1
|
Edgecomb J, Nguyen DT, Tan S, Murugesan V, Johnson GE, Prabhakaran V. Electrochemical Imaging of Precisely-Defined Redox and Reactive Interfaces. Angew Chem Int Ed Engl 2024; 63:e202405846. [PMID: 38871656 DOI: 10.1002/anie.202405846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Understanding the diverse electrochemical reactions occurring at electrode-electrolyte interfaces (EEIs) is a critical challenge to developing more efficient energy conversion and storage technologies. Establishing a predictive molecular-level understanding of solid electrolyte interphases (SEIs) is challenging due to the presence of multiple intertwined chemical and electrochemical processes occurring at battery electrodes. Similarly, chemical conversions in reactive electrochemical systems are often influenced by the heterogeneous distribution of active sites, surface defects, and catalyst particle sizes. In this mini review, we highlight an emerging field of interfacial science that isolates the impact of specific chemical species by preparing precisely-defined EEIs and visualizing the reactivity of their individual components using single-entity characterization techniques. We highlight the broad applicability and versatility of these methods, along with current state-of-the-art instrumentation and future opportunities for these approaches to address key scientific challenges related to batteries, chemical separations, and fuel cells. We establish that controlled preparation of well-defined electrodes combined with single entity characterization will be crucial to filling key knowledge gaps and advancing the theories used to describe and predict chemical and physical processes occurring at EEIs and accelerating new materials discovery for energy applications.
Collapse
Affiliation(s)
- Joseph Edgecomb
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | - Shuai Tan
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | - Grant E Johnson
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | |
Collapse
|
2
|
Wang F, Zhang C, Wu F, He Z, Huang Y. Investigation of the Single-Particle Scale Structure-Activity Relationship Providing New Insights for the Development of High-Performance Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400683. [PMID: 38747891 DOI: 10.1002/adma.202400683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/11/2024] [Indexed: 05/21/2024]
Abstract
As electric vehicles, portable electronic devices, and tools have increasingly high requirements for battery energy density and power density, constantly improving battery performance is a research focus. Accurate measurement of the structure-activity relationship of active materials is key to advancing the research of high-performance batteries. However, conventional performance tests of active materials are based on the electrochemical measurement of porous composite electrodes containing active materials, polymer binders, and conductive carbon additives, which cannot establish an accurate structure-activity relationship with the physical characterization of microregions. In this review, in order to promote the accurate measurement and understanding of the structure-activity relationship of materials, the electrochemical measurement and physical characterization of energy storage materials at single-particle scale are reviewed. The potential problems and possible improvement schemes of the single particle electrochemical measurement and physical characterization are proposed. Their potential applications in single particle electrochemical simulation and machine learning are prospected. This review aims to promote the further application of single particle electrochemical measurement and physical characterization in energy storage materials, hoping to achieve 3D unified evaluation of physical characterization, electrochemical measurement, and theoretical simulation at the single particle scale to provide new inspiration for the development of high-performance batteries.
Collapse
Affiliation(s)
- Fei Wang
- Hebei Key Laboratory of Applied Chemistry, College of Environment and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Chong Zhang
- Hebei Key Laboratory of Applied Chemistry, College of Environment and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Fan Wu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, China
| | - Zhichao He
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
3
|
Rheinlaender J, Schäffer TE. Measuring the Shape, Stiffness, and Interface Tension of Droplets with the Scanning Ion Conductance Microscope. ACS NANO 2024; 18:16257-16264. [PMID: 38868865 DOI: 10.1021/acsnano.4c02743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Imaging and probing liquid-liquid interfaces at the micro- and nanoscale are of high relevance, for example, in materials science, surface chemistry, and microfluidics. However, existing imaging techniques are limited in resolution, average over large sample areas, or interact with the sample. Here, we present a method to quantify the shape, stiffness, and interface tension of liquid droplets with the scanning ion conductance microscope (SICM), providing submicrometer resolution and the ability to perform noncontact mechanical measurements. We show that we can accurately image the three-dimensional shape of micrometer-sized liquid droplets made of, for example, decane, hexane, or different oils. We then introduce numerical models to quantitatively obtain their stiffness and interface tension from SICM data. We verified our method by measuring the interface tension of decane droplets changing under the influence of surfactants at different concentrations. Finally, we use SICM to resolve the dissolution dynamics of decane droplets, showing that droplet shape exhibits different dissolution modes and stiffness continuously increases while the interface tension remains constant. We thereby demonstrate that SICM is a useful method to investigate liquid-liquid interfaces on the microscale with applications in materials or life sciences.
Collapse
Affiliation(s)
- Johannes Rheinlaender
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, Tübingen, Tübingen 72076, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, Tübingen, Tübingen 72076, Germany
| |
Collapse
|
4
|
Pereira RW, Ramabhadran RO. Accurate Computation of Aqueous p Kas of Biologically Relevant Organic Acids: Overcoming the Challenges Posed by Multiple Conformers, Tautomeric Equilibria, and Disparate Functional Groups with the Fully Black-Box p K-Yay Method. J Phys Chem A 2023; 127:9121-9138. [PMID: 37862610 DOI: 10.1021/acs.jpca.3c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The use of static electronic structure calculations to compute solution-phase pKas offers a great advantage in that a macroscopic bulk property could be computed via microscopic computations involving very few molecules. There are various sources of errors in the quantum chemical calculations though. Overcoming these errors to accurately compute pKas of a plethora of acids is an active area of research in physical chemistry pursued by both computational as well as experimental chemists. We recently developed the pK-Yay method in our attempt to accurately compute aqueous pKas of strong and weak acids. The method is fully black-box, computationally inexpensive, and is very easy for even a nonexpert to use. However, the method was thus far tested on very few molecules (only 16 in all). Herein, in order to assess the future applicability of pK-Yay, we study the effect of multiple conformers, the presence of tautomers under equilibrium, and the impact of a wide variety of functional groups (derivatives of acetic acid with substituents at various positions, dicarboxylic acids, aromatic carboxylic acids, amines and amides, phenols and thiols, and fluorine bearing organic acids). Starting with more than 1000 conformers and tautomers, this study establishes that overall errors of ∼ 1.0 pKa units are routinely obtained for a majority of the molecules. Larger errors are noted in cases where multiple charges, intramolecular hydrogen bonding, and several ionizable functional groups are simultaneously present. An important conclusion to emerge from this work is that, the computed pKas are insensitive (difference <0.5) to whether we consider multiple conformers/tautomers or only choose the most stable conformer/tautomer. Further, pK-Yay captures the stereoelectronic effects arising due to differing axial vs equatorial pattern, and is useful to predict the dominant acid-base equilibrium in a system featuring several equilibria. Overall, pK-Yay may be employed in several chemical applications featuring organic molecules and biomonomers.
