1
|
Guo Z, Ge M, Ruan Z, Ma Y, Chen Y, Lin H. 2D Janus carrier-enabled trojan horse: Gallium delivery for the sequential therapy of biofilm associated infection. Biomaterials 2025; 313:122761. [PMID: 39241550 DOI: 10.1016/j.biomaterials.2024.122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Biofilm-associated infections (BAIs) continue to pose a major challenge in the medical field. Nanomedicine, in particular, promises significant advances in combating BAIs through the introduction of a variety of nanomaterials and nano-antimicrobial strategies. However, studies to date have primarily focused on the removal of the bacterial biofilm and neglect the subsequent post-biofilm therapeutic measures for BAIs, rendering pure anti-biofilm strategies insufficient for the holistic recovery of affected patients. Herein, we construct an emerging dual-functional composite nanosheet (SiHx@Ga) that responds to pHs fluctuation in the biofilm microenvironment to enable a sequential therapy of BAIs. In the acidic environment of biofilm, SiHx@Ga employs the self-sensitized photothermal Trojan horse strategy to effectively impair the reactive oxygen species (ROS) defense system while triggering oxidative stress and lipid peroxidation of bacteria, engendering potent antibacterial and anti-biofilm effects. Surprisingly, in the post-treatment phase, SiHx@Ga adsorbs free pathogenic nucleic acids released after biofilm destruction, generates hydrogen with ROS-scavenging and promotes macrophage polarization to the M2 type, effectively mitigating damaging inflammatory burst and promoting tissue healing. This well-orchestrated strategy provides a sequential therapy of BAIs by utilizing microenvironmental variations, offering a conceptual paradigm shift in the field of nanomedicine anti-infectives.
Collapse
Affiliation(s)
- Zhao Guo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Min Ge
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Zesong Ruan
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yihong Ma
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yunfeng Chen
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Han Lin
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China.
| |
Collapse
|
2
|
Wang Y, Chen C, He C, Dong W, Yang X, Kong Q, Yan B, He J. Quaternized chitosan-based biomimetic nanozyme hydrogels with ROS scavenging, oxygen generating, and antibacterial capabilities for diabetic wound repair. Carbohydr Polym 2025; 348:122865. [PMID: 39567115 DOI: 10.1016/j.carbpol.2024.122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024]
Abstract
Management of chronic diabetic wounds is challenging due to excess reactive oxygen species (ROS), hypoxia, persistent inflammation, and bacterial infection within the wound microenvironment. For addressing the aforementioned concern, we have developed a multifunctional hydrogel dressing (PMT-C@PhM) based on chitosan with self-healing, adhesive, antibacterial, and antioxidant capacities for therapeutic diabetic wounds. The hydrogel dressing consisted of quaternary ammonium salt- and catechol- modified chitosan (CQCS), thioctic acid-functionalized poly(ethylene glycol)s (PEGs), and polydopamine-coated honeycomb manganese dioxide nanoparticles (hMnO2@PDA NPs). The nanozyme-modified hydrogel exhibits superoxide dismutase (SOD) and catalase (CAT) activities to scavenge ROS while generating oxygen to alleviate oxidative stress and hypoxic environment in wounds, and to attenuate the inflammatory response through modulating macrophage polarization. The PMT-C@PhM hydrogel is effective in the treatment of diabetic wound infections caused by Staphylococcus aureus, and relieves oxidative stress, inhibits inflammation, and promotes neovascularization and dermal collagen synthesis thus providing favorable conditions for accelerated wound healing. In conclusion, the aforementioned approach offers a biosafe, straightforward, and efficient strategy for the management of diabetic wounds.
Collapse
Affiliation(s)
- Ye Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Orthopedics, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Chong Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changyuan He
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wentao Dong
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuekun Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingquan Kong
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jin He
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
3
|
Zhang Y, Tang Z, Chen L, Yang M, Zeng Y, Bai X, Zhang B, Zhou J, Zhang W, Tang S. Intelligent sequential degradation hydrogels by releasing bimetal-phenolic for enhanced diabetic wound healing. J Control Release 2025; 378:961-981. [PMID: 39724946 DOI: 10.1016/j.jconrel.2024.12.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Healing of diabetic wounds is significantly impeded by a complex environment comprising biofilm formation, excessive inflammation, and compromised angiogenic capacity, leading to a disordered physiological healing process. Restoration and maintenance of a normal and orderly healing process in diabetic wounds remain unmet therapeutic objectives. Herein, an innovative bimetal-phenolic network hydrogel system is designed with a concentric circular structure, enabling dual-drug delivery with differentiated release kinetics. The outer layer, Cu@TA (tannic acid)-loaded ε-PL (poly-l-lysine)-SilMA (methacrylated silk), is engineered for an initial release to scavenge reactive oxygen species and exert antibacterial and anti-inflammatory effects. The inner layer, Zn@TA-loaded ε-PL-SilMA, is designed for sustained release to promote cell migration, modulate the immune microenvironment, and induce angiogenesis. By incorporating a polyphenolic-metal network, the Cu@TA/Zn@TA/ε-PL-SilMA hydrogel can alter its degradation rate, enabling the sequential release of Cu@TA and Zn@TA. An in vivo diabetic rat wound model, transcriptomic sequencing, and histological staining analyses revealed that the Cu@TA/Zn@TA/ε-PL-SilMA hydrogel effectively activates the Wnt/β-catenin signaling pathway, synergistically promoting wound healing by accelerating angiogenesis, effectively reducing inflammation, and promoting collagen deposition. This innovative hydrogel, with sequential degradation and release properties, is broadly applicable, ensures orderly wound healing, and holds promise for accelerating diabetic wound repair.
Collapse
Affiliation(s)
- Yiwen Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515051, China; Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515051, China
| | - Zixuan Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515051, China; Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515051, China
| | - Liyun Chen
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515051, China; Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515051, China
| | - Min Yang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515051, China; Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515051, China
| | - Yating Zeng
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515051, China; Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515051, China
| | - Xujue Bai
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515051, China; Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515051, China
| | - Bingna Zhang
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515051, China; Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515051, China
| | - Jianda Zhou
- Department of Plastic and Reconstructive Surgery, Central South University Third Xiangya Hospital, Changsha, Hunan 410013, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515051, China; Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515051, China; Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515051, China.
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515051, China; Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515051, China; Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515051, China.
| |
Collapse
|
4
|
Fang Y, Xiu L, Xiao D, Zhang D, Wang M, Dong Y, Ye J. Sandwich-Structured Nanofiber Dressings Containing MgB 2 and Metformin Hydrochloride With ROS Scavenging and Antibacterial Properties for Wound Healing in Diabetic Infections. Adv Healthc Mater 2024; 13:e2402452. [PMID: 39235573 DOI: 10.1002/adhm.202402452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Indexed: 09/06/2024]
Abstract
The treatment of chronic diabetic wounds is a major challenge due to oxidative stress, persistent hyperglycemia, and susceptibility to bacterial infection. In this study, multifunctional sandwich-structured nanofiber dressings (SNDs) are prepared via electrospinning. The SNDs consisted of an outer layer of hydrophobic polylactic acid (PLA) fibers encapsulating MgB2 nanosheets (MgB2 NSs), a middle layer of PLA and polyvinylpyrrolidone (PVP) fibers encapsulating the MgB2 NSs and metformin hydrochloride complex (MgB2-Met), and an inner layer of water-soluble PVP fibers encapsulating MgB2-Met. Because of their special sandwich structure, SNDs have high photothermal conversion efficiency (24.13%) and photothermal cycle performance. SNDs also exhibit a photothermal effect, bacteria-targeting effect of MgB2, electrostatic attraction ability of metformin hydrochloride (Met), and strong antibacterial activity against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA). SNDs can eliminate intracellular reactive oxygen species (ROS) by regulating the hydrogen release from MgB2. In addition, SNDs have good biocompatibility, can effectively inhibit the inflammatory factor Interleukin-6 (IL-6), and promote granulation tissue formation, collagen deposition, and diabetic wound healing. These findings offer a promising approach for clinical treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yueguang Fang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Lanling Xiu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Dingwen Xiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Danyang Zhang
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Miao Wang
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic, Functional Material Preparative and Applied Technology, Dalian, Liaoning, 116024, P. R. China
| |
Collapse
|
5
|
Hao M, Xia Y. A Multi-functional Hybrid System Comprised of Polydopamine Nanobottles and Biological Effectors for Cartilage Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405979. [PMID: 39077937 PMCID: PMC11636171 DOI: 10.1002/smll.202405979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Biological effectors play critical roles in augmenting the repair of cartilage injuries, but it remains a challenge to control their release in a programmable, stepwise fashion. Herein, a hybrid system consisting of polydopamine (PDA) nanobottles embedded in a hydrogel matrix to manage the release of biological effectors for use in cartilage repair is reported. Specifically, a homing effector is load in the hydrogel matrix, together with the encapsulation of a cartilage effector in PDA nanobottles filled with phase-change material. In action, the homing effector is quickly released from the hydrogel in the initial step to recruit stem cells from the surroundings. Owing to the antioxidation effect of PDA, the recruited cells are shielded from reactive oxygen species. The cartilage effector is then slowly released from the nanobottles to promote chondrogenic differentiation, facilitating cartilage repair. Altogether, this strategy encompassing recruitment, protection, and differentiation of stem cells offers a viable route to tissue repair or regeneration through stem cell therapy.
