract
Liquid-solid triboelectric nanogenerators (L-S TENGs) can generate corresponding electrical signal responses through the contact separation of droplets and dielectrics and have a wide range of applications in energy harvesting and self-powered sensing. However, the contact between the droplet and the electret will cause the contact L-S TENG's performance degradation or even failure. Here we report a noncontact triboelectric nanogenerator (NCLS-TENG) that can effectively sense droplet stimuli without contact with droplets and convert them into electrical energy or corresponding electrical signals. Since there is no contact between the droplet and the dielectric, it can continuously and stably generate a signal output. To verify the feasibility of NCLS-TENG, we demonstrate the modified murphy's dropper as a smart infusion monitoring system. The smart infusion monitoring system can effectively identify information such as the type, concentration, and frequency of droplets. NCLS-TENG show great potential in smart medical, smart wearable and other fields.
Collapse
Affiliation(s)
- Yi Deng
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Centre for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, 832003 Shihezi China
- Key Laboratory of Human-Machine Intelligence-Synergy Systems of Chinese Academy of Sciences (CAS), Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, 518055 China
| | - Guihua Meng
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Centre for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, 832003 Shihezi China
| | - Yanlong Tai
- Key Laboratory of Human-Machine Intelligence-Synergy Systems of Chinese Academy of Sciences (CAS), Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, 518055 China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Centre for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, 832003 Shihezi China
| |
Collapse
|
31
|
Yoo D, Jang S, Cho S, Choi D, Kim DS. A Liquid Triboelectric Series. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300699. [PMID: 36947827 DOI: 10.1002/adma.202300699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/10/2023] [Indexed: 05/17/2023]
Abstract
The triboelectric series is a generally accepted method for describing the triboelectric effect. It provides a way to control the double face of the ubiquitous triboelectric effect: causes of unpredictable accidents and the resultant surface charge as energy sources. However, previous studies have been biased in solids despite being observed in liquids (liquid-solid contact electrification). Therefore, a liquid triboelectric series is necessary to be established to manipulate the liquid triboelectric effect according to the appropriate goal. In this study, a liquid triboelectric series is first established to describe the triboelectric properties of each liquid when contact electrification occurs with a solid surface. The liquid triboelectric series covers electrolytes, organic solvents, oxidants, and higher sugar alcohols. Common chemical groups can be derived from the liquid triboelectric series that hydroxyl groups enhance, and benzene groups suppress the liquid triboelectric effect. The results are demonstrated by the amplified efficiency of an energy harvester and particle contamination after surface washing. This study will play a pivotal role in understanding the liquid-solid contact electrification phenomenon and providing new perspectives on the applications of the liquid triboelectric effect.
Collapse
Affiliation(s)
- Donghyeon Yoo
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sunmin Jang
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Sumin Cho
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Dongwhi Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
32
|
Duan Q, Peng W, He J, Zhang Z, Wu Z, Zhang Y, Wang S, Nie S. Rational Design of Advanced Triboelectric Materials for Energy Harvesting and Emerging Applications. SMALL METHODS 2023; 7:e2201251. [PMID: 36563114 DOI: 10.1002/smtd.202201251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 06/17/2023]
Abstract
The properties of materials play a significant role in triboelectric nanogenerators (TENGs). Advanced triboelectric materials for TENGs have attracted tremendous attention because of their superior advantages (e.g., high specific surface area, high porosity, and customizable macrostructure). These advanced materials can be extensively applied in numerous fields, including energy harvester, wearable electronics, filtration, and self-powered sensors. Hence, designing triboelectric materials as advanced functional materials is important for the development of TENGs. Herein, the structural modification methods based on electrospinning to improve the triboelectric properties and the latest research progress in this kind of TENGs are systematically summarized. Preparation methods and design trends of nanofibers, microspheres, hierarchical structures, and doping nanomaterials are highlighted. The factors influencing the formation and properties of triboelectric materials are considered. Furthermore, the latest progress on the applications of TENGs is systematically elaborated. Finally, the challenges in the development of triboelectric materials are discussed, thereby guiding researchers in the large-scale application of TENGs.