Collapse
Affiliation(s)
- Roshni W Pereira
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh 517507, India
- Centre for Atomic Molecular Optical Sciences and Technology (CAMOST), Tirupati, Andhra Pradesh 517507, India
| | - Raghunath O Ramabhadran
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh 517507, India
- Centre for Atomic Molecular Optical Sciences and Technology (CAMOST), Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
5
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
6
|
Rabinowitz J, Hartel AJW, Dayton H, Fabbri JD, Jo J, Dietrich LEP, Shepard KL. Charge Mapping of Pseudomonas aeruginosa Using a Hopping Mode Scanning Ion Conductance Microscopy Technique. Anal Chem 2023; 95:5285-5292. [PMID: 36920847 PMCID: PMC10359948 DOI: 10.1021/acs.analchem.2c05303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Scanning ion conductance microscopy (SICM) is a topographic imaging technique capable of probing biological samples in electrolyte conditions. SICM enhancements have enabled surface charge detection based on voltage-dependent signals. Here, we show how the hopping mode SICM method (HP-SICM) can be used for rapid and minimally invasive surface charge mapping. We validate our method usingPseudomonas aeruginosaPA14 (PA) cells and observe a surface charge density of σPA = -2.0 ± 0.45 mC/m2 that is homogeneous within the ∼80 nm lateral scan resolution. This biological surface charge is detected from at least 1.7 μm above the membrane (395× the Debye length), and the long-range charge detection is attributed to electroosmotic amplification. We show that imaging with a nanobubble-plugged probe reduces perturbation of the underlying sample. We extend the technique to PA biofilms and observe a charge density exceeding -20 mC/m2. We use a solid-state calibration to quantify surface charge density and show that HP-SICM cannot be quantitatively described by a steady-state finite element model. This work contributes to the body of scanning probe methods that can uniquely contribute to microbiology and cellular biology.
Collapse
Affiliation(s)
- Jake Rabinowitz
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States
| | - Andreas J W Hartel
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States.,Department of Biology, Columbia University, New York, New York 10027, United States
| | - Hannah Dayton
- Department of Biology, Columbia University, New York, New York 10027, United States
| | - Jason D Fabbri
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States
| | - Jeanyoung Jo
- Department of Biology, Columbia University, New York, New York 10027, United States
| | - Lars E P Dietrich
- Department of Biology, Columbia University, New York, New York 10027, United States
| | - Kenneth L Shepard
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
7
|
Caniglia G, Tezcan G, Meloni GN, Unwin PR, Kranz C. Probing and Visualizing Interfacial Charge at Surfaces in Aqueous Solution. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:247-267. [PMID: 35259914 DOI: 10.1146/annurev-anchem-121521-122615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface charge density and distribution play an important role in almost all interfacial processes, influencing, for example, adsorption, colloidal stability, functional material activity, electrochemical processes, corrosion, nanoparticle toxicity, and cellular processes such as signaling, absorption, and adhesion. Understanding the heterogeneity in, and distribution of, surface and interfacial charge is key to elucidating the mechanisms underlying reactivity, the stability of materials, and biophysical processes. Atomic force microscopy (AFM) and scanning ion conductance microscopy (SICM) are highly suitable for probing the material/electrolyte interface at the nanoscale through recent advances in probe design, significant instrumental (hardware and software) developments, and the evolution of multifunctional imaging protocols. Here, we assess the capability of AFM and SICM for surface charge mapping, covering the basic underpinning principles alongside experimental considerations. We illustrate and compare the use of AFM and SICM for visualizing surface and interfacial charge with examples from materials science, geochemistry, and the life sciences.