Collapse
Affiliation(s)
- Min Hao
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Younan Xia
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
6
|
Zhang W, Lv Y, Niu Q, Zhu C, Zhang H, Fan K, Wang X. Zinc Oxide-Enhanced Copper Sulfide Nanozymes Promote the Healing of Infected Wounds by Activating Immune and Inflammatory Responses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406356. [PMID: 39520374 DOI: 10.1002/smll.202406356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Bacterial infection and an excessive inflammatory response are two major factors that affect the healing of infected wounds. The zinc oxide/copper sulfide (ZnO-CuS) microspheres (MSs) developed in this work can kill bacteria and resist inflammation. ZnO-CuS exhibits different enzyme-like activities depending on pH. In acidic environments, ZnO-CuS exhibits peroxidase-like (POD-like) activity and can convert hydrogen peroxide (H2O2) into hydroxyl radicals (•OH) for sterilization. Under neutral conditions, ZnO-CuS removes reactive oxygen species (ROS) and can convert excess ROS into water and oxygen. The in vitro results of the antibacterial test demonstrate the pronounced disruption effect of ZnO-CuS on the bacterial biofilm and cell membrane. The transcriptome sequencing results of wounded animal tissue reveal that ZnO-CuS MSs increase the expression of proteins produced by immune cells, and reduce the expression levels of inflammatory factors at the wound site. Therefore, antimicrobial activity and rapid wound healing can be achieved by regulating the immune response and reducing the inflammatory response. The results from hemolysis, routine blood and blood biochemistry analyses demonstrate the excellent biosecurity of the ZnO-CuS MSs.
Collapse
Affiliation(s)
- Wei Zhang
- College and Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China
- Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
| | - Yang Lv
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qiang Niu
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China
| | - Can Zhu
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China
| | - Hengguo Zhang
- College and Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianwen Wang
- College and Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
7
|
Bai M, Wang T, Xing Z, Huang H, Wu X, Adeli M, Wang M, Han X, Ye L, Cheng C. Electron-donable heterojunctions with synergetic Ru-Cu pair sites for biocatalytic microenvironment modulations in inflammatory mandible defects. Nat Commun 2024; 15:9592. [PMID: 39505847 PMCID: PMC11541594 DOI: 10.1038/s41467-024-53824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
The clinical treatments of maxillofacial bone defects pose significant challenges due to complex microenvironments, including severe inflammation, high levels of reactive oxygen species (ROS), and potential bacterial infection. Herein, we propose the de novo design of an efficient, versatile, and precise electron-donable heterojunction with synergetic Ru-Cu pair sites (Ru-Cu/EDHJ) for superior biocatalytic regeneration of inflammatory mandible defects and pH-controlled antibacterial therapies. Our studies demonstrate that the unique structure of Ru-Cu/EDHJ enhances the electron density of Ru atoms and optimizes the binding strength of oxygen species, thus improving enzyme-like catalytic performance. Strikingly, this biocompatible Ru-Cu/EDHJ can efficiently switch between ROS scavenging in neutral media and ROS generation in acidic media, thus simultaneously exhibiting superior repair functions and bioadaptive antibacterial properties in treating mandible defects in male mice. We believe synthesizing such biocatalytic heterojunctions with exceptional enzyme-like capabilities will offer a promising pathway for engineering ROS biocatalytic materials to treat trauma, tumors, or infection-caused maxillofacial bone defects.
Collapse
Grants
- 52161145402, 52173133, 52373148 National Natural Science Foundation of China (National Science Foundation of China)
- 82470962, 82001020 National Natural Science Foundation of China (National Science Foundation of China)
- U21A20368 National Natural Science Foundation of China (National Science Foundation of China)
- sklpme2021-4-02 State Key Laboratory of Polymer Materials Engineering
- National Key R&D Program of China (2021YFB3800700),Sichuan Science and Technology Program (2023YFH0008),the 1·3·5 Project for Disciplines of Excellence, West China Hospital, Sichuan University (ZYJC21047).
- Sichuan Science and Technology Program (2024NSFSC0672, 2021YFG0238),China Postdoctoral Science Foundation (2019M663525), Research Funding from West China School/Hospital of Stomatology Sichuan University (RCDWJS2023-16), and Research and Develop Program, West China Hospital of Stomatology Sichuan University (RD-02-202206).
- National Key R&D Program of China (2023YFC3605600), Sichuan Science and Technology Program (2023YFS0019), Med-X Innovation Programme of Med-X Center for Materials, Sichuan University (MCMGD202301)
Collapse
Affiliation(s)
- Mingru Bai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Haoju Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Chong Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Liu J, Wang T, Liao C, Geng W, Yang J, Ma S, Tian W, Liao L, Cheng C. Constructing Electron-Rich Ru Clusters on Non-Stoichiometric Copper Hydroxide for Superior Biocatalytic ROS Scavenging to Treat Inflammatory Spinal Cord Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411618. [PMID: 39394880 DOI: 10.1002/adma.202411618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Indexed: 10/14/2024]
Abstract
Traumatic spinal cord injury (SCI) represents a complex neuropathological challenge that significantly impacts the well-being of affected individuals. The quest for efficacious antioxidant and anti-inflammatory therapies is both a compelling necessity and a formidable challenge. Here, in this work, the innovative synthesis of electron-rich Ru clusters on non-stoichiometric copper hydroxide that contain oxygen vacancy defects (Ru/def-Cu(OH)2), which can function as a biocatalytic reactive oxygen species (ROS) scavenger for efficiently suppressing the inflammatory cascade reactions and modulating the endogenous microenvironments in SCI, is introduced. The studies reveal that the unique oxygen vacancies promote electron redistribution and amplify electron accumulation at Ru clusters, thus enhancing the catalytic activity of Ru/def-Cu(OH)2 in multielectron reactions involving oxygen-containing intermediates. These advancements endow the Ru/def-Cu(OH)2 with the capacity to mitigate ROS-mediated neuronal death and to foster a reparative microenvironment by dampening inflammatory macrophage responses, meanwhile concurrently stimulating the activity of neural stem cells, anti-inflammatory macrophages, and oligodendrocytes. Consequently, this results in a robust reparative effect on traumatic SCI. It is posited that the synthesized Ru/def-Cu(OH)2 exhibits unprecedented biocatalytic properties, offering a promising strategy to develop ROS-scavenging and anti-inflammatory materials for the management of traumatic SCI and a spectrum of other diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Jinglun Liu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chengcheng Liao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Geng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jian Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shixing Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310016, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Li Liao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Huang L, Li T, Geng W, Xie X, Wang P, Deng Y, Gao Y, Bai D, Tang T, Cheng C. Oxygen-Bonded Amorphous Transition Metal Dichalcogenides with pH-Responsive Reactive Oxygen Biocatalysis for Combined Antibacterial and Anti-inflammatory Therapies in Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407046. [PMID: 39469735 DOI: 10.1002/smll.202407046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Diabetic wound healing is a formidable challenge, often complicated by biofilms, immune dysregulation, and hindered vascularization within the wound environments. The intricate interplay of these microenvironmental factors has been a significant oversight in the evolution of therapeutic strategies. Herein, the design of an efficient and versatile oxygen-bonded amorphous transition metal dichalcogenide biocatalyst (aRuS-Or) with pH-responsive reactive oxygen biocatalysis for combined antibacterial and anti-inflammatory therapies in promoting diabetic wound healing is reported. Leveraging the incorporation of Ru─O bonds, aRuS-Or exhibits optimized adsorption/desorption behavior of oxygen intermediates, thereby enhancing both the reactive oxygen species (ROS) generation activity in acidic conditions and ROS scavenging performance in neutral environments. Remarkably, aRuS-Or demonstrates exceptional bactericidal potency within infected milieus through biocatalytic ROS generation. Beyond its antimicrobial capability, post-eradication, aRuS-Or serves a dual role in mitigating oxidative stress in inflammatory wounds, providing robust cellular protection and fostering an M2-phenotype polarization of macrophages, which is pivotal for accelerating the wound repair process. The findings underscore the multifaceted efficacy of aRuS-Or, which harmoniously integrates high antibacterial action with anti-inflammatory and pro-angiogenic properties. This triad of functionalities positions aRuS-Or as a promising candidate for the comprehensive management of complex diabetic ulcers, addressing the unmet needs in the current therapeutics.
