1
|
Dong H, Huang R, Yang D, Zhao J, Lin B, Pan Y, Lin X, Yang Y, Guo Z, Li N, Zhuang J. Just-in-Time Generation of Nanolabels via In Situ Biomineralization of ZIF-8 Enabling Ultrasensitive MicroRNA Detection on Unmodified Electrodes. Anal Chem 2024; 96:16793-16801. [PMID: 39391952 DOI: 10.1021/acs.analchem.4c03434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Nanolabels can enhance the detection performance of electrochemical biosensing methods, yet their practical application is hindered by complex preparation, batch-to-batch variability, and poor long-term storage stability. Herein, we present a novel electrochemical method for miRNA detection based on the just-in-time generation of zeolitic imidazolate framework-8 (ZIF-8) nanolabels initiated by nucleic acids. In this design, the target miRNA-21 is captured with magnetic beads and polyadenylated by Escherichia coli Poly(A) polymerase (EPP), producing miRNA-21 molecules with poly(A) tails (miR-21-poly(A)). These molecules are then adsorbed onto a bare gold electrode (AuE) surface via adenine-gold affinity interactions, serving as nucleation sites for the rapid in situ formation of ZIF-8 nanoparticles. The ZIF-8 nanoparticles function as signal labels, impeding electron transfer at the electrode interfaces and thereby generating a notable electrochemical signal. The developed method demonstrated exceptional sensitivity, with a detection limit (LOD) as low as 2.3 aM and a linear detection range from 10 aM to 1000 fM. The practical application of the developed method was validated by using it to evaluate miRNA-21 expression levels in various biological samples, including cell lines, tumor tissues, and clinical blood samples from non-small cell lung cancer (NSCLC) patients. This approach simplifies the detection process by eliminating the need for presynthesized nanomaterials and premodified electrodes. Its simplicity and high sensitivity make this method a promising tool for point-of-care testing and a wide range of biomedical research applications.
Collapse
Affiliation(s)
- Haiyan Dong
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Rong Huang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Dayun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Jia Zhao
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Baoquan Lin
- Department of Cardio thoracic Surgery, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian 350025, China
| | - Yingxin Pan
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Xi Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou 350122, China
| | - Yang Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Zhao Guo
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Ning Li
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Junyang Zhuang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
2
|
Liu X, Cui S, Zhang X, Yao Y, Zhang B, Wang B, Zhang Q. Engineering a dual-loop molecular circuit with buffering capability to solve molecular information tasks. NANOSCALE 2024. [PMID: 39422501 DOI: 10.1039/d4nr02930e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Molecular circuits, as an effective strategy for implementing artificial biochemical networks, have been widely constructed to process molecular-level information tasks both in vivo and in vitro. However, the complex and diverse structures of molecular devices, along with inflexible signal output methods, pose significant challenges for molecular circuits to handle complex molecular information tasks. In response to the growing field of molecular circuits, we design an exonuclease-driven fan-out molecular device (FMD) with a programmable cascade approach capable of receiving uniform signal types and transmitting multifunctional signals. Combined with the buffering reaction proposed here, the approach expands the dynamic properties of biochemical networks. Unlike the conventional delay strategy, the buffering process not only withstands transient changes in transmission signals, but also delays the transmission of lossless signals. Furthermore, we construct a dual-loop molecular circuit with adjustable buffering modes, thereby enabling signal amplification, time delay, and a differentiated output. Finally, we develop a method to obtain the colorimetric output of dual pulse signals driven by a dual-loop molecular circuit with buffering and hence precisely classify multiple signals. This work promises programmable and multifunctional molecular circuits in nanomachines, molecular computing, and biomedical applications.
Collapse
Affiliation(s)
- Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Shuang Cui
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yao Yao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Bang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Vonk SW, Maris JJE, Dekker AJH, de Wit JW, van Swieten TP, Cocina A, Rabouw FT. Rise and Decay of Photoluminescence in Upconverting Lanthanide-Doped Nanocrystals. ACS NANO 2024; 18:28325-28334. [PMID: 39368106 PMCID: PMC11483940 DOI: 10.1021/acsnano.4c09945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Nanocrystals (NCs) doped with lanthanides are capable of efficient photon upconversion, i.e., absorbing long-wavelength light and emitting shorter-wavelength light. The internal processes that enable upconversion are a complex network of electronic transitions within and energy transfer between dopant centers. In this work, we study the rise and decay dynamics of upconversion emission from β-NaYF4 NCs codoped with Er3+ and Yb3+. The rise dynamics of the red and green upconverted emissions are nonlinear, reflecting the nonlinear nature of upconversion and revealing the mechanisms that populate the emitting states. The excited-state decay dynamics are nonexponential. We unravel the underlying decay pathways using photonic experiments. These reveal the contributions of different upconversion pathways visually, as each pathway exhibits a distinct response to systematic variation of the local density of optical states. Moreover, the effect of the local density of optical states on core-only NCs is qualitatively different from core-shell NCs. This is due to the different balance between feeding and decay of the electronic levels that produce upconverted emission. The understanding of the upconversion dynamics provided here could lead to better imaging and sensing methods relying on upconversion lifetimes or guide the rational optimization of the dopant concentrations for brighter upconversion.