Collapse
Affiliation(s)
- Qingshan Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Weiqing Peng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Juanxia He
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhijun Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Zecheng Wu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Ye Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
33
|
Liu J, Huang H, Wu C, Yang S. Dual-mode acceleration sensor of downhole drilling tools based on triboelectric nanogenerator. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:125001. [PMID: 36586941 DOI: 10.1063/5.0121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Downhole vibration is important for the judgment of the drilling tool conditions and the formulation of drilling technology. To meet the demand of downhole drilling tools acceleration measurement, this research proposes a self-powered acceleration sensor with two working modes based on the triboelectric nanogenerator, namely, mode A, which is based on the voltage response acceleration trend and mode B, which judges the acceleration based on the output pulses. Test results show that the acceleration measurement range is 0-11 m/s2, the maximum output voltage amplitude can reach 15.3 V, the working environment temperature is less than 250 °C, the working environment humidity is less than 90%, and long-time working has almost no effect on the output voltage of the sensor. In addition, since the sensor will generate electrical energy during the vibration process, the power generation performance of the sensor has been tested. And the results show that the maximum output power of the sensor is 0.18 µW when a 1000 MΩ load is connected in series. Compared to traditional downhole sensors, the sensor is more flexible, because it can work normally at high temperatures and has the potential for being self-powered.
Collapse
Affiliation(s)
- Jinrun Liu
- Faculty of Mechanical and Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - He Huang
- PowerChina Hubei Electric Engineering Co., Ltd., Wuhan 430040, China
| | - Chuan Wu
- Faculty of Mechanical and Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Shuo Yang
- Faculty of Mechanical and Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
| |
Collapse
|
34
|
Oh S, Kim KJ, Goh B, Park C, Lee GD, Shin S, Lim S, Kim ES, Yoon KR, Choi C, Kim H, Suh D, Choi J, Kim SH. Chemo-Mechanical Energy Harvesters with Enhanced Intrinsic Electrochemical Capacitance in Carbon Nanotube Yarns. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203767. [PMID: 36116125 PMCID: PMC9661839 DOI: 10.1002/advs.202203767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Predicting and preventing disasters in difficult-to-access environments, such as oceans, requires self-powered monitoring devices. Since the need to periodically charge and replace batteries is an economic and environmental concern, energy harvesting from external stimuli to supply electricity to batteries is increasingly being considered. Especially, in aqueous environments including electrolytes, coiled carbon nanotube (CNT) yarn harvesters have been reported as an emerging approach for converting mechanical energy into electrical energy driven by large and reversible capacitance changes under stretching and releasing. To realize enhanced harvesting performance, experimental and computational approaches to optimize structural homogeneity and electrochemical accessible area in CNT yarns to maximize intrinsic electrochemical capacitance (IEC) and stretch-induced changes are presented here. Enhanced IEC further enables to decrease matching impedance for more energy efficient circuits with harvesters. In an ocean-like environment with a frequency from 0.1 to 1 Hz, the proposed harvester demonstrates the highest volumetric power (1.6-10.45 mW cm-3 ) of all mechanical harvesters reported in the literature to the knowledge of the authors. Additionally, a high electrical peak power of 540 W kg-1 and energy conversion efficiency of 2.15% are obtained from torsional and tensile mechanical energy.