Collapse
Affiliation(s)
- Lingyi Huang
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tiantian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Geng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaodong Xie
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Peiqi Wang
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuting Deng
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Gao
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ding Bai
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tian Tang
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
10
|
Zheng M, Song W, Huang P, Huang Y, Lin H, Zhang M, He H, Wu J. Drug conjugates crosslinked bioresponsive hydrogel for combination therapy of diabetic wound. J Control Release 2024; 376:701-716. [PMID: 39447843 DOI: 10.1016/j.jconrel.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Basic fibroblast growth factor (bFGF) has proved to be effective for wound healing, yet its effectiveness is extremely retarded in diabetic wounds due to the severe oxidative stress in wound beds. To solve this issue, herein a novel combination therapy of bFGF and N-acetylcysteine (NAC, antioxidant) was devised for improved diabetic wound repair. To avoid rapid loss of both drugs in the wound beds, a bioresponsive hydrogel (bFGF-HSPP-NAC) was engineered by incorporating bFGF and NAC into polymer-drug conjugates (HSPP) via thiol-disulfide exchange reactions. In response to oxidative stress (e.g., reactive oxygen species), the disulfide bonds (SS) within the hydrogel are broken into thiol groups (-S-H), thereby promoting hydrogel degradation and enabling controlled drug release. Initially, NAC is released to scavenge free radicals and ameliorate oxidative damage. Subsequently, bFGF is released to expedite tissue regeneration. This combinatorial strategy is tailored to the specific characteristics of the wound microenvironment at various stages of diabetic wound healing, thereby achieving therapeutic efficacy. The results indicate that the bFGF-HSPP-NAC hydrogel markedly enhances re-epithelialization, collagen deposition, hair follicle regeneration, and neovascularization. In conclusion, the bioresponsive bFGF-HSPP-NAC hydrogel demonstrates significant potential for application in combinatorial therapeutic approaches for diabetic wound healing.
Collapse
Affiliation(s)
- Manhui Zheng
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, PR China
| | - Wenxiang Song
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China
| | - Peipei Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China
| | - Yueping Huang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Hanxuan Lin
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Miao Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Huacheng He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, PR China; College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China.
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, PR China.
| |
Collapse
|
11
|
Yang J, Zhuang C, Lin Y, Yu Y, Zhou C, Zhang C, Zhu Z, Qian C, Zhou Y, Zheng W, Zhao Y, Jin C, Wu Z. Orientin promotes diabetic wounds healing by suppressing ferroptosis via activation of the Nrf2/GPX4 pathway. Food Sci Nutr 2024; 12:7461-7480. [PMID: 39479645 PMCID: PMC11521705 DOI: 10.1002/fsn3.4360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 11/02/2024] Open
Abstract
Diabetic patients often experience delayed wound healing due to impaired functioning of human umbilical vein endothelial cells (HUVECs) under high glucose (HG) conditions. This is because HG conditions trigger uncontrolled lipid peroxidation, leading to iron-dependent ferroptosis, which is caused by glucolipotoxicity. However, natural flavonoid compound Orientin (Ori) possesses anti-inflammatory bioactive properties and is a promising treatment for a range of diseases. The current study aimed to investigate the function and mechanism of Ori in HG-mediated ferroptosis. A diabetic wound model was established in mice by intraperitoneal injection of streptozotocin (STZ), and HUVECs were cultured under HG to create an in vitro diabetic environment. The results demonstrated that Ori inhibited HG-mediated ferroptosis, reducing levels of malondialdehyde (MDA), lipid peroxidation, and mitochondrial reactive oxygen species (mtROS), while increasing decreased levels of malondialdehyde, lipid peroxidation, and mitochondrial reactive oxygen species, as well as increased levels of glutathione (GSH). Ori treatment also improved the wound expression of glutathione peroxidase 4 (GPX4) and angiogenesis markers, reversing the delayed wound healing caused by diabetes mellitus (DM). Additional investigations into the mechanism revealed that Ori may stimulate the nuclear factor-erythroid 2-related factor 2 (Nrf2)/GPX4 signaling pathway. Silencing Nrf2 in HG-cultured HUVECs negated the beneficial impact mediated by Ori. By stimulating the Nrf2/GPX4 signaling pathway, Ori may expedite diabetic wound healing by decreasing ferroptosis.
Collapse
Affiliation(s)
- Jia‐yi Yang
- Department of GynaecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- The Third Peoples Hospital of Ouhai DistrictWenzhouZhejiangChina
| | - Chen Zhuang
- Alberta Institute, Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Yu‐zhe Lin
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| | - Yi‐tian Yu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The First School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Chen‐cheng Zhou
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Chao‐yang Zhang
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zi‐teng Zhu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Cheng‐jie Qian
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| | - Yi‐nan Zhou
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wen‐hao Zheng
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| | - Yu Zhao
- Department of GynaecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Chen Jin
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| | - Zong‐yi Wu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| |
Collapse
|
12
|
Jiang N, Liu X, Sui B, Wang J, Liu X, Zhang Z. Using Hybrid MnO 2-Au Nanoflowers to Accelerate ROS Scavenging and Wound Healing in Diabetes. Pharmaceutics 2024; 16:1244. [PMID: 39458576 PMCID: PMC11509962 DOI: 10.3390/pharmaceutics16101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: Excessive reactive oxygen species (ROS) in diabetic wounds are major contributors to chronic wounds and impaired healing, posing significant challenges in regenerative medicine. Developing innovative drug delivery systems is crucial to address these issues by modifying the adverse microenvironment and promoting effective wound healing. Methods: Herein, we designed a novel drug delivery platform using manganese dioxide nanoflower hybridized gold nanoparticle composites (MnO2-Au) synthesized via a hydrothermal reaction, and investigated the potential of MnO2-Au nanoflowers to relieve the high oxidative stress microenvironment and regulate diabetic wound tissue healing. Results: This hybrid material demonstrated superior catalytic activity compared to MnO2 alone, enabling the rapid decomposition of hydrogen peroxide and a substantial reduction in ROS levels within dermal fibroblasts. The MnO2-Au nanoflowers also facilitated enhanced dermal fibroblast migration and Col-I expression, which are critical for tissue regeneration. Additionally, a hydrogel-based wound dressing incorporating MnO2-Au nanoflowers was developed, showing its potential as an intelligent drug delivery system. This dressing significantly reduced oxidative stress, accelerated wound closure, and improved the quality of neonatal epithelial tissue regeneration in a diabetic rat skin defect model. Conclusions: Our findings underscore the potential of MnO2-Au nanoflower-based drug delivery systems as a promising therapeutic approach for chronic wound healing, particularly in regenerative medicine.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Oral and Craniomaxillofacial Science, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People’s Hospital, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China;
| | - Xinwei Liu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; (X.L.); (B.S.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Baiyan Sui
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; (X.L.); (B.S.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jiale Wang
- College of Science, Donghua University, Shanghai 201620, China;
- Shanghai Institute of Intelligent Electronics and Systems, Donghua University, Shanghai 201620, China
| | - Xin Liu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; (X.L.); (B.S.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zun Zhang
- Department of Stomatology, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| |
Collapse
|
13
|
Gao Y, Deng Y, Geng W, Xiao S, Wang T, Xu X, Adeli M, Cheng L, Qiu L, Cheng C. Infectious and Inflammatory Microenvironment Self-Adaptive Artificial Peroxisomes with Synergetic Co-Ru Pair Centers for Programmed Diabetic Ulcer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408787. [PMID: 39096078 DOI: 10.1002/adma.202408787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Complex microenvironments with bacterial infection, persistent inflammation, and impaired angiogenesis are the major challenges in chronic refractory diabetic ulcers. To address this challenge, a comprehensive strategy with highly effective and integrated antimicrobial, anti-inflammatory, and accelerated angiogenesis will offer a new pathway to the rapid healing of infected diabetic ulcers. Here, inspired by the tunable reactive oxygen species (ROS) regulation properties of natural peroxisomes, this work reports the design of infectious and inflammatory microenvironments self-adaptive artificial peroxisomes with synergetic Co-Ru pair centers (APCR) for programmed diabetic ulcer therapy. Benefiting from the synergistic Co and Ru atoms, the APCR can simultaneously achieve ROS production and metabolic inhibition for bacterial sterilization in the infectious microenvironment. After disinfection, the APCR can also eliminate ROS to alleviate oxidative stress in the inflammatory microenvironment and promote wound regeneration. The data demonstrate that the APCR combines highly effective antibacterial, anti-inflammatory, and provascular regeneration capabilities, making it an efficient and safe nanomedicine for treating infectious and inflammatory diabetic foot ulcers via a programmed microenvironment self-adaptive treatment pathway. This work expects that synthesizing artificial peroxisomes with microenvironments self-adaptive and bifunctional enzyme-like ROS regulation properties will provide a promising path to construct ROS catalytic materials for treating complex diabetic ulcers, trauma, or other infection-caused diseases.