Collapse
Affiliation(s)
- Sander
J. W. Vonk
- Soft
Condensed Matter & Biophysics, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science
& Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - J. J. Erik Maris
- Optical
Materials Engineering Laboratory, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Ayla J. H. Dekker
- Soft
Condensed Matter & Biophysics, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- Organic
Chemistry & Catalysis, Institute for Sustainable and Circular
Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jur W. de Wit
- Soft
Condensed Matter & Biophysics, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Thomas P. van Swieten
- Soft
Condensed Matter & Biophysics, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Ario Cocina
- Optical
Materials Engineering Laboratory, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Freddy T. Rabouw
- Soft
Condensed Matter & Biophysics, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science
& Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
4
|
Skládal P, Farka Z. Luminescent photon-upconversion nanoparticles with advanced functionalization for smart sensing and imaging. Mikrochim Acta 2024; 191:551. [PMID: 39167235 DOI: 10.1007/s00604-024-06615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Photon-upconversion nanoparticles (UCNP) have already been established as labels for affinity assays in analog and digital formats. Here, advanced, or smart, systems based on UCNPs coated with active shells, fluorescent dyes, and metal and semiconductor nanoparticles participating in energy transfer reactions are reviewed. In addition, switching elements can be embedded in such assemblies and provide temporal and spatial control of action, which is important for intracellular imaging and monitoring activities. Demonstration and critical comments on representative approaches demonstrating the progress in the use of such UCNPs in bioanalytical assays, imaging, and monitoring of target molecules in cells are reported, including particular examples in the field of cancer theranostics.
Collapse
Affiliation(s)
- Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice, 5, 625 00, Brno, Czech Republic.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice, 5, 625 00, Brno, Czech Republic
| |
Collapse
|
5
|
Sarkar M, Raj R R, Maliekal TT. Finding the partner: FRET and beyond. Exp Cell Res 2024; 441:114166. [PMID: 39029572 DOI: 10.1016/j.yexcr.2024.114166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Given the importance of aberrant protein-protein interactions (PPIs) in disease, the recent drug discovery focuses on targeting the altered PPIs to treat the disease. In this context, identifying the atypical PPIs underlying the disease is critical for the development of diagnostics and therapeutics. Various biochemical, biophysical, and genetic methods have been reported to study PPIs. Here, we are giving a short account of those techniques with more emphasis on Förster resonance energy transfer (FRET), which can be used to monitor macromolecular interactions in live cells. Besides the basics of FRET, we explain the modifications of its application, like Single molecule FRET (smFRET), Fluorescence Lifetime Imaging Microscopy-FRET (FLIM-FRET), and photoswitching FRET. While smFRET is extensively used for evaluating the biology of nucleic acids and also to develop diagnostics, FLIM-FRET is widely exploited to study the PPIs underlying neurological disorders and cancer. Photoswitching FRET is a relatively newer technique and it has tremendous potential to unravel the significance of different PPIs. Besides these modifications, there are several advancements in the field by introducing new fluorophores. Identification of lanthanide chelates, quantum dots, and other nanoparticle fluorophores has revolutionized the applications of FRET in diagnostics and basic biology. Yet, these methods can be employed to study the interactions of only two molecules. Since the majority of the PPIs are multimeric complexes, we still need to improve our technologies to study these interactions in live cells in real-time.
Collapse
Affiliation(s)
- Meghna Sarkar
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Reshma Raj R
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India; Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Tessy Thomas Maliekal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India; Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| |
Collapse
|
6
|
Casillas-Rubio A, Mendez-Gonzalez D, Laurenti M, Rubio-Retama J, Calderón OG, Melle S. Impact of excitation pulse width on the upconversion luminescence lifetime of NaYF 4:Yb 3+,Er 3+ nanoparticles. NANOSCALE 2024; 16:12184-12195. [PMID: 38842018 DOI: 10.1039/d4nr00718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The upconversion luminescence (UCL) lifetime has a wide range of applications, serving as a critical parameter for optimizing the performance of upconversion nanoparticles (UCNPs) in various fields. It is crucial to understand that this lifetime does not directly correlate with the decay time of the emission level; rather, it represents a compilation of all the physical phenomena taking place in the upconversion process. To delve deeper into this, we analyzed the dependence of the UCL lifetime on the excitation pulse width for β-NaYF4:Yb3+,Er3+ nanoparticles. The results revealed a significant increase in the UCL lifetime with both the excitation pulse width and the excitation intensity. The laser fluence was identified as the parameter governing the UCL decay dynamics. We showcased the universality of the pulse-width-dependent UCL lifetime phenomenon by employing UCNPs of various sizes, surface coatings, host matrices, Yb3+ and Er3+ ratios, and dispersing UCNPs in different solvents. Theoretical explanations for the experimental findings were derived through a rate equation analysis. Finally, we discussed the implications of these results in UCNP-FRET (Förster resonance energy transfer)-based applications.
Collapse
Affiliation(s)
| | - Diego Mendez-Gonzalez
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Marco Laurenti
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Jorge Rubio-Retama
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Oscar G Calderón
- Department of Optics, Complutense University of Madrid, E-28037 Madrid, Spain.
| | - Sonia Melle
- Department of Optics, Complutense University of Madrid, E-28037 Madrid, Spain.
| |
Collapse
|
7
|
Santos AS, Pereira PH, Abrantes PP, Farina C, Maia Neto PA, de Melo e Souza R. Time-Dependent Effective Hamiltonians for Light-Matter Interactions. ENTROPY (BASEL, SWITZERLAND) 2024; 26:527. [PMID: 38920535 PMCID: PMC11203030 DOI: 10.3390/e26060527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
In this paper, we present a systematic approach to building useful time-dependent effective Hamiltonians in molecular quantum electrodynamics. The method is based on considering part of the system as an open quantum system and choosing a convenient unitary transformation based on the evolution operator. We illustrate our formalism by obtaining four Hamiltonians, each suitable to a different class of applications. We show that we may treat several effects of molecular quantum electrodynamics with a direct first-order perturbation theory. In addition, our effective Hamiltonians shed light on interesting physical aspects that are not explicit when employing more standard approaches. As applications, we discuss three examples: two-photon spontaneous emission, resonance energy transfer, and dispersion interactions.