Collapse
Affiliation(s)
- Seongjae Oh
- Department of Energy ScienceSungkyunkwan UniversitySuwon‐siGyeonggi‐do16419Republic of Korea
- Department of Advanced Textile R&DKorea Institute of Industrial TechnologyAnsan‐siGyeonggi‐do15588Republic of Korea
| | - Keon Jung Kim
- Department of Advanced Textile R&DKorea Institute of Industrial TechnologyAnsan‐siGyeonggi‐do15588Republic of Korea
| | - Byeonghwa Goh
- Department of Mechanical Design EngineeringHanyang UniversitySeoul04763Republic of Korea
- Department of Mechanical EngineeringBK21 FOUR ERICA‐ACE CenterHanyang UniversityAnsan‐siGyeonggi‐do15588Republic of Korea
| | - Chae‐Lin Park
- HYU‐KITECH Joint DepartmentHanyang UniversitySeoul04763Republic of Korea
| | - Gyu Dong Lee
- Department of Advanced Textile R&DKorea Institute of Industrial TechnologyAnsan‐siGyeonggi‐do15588Republic of Korea
| | - Seoyoon Shin
- Department of Advanced Textile R&DKorea Institute of Industrial TechnologyAnsan‐siGyeonggi‐do15588Republic of Korea
| | - Seungju Lim
- Department of Advanced Textile R&DKorea Institute of Industrial TechnologyAnsan‐siGyeonggi‐do15588Republic of Korea
| | - Eun Sung Kim
- R&D CenterA‐Tech System Co.Incheon21312Republic of Korea
| | - Ki Ro Yoon
- Department of Advanced Textile R&DKorea Institute of Industrial TechnologyAnsan‐siGyeonggi‐do15588Republic of Korea
| | - Changsoon Choi
- Department of Energy and Materials EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Hyun Kim
- Advanced Materials DivisionKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Dongseok Suh
- Department of Energy ScienceSungkyunkwan UniversitySuwon‐siGyeonggi‐do16419Republic of Korea
| | - Joonmyung Choi
- Department of Mechanical Design EngineeringHanyang UniversitySeoul04763Republic of Korea
- Department of Mechanical EngineeringBK21 FOUR ERICA‐ACE CenterHanyang UniversityAnsan‐siGyeonggi‐do15588Republic of Korea
- HYU‐KITECH Joint DepartmentHanyang UniversitySeoul04763Republic of Korea
| | - Shi Hyeong Kim
- Department of Advanced Textile R&DKorea Institute of Industrial TechnologyAnsan‐siGyeonggi‐do15588Republic of Korea
- HYU‐KITECH Joint DepartmentHanyang UniversitySeoul04763Republic of Korea
| |
Collapse
|
35
|
Liquid-liquid triboelectric nanogenerator based on the immiscible interface of an aqueous two-phase system. Nat Commun 2022; 13:5316. [PMID: 36085155 PMCID: PMC9463141 DOI: 10.1038/s41467-022-33086-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Solid nanogenerators often have limited charge transfer due to their low contact area. Liquid–liquid nanogenerators can transfer a charge better than the solid–solid and solid–liquid counterparts. However, the precise manipulation of the liquid morphology remains a challenge because of the fluidity limits of the liquid. In this work, using the surface tension of a droplet to fix its shape, a liquid-liquid triboelectric nanogenerator in Contact-Separation mode is designed using an immiscible aqueous-aqueous interface, achieving a contact surface charge transfer of 129 nC for a single droplet. The configuration is proven to be applicable in humid environments, and the two-phase materials have good biocompatibility and can be used as an effective drug carrier. Therefore, this nanogenerator is useful for designing future implantable devices. Meanwhile, this design also establishes the foundation of aqueous electronics, and additional applications can be achieved using this route. While liquid-liquid interface offers better contact and charge transfer potential than solid-based counterparts, fluidity still poses challenges for their application. Here, authors show that charge transfer exists in aqueous two-phase systems and propose a nanogenerator design based on the immiscible aqueous-aqueous interface.