Collapse
Affiliation(s)
- Yang Gao
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Deng
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Geng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sutong Xiao
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaohui Xu
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mohsen Adeli
- Department of Organic Chemistry, Lorestan University, Khorramabad, 6815144316, Iran
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Liang Cheng
- Department of Materials Science and Engineering, The Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Li Qiu
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
14
|
Nie R, Zhang J, Jia Q, Li Y, Tao W, Qin G, Liu X, Tao Y, Zhang Y, Li P. Structurally Oriented Carbon Dots as ROS Nanomodulators for Dynamic Chronic Inflammation and Infection Elimination. ACS NANO 2024; 18:22055-22070. [PMID: 39116283 DOI: 10.1021/acsnano.4c05266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The selective elimination of cytotoxic ROS while retaining essential ones is pivotal in the management of chronic inflammation. Co-occurring bacterial infection further complicates the conditions, necessitating precision and an efficacious treatment strategy. Herein, the dynamic ROS nanomodulators are rationally constructed through regulating the surface states of herbal carbon dots (CDs) for on-demand inflammation or infection elimination. The phenolic OH containing CDs derived from honeysuckle (HOCD) and dandelion (DACD) demonstrated appropriate redox potentials, ensuring their ability to scavenge cytotoxic ROS such as ·OH and ONOO-, while invalidity toward essential ones such as O2·-, H2O2, and NO. This enables efficient treatment of chronic inflammation without affecting essential ROS signal pathways. The surface C-N/C═N of CDs derived from taxus leaves (TACD) and DACD renders them with suitable band structures, facilitating absorption in the red region and efficient generation of O2·- upon light irradiation for sterilization. Specifically, the facilely prepared DACD demonstrates fascinating dynamic ROS modulating ability, making it highly suitable for addressing concurrent chronic inflammation and infection, such as diabetic wound infection. This dynamic ROS regulation strategy facilitates the realization of the precise and efficient treatment of chronic inflammation and infection with minimal side effects, holding immense potential for clinical practice.
Collapse
Affiliation(s)
- Renhao Nie
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jianhong Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo 315103, China
| | - Yuanying Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Wei Tao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Guofeng Qin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiyin Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yaolan Tao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yunxiu Zhang
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 mingli Road, Zhengzhou 450046, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
15
|
Zhang W, Ge Z, Xiao Y, Liu D, Du J. Antioxidant and Immunomodulatory Polymer Vesicles for Effective Diabetic Wound Treatment through ROS Scavenging and Immune Modulating. NANO LETTERS 2024; 24:9494-9504. [PMID: 39058893 DOI: 10.1021/acs.nanolett.4c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Chronic diabetic wound patients usually show high glucose levels and systemic immune disorder, resulting in high reactive oxygen species (ROS) levels and immune cell dysfunction, prolonged inflammation, and delayed wound healing. Herein, we prepared an antioxidant and immunomodulatory polymer vesicle for diabetic wound treatment. This vesicle is self-assembled from poly(ε-caprolactone)36-block-poly[lysine4-stat-(lysine-mannose)22-stat-tyrosine)16] ([PCL36-b-P[Lys4-stat-(Lys-Man)22-stat-Tyr16]). Polytyrosine is an antioxidant polypeptide that can scavenge ROS. d-Mannose was introduced to afford immunomodulatory functions by promoting macrophage transformation and Treg cell activation through inhibitory cytokines. The mice treated with polymer vesicles showed 23.7% higher Treg cell levels and a 91.3% higher M2/M1 ratio than those treated with PBS. Animal tests confirmed this vesicle accelerated healing and achieved complete healing of S. aureus-infected diabetic wounds within 8 days. Overall, this is the first antioxidant and immunomodulatory vesicle for diabetic wound healing by scavenging ROS and regulating immune homeostasis, opening new avenues for effective diabetic wound healing.
Collapse
Affiliation(s)
- Wenqing Zhang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhenghong Ge
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yufen Xiao
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Danqing Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Xiao S, Xie L, Gao Y, Wang M, Geng W, Wu X, Rodriguez RD, Cheng L, Qiu L, Cheng C. Artificial Phages with Biocatalytic Spikes for Synergistically Eradicating Antibiotic-Resistant Biofilms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404411. [PMID: 38837809 DOI: 10.1002/adma.202404411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Antibiotic-resistant pathogens have become a global public health crisis, especially biofilm-induced refractory infections. Efficient, safe, and biofilm microenvironment (BME)-adaptive therapeutic strategies are urgently demanded to combat antibiotic-resistant biofilms. Here, inspired by the fascinating biological structures and functions of phages, the de novo design of a spiky Ir@Co3O4 particle is proposed to serve as an artificial phage for synergistically eradicating antibiotic-resistant Staphylococcus aureus biofilms. Benefiting from the abundant nanospikes and highly active Ir sites, the synthesized artificial phage can simultaneously achieve efficient biofilm accumulation, extracellular polymeric substance (EPS) penetration, and superior BME-adaptive reactive oxygen species (ROS) generation, thus facilitating the in situ ROS delivery and enhancing the biofilm eradication. Moreover, metabolomics found that the artificial phage obstructs the bacterial attachment to EPS, disrupts the maintenance of the BME, and fosters the dispersion and eradication of biofilms by down-regulating the associated genes for the biosynthesis and preservation of both intra- and extracellular environments. The in vivo results demonstrate that the artificial phage can treat the biofilm-induced recalcitrant infected wounds equivalent to vancomycin. It is suggested that the design of this spiky artificial phage with synergistic "penetrate and eradicate" capability to treat antibiotic-resistant biofilms offers a new pathway for bionic and nonantibiotic disinfection.
Collapse
Affiliation(s)
- Sutong Xiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Lan Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yang Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Wei Geng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Xizheng Wu
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, 634050, Russia
| | - Liang Cheng
- Department of Materials Science and Engineering, The Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Li Qiu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
17
|
Cui Q, Gao Y, Wen Q, Wang T, Ren X, Cheng L, Bai M, Cheng C. Tunable Structured 2D Nanobiocatalysts: Synthesis, Catalytic Properties and New Horizons in Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311584. [PMID: 38566551 DOI: 10.1002/smll.202311584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Indexed: 04/04/2024]
Abstract
2D materials have offered essential contributions to boosting biocatalytic efficiency in diverse biomedical applications due to the intrinsic enzyme-mimetic activity and massive specific surface area for loading metal catalytic centers. Since the difficulty of high-quality synthesis, the varied structure, and the tough choice of efficient surface loading sites with catalytic properties, the artificial building of 2D nanobiocatalysts still faces great challenges. Here, in this review, a timely and comprehensive summarization of the latest progress and future trends in the design and biotherapeutic applications of 2D nanobiocatalysts is provided, which is essential for their development. First, an overview of the synthesis-structure-fundamentals and structure-property relationships of 2D nanobiocatalysts, both metal-free and metal-based is provided. After that, the effective design of the active sites of nanobiocatalysts is discussed. Then, the progress of their applied research in recent years, including biomedical analysis, biomedical therapeutics, pharmacokinetics, and toxicology is systematically highlighted. Finally, future research directions of 2D nanobiocatalysts are prospected. Overall, this review to provide cutting-edge and multidisciplinary guidance for accelerating future developments and biomedical applications of 2D nanobiocatalysts is expected.
Collapse
Affiliation(s)
- Qiqi Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qinlong Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liang Cheng
- Department of Materials Science and Engineering, Center for Oral Diseases, The Macau University of Science and Technology, Taipa, Macau, China
| | - Mingru Bai
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
18
|
Ge Z, Long L, Zhang F, Dong R, Chen Z, Tang S, Yang L, Wang Y. Development of an injectable oxidized dextran/gelatin hydrogel capable of promoting the healing of alkali burn-associated corneal wounds. Int J Biol Macromol 2024; 273:132740. [PMID: 38825267 DOI: 10.1016/j.ijbiomac.2024.132740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
The cornea serves as an essential shield that protects the underlying eye from external conditions, yet it remains highly vulnerable to injuries that could lead to blindness and scarring if not promptly and effectively treated. Excessive inflammatory response constitute the primary cause of pathological corneal injury. This study aimed to develop effective approaches for enabling the functional repair of corneal injuries by combining nanoparticles loaded with anti-inflammatory agents and an injectable oxidized dextran/gelatin/borax hydrogel. The injectability and self-healing properties of developed hydrogels based on borate ester bonds and dynamic Schiff base bonds were excellent, improving the retention of administered drugs on the ocular surface. In vitro cellular assays and in vivo animal studies collectively substantiated the proficiency of probucol nanoparticle-loaded hydrogels to readily suppress proinflammatory marker expression and to induce the upregulation of anti-inflammatory mediators, thereby supporting rapid repair of rat corneal tissue following alkali burn-induced injury. As such, probucol nanoparticle-loaded hydrogels represent a prospective avenue to developing long-acting and efficacious therapies for ophthalmic diseases.