Collapse
Affiliation(s)
- Aroaldo S. Santos
- Instituto de Física, Universidade Federal Fluminense, Niterói 24210-346, Rio de Janeiro, Brazil; (A.S.S.); (P.H.P.); (R.d.M.e.S.)
- Instituto Federal do Paraná, Telêmaco Borba 84269-090, Paraná, Brazil
| | - Pedro H. Pereira
- Instituto de Física, Universidade Federal Fluminense, Niterói 24210-346, Rio de Janeiro, Brazil; (A.S.S.); (P.H.P.); (R.d.M.e.S.)
| | - Patrícia P. Abrantes
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Rio de Janeiro, Brazil; (P.P.A.); (C.F.)
| | - Carlos Farina
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Rio de Janeiro, Brazil; (P.P.A.); (C.F.)
| | - Paulo A. Maia Neto
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Rio de Janeiro, Brazil; (P.P.A.); (C.F.)
| | - Reinaldo de Melo e Souza
- Instituto de Física, Universidade Federal Fluminense, Niterói 24210-346, Rio de Janeiro, Brazil; (A.S.S.); (P.H.P.); (R.d.M.e.S.)
| |
Collapse
|
8
|
Ma Z, Guo Z, Gao Y, Wang Y, Du M, Han Y, Xue Z, Yang W, Ma X. Boosting Excited-State Energy Transfer by Anchoring Dipole Orientation in Binary Thermally Activated Delayed Fluorescence/J-Aggregate Assemblies. Chemistry 2024; 30:e202400046. [PMID: 38619364 DOI: 10.1002/chem.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
Förster resonance energy transfer (FRET) has been widely applied in fluorescence imaging, sensing and so on, while developing useful strategy of boosting FRET efficiency becomes a key issue that limits the application. Except optimizing spectral properties, promoting orientation factor (κ2) has been well discussed but rarely utilized for boosting FRET. Herein, we constructed binary nano-assembling of two thermally activated delayed fluorescence (TADF) emitters (2CzPN and DMAC-DPS) with J-type aggregate of cyanine dye (C8S4) as doping films by taking advantage of their electrostatic interactions. Time-resolved spectroscopic measurements indicated that 2CzPN/Cy-J films exhibit an order of magnitude higher kFRET than DMAC-DPS/Cy-J films. Further quantitative analysing on kFRET and kDET indicated higher orientation factor (κ2) in 2CzPN/Cy-J films play a key role for achieving fast kFRET, which was subsequently confirmed by anisotropic measurements. Corresponding DFT/TDDFT calculation revealed strong "two-point" electrostatic anchoring in 2CzPN/Cy-J films that is responsible for highly orientated transitions. We provide a new strategy for boosting FRET in nano-assemblies, which might be inspired for designing FRET-based devices of sensing, imaging and information encryption.
Collapse
Affiliation(s)
- Zhuoming Ma
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Yixuan Gao
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Yaxin Wang
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Min Du
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Yandong Han
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| | - Zheng Xue
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| |
Collapse
|
9
|
Xu J, Zhao S, Zhang Q, Huang X, Du K, Wang J, Wang J, Chen C, Zhang B, Chang J, Gong X. Development of highly sensitive dual-enhanced fluorescence quenching immunochromatographic test strips based on Pt nanoprobes. Biosens Bioelectron 2024; 254:116195. [PMID: 38479341 DOI: 10.1016/j.bios.2024.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
The fluorescence-quenching method is crucial in vitro analysis, particularly for immunochromatographic test strips (ICTs) using noble metal nanoparticles as probes. However, ICTs still fall short in meeting the requirements for the detection of traces biomarkers due to the noble metal nanoparticles can only quench fluorescence of the dyes within a confined distance. Interestingly, noble metal nanoparticles, such as Pt NPs cannot only perform fluorescence-quenching ability based on the Förster resonance energy transfer (FRET), but also show perfect oxidase-like catalytic performance on many kinds of substrates, such as 3,3',5,5' -tetramethylbenzidine (TMB). We observed that the oxTMB (the oxidation products of TMB) exhibited notable effectiveness in quenching Cy5 fluorescence by the strong inner filter effect (IFE), which obviously improved the fluorescence-quenching efficiency with extremely low background signal. Through the dual-enhanced fluorescence quenching mechanism, the fluorescence quenching constant (Kn) was 661.24-fold that of only Pt NPs on the NC membrane. To validate the feasibility of this technique, we employed two types of biomarkers, namely microRNA (miR-15a-5p) and the signature protein (PSA). The sensitivity of miR-15a-5p was 9.286 × 10-18 mol/L and 17.5-fold more than that based on Pt NPs. As for the PSA, the LOD (0.6265 pg/mL) was 15.5-fold enhancement more sensitive after catalysis. Overall, the dual-enhanced fluorescence quenching rFICTs could act as a practical detection for biomarker in real samples.