Collapse
|
36
|
Zhu Q, Wang T, Sun X, Wei Y, Zhang S, Wang X, Luo L. Effects of Fluorine-Based Modification on Triboelectric Properties of Cellulose. Polymers (Basel) 2022; 14:3536. [PMID: 36080611 PMCID: PMC9459729 DOI: 10.3390/polym14173536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/22/2022] Open
Abstract
The hydroxyl groups on the cellulose macromolecular chain cause the cellulose surface to have strong reactivity. In this study, 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (PDOTES) was used to modify cellulose to improve its triboelectric properties, and a triboelectric nanogenerator (TENG) was assembled. The introduction of fluorine groups reduced the surface potential of cellulose and turned it into a negative phase, which enhanced the ability to capture electrons. The electrical properties increased by 30% compared with unmodified cellulose. According to the principles of TENGs, a self-powered human-wearable device was designed using PDOTES-paper, which could detect movements of the human body, such as walking and running, and facilitated a practical method for the preparation of efficient wearable sensors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lianxin Luo
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
37
|
Cui X, Yu C, Wang Z, Wan D, Zhang H. Triboelectric Nanogenerators for Harvesting Diverse Water Kinetic Energy. MICROMACHINES 2022; 13:mi13081219. [PMID: 36014139 PMCID: PMC9416285 DOI: 10.3390/mi13081219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023]
Abstract
The water covering the Earth’s surface not only supports life but also contains a tremendous amount of energy. Water energy is the most important and widely used renewable energy source in the environment, and the ability to extract the mechanical energy of water is of particular interest since moving water is ubiquitous and abundant, from flowing rivers to falling rain drops. In recent years, triboelectric nanogenerators (TENGs) have been promising for applications in harvesting kinetic energy from water due to their merits of low cost, light weight, simple structure, and abundant choice of materials. Furthermore, TENGs can also be utilized as self-powered active sensors for monitoring water environments, which relies on the output signals of the TENGs caused by the movement and composition of water. Here, TENGs targeting the harvest of different water energy sources have been systematically summarized and analyzed. The TENGs for harvesting different forms of water energy are introduced and divided on the basis of their basic working principles and modes, i.e., in the cases of solid–solid and solid–liquid. A detailed review of recent important progress in TENG-based water energy harvesting is presented. At last, based on recent progresses, the existing challenges and future prospects for TENG-based water energy harvesting are also discussed.
Collapse
Affiliation(s)
- Xiaojing Cui
- College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China;
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Cecilia Yu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Zhaosu Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Dong Wan
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Hulin Zhang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China;
- Correspondence:
| |
Collapse
|
38
|
Hu S, Han J, Shi Z, Chen K, Xu N, Wang Y, Zheng R, Tao Y, Sun Q, Wang ZL, Yang G. Biodegradable, Super-Strong, and Conductive Cellulose Macrofibers for Fabric-Based Triboelectric Nanogenerator. NANO-MICRO LETTERS 2022; 14:115. [PMID: 35482231 PMCID: PMC9050994 DOI: 10.1007/s40820-022-00858-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/28/2022] [Indexed: 05/27/2023]
Abstract
Electronic fibers used to fabricate wearable triboelectric nanogenerator (TENG) for harvesting human mechanical energy have been extensively explored. However, little attention is paid to their mutual advantages of environmental friendliness, mechanical properties, and stability. Here, we report a super-strong, biodegradable, and washable cellulose-based conductive macrofibers, which is prepared by wet-stretching and wet-twisting bacterial cellulose hydrogel incorporated with carbon nanotubes and polypyrrole. The cellulose-based conductive macrofibers possess high tensile strength of 449 MPa (able to lift 2 kg weights), good electrical conductivity (~ 5.32 S cm-1), and excellent stability (Tensile strength and conductivity only decrease by 6.7% and 8.1% after immersing in water for 1 day). The degradation experiment demonstrates macrofibers can be degraded within 108 h in the cellulase solution. The designed fabric-based TENG from the cellulose-base conductive macrofibers shows a maximum open-circuit voltage of 170 V, short-circuit current of 0.8 µA, and output power at 352 μW, which is capable of powering the commercial electronics by charging the capacitors. More importantly, the fabric-based TENGs can be attached to the human body and work as self-powered sensors to effectively monitor human motions. This study suggests the potential of biodegradable, super-strong, and washable conductive cellulose-based fiber for designing eco-friendly fabric-based TENG for energy harvesting and biomechanical monitoring.