Collapse
Affiliation(s)
- Zhengwei Ge
- Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province 510071, China; Changsha Aier Eye Hospital, Changsha, Hunan Province 410000, China
| | - Linyu Long
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan 410009, China; Aier Eye Institute, Aier Eye Hospital Group, Changsha, Hunan Province 410035, China; National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China; Eye Center of Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China
| | - Ruiqi Dong
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China
| | - Zhongping Chen
- Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province 510071, China; Changsha Aier Eye Hospital, Changsha, Hunan Province 410000, China; Aier Academy of Ophthalmology, Central South University, Changsha, Hunan 410009, China; School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, China.
| | - Shibo Tang
- Changsha Aier Eye Hospital, Changsha, Hunan Province 410000, China; Aier Academy of Ophthalmology, Central South University, Changsha, Hunan 410009, China; Aier Eye Institute, Aier Eye Hospital Group, Changsha, Hunan Province 410035, China.
| | - Li Yang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
19
|
Yuan J, Hou Q, He X, Zhong L, Li M, Fu X, Liu H. Chitosan-taurine nanoparticles cross-linked carboxymethyl chitosan hydrogels facilitate both acute and chronic diabetic wound healing. Int J Biol Macromol 2024; 273:132762. [PMID: 38876232 DOI: 10.1016/j.ijbiomac.2024.132762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Wound dressing diligently facilitate healing by fostering hemostasis, immunoregulation, the angiogenesis, and collagen deposition. Our methodology entails fabricating chitosan-taurine nanoparticles (CS-Tau) through an ionic gelation method. The morphology of CS-Tau was observed utilizing Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Dynamic Light Scattering (DLS). The nanoparticles are subsequently incorporated into carboxymethyl chitosan hydrogels for crosslinking by EDC-NHS, yielding hydrogel dressings (CMCS-CS-Tau) designed to extend the duration of taurine release. In vitro investigations confirmed that these innovative compound dressings displayed superior biodegradation, biocompatibility, cytocompatibility, and non-toxicity, in addition to possessing anti-inflammatory properties, and stimulating the proliferation and mobility of human umbilical vein endothelial cells (HUVECs). Experiments conducted on mice models with full-thickness skin removal demonstrated that CMCS-CS-Tau efficaciously aided in wound healing by spurring angiogenesis, and encouraging collagen deposition. CMCS-CS-Tau can also minimize inflammation and promote collagen deposition in chronic diabetic wound. Hence, CMCS-CS-Tau promotes both acute and chronic diabetic wound healing. Furthermore, the sustained release mechanism of CMCS-CS-Tau on taurine reveals promising potential for extending its clinical utility in relation to various biological effects of taurine.
Collapse
Affiliation(s)
- Jifang Yuan
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing 100853, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing 100853, China
| | - Xiaofeng He
- Department of Diagnostic Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lingzhi Zhong
- Basic Medical Department, Graduate School, Chinese PLA General Hospital, Beijing 100853, China
| | - Meirong Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing 100853, China; Center for Drug Evaluation, National Medical Products Administration, Beijing 100076, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing 100853, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China.
| | - Hongchen Liu
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
20
|
Wang G, Li X, Ju S, Li Y, Li W, He H, Cai Y, Dong Z, Fu W. Effect of electrospun poly (L-lactide-co-caprolactone) and formulated porcine fibrinogen for diabetic foot ulcers. Eur J Pharm Sci 2024; 198:106800. [PMID: 38754593 DOI: 10.1016/j.ejps.2024.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Diabetic foot ulcers were a significant complication of diabetes and were accompanied by delayed wound healing. To compare the effect of topical application electrospun poly (L-lactide-co-caprolactone) and formulated porcine fibrinogen (PLCL/Fg) dressing with alginate dressing when treating diabetic foot ulcers (DFUs). A single-center, prospective, randomized, patient-blinded clinical trial was conducted from July 1, 2023, to December 26, 2023. The clinical trial registration was completed on August 28, 2023 (ClinicalTrials.gov Identifier: NCT06014437). The eligible patients with DFUs of 1-20 cm2 present for at least 1 month and with Wagner grade 1 or 2. They were randomized 1:1 to receive PLCL/Fg or alginate dressing. Participants received PLCL/Fg dressing 1-3 times per week or alginate dressing 3 times per week for 12 weeks. A total of 52 patients (33 men [63.5 %]; mean [SD] age, 63.1 [11.9] years; mean [SD] diabetes time, 8.3 [4.6] years) with DFUs were assessed for this study. The DFUs classified as Wagner grade 1 or 2 (mean [SD] ulcer area, 3.8 [3.2] cm2) were randomized to receive either the PLCL/Fg dressing (n = 26) or the alginate dressing (n = 26) for as long as 12 weeks. In this study, the incidence of complete healing included 22 patients (91.7 %) in the PLCL/Fg group and 14 (63.6 %) in the alginate group during the 12-week treatment period (P = 0.003). The treatment-related adverse events that occurred were 5 (20.8 %) in the PLCL/Fg group and 4 (18.1 %) in the comparator group. In this randomized clinical trial, PLCL/Fg dressing showed beneficial effects in DFUs treatment of wound surface reduction and regulating the wound microenvironment.
Collapse
Affiliation(s)
- Guili Wang
- Department of Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai 200032, China; Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Vascular Surgery Institute of Fudan University, Shanghai 200032, China
| | - Xiaoyan Li
- Department of Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuai Ju
- Department of Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Yao Li
- Department of Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenqiang Li
- Department of Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Hongbing He
- PINE&POWER Biotech Co., Ltd, Shanghai, China; Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Vascular Surgery Institute of Fudan University, Shanghai 200032, China
| | - Yunmin Cai
- Department of Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai 200032, China.
| | - Zhihui Dong
- Department of Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai 200032, China; Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Vascular Surgery Institute of Fudan University, Shanghai 200032, China.
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Vascular Surgery Institute of Fudan University, Shanghai 200032, China
| |
Collapse
|
21
|
Cheng X, Cheng B, Jin R, Zheng H, Zhou J, Shan S. The role of circulating metabolites and gut microbiome in hypertrophic scar: a two-sample Mendelian randomization study. Arch Dermatol Res 2024; 316:315. [PMID: 38822918 DOI: 10.1007/s00403-024-03116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 06/03/2024]
Abstract
Hypertrophic scarring is a fibro-proliferative disorder caused by abnormal cutaneous wound healing. Circulating metabolites and the gut microbiome may be involved in the formation of these scars, but high-quality evidence of causality is lacking. To assess whether circulating metabolites and the gut microbiome contain genetically predicted modifiable risk factors for hypertrophic scar formation. Two-sample Mendelian randomization (MR) was performed using MR-Egger, inverse-variance weighting (IVW), Mendelian Randomization Pleiotropy RESidual Sum and Outlier, maximum likelihood, and weighted median methods. Based on the genome-wide significance level, genetically predicted uridine (P = 0.015, odds ratio [OR] = 1903.514, 95% confidence interval [CI] 4.280-846,616.433) and isovalerylcarnitine (P = 0.039, OR = 7.765, 95% CI 1.106-54.512) were positively correlated with hypertrophic scar risk, while N-acetylalanine (P = 0.013, OR = 7.98E-10, 95% CI 5.19E-17-0.012) and glycochenodeoxycholate (P = 0.021, OR = 0.021 95% CI 0.003-0.628) were negatively correlated. Gastranaerophilales and two unknown gut microbe species (P = 0.031, OR = 0.378, 95% CI 0.156-0.914) were associated with an decreased risk of hypertrophic scarring. Circulating metabolites and gut microbiome components may have either positive or negative causal effects on hypertrophic scar formation. The study provides new insights into strategies for diagnosing and limiting hypertrophic scarring.