Collapse
Affiliation(s)
- Giada Caniglia
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany;
| | - Gözde Tezcan
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany;
| |
Collapse
|
8
|
Zhou Y, Sun L, Watanabe S, Ando T. Recent Advances in the Glass Pipet: from Fundament to Applications. Anal Chem 2021; 94:324-335. [PMID: 34841859 DOI: 10.1021/acs.analchem.1c04462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuanshu Zhou
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shinji Watanabe
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
9
|
Abstract
Scanning ion conductance microscopy (SICM) has emerged as a versatile tool for studies of interfaces in biology and materials science with notable utility in biophysical and electrochemical measurements. The heart of the SICM is a nanometer-scale electrolyte filled glass pipette that serves as a scanning probe. In the initial conception, manipulations of ion currents through the tip of the pipette and appropriate positioning hardware provided a route to recording micro- and nanoscopic mapping of the topography of surfaces. Subsequent advances in instrumentation, probe design, and methods significantly increased opportunities for SICM beyond recording topography. Hybridization of SICM with coincident characterization techniques such as optical microscopy and faradaic electrodes have brought SICM to the forefront as a tool for nanoscale chemical measurement for a wide range of applications. Modern approaches to SICM realize an important tool in analytical, bioanalytical, biophysical, and materials measurements, where significant opportunities remain for further exploration. In this review, we chronicle the development of SICM from the perspective of both the development of instrumentation and methods and the breadth of measurements performed.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
10
|
Iwata F, Shirasawa T, Mizutani Y, Ushiki T. Scanning ion-conductance microscopy with a double-barreled nanopipette for topographic imaging of charged chromosomes. Microscopy (Oxf) 2021; 70:423-435. [PMID: 33644794 DOI: 10.1093/jmicro/dfab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/12/2021] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Scanning ion conductance microscopy (SICM) is useful for imaging soft and fragile biological samples in liquids because it probes the samples' surface topography by detecting ion currents under non-contact and force-free conditions. SICM acquires the surface topographical height by detecting the ion current reduction that occurs when an electrolyte-filled glass nanopipette approaches the sample surface. However, most biological materials have electrically charged surfaces in liquid environments, which sometimes affect the behavior of the ion currents detected by SICM and, especially, make topography measurements difficult. For measuring such charged samples, we propose a novel imaging method that uses a double-barrel nanopipette as an SICM probe. The ion current between the two apertures of the nanopipette desensitizes the surface charge effect on imaging. In this study, metaphase chromosomes of Indian muntjac were imaged by this technique because, owing to their strongly negatively charged surfaces in phosphate-buffered saline, it is difficult to obtain the topography of the chromosomes by the conventional SICM with a single-aperture nanopipette. Using the proposed method with a double-barrel nanopipette, the surfaces of the chromosomes were successfully measured, without any surface charge confounder. Since the detailed imaging of sample topography can be performed in physiological liquid conditions regardless of the sample charge, it is expected to be used for analyzing the high-order structure of chromosomes in relation to their dynamic changes in the cell division.
Collapse
Affiliation(s)
- Futoshi Iwata
- Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan.,Research Institute of Electronics, Shizuoka University, Hamamatsu, Shizuoka 432-8011, Japan
| | - Tatsuru Shirasawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Yusuke Mizutani
- Office of Institutional Research, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.,Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
11
|
Zhu C, Jagdale G, Gandolfo A, Alanis K, Abney R, Zhou L, Bish D, Raff JD, Baker LA. Surface Charge Measurements with Scanning Ion Conductance Microscopy Provide Insights into Nitrous Acid Speciation at the Kaolin Mineral-Air Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12233-12242. [PMID: 34449200 PMCID: PMC9277718 DOI: 10.1021/acs.est.1c03455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Unique surface properties of aluminosilicate clay minerals arise from anisotropic distribution of surface charge across their layered structures. Yet, a molecular-level understanding of clay mineral surfaces has been hampered by the lack of analytical techniques capable of measuring surface charges at the nanoscale. This is important for understanding the reactivity, colloidal stability, and ion-exchange capacity properties of clay minerals, which constitute a major fraction of global soils. In this work, scanning ion conductance microscopy (SICM) is used for the first time to visualize the surface charge and topography of dickite, a well-ordered member of the kaolin subgroup of clay minerals. Dickite displayed a pH-independent negative charge on basal surfaces whereas the positive charge on edges increased from pH 6 to 3. Surface charges responded to malonate addition, which promoted dissolution/precipitation reactions. Results from SICM were used to interpret heterogeneous reactivity studies showing that gas-phase nitrous acid (HONO) is released from the protonation of nitrite at Al-OH2+ groups on dickite edges at pH well above the aqueous pKa of HONO. This study provides nanoscale insights into mineral surface processes that affect environmental processes on the local and global scale.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Gargi Jagdale
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Adrien Gandolfo
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Kristen Alanis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Rebecca Abney
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, United States
| | - Lushan Zhou
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - David Bish
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Jonathan D Raff
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| |
Collapse
|
12
|
Abstract
Mass-transport-limited catalysis and membrane transport can be characterized by concentration profiles surrounding active surfaces. Scanning electrochemical microscopy (SECM) is a tool that has been used to measure concentration profiles; however, the presence and geometry of the tip can distort these profiles due to hindered diffusion, which in turn alters chemical behavior at the catalytic surface. To fully characterize the behavior of surface features such as catalytic sites, it is essential to account for and analytically remove the effect of tip presence. In this work, atomic force microscopy-based SECM (AFM-SECM) measurements over poly(tetrafluoroethylene) (PTFE) and gold electrode surfaces are used to measure negative and positive-feedback approach curves, respectively. By inversely fitting these approach curves with a finite element method (FEM) model, we derive kinetic and geometric tip parameters that characterize the effect of tip presence. Tip effects may be removed in the model to estimate concentration profiles and reaction properties for the case where no tip is present. A maximum 120% increase in the concentration at one tip radii above the surface is observed due to the presence of the tip, where the concentration field is compressed vertically, in proportion to surface feature size and tip separation. Conical AFM-SECM tips, with a higher ratio of tip height to the base size, introduce less concentration distortion than disk-shaped AFM-SECM tips.