Collapse
Affiliation(s)
- Jiashuo Xu
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China
| | - Shuang Zhao
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China
| | - Qiuting Zhang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China
| | - Xu Huang
- School of Medical Imaging Tianjin Medical University, Tianjin, 300204, China
| | - Kang Du
- Tianjin BoomSciex Technology Co., Ltd, Tianjin, 300400, China
| | - Jinzhi Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China
| | - Jiaxun Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China
| | - Cheng Chen
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Bingbo Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Jin Chang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China.
| | - Xiaoqun Gong
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China.
| |
Collapse
|
10
|
Hu J, Zhao F, Ling H, Zhang Y, Liu Q. Single-particle Förster resonance energy transfer from upconversion nanoparticles to organic dyes. NANOSCALE ADVANCES 2024; 6:2945-2953. [PMID: 38817426 PMCID: PMC11134271 DOI: 10.1039/d4na00198b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 06/01/2024]
Abstract
Single-particle detection and sensing, powered by Förster resonance energy transfer (FRET), offers precise monitoring of molecular interactions and environmental stimuli at a nanometric resolution. Despite its potential, the widespread use of FRET has been curtailed by the rapid photobleaching of traditional fluorophores. This study presents a robust single-particle FRET platform utilizing upconversion nanoparticles (UCNPs), which stand out for their remarkable photostability, making them superior to conventional organic donors for energy transfer-based assays. Our comprehensive research demonstrates the influence of UCNPs' size, architecture, and dye selection on the efficiency of FRET. We discovered that small particles (∼14 nm) with a Yb3+-enriched outermost shell exhibit a significant boost in FRET efficiency, a benefit not observed in larger particles (∼25 nm). 25 nm UCNPs with an inert NaLuF4 shell demonstrated a comparable level of emission enhancement via FRET as those with a Yb3+-enriched outermost shell. At the single-particle level, these FRET-enhanced UCNPs manifested an upconversion green emission intensity that was 8.3 times greater than that of their unmodified counterparts, while maintaining notable luminescence stability. Our upconversion FRET system opens up new possibilities for developing more effective high-brightness, high-sensitivity single-particle detection, and sensing modalities.
Collapse
Affiliation(s)
- Jialing Hu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Fei Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Huan Ling
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| |
Collapse
|
11
|
He Q, Wei L, He C, Yang C, Wu W. Supramolecular Annihilator with DPA Parallelly Arranged by Multiple Hydrogen-Bonding Interactions for Enhanced Triplet-Triplet Annihilation Upconversion. Molecules 2024; 29:2203. [PMID: 38792064 PMCID: PMC11124113 DOI: 10.3390/molecules29102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The triplet annihilator is a critical component for triplet-triplet annihilation upconversion (TTA-UC); both the photophysical properties of the annihilator and the intermolecular orientation have pivotal effects on the overall efficiency of TTA-UC. Herein, we synthesized two supramolecular annihilators A-1 and A-2 by grafting 9,10-diphenylanthracene (DPA) fragments, which have been widely used as triplet annihilators for TTA-UC, on a macrocyclic host-pillar[5]arenes. In A-1, the orientation of the two DPA units was random, while, in A-2, the two DPA units were pushed to a parallel arrangement by intramolecular hydrogen-bonding interactions. The two compounds showed very similar photophysical properties and host-guest binding affinities toward electron-deficient guests, but showed totally different TTA-UC emissions. The UC quantum yield of A-2 could be optimized to 13.7% when an alkyl ammonia chain-attaching sensitizer S-2 was used, while, for A-1, only 5.1% was achieved. Destroying the hydrogen-bonding interactions by adding MeOH to A-2 significantly decreased the UC emissions, demonstrating that the parallel orientations of the two DPA units contributed greatly to the TTA-UC emissions. These results should be beneficial for annihilator designs and provide a new promising strategy for enhancing TTA-UC emissions.
Collapse
Affiliation(s)
| | | | | | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China; (Q.H.); (L.W.); (C.H.)
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China; (Q.H.); (L.W.); (C.H.)
| |
Collapse
|
12
|
Wang L, Wen Y, Li L, Yang X, Li W, Cao M, Tao Q, Sun X, Liu G. Development of Optical Differential Sensing Based on Nanomaterials for Biological Analysis. BIOSENSORS 2024; 14:170. [PMID: 38667163 PMCID: PMC11048167 DOI: 10.3390/bios14040170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The discrimination and recognition of biological targets, such as proteins, cells, and bacteria, are of utmost importance in various fields of biological research and production. These include areas like biological medicine, clinical diagnosis, and microbiology analysis. In order to efficiently and cost-effectively identify a specific target from a wide range of possibilities, researchers have developed a technique called differential sensing. Unlike traditional "lock-and-key" sensors that rely on specific interactions between receptors and analytes, differential sensing makes use of cross-reactive receptors. These sensors offer less specificity but can cross-react with a wide range of analytes to produce a large amount of data. Many pattern recognition strategies have been developed and have shown promising results in identifying complex analytes. To create advanced sensor arrays for higher analysis efficiency and larger recognizing range, various nanomaterials have been utilized as sensing probes. These nanomaterials possess distinct molecular affinities, optical/electrical properties, and biological compatibility, and are conveniently functionalized. In this review, our focus is on recently reported optical sensor arrays that utilize nanomaterials to discriminate bioanalytes, including proteins, cells, and bacteria.