Collapse
Affiliation(s)
- Xinwei Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Bin Cheng
- Department of Burns and Plastic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Rui Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Hongkun Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
22
|
Youn S, Ki MR, Abdelhamid MAA, Pack SP. Biomimetic Materials for Skin Tissue Regeneration and Electronic Skin. Biomimetics (Basel) 2024; 9:278. [PMID: 38786488 PMCID: PMC11117890 DOI: 10.3390/biomimetics9050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Biomimetic materials have become a promising alternative in the field of tissue engineering and regenerative medicine to address critical challenges in wound healing and skin regeneration. Skin-mimetic materials have enormous potential to improve wound healing outcomes and enable innovative diagnostic and sensor applications. Human skin, with its complex structure and diverse functions, serves as an excellent model for designing biomaterials. Creating effective wound coverings requires mimicking the unique extracellular matrix composition, mechanical properties, and biochemical cues. Additionally, integrating electronic functionality into these materials presents exciting possibilities for real-time monitoring, diagnostics, and personalized healthcare. This review examines biomimetic skin materials and their role in regenerative wound healing, as well as their integration with electronic skin technologies. It discusses recent advances, challenges, and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Seung-Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
| |
Collapse
|
23
|
Xiao Y, Tao Z, Ju Y, Huang X, Zhang X, Liu X, Volotovski PA, Huang C, Chen H, Zhang Y, Liu S. Diamond-Like Carbon Depositing on the Surface of Polylactide Membrane for Prevention of Adhesion Formation During Tendon Repair. NANO-MICRO LETTERS 2024; 16:186. [PMID: 38687411 PMCID: PMC11061095 DOI: 10.1007/s40820-024-01392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
Post-traumatic peritendinous adhesion presents a significant challenge in clinical medicine. This study proposes the use of diamond-like carbon (DLC) deposited on polylactic acid (PLA) membranes as a biophysical mechanism for anti-adhesion barrier to encase ruptured tendons in tendon-injured rats. The results indicate that PLA/DLC composite membrane exhibits more efficient anti-adhesion effect than PLA membrane, with histological score decreasing from 3.12 ± 0.27 to 2.20 ± 0.22 and anti-adhesion effectiveness increasing from 21.61% to 44.72%. Mechanistically, the abundant C=O bond functional groups on the surface of DLC can reduce reactive oxygen species level effectively; thus, the phosphorylation of NF-κB and M1 polarization of macrophages are inhibited. Consequently, excessive inflammatory response augmented by M1 macrophage-originated cytokines including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) is largely reduced. For biocompatibility evaluation, PLA/DLC membrane is slowly absorbed within tissue and displays prolonged barrier effects compared to traditional PLA membranes. Further studies show the DLC depositing decelerates the release of degradation product lactic acid and its induction of macrophage M2 polarization by interfering esterase and PLA ester bonds, which further delays the fibrosis process. It was found that the PLA/DLC membrane possess an efficient biophysical mechanism for treatment of peritendinous adhesion.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Zaijin Tao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Yufeng Ju
- Shanghai Tongji Hospital, 389 Xincun Rd, Shanghai, 200065, People's Republic of China
| | - Xiaolu Huang
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xinshu Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Xiaonan Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Pavel A Volotovski
- Orthopedic Trauma Department, Belarus Republic Scientific and Practical Center for Traumatology and Orthopedics, Kizhevatova str., 60/4, 220024, Minsk, Belarus
| | - Chao Huang
- Shanghai Haohai Biological Technology Limited Liability Company, 1386 Hongqiao Rd, Shanghai, 200336, People's Republic of China
| | - Hongqi Chen
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China.
| | - Yaozhong Zhang
- Shanghai Key Laboratory for High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
24
|
Jia D, Li S, Jiang M, Lv Z, Wang H, Zheng Z. Facile Reactive Oxygen Species-Scavenging Supramolecular Hydrogel to Promote Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15752-15760. [PMID: 38507518 DOI: 10.1021/acsami.3c17667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Chronic wound healing impairment is a significant complication in diabetes. Hydrogels that maintain wound moisture and enable sustained drug release have become prominent for enhancing chronic wound care. Particularly, hydrogels that respond to reactive oxygen species (ROS) are sought-after for their dual capacity to mitigate ROS and facilitate controlled drug delivery at the wound site. We have strategically designed an ROS-responsive and scavenging supramolecular hydrogel composed of the simple hexapeptide Glu-Phe-Met-Phe-Met-Glu (EFM). This hydrogelator, composed solely of canonical amino acids without additional ROS-sensitive motifs, forms a hydrogel rapidly upon sonication. Interaction with ROS leads to the oxidation of Met residues to methionine sulfoxide, triggering hydrogel disassembly and consequent payload release. Cellular assays have verified their biocompatibility and efficacy in promoting cell proliferation and migration. In vivo investigations underscore the potential of this straightforward hydrogel as an ROS-scavenger and drug delivery vehicle, enhancing wound healing in diabetic mice. The simplicity and effectiveness of this hydrogel suggest its broader biomedical applications in the future.
Collapse
Affiliation(s)
- Deying Jia
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shuangshuang Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Mengmeng Jiang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zongyu Lv
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Haipeng Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhen Zheng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
25
|
Li L, Xu W, Wu Z, Geng W, Li S, Sun S, Wang M, Cheng C, Zhao C. Engineering Zinc-Organic Frameworks-Based Artificial Carbonic Anhydrase with Ultrafast Biomimetic Centers for Efficient Hydration Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307537. [PMID: 37939303 DOI: 10.1002/smll.202307537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Constructing effective and robust biocatalysts with carbonic anhydrase (CA)-mimetic activities offers an alternative and promising pathway for diverse CO2-related catalytic applications. However, there is very limited success has been achieved in controllably synthesizing CA-mimetic biocatalysts. Here, inspired by the 3D coordination environments of CAs, this study reports on the design of an ultrafast ZnN3-OH2 center via tuning the 3D coordination structures and mesoporous defects in a zinc-dipyrazolate framework to serve as new, efficient, and robust CA-mimetic biocatalysts (CABs) to catalyze the hydration reactions. Owing to the structural advantages and high similarity with the active center of natural CAs, the double-walled CAB with mesoporous defects displays superior CA-like reaction kinetics in p-NPA hydrolysis (V0 = 445.16 nM s-1, Vmax = 3.83 µM s-1, turnover number: 5.97 × 10-3 s-1), which surpasses the by-far-reported metal-organic frameworks-based biocatalysts. This work offers essential guidance in tuning 3D coordination environments in artificial enzymes and proposes a new strategy to create high-performance CA-mimetic biocatalysts for broad applications, such as CO2 hydration/capture, CO2 sensing, and abundant hydrolytic reactions.
Collapse
Affiliation(s)
- Lin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenjie Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Geng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
26
|
Chen Q, Yang ZR, Du S, Chen S, Zhang L, Zhu J. Polyphenol-sodium alginate supramolecular injectable hydrogel with antibacterial and anti-inflammatory capabilities for infected wound healing. Int J Biol Macromol 2024; 257:128636. [PMID: 38065459 DOI: 10.1016/j.ijbiomac.2023.128636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
Injectable hydrogel has attracted appealing attention for skin wound treatment. Although multifunctional injectable hydrogels can be prepared by introducing bioactive ingredients with antibacterial and anti-inflammatory capabilities, their preparation remains complicated. Herein, a polyphenol-based supramolecular injectable hydrogel (PBSIH) based on polyphenol gallic acid and biological macromolecule sodium alginate is developed as a wound dressing to accelerate wound healing. We show that such PBSIH can be rapidly formed within 15 s by mixing the sodium alginate and gallic acid solutions based on the hydrogen bonding and hydrophobic interactions. The PBSIH shows excellent cytocompatibility, antibacterial, and antioxidant properties, which enhance infected wound healing by inhibiting bacterial infection and alleviating inflammation after treatment of 11 days. Moreover, we show that the preparative strategies of injectable supramolecular hydrogels can be extended to other polyphenols, including protocatechuic and tannic acids. This study provides a facile yet highly effective method to design injectable polyphenol- sodium alginate hydrogel for wound dressing based on naturally bioactive ingredients.
Collapse
Affiliation(s)
- Qiang Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuo-Ran Yang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuo Du
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Senbin Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
27
|
Wang J, Zhang X, Chen H, Ren H, Zhou M, Zhao Y. Engineered stem cells by emerging biomedical stratagems. Sci Bull (Beijing) 2024; 69:248-279. [PMID: 38101962 DOI: 10.1016/j.scib.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Stem cell therapy holds immense potential as a viable treatment for a widespread range of intractable disorders. As the safety of stem cell transplantation having been demonstrated in numerous clinical trials, various kinds of stem cells are currently utilized in medical applications. Despite the achievements, the therapeutic benefits of stem cells for diseases are limited, and the data of clinical researches are unstable. To optimize tthe effectiveness of stem cells, engineering approaches have been developed to enhance their inherent abilities and impart them with new functionalities, paving the way for the next generation of stem cell therapies. This review offers a detailed analysis of engineered stem cells, including their clinical applications and potential for future development. We begin by briefly introducing the recent advances in the production of stem cells (induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs)). Furthermore, we present the latest developments of engineered strategies in stem cells, including engineered methods in molecular biology and biomaterial fields, and their application in biomedical research. Finally, we summarize the current obstacles and suggest future prospects for engineered stem cells in clinical translations and biomedical applications.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoxuan Zhang
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hanxu Chen
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Haozhen Ren
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Yuanjin Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Shenzhen Research Institute, Southeast University, Shenzhen 518038, China.
| |
Collapse
|
28
|
Ding S, He S, Ye K, Shao X, Yang Q, Yang G. Photopolymerizable, immunomodulatory hydrogels of gelatin methacryloyl and carboxymethyl chitosan as all-in-one strategic dressing for wound healing. Int J Biol Macromol 2023; 253:127151. [PMID: 37778580 DOI: 10.1016/j.ijbiomac.2023.127151] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Microenvironment regeneration in wound tissue is crucial for wound healing. However, achieving desirable wound microenvironment regeneration involves multiple stages, including hemostasis, inflammation, proliferation, and remodeling. Traditional wound dressings face challenges in fully manipulating all these stages to achieve quick and complete wound healing. Herein, we present a VEGF-loaded, versatile wound dressing hydrogel based on gelatin methacryloyl (GelMA) and carboxymethyl chitosan (CMCS), which could be easily fabricated using UV irradiation. The newly designed GelMA-CMCS@VEGF hydrogel not only exhibited strong tissue adhesion capacity due to the interactions between CMCS active groups and biological tissues, but also possessed desirable extensible properties for frequently moving skins and joints. Furthermore, the hydrogel demonstrates exceptional abilities in blood cell coagulation, hemostasis and cell recruitment, leading to the promotion of endothelial cells proliferation, adhesion, migration and angiogenesis. Additionally, in vivo studies demonstrated that the hydrogel drastically shortened hemostatic time, and achieved satisfactory therapeutic efficacy by suppressing inflammation, modulating M1/M2 polarization of macrophages, significantly promoting collagen deposition, stimulating angiogenesis, epithelialization and tissue remodeling. This work contributes to the design of versatile hydrogel dressings for rapid and complete wound healing therapy.