Collapse
Affiliation(s)
- Alex Mirabal
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Scott Calabrese Barton
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
13
|
Teahan J, Perry D, Chen B, McPherson IJ, Meloni GN, Unwin PR. Scanning Ion Conductance Microscopy: Surface Charge Effects on Electroosmotic Flow Delivery from a Nanopipette. Anal Chem 2021; 93:12281-12288. [PMID: 34460243 DOI: 10.1021/acs.analchem.1c01868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scanning ion conductance microscopy (SICM) is a powerful and versatile technique that allows an increasingly wide range of interfacial properties and processes to be studied. SICM employs a nanopipette tip that contains electrolyte solution and a quasi-reference counter electrode (QRCE), to which a potential is applied with respect to a QRCE in a bathing solution, in which the tip is placed. The work herein considers the potential-controlled delivery of uncharged electroactive molecules (solute) from an SICM tip to a working electrode substrate to determine the effect of the substrate on electroosmotic flow (EOF). Specifically, the local delivery of hydroquinone from the tip to a carbon fiber ultramicroelectrode (CF UME) provides a means of quantifying the rate of mass transport from the nanopipette and mapping electroactivity via the CF UME current response for hydroquinone oxidation to benzoquinone. EOF, and therefore species delivery, has a particularly strong dependence on the charge of the substrate surface at close nanopipette-substrate surface separations, with implications for retaining neutral solute within the tip predelivery and for the delivery process itself, both controlled via the applied tip potential. Finite element method (FEM) simulations of mass transport and reactivity are used to explain the experimental observations and identify the nature of EOF, including unusual flow patterns under certain conditions. The combination of experimental results with FEM simulations provides new insights on mass transport in SICM that will enhance quantitative applications and enable new possibilities for the use of nanopipettes for local delivery.
Collapse
Affiliation(s)
- James Teahan
- MAS Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, United Kingdom.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David Perry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Baoping Chen
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
14
|
Analysis and improvement of positioning reliability and accuracy of theta pipette configuration for scanning ion conductance microscopy. Ultramicroscopy 2021; 224:113240. [PMID: 33689886 DOI: 10.1016/j.ultramic.2021.113240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/02/2021] [Accepted: 02/27/2021] [Indexed: 11/21/2022]
Abstract
Scanning ion conductance microscopy (SICM) as an emerging non-contact scanning probe microscopy technique and featuring its strong in-situ detectability for soft and viscous samples, is increasingly used in biomedical and materials related studies. In SICM measurements, employing theta pipette as SICM probe to scan sample is an effective method to extend the applications of SICM for multi-parameter measurement. There are two crucial but still unclear issues that influence the reliability and accuracy of the usage of theta pipette in the SICM measurements, which are the safe feedback threshold and the horizontal measurement offset. In this work, aiming at the theta pipette configuration of SICM, we systematically investigated the two issues of the theta pipette by both finite element method (FEM) simulation and SICM experiments. The FEM analysis results show that the safe feedback threshold of the one side barrel of the theta pipette is above 99.5%, and the horizontal measurement offset is ~0.53 times of the inner radius of the probe tip. Based on this, we proposed an improved scanning method used by the theta pipette to solve the reliability and accuracy problems caused by the feedback threshold too close to the reference current (100%) and the measurement offset error at the tip radius level. Then through testing the polydimethylsiloxane (PDMS) samples with different embossed patterns with the improved method of SICM, we can conclude that the improved method can enhance the scanning reliability by adding the double barrels approaching process and increase the positioning accuracy by compensating an offset distance. The theoretical analysis and the improved scanning method in this work demonstrate more property and usage details of the theta pipette, and further improve the reliability and accuracy of the diversified multifunctional applications of the theta pipette for SICM to meet the increasingly complex and precise research needs.
Collapse
|
15
|
Li P, Li G. Advances in Scanning Ion Conductance Microscopy: Principles and Applications. IEEE NANOTECHNOLOGY MAGAZINE 2021. [DOI: 10.1109/mnano.2020.3037431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Shigyou K, Sun L, Yajima R, Takigaura S, Tajima M, Furusho H, Kikuchi Y, Miyazawa K, Fukuma T, Taoka A, Ando T, Watanabe S. Geometrical Characterization of Glass Nanopipettes with Sub-10 nm Pore Diameter by Transmission Electron Microscopy. Anal Chem 2020; 92:15388-15393. [PMID: 33205942 DOI: 10.1021/acs.analchem.0c02884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glass nanopipettes are widely used for various applications in nanosciences. In most of the applications, it is important to characterize their geometrical parameters, such as the aperture size and the inner cone angle at the tip region. For nanopipettes with sub-10 nm aperture and thin wall thickness, transmission electron microscopy (TEM) must be most instrumental in their precise geometrical measurement. However, this measurement has remained a challenge because heat generated by electron beam irradiation would largely deform sub-10 nm nanopipettes. Here, we provide methods for preparing TEM specimens that do not cause deformation of such tiny nanopipettes.
Collapse
Affiliation(s)
- Kazuki Shigyou
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Linhao Sun
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Riku Yajima
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shohei Takigaura
- Department of Physics, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masashi Tajima
- College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirotoshi Furusho
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yousuke Kikuchi
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Azuma Taoka
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shinji Watanabe
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
17
|
Cremin K, Jones BA, Teahan J, Meloni GN, Perry D, Zerfass C, Asally M, Soyer OS, Unwin PR. Scanning Ion Conductance Microscopy Reveals Differences in the Ionic Environments of Gram-Positive and Negative Bacteria. Anal Chem 2020; 92:16024-16032. [PMID: 33241929 DOI: 10.1021/acs.analchem.0c03653] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This paper reports on the use of scanning ion conductance microscopy (SICM) to locally map the ionic properties and charge environment of two live bacterial strains: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis. SICM results find heterogeneities across the bacterial surface and significant differences among the Gram-positive and Gram-negative bacteria. The bioelectrical environment of the B. subtilis was found to be considerably more negatively charged compared to E. coli. SICM measurements, fitted to a simplified finite element method (FEM) model, revealed surface charge values of -80 to -140 mC m-2 for the Gram-negative E. coli. The Gram-positive B. subtilis show a much higher conductivity around the cell wall, and surface charge values between -350 and -450 mC m-2 were found using the same simplified model. SICM was also able to detect regions of high negative charge near B. subtilis, not detected in the topographical SICM response and attributed to the extracellular polymeric substance. To further explore how the B. subtilis cell wall structure can influence the SICM current response, a more comprehensive FEM model, accounting for the physical properties of the Gram-positive cell wall, was developed. The new model provides a more realistic description of the cell wall and allows investigation of the relation between its key properties and SICM currents, building foundations to further investigate and improve understanding of the Gram-positive cellular microenvironment.