Collapse
Affiliation(s)
| | - Yanli Wen
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, China; (L.W.); (L.L.); (X.Y.); (W.L.); (M.C.); (Q.T.); (X.S.)
| | | | | | | | | | | | | | - Gang Liu
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, China; (L.W.); (L.L.); (X.Y.); (W.L.); (M.C.); (Q.T.); (X.S.)
| |
Collapse
|
13
|
Liu M, Lai Y, Marquez M, Vetrone F, Liang J. Short-wave Infrared Photoluminescence Lifetime Mapping of Rare-Earth Doped Nanoparticles Using All-Optical Streak Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305284. [PMID: 38183381 PMCID: PMC10953585 DOI: 10.1002/advs.202305284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/06/2023] [Indexed: 01/08/2024]
Abstract
The short-wave infrared (SWIR) photoluminescence lifetimes of rare-earth doped nanoparticles (RENPs) have found diverse applications in fundamental and applied research. Despite dazzling progress in the novel design and synthesis of RENPs with attractive optical properties, existing optical systems for SWIR photoluminescence lifetime imaging are still considerably restricted by inefficient photon detection, limited imaging speed, and low sensitivity. To overcome these challenges, SWIR photoluminescence lifetime imaging microscopy using an all-optical streak camera (PLIMASC) is developed. Synergizing scanning optics and a high-sensitivity InGaAs CMOS camera, SWIR-PLIMASC has a 1D imaging speed of up to 138.9 kHz in the spectral range of 900-1700 nm, which quantifies the photoluminescence lifetime of RENPs in a single shot. A 2D photoluminescence lifetime map can be acquired by 1D scanning of the sample. To showcase the power of SWIR-PLIMASC, a series of core-shell RENPs with distinct SWIR photoluminescence lifetimes is synthesized. In particular, using Er3+ -doped RENPs, SWIR-PLIMASC enables multiplexed anti-counterfeiting. Leveraging Ho3+ -doped RENPs as temperature indicators, this system is applied to SWIR photoluminescence lifetime-based thermometry. Opening up a new avenue for efficient SWIR photoluminescence lifetime mapping, this work is envisaged to contribute to advanced materials characterization, information science, and biomedicine.
Collapse
Affiliation(s)
- Miao Liu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche ScientifiqueUniversité du Québec1650 boulevard Lionel‐Boulet, VarennesQuébecJ3X1P7Canada
| | - Yingming Lai
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche ScientifiqueUniversité du Québec1650 boulevard Lionel‐Boulet, VarennesQuébecJ3X1P7Canada
| | - Miguel Marquez
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche ScientifiqueUniversité du Québec1650 boulevard Lionel‐Boulet, VarennesQuébecJ3X1P7Canada
| | - Fiorenzo Vetrone
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche ScientifiqueUniversité du Québec1650 boulevard Lionel‐Boulet, VarennesQuébecJ3X1P7Canada
| | - Jinyang Liang
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche ScientifiqueUniversité du Québec1650 boulevard Lionel‐Boulet, VarennesQuébecJ3X1P7Canada
| |
Collapse
|
14
|
Li Y, Wang H, Chen Y, Ding L, Ju H. In Situ Glycan Analysis and Editing in Living Systems. JACS AU 2024; 4:384-401. [PMID: 38425935 PMCID: PMC10900212 DOI: 10.1021/jacsau.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024]
Abstract
Besides proteins and nucleic acids, carbohydrates are also ubiquitous building blocks of living systems. Approximately 70% of mammalian proteins are glycosylated. Glycans not only provide structural support for living systems but also act as crucial regulators of cellular functions. As a result, they are considered essential pieces of the life science puzzle. However, research on glycans has lagged far behind that on proteins and nucleic acids. The main reason is that glycans are not direct products of gene coding, and their synthesis is nontemplated. In addition, the diversity of monosaccharide species and their linkage patterns contribute to the complexity of the glycan structures, which is the molecular basis for their diverse functions. Research in glycobiology is extremely challenging, especially for the in situ elucidation of glycan structures and functions. There is an urgent need to develop highly specific glycan labeling tools and imaging methods and devise glycan editing strategies. This Perspective focuses on the challenges of in situ analysis of glycans in living systems at three spatial levels (i.e., cell, tissue, and in vivo) and highlights recent advances and directions in glycan labeling, imaging, and editing tools. We believe that examining the current development landscape and the existing bottlenecks can drive the evolution of in situ glycan analysis and intervention strategies and provide glycan-based insights for clinical diagnosis and therapeutics.
Collapse
Affiliation(s)
- Yiran Li
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Haiqi Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yunlong Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Lin Ding
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
15
|
Jeon E, Koo B, Kim S, Kim J, Yu Y, Jang H, Lee M, Kim SH, Kang T, Kim SK, Kwak R, Shin Y, Lee J. Biporous silica nanostructure-induced nanovortex in microfluidics for nucleic acid enrichment, isolation, and PCR-free detection. Nat Commun 2024; 15:1366. [PMID: 38355558 PMCID: PMC10866868 DOI: 10.1038/s41467-024-45467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Efficient pathogen enrichment and nucleic acid isolation are critical for accurate and sensitive diagnosis of infectious diseases, especially those with low pathogen levels. Our study introduces a biporous silica nanofilms-embedded sample preparation chip for pathogen and nucleic acid enrichment/isolation. This chip features unique biporous nanostructures comprising large and small pore layers. Computational simulations confirm that these nanostructures enhance the surface area and promote the formation of nanovortex, resulting in improved capture efficiency. Notably, the chip demonstrates a 100-fold lower limit of detection compared to conventional methods used for nucleic acid detection. Clinical validations using patient samples corroborate the superior sensitivity of the chip when combined with the luminescence resonance energy transfer assay. The enhanced sample preparation efficiency of the chip, along with the facile and straightforward synthesis of the biporous nanostructures, offers a promising solution for polymer chain reaction-free detection of nucleic acids.