Collapse
Affiliation(s)
- Sheng Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shaoqin He
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kang Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinyu Shao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
29
|
Yi H, Patel R, Patel KD, Bouchard LS, Jha A, Perriman AW, Patel M. Conducting polymer-based scaffolds for neuronal tissue engineering. J Mater Chem B 2023; 11:11006-11023. [PMID: 37953707 DOI: 10.1039/d3tb01838e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Neuronal tissue engineering has immense potential for treating neurological disorders and facilitating nerve regeneration. Conducting polymers (CPs) have emerged as a promising class of materials owing to their unique electrical conductivity and biocompatibility. CPs, such as poly(3,4-ethylenedioxythiophene) (PEDOT), poly(3-hexylthiophene) (P3HT), polypyrrole (PPy), and polyaniline (PANi), have been extensively explored for their ability to provide electrical cues to neural cells. These polymers are widely used in various forms, including porous scaffolds, hydrogels, and nanofibers, and offer an ideal platform for promoting cell adhesion, differentiation, and axonal outgrowth. CP-based scaffolds can also serve as drug delivery systems, enabling localized and controlled release of neurotrophic factors and therapeutic agents to enhance neural regeneration and repair. CP-based scaffolds have demonstrated improved neural regeneration, both in vitro and in vivo, for treating spinal cord and peripheral nerve injuries. In this review, we discuss synthesis and scaffold processing methods for CPs and their applications in neuronal tissue regeneration. We focused on a detailed literature review of the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Hagje Yi
- Bio-Convergence (BC), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon, 21938, South Korea
| | - Kapil D Patel
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry (RSC), Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research (JCSMR), Australian National University, Canberra, ACT 2601, Australia
| | | | - Amitabh Jha
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Adam Willis Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry (RSC), Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research (JCSMR), Australian National University, Canberra, ACT 2601, Australia
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| |
Collapse
|
30
|
Qi X, Cai E, Xiang Y, Zhang C, Ge X, Wang J, Lan Y, Xu H, Hu R, Shen J. An Immunomodulatory Hydrogel by Hyperthermia-Assisted Self-Cascade Glucose Depletion and ROS Scavenging for Diabetic Foot Ulcer Wound Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306632. [PMID: 37803944 DOI: 10.1002/adma.202306632] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Current therapeutic protocols for diabetic foot ulcers (DFUs), a severe and rapidly growing chronic complication in diabetic patients, remain nonspecific. Hyperglycemia-caused inflammation and excessive reactive oxygen species (ROS) are common obstacles encountered in DFU wound healing, often leading to impaired recovery. These two effects reinforce each other, forming an endless loop. However, adequate and inclusive methods are still lacking to target these two aspects and break the vicious cycle. This study proposes a novel approach for treating DFU wounds, utilizing an immunomodulatory hydrogel to achieve self-cascade glucose depletion and ROS scavenging to regulate the diabetic microenvironment. Specifically, AuPt@melanin-incorporated (GHM3) hydrogel dressing is developed to facilitate efficient hyperthermia-enhanced local glucose depletion and ROS scavenging. Mechanistically, in vitro/vivo experiments and RNA sequencing analysis demonstrate that GHM3 disrupts the ROS-inflammation cascade cycle and downregulates the ratio of M1/M2 macrophages, consequently improving the therapeutic outcomes for dorsal skin and DFU wounds in diabetic rats. In conclusion, this proposed approach offers a facile, safe, and highly efficient treatment modality for DFUs.
Collapse
Affiliation(s)
- Xiaoliang Qi
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Erya Cai
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yajing Xiang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Chaofan Zhang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - XinXin Ge
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiajia Wang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yulong Lan
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Hangbin Xu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Rongdang Hu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
31
|
Yan S, Li J, Gao Y, You J, Xu S, Wang C, Yang Y, Wu X. Encapsulation of Sericin-Decorated Efficient Agents in Silk Hydrogels for Wound Dressings. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48952-48962. [PMID: 37843040 DOI: 10.1021/acsami.3c10044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Excessive oxidative stress, bacterial infections, and inflammation are the primary factors impeding the healing of skin wounds. Bioactive hydrogels are commonly employed in the treatment of skin injuries. However, the limited solubility of many drugs and active agents in water significantly hampers their effectiveness in hydrogel dressings. In this research, prior to incorporation into the silk fibroin (SF) hydrogel matrix, two active agents curcumin and silver nanoparticles (Ag NPs) were decorated by silk sericin to improve their dispersibility and stability in water. The resultant SF/Ag/C hydrogels combined the biological safety and nontoxicity of SF, the antioxidant and anti-inflammatory efficacy of curcumin, and the antibacterial effect of Ag NPs. These properties effectively enhanced wound repair by reducing bacterial infections, mitigating oxidative stress, suppressing the expression of pro-inflammatory factors, and promoting angiogenesis. This study presented a straightforward approach for constructing bioactive hydrogels for the promotion of the wound healing process.
Collapse
Affiliation(s)
- Shaorong Yan
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Junyao Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yunli Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jun You
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Youyi Road 368, Wuhan 430062, China
| | - Shuo Xu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chunru Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yongqiang Yang
- National Graphene Products Quality Inspection and Testing Center (Jiangsu), Special Equipment Safety Supervision Inspection Institute of Jiangsu Province, Yanxin Road 330, Wuxi 214174, PR China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
32
|
Huang H, Hou Y, Chen L, He W, Wang X, Zhang D, Hu J. Multifunctional gallic acid self-assembled hydrogel for alleviation of ethanol-induced acute gastric injury. Int J Pharm 2023; 645:123372. [PMID: 37716487 DOI: 10.1016/j.ijpharm.2023.123372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/13/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
Ethanol-induced acute gastric injury is a prevalent type of digestive tract ulcer, yet conventional treatments strategies frequently encounter several limitations, such as poor bioavailability, degradation of enzymes and adverse side effects. Gallic acid (GA), a natural compound extracted from dogwood, has demonstrated potential protective effects in mitigating acute gastric injury. However, its poor stability and limited bioavailability have restricted applications in vivo. To address these issues, we report a hydrogel constructed only by gallic acid with high bioavailability for alleviation of gastric injury. Molecular dynamic simulation studies revealed that the self-assembly of GA into hydrogel was predominantly attributed to π-π and hydrogen bonds. After assembling, the GA hydrogel exhibits superior anti-oxidative stress, anti-apoptosis and anti-inflammatory properties compared with free GA. As anticipated, in vitro experiments demonstrated that GA hydrogel possessed the remarkable ability to promote the proliferation of GES-1 cells, and alleviates apoptosis and inflammation caused by ethanol. Subsequent in vivo investigation further confirmed that GA hydrogel significantly alleviated ethanol-triggered acute gastric injury. Mechanistically, GA hydrogel treatment enhanced the antioxidant capacity, reduced oxidative stress while simultaneously suppressing the secretion of pro-inflammatory cytokines and reduced the production of pro-apoptotic proteins during the process of gastric injury. Our finding suggest that this multifunctional GA hydrogel is a promising candidate for gastric injury, particularly in cases of ethanol-induced acute gastric injury.
Collapse
Affiliation(s)
- Haibo Huang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yiyang Hou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lihang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wanying He
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinchuang Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dan Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
33
|
Cao S, Long Y, Xiao S, Deng Y, Ma L, Adeli M, Qiu L, Cheng C, Zhao C. Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chem Soc Rev 2023; 52:6838-6881. [PMID: 37705437 DOI: 10.1039/d3cs00087g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Benefiting from low costs, structural diversities, tunable catalytic activities, feasible modifications, and high stability compared to the natural enzymes, reactive oxygen nanobiocatalysts (RONBCs) have become dominant materials in catalyzing and mediating reactive oxygen species (ROS) for diverse biomedical and biological applications. Decoding the catalytic mechanism and structure-reactivity relationship of RONBCs is critical to guide their future developments. Here, this timely review comprehensively summarizes the recent breakthroughs and future trends in creating and decoding RONBCs. First, the fundamental classification, activity, detection method, and reaction mechanism for biocatalytic ROS generation and elimination have been systematically disclosed. Then, the merits, modulation strategies, structure evolutions, and state-of-art characterisation techniques for designing RONBCs have been briefly outlined. Thereafter, we thoroughly discuss different RONBCs based on the reported major material species, including metal compounds, carbon nanostructures, and organic networks. In particular, we offer particular insights into the coordination microenvironments, bond interactions, reaction pathways, and performance comparisons to disclose the structure-reactivity relationships and mechanisms. In the end, the future challenge and perspectives for RONBCs are also carefully summarised. We envision that this review will provide a comprehensive understanding and guidance for designing ROS-catalytic materials and stimulate the wide utilisation of RONBCs in diverse biomedical and biological applications.