Collapse
Affiliation(s)
- Kelsey Cremin
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.,Molecular Analytical Science Centre for Doctoral Training (MAS CDT), University of Warwick, Coventry CV4 7AL, U.K.,School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Bryn A Jones
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - James Teahan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.,Molecular Analytical Science Centre for Doctoral Training (MAS CDT), University of Warwick, Coventry CV4 7AL, U.K
| | - Gabriel N Meloni
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - David Perry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Christian Zerfass
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Munehiro Asally
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Orkun S Soyer
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Patrick R Unwin
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
18
|
Shkirskiy V, Kang M, McPherson IJ, Bentley CL, Wahab OJ, Daviddi E, Colburn AW, Unwin PR. Electrochemical Impedance Measurements in Scanning Ion Conductance Microscopy. Anal Chem 2020; 92:12509-12517. [PMID: 32786472 DOI: 10.1021/acs.analchem.0c02358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrochemical impedance spectroscopy (EIS) is a versatile tool for electrochemistry, particularly when applied locally to reveal the properties and dynamics of heterogeneous interfaces. A new method to generate local electrochemical impedance spectra is outlined, by applying a harmonic bias between a quasi-reference counter electrode (QRCE) placed in a nanopipet tip of a scanning ion conductance microscope (SICM) and a conductive (working electrode) substrate (two-electrode setup). The AC frequency can be tuned so that the magnitude of the impedance is sensitive to the tip-to-substrate distance, whereas the phase angle is broadly defined by the local capacitive response of the electrical double layer (EDL) of the working electrode. This development enables the surface topography and the local capacitance to be sensed reliably, and separately, in a single measurement. Further, self-referencing the probe impedance near the surface to that in the bulk solution allows the local capacitive response of the working electrode substrate in the overall AC signal to be determined, establishing a quantitative footing for the methodology. The spatial resolution of AC-SICM is an order of magnitude larger than the tip size (100 nm radius), for the studies herein, due to frequency dispersion. Comprehensive finite element method (FEM) modeling is undertaken to optimize the experimental conditions and minimize the experimental artifacts originating from the frequency dispersion phenomenon, and provides an avenue to explore the means by which the spatial resolution could be further improved.
Collapse
Affiliation(s)
- Viacheslav Shkirskiy
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Oluwasegun J Wahab
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Enrico Daviddi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alex W Colburn
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
19
|
Holub M, Adobes-Vidal M, Frutiger A, Gschwend PM, Pratsinis SE, Momotenko D. Single-Nanoparticle Thermometry with a Nanopipette. ACS NANO 2020; 14:7358-7369. [PMID: 32426962 DOI: 10.1021/acsnano.0c02798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thermal measurements at the nanoscale are key for designing technologies in many areas, including drug delivery systems, photothermal therapies, and nanoscale motion devices. Herein, we present a nanothermometry technique that operates in electrolyte solutions and, therefore, is applicable for many in vitro measurements, capable of measuring and mapping temperature with nanoscale spatial resolution and sensitive to detect temperature changes down to 30 mK with 43 μs temporal resolution. The methodology is based on local measurements of ionic conductivity confined at the tip of a pulled glass capillary, a nanopipettete, with opening diameters as small as 6 nm. When scanned above a specimen, the measured ion flux is converted into temperature using an extensive theoretical support given by numerical and analytical modeling. This allows quantitative thermal measurements with a variety of capillary dimensions and is applicable to a range of substrates. We demonstrate the capabilities of this nanothermometry technique by simultaneous mapping of temperature and topography on sub-micrometer-sized aggregates of thermoplasmonic nanoparticles heated by a laser and observe the formation of micro- and nanobubbles upon plasmonic heating. Furthermore, we perform quantitative thermometry on a single-nanoparticle level, demonstrating that the temperature at an individual nanoheater of 25 nm in diameter can reach an increase of about 3 K.
Collapse
Affiliation(s)
- Martin Holub
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Maria Adobes-Vidal
- Wood Materials Science Group, Institute for Building Materials, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Pascal M Gschwend
- Particle Technology Laboratory, Institute of Process Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Sotiris E Pratsinis
- Particle Technology Laboratory, Institute of Process Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Dmitry Momotenko
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
20
|
Jiang Y, Ma W, Qiao Y, Xue Y, Lu J, Gao J, Liu N, Wu F, Yu P, Jiang L, Mao L. Metal–Organic Framework Membrane Nanopores as Biomimetic Photoresponsive Ion Channels and Photodriven Ion Pumps. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yanan Jiang
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yujuan Qiao
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325027 P. R. China
| | - Yifei Xue
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiahao Lu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
| | - Jun Gao
- Faculty of Science and Technology University of Twente 7500AE Enschede The Netherlands
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325027 P. R. China
| | - Fei Wu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
21
|
Jiang Y, Ma W, Qiao Y, Xue Y, Lu J, Gao J, Liu N, Wu F, Yu P, Jiang L, Mao L. Metal–Organic Framework Membrane Nanopores as Biomimetic Photoresponsive Ion Channels and Photodriven Ion Pumps. Angew Chem Int Ed Engl 2020; 59:12795-12799. [DOI: 10.1002/anie.202005084] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Yanan Jiang
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yujuan Qiao
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325027 P. R. China
| | - Yifei Xue
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiahao Lu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
| | - Jun Gao
- Faculty of Science and Technology University of Twente 7500AE Enschede The Netherlands
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325027 P. R. China
| | - Fei Wu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
22
|
Jiao Y, Zhuang J, Zheng Q, Liao X. A High Accuracy Ion Conductance Imaging Method Based on the Approach Curve Spectrum. Ultramicroscopy 2020; 215:113025. [PMID: 32485394 DOI: 10.1016/j.ultramic.2020.113025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/28/2020] [Accepted: 05/16/2020] [Indexed: 01/13/2023]
Abstract
Scanning ion conductance microscopy (SICM), as an emerging non-contact in situ topography measurement tool with nano resolution, has been increasingly used in recent years in biomedicine, electrochemistry and materials science. In the conventional measurement method of SICM, the sample topography is constructed according to the position of the probe at the feedback threshold of the ion current. Nevertheless, for different structures, a constant threshold cannot maintain a constant probe-sample distance. This phenomenon makes the measurement topography inconsistent with the real sample surface. In order to solve this problem and improve the measurement accuracy of SICM, a new ion conductance imaging method based on the approach curve spectrum is proposed in this work. In the new method, the local feature around the measurement point is firstly evaluated according to the change rate of ion current. Secondly, based on the local feature, the corresponding approach curve is searched from the prior approach curve spectrum to accurately evaluate the distance between the probe and the sample. Finally, the sample topography is constructed by the probe position subtracting the probe-sample distance. In this paper, we verify the feasibility of the new imaging method by combining finite element theory and experiments. To examine the measurement accuracy, the standard strip silicon and cylindrical polydimethylsiloxane (PDMS) samples are tested, and the improved imaging method can obtain the topography closer to the real samples and reduce the volumetric measurement error by 5.4%. The implementation of the new imaging method will further promote SICM application in related research fields.