Collapse
Affiliation(s)
- Sanming Hu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Jing Han
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhijun Shi
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Kun Chen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Nuo Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- Center On Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | - Yifei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ruizhu Zheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Yongzhen Tao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Center On Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
| | - Guang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
39
|
He L, Zhang C, Zhang B, Yang O, Yuan W, Zhou L, Zhao Z, Wu Z, Wang J, Wang ZL. A Dual-Mode Triboelectric Nanogenerator for Wind Energy Harvesting and Self-Powered Wind Speed Monitoring. ACS NANO 2022; 16:6244-6254. [PMID: 35312283 DOI: 10.1021/acsnano.1c11658] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The triboelectric nanogenerator shows a broad application potential in wind energy collection and wind speed sensing. However, it is difficult to realize wind energy collection and real-time wind speed monitoring in one simple device without external power support. Here, a high-performance dual-mode triboelectric nanogenerator is proposed to simultaneously collect wind energy efficiently and monitor wind speed in real time, which is composed by an alternating current triboelectric nanogenerator (AC-TENG) and a direct-current triboelectric nanogenerator (DC-TENG). Based on the material optimization, the charge density of the AC-TENG improves by a factor of 1 compared with previous works. Moreover, benefiting from the elastic structure and material optimization to realize a low friction force, the AC-TENG shows an excellent durability and obtains a retention of 87% electric output after 1 200 000 operation cycles. Meanwhile, thanks to the high charge density and low friction force, the energy-harvesting efficiency of the AC-TENG is doubled. In addition, the DC-TENG not only displays an excellent real-time sensing performance but also can provide gale warning. Our finding exhibits a strategy for efficiently collecting wind energy and achieving fully self-powered and real-time wind speed monitoring.
Collapse
Affiliation(s)
- Lixia He
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People's Republic of China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chuguo Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People's Republic of China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Baofeng Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People's Republic of China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ou Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People's Republic of China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Yuan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People's Republic of China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Linglin Zhou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People's Republic of China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhihao Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People's Republic of China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhiyi Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People's Republic of China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jie Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People's Republic of China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
40
|
Sun Y, Zheng F, Wei X, Shi Y, Li R, Wang B, Wang L, Wu Z, Wang ZL. Pendular-Translational Hybrid Nanogenerator Harvesting Water Wave Energy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15187-15194. [PMID: 35344327 DOI: 10.1021/acsami.1c25004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Shore-based water wave energy produced by the impact of ocean waves on the coastline is a kind of clean and renewable energy. In this paper, a pendular-translational hybrid nanogenerator (PT-HNG) with two multilayer triboelectric nanogenerators and a spring base is proposed to harvest the wave energy. Pendular-translational movement mechanism is a sliding rail structure embedded with a permanent magnet, and the output is greatly improved compared to the previous pendular-pendular movement mechanism. Furthermore, the use of the spring base not only makes the device easy to install and fix but also increases the swing angle, which can better harvest the water wave energy. When the PT-HNG is used on the beach, a 33 μF capacitor can be charged to 4.3 V in 85 s. PT-HNG can be used to build self-powered wireless sensor networks to monitor the surrounding environment. This work proposes an innovative and efficient way to capture shore-based wave energy.
Collapse
Affiliation(s)
- Yanggui Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- Engineering Research Center of Mechanical Testing Technology and Equipment (Ministry of Education), Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Fangyan Zheng
- Engineering Research Center of Mechanical Testing Technology and Equipment (Ministry of Education), Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Xuelian Wei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yapeng Shi
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ruonan Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Baocheng Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Longfei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyi Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
41
|
Sohn A, Zhang Y, Chakraborty A, Yu C. Sustainable power generation via hydro-electrochemical effects. NANOSCALE 2022; 14:4188-4194. [PMID: 35234234 DOI: 10.1039/d1nr07748a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent efforts towards energy scavenging with eco-friendly methods and abundant water look very promising for powering wearables and distributed electronics. However, the time duration of electricity generation is typically too short, and the current level is not sufficient to meet the required threshold for the proper operation of electronics despite the relatively large voltage. This work newly introduced an electrochemical method in combination with hydro-effects in order to extend the energy scavenging time and boost the current. Our device consists of corroded porous steel electrodes whose corrosion overpotential was lowered when the water concentration was increased and vice versa. Then a potential difference was created between two electrodes, generating electricity via the hydro-electrochemical method up to an open-circuit voltage of 750 mV and a short-circuit current of 90 μA cm-2. Furthermore, electricity was continuously generated for more than 1500 minutes by slow water diffusion against gravity from the bottom electrode. Lastly, we demonstrated that our hydro-electrochemical power generators successfully operated electronics, showing the feasibility of offering electrical power for sufficiently long time periods in practice.