Collapse
Affiliation(s)
- Sujiao Cao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Long
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Sutong Xiao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Yuting Deng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Mohsen Adeli
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
34
|
Rong X, Tang Y, Cao S, Xiao S, Wang H, Zhu B, Huang S, Adeli M, Rodriguez RD, Cheng C, Ma L, Qiu L. An Extracellular Vesicle-Cloaked Multifaceted Biocatalyst for Ultrasound-Augmented Tendon Matrix Reconstruction and Immune Microenvironment Regulation. ACS NANO 2023; 17:16501-16516. [PMID: 37616178 DOI: 10.1021/acsnano.3c00911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The healing of tendon injury is often hindered by peritendinous adhesion and poor regeneration caused by the accumulation of reactive oxygen species (ROS), development of inflammatory responses, and the deposition of type-III collagen. Herein, an extracellular vesicles (EVs)-cloaked enzymatic nanohybrid (ENEV) was constructed to serve as a multifaceted biocatalyst for ultrasound (US)-augmented tendon matrix reconstruction and immune microenvironment regulation. The ENEV-based biocatalyst exhibits integrated merits for treating tendon injury, including the efficient catalase-mimetic scavenging of ROS in the injured tissue, sustainable release of Zn2+ ions, cellular uptake augmented by US, and immunoregulation induced by EVs. Our study suggests that ENEVs can promote tenocyte proliferation and type-I collagen synthesis at an early stage by protecting tenocytes from ROS attack. The ENEVs also prompted efficient immune regulation, as the polarization of macrophages (Mφ) was reversed from M1φ to M2φ. In a rat Achilles tendon defect model, the ENEVs combined with US treatment significantly promoted functional recovery and matrix reconstruction, restored tendon morphology, suppressed intratendinous scarring, and inhibited peritendinous adhesion. Overall, this study offers an efficient nanomedicine for US-augmented tendon regeneration with improved healing outcomes and provides an alternative strategy to design multifaceted artificial biocatalysts for synergetic tissue regenerative therapies.
Collapse
Affiliation(s)
- Xiao Rong
- Department of Ultrasound, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanjiao Tang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sujiao Cao
- Department of Ultrasound, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sutong Xiao
- Department of Ultrasound, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Haonan Wang
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bihui Zhu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Songya Huang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mohsen Adeli
- Department of Organic Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenina Avenue 30, 634034, Tomsk, Russia
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lang Ma
- Department of Ultrasound, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Qiu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
35
|
Xie Y, Xiao S, Huang L, Guo J, Bai M, Gao Y, Zhou H, Qiu L, Cheng C, Han X. Cascade and Ultrafast Artificial Antioxidases Alleviate Inflammation and Bone Resorption in Periodontitis. ACS NANO 2023; 17:15097-15112. [PMID: 37378617 DOI: 10.1021/acsnano.3c04328] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Periodontitis, one of the most common, challenging, and rapidly expanding oral diseases, is an oxidative stress-related disease caused by excessive reactive oxygen species (ROS) production. Developing ROS-scavenging materials to regulate the periodontium microenvironments is essential for treating periodontitis. Here, we report on creating cobalt oxide-supported Ir (CoO-Ir) as a cascade and ultrafast artificial antioxidase to alleviate local tissue inflammation and bone resorption in periodontitis. It is demonstrated that the Ir nanoclusters are uniformly supported on the CoO lattice, and there is stable chemical coupling and strong charge transfer from Co to Ir sites. Benefiting from its structural advantages, CoO-Ir presents cascade and ultrafast superoxide dismutase-catalase-like catalytic activities. Notably, it displays distinctly increased Vmax (76.249 mg L-1 min-1) and turnover number (2.736 s-1) when eliminating H2O2, which surpasses most of the by-far-reported artificial enzymes. Consequently, the CoO-Ir not only provides efficient cellular protection from ROS attack but also promotes osteogenetic differentiation in vitro. Furthermore, CoO-Ir can efficiently combat periodontitis by inhibiting inflammation-induced tissue destruction and promoting osteogenic regeneration. We believe that this report will shed meaningful light on creating cascade and ultrafast artificial antioxidases and offer an effective strategy to combat tissue inflammation and osteogenic resorption in oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yaxin Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Sutong Xiao
- Department of Ultrasound, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyi Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiusi Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Gao
- Department of Ultrasound, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongju Zhou
- Department of Ultrasound, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Qiu
- Department of Ultrasound, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
36
|
Jiang J, Li X, Li H, Lv X, Xu Y, Hu Y, Song Y, Shao J, Li S, Yang D. Recent progress in nanozymes for the treatment of diabetic wounds. J Mater Chem B 2023; 11:6746-6761. [PMID: 37350323 DOI: 10.1039/d3tb00803g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
The slow healing of diabetic wounds has seriously affected human health. Meanwhile, the open wounds are susceptible to bacterial infection. Clinical therapeutic methods such as antibiotic therapy, insulin treatment, and surgical debridement have made great achievements in the treatment of diabetic wounds. However, drug-resistant bacteria will develop after long-term use of antibiotics, resulting in decreased efficacy. To improve the therapeutic effect, increasing drug concentration is a common strategy in clinical practice, but it also brings serious side effects. In addition, hyperglycemia control or surgical debridement can easily bring negative effects to patients, such as hypoglycemia or damage of normal tissue. Therefore, it is essential to develop novel therapeutic strategies to effectively promote diabetic wound healing. In recent years, nanozyme-based diabetic wound therapeutic systems have received extensive attention because they possess the advantages of nanomaterials and natural enzymes. For example, nanozymes have the advantages of a small size and a high surface area to volume ratio, which can enhance the tissue penetration of nanozymes and increase the reactive active sites. Moreover, compared with natural enzymes, nanozymes have more stable catalytic activity, lower production cost, and stronger operability. In this review, we first reviewed the basic characteristics of diabetic wounds and then elaborated on the catalytic mechanism and action principle of different types of nanozymes in diabetic wounds from three aspects: controlling bacterial infection, controlling hyperglycemia, and relieving inflammation. Finally, the challenges, prospects and future implementation of nanozymes for diabetic wound healing are outlined.
Collapse
Affiliation(s)
- Jingai Jiang
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xiao Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Hui Li
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xinyi Lv
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Yan Xu
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Yanling Hu
- Nanjing Polytechnic Institute, Nanjing 210048, China.
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanni Song
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Jinjun Shao
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Dongliang Yang
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| |
Collapse
|
37
|
Chu X, Xiong Y, Knoedler S, Lu L, Panayi AC, Alfertshofer M, Jiang D, Rinkevich Y, Lin Z, Zhao Z, Dai G, Mi B, Liu G. Immunomodulatory Nanosystems: Advanced Delivery Tools for Treating Chronic Wounds. RESEARCH (WASHINGTON, D.C.) 2023; 6:0198. [PMID: 37456931 PMCID: PMC10348408 DOI: 10.34133/research.0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The increasingly aging society led to a rise in the prevalence of chronic wounds (CWs), posing a significant burden to public health on a global scale. One of the key features of CWs is the presence of a maladjusted immune microenvironment characterized by persistent and excessive (hyper)inflammation. A variety of immunomodulatory therapies have been proposed to address this condition. Yet, to date, current delivery systems for immunomodulatory therapy remain inadequate and lack efficiency. This highlights the need for new therapeutic delivery systems, such as nanosystems, to manage the pathological inflammatory imbalance and, ultimately, improve the treatment outcomes of CWs. While a plethora of immunomodulatory nanosystems modifying the immune microenvironment of CWs have shown promising therapeutic effects, the literature on the intersection of immunomodulatory nanosystems and CWs remains relatively scarce. Therefore, this review aims to provide a comprehensive overview of the pathogenesis and characteristics of the immune microenvironment in CWs, discuss important advancements in our understanding of CW healing, and delineate the versatility and applicability of immunomodulatory nanosystems-based therapies in the therapeutic management of CWs. In addition, we herein also shed light on the main challenges and future perspectives in this rapidly evolving research field.
Collapse
Affiliation(s)
- Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02152, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071 Ludwigshafen/Rhine, Germany
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig - Maximilian University Munich, Munich, Germany
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Zhiming Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China
| | - Guandong Dai
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong 518118, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|