Collapse
Affiliation(s)
- Yangbohan Jiao
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhuang
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qiangqiang Zheng
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaobo Liao
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China; School of Manufacturing Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
23
|
Zhu H, Ma G, Wan Z, Wang H, Tao N. Detection of Molecules and Charges with a Bright Field Optical Microscope. Anal Chem 2020; 92:5904-5909. [DOI: 10.1021/acs.analchem.9b05750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Guangzhong Ma
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Zijian Wan
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
24
|
Jin R, Huang Y, Cheng L, Lu H, Jiang D, Chen HY. In situ observation of heterogeneous charge distribution at the electrode unraveling the mechanism of electric field-enhanced electrochemical activity. Chem Sci 2020. [DOI: 10.1039/d0sc00223b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In situ observation of heterogeneous charge distribution at the Pt–graphite surface in the hydrogen evolution reaction is realized using scanning ion conductive microscopy.
Collapse
Affiliation(s)
- Rong Jin
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| | - Yuchen Huang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| | - Lei Cheng
- School of Mechanical Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Hongyan Lu
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| |
Collapse
|
25
|
Payne NA, Dawkins JIG, Schougaard SB, Mauzeroll J. Effect of Substrate Permeability on Scanning Ion Conductance Microscopy: Uncertainty in Tip-Substrate Separation and Determination of Ionic Conductivity. Anal Chem 2019; 91:15718-15725. [PMID: 31741380 DOI: 10.1021/acs.analchem.9b03907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Composite electrodes can significantly improve the performance of an electrochemical device by maximizing surface area and active material loading. Typically, additives such as carbon are used to improve conductivity and a polymer is used as a binder, leading to a heterogeneous surface film with thickness on the order of 10s of micrometers. For such composite electrodes, good ionic conduction within the film is critical to capitalize on the increased loading of active material and surface area. Ionic conductivity within a film can be tricky to measure directly, and homogenization models based on porosity are often used as a proxy. SICM has traditionally been a topography-mapping microscopy method for which we here outline a new function and demonstrate its capacity for measuring ion conductivity within a lithium-ion battery film.
Collapse
Affiliation(s)
- Nicholas A Payne
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec Canada
| | - Jeremy I G Dawkins
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec Canada
| | - Steen B Schougaard
- Département de Chimie and NanoQAM , Université du Québec à Montréal , Montréal , Quebec Canada
| | - Janine Mauzeroll
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec Canada
| |
Collapse
|
26
|
Watanabe S, Kitazawa S, Sun L, Kodera N, Ando T. Development of high-speed ion conductance microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:123704. [PMID: 31893861 DOI: 10.1063/1.5118360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Scanning ion conductance microscopy (SICM) can image the surface topography of specimens in ionic solutions without mechanical probe-sample contact. This unique capability is advantageous for imaging fragile biological samples but its highest possible imaging rate is far lower than the level desired in biological studies. Here, we present the development of high-speed SICM. The fast imaging capability is attained by a fast Z-scanner with active vibration control and pipette probes with enhanced ion conductance. By the former, the delay of probe Z-positioning is minimized to sub-10 µs, while its maximum stroke is secured at 6 μm. The enhanced ion conductance lowers a noise floor in ion current detection, increasing the detection bandwidth up to 100 kHz. Thus, temporal resolution 100-fold higher than that of conventional systems is achieved, together with spatial resolution around 20 nm.
Collapse
Affiliation(s)
- Shinji Watanabe
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Satoko Kitazawa
- Department of Physics, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
27
|
Aarts M, Alarcon-Llado E. Directed nanoscale metal deposition by the local perturbation of charge screening at the solid-liquid interface. NANOSCALE 2019; 11:18619-18627. [PMID: 31584050 DOI: 10.1039/c9nr05574f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding and directing electrochemical reactions below the micrometer scale is a long-standing challenge in electrochemistry. Confining reactions to nanoscale areas paradoxically requires both isolation from and communication with the bulk electrolyte in terms of electrochemical potential and access of ions, respectively. Here, we demonstrate the directed electrochemical deposition of copper nanostructures by using an oscillating nanoelectrode operated with an atomic force microscope (AFM). Strikingly, the writing is only possible in highly dilute electrolytes and for a particular combination of AFM and electrochemical parameters. We propose a mechanism based on cyclic charging and discharging of the electrical double layer (EDL). The extended screening length and slower charge dynamics in dilute electrolytes allow the nanoelectrode to operate inside, and disturb, the EDL even for large oscillation amplitudes (∼100 nm). Our unique approach can not only be used for controlled additive nano-fabrication but also provides insights into ion behavior and EDL dynamics at the solid-liquid interface.