Collapse
Affiliation(s)
- Eunyoung Jeon
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suyeon Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jieun Kim
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeonuk Yu
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Minju Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sang Kyung Kim
- Center for Augmented Safety Systems with Intelligence, Sensing and Tracking (ASSIST), Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Rhokyun Kwak
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Science, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
16
|
Cui K, Huang J, Qi L, Li X, Wang Y, Wang X, Zhang J, Zhang Y, Ge S, Yu J. Z-Scheme Heterojunction Excited by DNA-Programmed Upconversion Nanotransducers for a Near-Infrared Light-Actuated Lab-on-Paper Device. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6825-6836. [PMID: 38301231 DOI: 10.1021/acsami.3c16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Herein, a flexible near-infrared (NIR) light-actuated photoelectrochemical (PEC) lab-on-paper device was constructed toward miRNA-122 detection, utilizing the combination of DNA-programmed NaYF4/Yb,Tm upconversion nanoparticles (UCNPs) and the Z-scheme AgI/WO3 heterojunction grown in situ on gold nanoparticle-decorated 3D cellulose fibers. The UCNPs were employed as light transducers for converting NIR light into ultraviolet/visible (UV/vis) light to excite the nanojunction. The multiple diffraction of NaYF4/Yb,Tm matched the absorption band of the Z-scheme AgI/WO3 heterojunction, resulting in enhanced PEC photocurrent output. This prepared Z-scheme heterojunction effectively directed charge migration and highly facilitated the electron-hole pair separation. Target miRNA-122 activated the nonenzyme catalytic hairpin assembly signal amplification strategy, generating duplexes which caused the exfoliation of NaYF4/Yb,Tm UCNPs from the biosensor electrode and lowered the photocurrent under 980 nm irradiation. Under optimized circumstances, the proposed NIR-actuated PEC lab-on-paper device presented accurate miRNA-122 detection within a wide linear range of 10 fM-100 nM with a low limit of detection of 2.32 fM, providing a reliable strategy in the exploration of NIR-actuated PEC biosensors for low-cost, high-performance bioassay in clinical applications.
Collapse
Affiliation(s)
- Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jiali Huang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Ling Qi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yangyang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xuefeng Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
17
|
Liu H, Wei W, Song J, Hu J, Wang Z, Lin P. Upconversion-Powered Photoelectrochemical Bioanalysis for DNA Sensing. SENSORS (BASEL, SWITZERLAND) 2024; 24:773. [PMID: 38339489 PMCID: PMC10856881 DOI: 10.3390/s24030773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
In this work, we report a new concept of upconversion-powered photoelectrochemical (PEC) bioanalysis. The proof-of-concept involves a PEC bionanosystem comprising a NaYF4:Yb,Tm@NaYF4 upconversion nanoparticles (UCNPs) reporter, which is confined by DNA hybridization on a CdS quantum dots (QDs)/indium tin oxide (ITO) photoelectrode. The CdS QD-modified ITO electrode was powered by upconversion absorption together with energy transfer effect through UCNPs for a stable photocurrent generation. By measuring the photocurrent change, the target DNA could be detected in a specific and sensitive way with a wide linear range from 10 pM to 1 μM and a low detection limit of 0.1 pM. This work exploited the use of UCNPs as signal reporters and realized upconversion-powered PEC bioanalysis. Given the diversity of UCNPs, we believe it will offer a new perspective for the development of advanced upconversion-powered PEC bioanalysis.
Collapse
Affiliation(s)
- Hong Liu
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (H.L.); (J.S.); (J.H.)
| | - Weiwei Wei
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (H.L.); (J.S.); (J.H.)
| | - Jiajun Song
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (H.L.); (J.S.); (J.H.)
| | - Jin Hu
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (H.L.); (J.S.); (J.H.)
| | - Zhezhe Wang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China;
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (H.L.); (J.S.); (J.H.)
| |
Collapse
|
18
|
Xia M, Wang Q, Liu Y, Fang C, Zhang B, Yang S, Zhou F, Lin P, Gu M, Huang C, Zhang X, Li F, Liu H, Wang G, Ling D. Self-propelled assembly of nanoparticles with self-catalytic regulation for tumour-specific imaging and therapy. Nat Commun 2024; 15:460. [PMID: 38212655 PMCID: PMC10784296 DOI: 10.1038/s41467-024-44736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
Targeted assembly of nanoparticles in biological systems holds great promise for disease-specific imaging and therapy. However, the current manipulation of nanoparticle dynamics is primarily limited to organic pericyclic reactions, which necessitate the introduction of synthetic functional groups as bioorthogonal handles on the nanoparticles, leading to complex and laborious design processes. Here, we report the synthesis of tyrosine (Tyr)-modified peptides-capped iodine (I) doped CuS nanoparticles (CuS-I@P1 NPs) as self-catalytic building blocks that undergo self-propelled assembly inside tumour cells via Tyr-Tyr condensation reactions catalyzed by the nanoparticles themselves. Upon cellular internalization, the CuS-I@P1 NPs undergo furin-guided condensation reactions, leading to the formation of CuS-I nanoparticle assemblies through dityrosine bond. The tumour-specific furin-instructed intracellular assembly of CuS-I NPs exhibits activatable dual-modal imaging capability and enhanced photothermal effect, enabling highly efficient imaging and therapy of tumours. The robust nanoparticle self-catalysis-regulated in situ assembly, facilitated by natural handles, offers the advantages of convenient fabrication, high reaction specificity, and biocompatibility, representing a generalizable strategy for target-specific activatable biomedical imaging and therapy.