Collapse
Affiliation(s)
- Ahrum Sohn
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | - Yufan Zhang
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Anirban Chakraborty
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | - Choongho Yu
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
42
|
Zhang C, Zhang B, Yuan W, Yang O, Liu Y, He L, Zhao Z, Zhou L, Wang J, Wang ZL. Seawater-Based Triboelectric Nanogenerators for Marine Anticorrosion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8605-8612. [PMID: 35104112 DOI: 10.1021/acsami.1c23575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The liquid-solid triboelectric nanogenerator is broadly studied for its self-powered sensing and blue energy harvesting, thanks to its low wear and highly efficient contact. However, the corresponding research studies focusing on deionized-water liquid-solid triboelectric nanogenerators (DL-TENGs) and seawater-type liquid-solid TENGs (SL-TENGs) are rarely being carried out at present. Here, a SL-TENG is fabricated by applying a dielectric film as the organic coating and coated and uncoated steel hull as the two electrodes. Based on the reasonable material selection of the dielectric film, the SL-TENG showed excellent performance, which benefits from the good triboelectrification performance and weak ion adsorption effect. In addition, compared with commercial marine anticorrosive coatings, the friction coefficient of the SL-TENG with the seawater can be reduced 43.8%, which is significantly beneficial to reduce the sailing resistance of ships. More importantly, the uncoated steel electrode can obtain a high potential in highly corrosive seawater, which can enable it to perform the function of marine anticorrosive agents. Our finding provides a potential strategy to evade the marine anticorrosion of ships.
Collapse
Affiliation(s)
- Chuguo Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Baofeng Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Yuan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ou Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuebo Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Lixia He
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhihao Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Linglin Zhou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jie Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
Wu J, Zheng Y, Li X. Recent Progress in Self-Powered Sensors Based on Triboelectric Nanogenerators. SENSORS (BASEL, SWITZERLAND) 2021; 21:7129. [PMID: 34770435 PMCID: PMC8587673 DOI: 10.3390/s21217129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022]
Abstract
The emergence of the Internet of Things (IoT) has subverted people's lives, causing the rapid development of sensor technologies. However, traditional sensor energy sources, like batteries, suffer from the pollution problem and the limited lifetime for powering widely implemented electronics or sensors. Therefore, it is essential to obtain self-powered sensors integrated with renewable energy harvesters. The triboelectric nanogenerator (TENG), which can convert the surrounding mechanical energy into electrical energy based on the surface triboelectrification effect, was born of this background. This paper systematically introduces the working principle of the TENG-based self-powered sensor, including the triboelectrification effect, Maxwell's displacement current, and quantitative analysis method. Meanwhile, this paper also reviews the recent application of TENG in different fields and summarizes the future development and current problems of TENG. We believe that there will be a rise of TENG-based self-powered sensors in the future.
Collapse
Affiliation(s)
| | | | - Xiaoyi Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; (J.W.); (Y.Z.)
| |
Collapse
|
44
|
Triboelectric Nanogenerators for Energy Harvesting in Ocean: A Review on Application and Hybridization. ENERGIES 2021. [DOI: 10.3390/en14185600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With recent advancements in technology, energy storage for gadgets and sensors has become a challenging task. Among several alternatives, the triboelectric nanogenerators (TENG) have been recognized as one of the most reliable methods to cure conventional battery innovation’s inadequacies. A TENG transfers mechanical energy from the surrounding environment into power. Natural energy resources can empower TENGs to create a clean and conveyed energy network, which can finally facilitate the development of different remote gadgets. In this review paper, TENGs targeting various environmental energy resources are systematically summarized. First, a brief introduction is given to the ocean waves’ principles, as well as the conventional energy harvesting devices. Next, different TENG systems are discussed in details. Furthermore, hybridization of TENGs with other energy innovations such as solar cells, electromagnetic generators, piezoelectric nanogenerators and magnetic intensity are investigated as an efficient technique to improve their performance. Advantages and disadvantages of different TENG structures are explored. A high level overview is provided on the connection of TENGs with structural health monitoring, artificial intelligence and the path forward.
Collapse
|