Collapse
Affiliation(s)
- Mark Aarts
- Center for Nanophotonics, NWO-I Amolf, Science Park 104, 1098 XG Amsterdam, Netherlands.
| | - Esther Alarcon-Llado
- Center for Nanophotonics, NWO-I Amolf, Science Park 104, 1098 XG Amsterdam, Netherlands.
| |
Collapse
|
28
|
Sun L, Shigyou K, Ando T, Watanabe S. Thermally Driven Approach To Fill Sub-10-nm Pipettes with Batch Production. Anal Chem 2019; 91:14080-14084. [PMID: 31589026 DOI: 10.1021/acs.analchem.9b03848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Typically, utilization of small nanopipettes results in either high sensitivity or spatial resolution in modern nanoscience and nanotechnology. However, filling a nanopipette with a sub-10-nm pore diameter remains a significant challenge. Here, we introduce a thermally driven approach to filling sub-10-nm pipettes with batch production, regardless of their shape. A temperature gradient is applied to transport water vapor from the backside of nanopipettes to the tip region until bubbles are completely removed from this region. The electrical contact and pore size for filling nanopipettes are confirmed by current-voltage and transmission electron microscopy (TEM) measurements, respectively. In addition, we quantitatively compare the pore size between the TEM characterization and estimation on the basis of pore radius and conductance. The validity of this method provides a foundation for highly sensitive detection of single molecules and high spatial resolution imaging of nanostructures.
Collapse
Affiliation(s)
- Linhao Sun
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Kazuki Shigyou
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Shinji Watanabe
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| |
Collapse
|
29
|
Aramesh M, Forró C, Dorwling-Carter L, Lüchtefeld I, Schlotter T, Ihle SJ, Shorubalko I, Hosseini V, Momotenko D, Zambelli T, Klotzsch E, Vörös J. Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope. NATURE NANOTECHNOLOGY 2019; 14:791-798. [PMID: 31308500 DOI: 10.1038/s41565-019-0493-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Proteins, nucleic acids and ions secreted from single cells are the key signalling factors that determine the interaction of cells with their environment and the neighbouring cells. It is possible to study individual ion channels by pipette clamping, but it is difficult to dynamically monitor the activity of ion channels and transporters across the cellular membrane. Here we show that a solid-state nanopore integrated in an atomic force microscope can be used for the stochastic sensing of secreted molecules and the activity of ion channels in arbitrary locations both inside and outside a cell. The translocation of biomolecules and ions through the nanopore is observed in real time in live cells. The versatile nature of this approach allows us to detect specific biomolecules under controlled mechanical confinement and to monitor the ion-channel activities of single cells. Moreover, the nanopore microscope was used to image the surface of the nuclear membrane via high-resolution scanning ion conductance measurements.
Collapse
Affiliation(s)
- Morteza Aramesh
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
- Laboratory of Applied Mechanobiology, Department for Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Livie Dorwling-Carter
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Ines Lüchtefeld
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Tilman Schlotter
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Stephan J Ihle
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Ivan Shorubalko
- Laboratory for Transport at Nanoscale Interfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
| | - Vahid Hosseini
- Laboratory of Applied Mechanobiology, Department for Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Dmitry Momotenko
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Enrico Klotzsch
- Laboratory of Applied Mechanobiology, Department for Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Institute for Biology, Experimental Biophysics/ Mechanobiology, Humboldt University of Berlin, Berlin, Germany
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
30
|
Zhu H, Zhang F, Wang H, Lu Z, Chen HY, Li J, Tao N. Optical Imaging of Charges with Atomically Thin Molybdenum Disulfide. ACS NANO 2019; 13:2298-2306. [PMID: 30636406 DOI: 10.1021/acsnano.8b09010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mapping local surface charge distribution is critical to the understanding of various surface processes and also allows the detection of molecules binding to the surface. We show here that the optical absorption of monolayer MoS2 is highly sensitive to charge and demonstrate optical imaging of local surface charge distribution with this atomically thin material. We validate the imaging principle and perform charge sensitivity calibration with an electrochemical gate. We further show that binding of charged molecules to the atomically thin material leads to a large change in the image contrast, allowing determination of the charge of the adsorbed molecules. This capability opens possibilities for characterizing impurities and defects in two-dimensional materials and for label-free optical detection and charge analysis of molecules.
Collapse
Affiliation(s)
- Hao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Fenni Zhang
- Center for Bioelectronics and Biosensors, Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Zhixing Lu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Nongjian Tao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
- Center for Bioelectronics and Biosensors, Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
31
|
|
32
|
Jin R, Ye X, Fan J, Jiang D, Chen HY. In Situ Imaging of Photocatalytic Activity at Titanium Dioxide Nanotubes Using Scanning Ion Conductance Microscopy. Anal Chem 2019; 91:2605-2609. [PMID: 30672278 DOI: 10.1021/acs.analchem.8b05311] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this letter, in situ imaging of the photocatalytic activity of titanium dioxide (TiO2) nanotubes for the degradation of an organic pollutant (i.e., Rhodamine B (RhB)) is realized with nanometer resolution using scanning ion conductance microscopy (SICM). Upon illumination, the separated electrons and holes at the nanotubes induce oxidation of RhB to produce the more positively charged Rhodamine 123 (Rh 123), which leads to increased ionic current through the capillary orifice and an elevated apparent altitude in the SICM image. Active sites with higher activity on the nanotubes exhibit a significant high spatial-resolution character. The successful imaging of the photocatalytic activity of TiO2 nanotubes should provide an in situ approach for local investigation of the photocatalytic process at the catalyst.