Collapse
Grants
- 21936001, 21675001, 21976004, 32071374 National Natural Science Foundation of China (National Science Foundation of China)
- National Key Research and Development Program of China (2022YFB3203801, 2022YFB3203804, 2022YFB3203800), Natural Science Foundation of Anhui Province (KJ2017A315), Leading Talent of “Ten Thousand Plan”-National High-Level Talents Special Support Plan, Program of Shanghai Academic Research Leader under the Science and Technology Innovation Action Plan (21XD1422100), Explorer Program of Science and Technology Commission of Shanghai Municipality (22TS1400700), start-up funds from Shanghai Jiao Tong University (22X010201631), Natural Science Foundation of Zhejiang Province (LR22C100001), Innovative Research Team of High-level Local Universities in Shanghai (SHSMU-ZDCX20210900), CAS Interdisciplinary lnnovation Team (JCTD-2020-08), Postdoctoral Innovative Talent Support Program (BX20230220), Postdoctoral Foundation of China (2023M732244), Outstanding Innovative Research Team for Molecular Enzymology and Detection in Anhui Provincial Universities (2022AH010012), Anhui Province Outstanding Youth Fund (2008085J10), Anhui Provincial Education Department Natural Sciences Key Fund (KJ2021A0113), and Shanghai Municipal Science and Technology Commission (21dz2210100).
Collapse
Affiliation(s)
- Mengmeng Xia
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yamin Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chunyan Fang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
- World Laureates Association (WLA) Laboratories, 201203, Shanghai, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Fu Zhou
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China
| | - Peihua Lin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Mingzheng Gu
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China
| | - Canyu Huang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaojun Zhang
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, 310009, Hangzhou, China.
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongying Liu
- College of Automation, Hangzhou Dianzi University, 310018, Hangzhou, China.
| | - Guangfeng Wang
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China.
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China.
- World Laureates Association (WLA) Laboratories, 201203, Shanghai, China.
| |
Collapse
|
19
|
Ferrera-González J, González-Béjar M, Pérez-Prieto J. Synergistic or antagonistic effect of lanthanides on Rose Bengal photophysics in upconversion nanohybrids? NANOSCALE 2023. [PMID: 38050867 DOI: 10.1039/d3nr03774f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A nanohybrid made of a xanthenic dye, rose bengal, grafted to an ytterbium and erbium codoped upconversion nanoparticle (UCNP) served as a proof-of-concept to evaluate the fundamental mechanisms which govern the dye photophysics upon interaction with the UCNP. Both photoactive lanthanides strongly influence the singlet and triplet excited states of rose bengal.
Collapse
Affiliation(s)
- Juan Ferrera-González
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/ Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| | - María González-Béjar
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/ Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/ Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| |
Collapse
|
20
|
McGuire K, He S, Gracie J, Bryson C, Zheng D, Clark AW, Koehnke J, France DJ, Nau WM, Lee TC, Peveler WJ. Supramolecular Click Chemistry for Surface Modification of Quantum Dots Mediated by Cucurbit[7]uril. ACS NANO 2023; 17:21585-21594. [PMID: 37922402 PMCID: PMC10655248 DOI: 10.1021/acsnano.3c06601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Cucurbiturils (CBs), barrel-shaped macrocyclic molecules, are capable of self-assembling at the surface of nanomaterials in their native state, via their carbonyl-ringed portals. However, the symmetrical two-portal structure typically leads to aggregated nanomaterials. We demonstrate that fluorescent quantum dot (QD) aggregates linked with CBs can be broken-up, retaining CBs adsorbed at their surface, via inclusion of guests in the CB cavity. Simultaneously, the QD surface is modified by a functional tail on the guest, thus the high affinity host-guest binding (logKa > 9) enables a non-covalent, click-like modification of the nanoparticles in aqueous solution. We achieved excellent modification efficiency in several functional QD conjugates as protein labels. Inclusion of weaker-binding guests (logKa = 4-6) enables subsequent displacement with stronger binders, realising modular switchable surface chemistries. Our general "hook-and-eye" approach to host-guest chemistry at nanomaterial interfaces will lead to divergent routes for nano-architectures with rich functionalities for theranostics and photonics in aqueous systems.
Collapse
Affiliation(s)
- Katie McGuire
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ, United
Kingdom
| | - Suhang He
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Jennifer Gracie
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ, United
Kingdom
| | - Charlotte Bryson
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ, United
Kingdom
| | - Dazhong Zheng
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ, United
Kingdom
| | - Alasdair W. Clark
- James
Watt School of Engineering, Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, United
Kingdom
| | - Jesko Koehnke
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ, United
Kingdom
- Institut
für Lebensmittelchemie, Leibniz Universität
Hannover, Callinstr 5, 30167 Hannover, Germany
| | - David J. France
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ, United
Kingdom
| | - Werner M. Nau
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Tung-Chun Lee
- Institute
for Materials Discovery, University College
London, London, WC1H 0AJ, United Kingdom
- Department
of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - William J. Peveler
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ, United
Kingdom
| |
Collapse
|
21
|
Sun G, Xie Y, Wang Y, Zhang H, Sun L. Upconversion Luminescence in Mononuclear Yb/Sm Co-crystal Assemblies at Room Temperature. Angew Chem Int Ed Engl 2023; 62:e202312308. [PMID: 37698110 DOI: 10.1002/anie.202312308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Metal-based upconversion luminescence transforming high-energy photons into low-energy photons is an attractive anti-Stokes shift process for fundamental research and promising applications. In this work, we developed the upconversion luminescence in co-crystal assemblies consisting of discrete mononuclear Yb and Sm complexes. The characteristic visible emissions of Sm3+ were observed under the excitation of absorption band of Yb3+ at 980 nm. A series of co-crystal assemblies were investigated based on mononuclear Yb and Sm complexes, and the strongest luminescence was obtained when the molar concentration between Yb3+ and Sm3+ is equivalent. The crystal structure was fully characterized by the single crystal X-ray diffraction and upconverting energy transfer mechanisms were verified as cooperative sensitization upconversion and energy transfer upconversion. This is the first example of Sm3+ -based upconverting luminescence in discrete lanthanide complexes which present as co-crystal assemblies at room temperature.
Collapse
Affiliation(s)
- Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yao Xie
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuxin Wang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lining Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
22
|
Wang J, Shangguan P, Lin M, Fu L, Liu Y, Han L, Chen S, Wang X, Lu M, Luo Z, Zhong Y, Shi B, Bai F. Dual-Site Förster Resonance Energy Transfer Route of Upconversion Nanoparticles-Based Brain-Targeted Nanotheranostic Boosts the Near-Infrared Phototherapy of Glioma. ACS NANO 2023; 17:16840-16853. [PMID: 37605553 DOI: 10.1021/acsnano.3c03724] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor with low survival, primarily due to the blood-brain barrier (BBB) and high infiltration. Upconversion nanoparticles (UCNPs)-based near-infrared (NIR) phototherapy with deep penetration is a promising therapy method against glioma but faces low photoenergy utilization that is induced by spectral mismatch and single-site Förster resonance energy transfer (FRET). Herein, we designed a brain-targeting NIR theranostic system with a dual-site FRET route and superior spectral matching to maximize energy utilization for synergistic photodynamic and photothermal therapy of glioma. The system was fabricated by Tm-doped UCNPs, zinc tetraphenylporphyrin (ZnTPP), and copper sulfide (CuS) nanoparticles under multioptimized modulation. First, the Tm-doping ratio was precisely adjusted to improve the relative emission intensity at 475 nm of UCNPs (11.5-fold). Moreover, the J-aggregate of ZnTPP increased the absorption at 475 nm (163.5-fold) of monomer; both together optimize the FRET matching between UCNPs and porphyrin for effective NIR photodynamic therapy. Simultaneously, the emission at 800 nm was utilized to magnify the photothermal effect of CuS nanoparticles for photothermal therapy via the second FRET route. After being modified by a brain-targeted peptide, the system efficiently triggers the synergistic phototherapy ablation of glioma cells and significantly prolongs the survival of orthotopic glioma-bearing mice after traversing the BBB and targeting glioma. This success of advanced spectral modulation and dual-site FRET strategy may inspire more strategies to maximize the photoenergy utilization of UCNPs for brain diseases.
Collapse
Affiliation(s)
- Jiefei Wang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ping Shangguan
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ming Lin
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Libing Fu
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yisheng Liu
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lulu Han
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Sudi Chen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, China
| | - Xiao Wang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mengya Lu
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhengqun Luo
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, China
| | - Bingyang Shi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
23
|
Yin HJ, Xiao ZG, Feng Y, Yao CJ. Recent Progress in Photonic Upconversion Materials for Organic Lanthanide Complexes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5642. [PMID: 37629933 PMCID: PMC10456671 DOI: 10.3390/ma16165642] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
Organic lanthanide complexes have garnered significant attention in various fields due to their intriguing energy transfer mechanism, enabling the upconversion (UC) of two or more low-energy photons into high-energy photons. In comparison to lanthanide-doped inorganic nanoparticles, organic UC complexes hold great promise for biological delivery applications due to their advantageous properties of controllable size and composition. This review aims to provide a summary of the fundamental concept and recent developments of organic lanthanide-based UC materials based on different mechanisms. Furthermore, we also detail recent applications in the fields of bioimaging and solar cells. The developments and forthcoming challenges in organic lanthanide-based UC offer readers valuable insights and opportunities to engage in further research endeavors.
Collapse
Affiliation(s)
- Hong-Ju Yin
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China; (H.-J.Y.); (Z.-G.X.)
| | - Zhong-Gui Xiao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China; (H.-J.Y.); (Z.-G.X.)
| | - Yansong Feng
- State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chang-Jiang Yao
- State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
24
|
Skripka A, Lee M, Qi X, Pan JA, Yang H, Lee C, Schuck PJ, Cohen BE, Jaque D, Chan EM. A Generalized Approach to Photon Avalanche Upconversion in Luminescent Nanocrystals. NANO LETTERS 2023; 23:7100-7106. [PMID: 37471584 DOI: 10.1021/acs.nanolett.3c01955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Photon avalanching nanoparticles (ANPs) exhibit extremely nonlinear upconverted emission valuable for subdiffraction imaging, nanoscale sensing, and optical computing. Avalanching has been demonstrated with Tm3+-, Pr3+-, or Nd3+-doped nanocrystals, but their emission is limited to a few wavelengths and materials. Here, we utilize Gd3+-assisted energy migration to tune the emission wavelengths of Tm3+-sensitized ANPs and generate highly nonlinear emission from Eu3+, Tb3+, Ho3+, and Er3+ ions. The upconversion intensities of these spectrally discrete ANPs scale with nonlinearity factor s = 10-17 under 1064 nm excitation at power densities as low as 7 kW cm-2. This strategy for imprinting avalanche behavior on remote emitters can be extended to fluorophores adjacent to ANPs, as we demonstrate with CdS/CdSe/CdS core/shell/shell quantum dots. ANPs with rationally designed energy transfer networks provide the means to transform conventional linear emitters into a highly nonlinear ones, expanding the use of photon avalanching in biological, chemical, and photonic applications.
Collapse
Affiliation(s)
- Artiom Skripka
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Minji Lee
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Xiao Qi
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jia-Ahn Pan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Haoran Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Changhwan Lee
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley California, 94720, United States
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|