Collapse
Affiliation(s)
- Rong Jin
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210093 , China
| | - Xiangdong Ye
- School of Mechanical and Electrical Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| | - Jia Fan
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210093 , China
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210093 , China
| | - Hong-Yuan Chen
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210093 , China
| |
Collapse
|
33
|
Chen B, Perry D, Page A, Kang M, Unwin PR. Scanning Ion Conductance Microscopy: Quantitative Nanopipette Delivery-Substrate Electrode Collection Measurements and Mapping. Anal Chem 2019; 91:2516-2524. [PMID: 30608117 DOI: 10.1021/acs.analchem.8b05449] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Scanning ion conductance microscopy (SICM) is becoming a powerful multifunctional tool for probing and analyzing surfaces and interfaces. This work outlines methodology for the quantitative controlled delivery of ionic redox-active molecules from a nanopipette to a substrate electrode, with a high degree of spatial and temporal precision. Through control of the SICM bias applied between a quasi-reference counter electrode (QRCE) in the SICM nanopipette probe and a similar electrode in bulk solution, it is shown that ionic redox species can be held inside the nanopipette, and then pulse-delivered to a defined region of a substrate positioned beneath the nanopipette. A self-referencing hopping mode imaging protocol is implemented, where reagent is released in bulk solution (reference measurement) and near the substrate surface at each pixel in an image, with the tip and substrate currents measured throughout. Analysis of the tip and substrate current data provides an improved understanding of mass transport and nanoscale delivery in SICM and a new means of synchronously mapping electrode reactivity, surface topography, and charge. Experiments on Ru(NH3)63+ reduction to Ru(NH3)62+ and dopamine oxidation in aqueous solution at a carbon fiber ultramicroelectrode (UME), used as the substrate, illustrate these aspects. Finite element method (FEM) modeling provides quantitative understanding of molecular delivery in SICM. The approach outlined constitutes a new methodology for electrode mapping and provides improved insights on the use of SICM for controlled delivery to interfaces generally.
Collapse
|
34
|
Bentley CL, Edmondson J, Meloni GN, Perry D, Shkirskiy V, Unwin PR. Nanoscale Electrochemical Mapping. Anal Chem 2018; 91:84-108. [PMID: 30500157 DOI: 10.1021/acs.analchem.8b05235] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Dorwling-Carter L, Aramesh M, Han H, Zambelli T, Momotenko D. Combined Ion Conductance and Atomic Force Microscope for Fast Simultaneous Topographical and Surface Charge Imaging. Anal Chem 2018; 90:11453-11460. [DOI: 10.1021/acs.analchem.8b02569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Livie Dorwling-Carter
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich CH-8092, Switzerland
| | - Morteza Aramesh
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich CH-8092, Switzerland
| | - Hana Han
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich CH-8092, Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich CH-8092, Switzerland
| | - Dmitry Momotenko
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich CH-8092, Switzerland
| |
Collapse
|
36
|
Mapping Surface Charge of Individual Microdomains with Scanning Ion Conductance Microscopy. ChemElectroChem 2018. [DOI: 10.1002/celc.201800724] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Zhang S, Li M, Su B, Shao Y. Fabrication and Use of Nanopipettes in Chemical Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:265-286. [PMID: 29894227 DOI: 10.1146/annurev-anchem-061417-125840] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This review summarizes progress in the fabrication, modification, characterization, and applications of nanopipettes since 2010. A brief history of nanopipettes is introduced, and the details of fabrication, modification, and characterization of nanopipettes are provided. Applications of nanopipettes in chemical analysis are the focus in several cases, including recent progress in imaging; in the study of single molecules, single nanoparticles, and single cells; in fundamental investigations of charge transfer (ion and electron) reactions at liquid/liquid interfaces; and as hyphenated techniques combined with other methods to study the mechanisms of complicated electrochemical reactions and to conduct bioanalysis.
Collapse
Affiliation(s)
- Shudong Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| | - Mingzhi Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| |
Collapse
|
38
|
Double layer effects in voltammetric measurements with scanning electrochemical microscopy (SECM). J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.10.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Takahashi Y, Ida H, Matsumae Y, Komaki H, Zhou Y, Kumatani A, Kanzaki M, Shiku H, Matsue T. 3D electrochemical and ion current imaging using scanning electrochemical-scanning ion conductance microscopy. Phys Chem Chem Phys 2018; 19:26728-26733. [PMID: 28951914 DOI: 10.1039/c7cp05157c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Local cell-membrane permeability and ionic strength are important factors for maintaining the functions of cells. Here, we measured the spatial electrochemical and ion concentration profile near the sample surface with nanoscale resolution using scanning electrochemical microscopy (SECM) combined with scanning ion-conductance microscopy (SICM). The ion current feedback system is an effective way to control probe-sample distance without contact and monitor the kinetic effect of mediator regeneration and the chemical concentration profile. For demonstrating 3D electrochemical and ion concentration mapping, we evaluated the reaction rate of electrochemical mediator regeneration on an unbiased conductor and visualized inhomogeneous permeability and the ion concentration 3D profile on a single fixed adipocyte cell surface.
Collapse
Affiliation(s)
- Yasufumi Takahashi
- WPI-Advanced Institute for Materials Research, Tohoku University, 980-8577, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Izquierdo J, Knittel P, Kranz C. Scanning electrochemical microscopy: an analytical perspective. Anal Bioanal Chem 2017; 410:307-324. [PMID: 29214533 DOI: 10.1007/s00216-017-0742-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
Abstract
Scanning electrochemical microscopy (SECM) has evolved from an electrochemical specialist tool to a broadly used electroanalytical surface technique, which has experienced exciting developments for nanoscale electrochemical studies in recent years. Several companies now offer commercial instruments, and SECM has been used in a broad range of applications. SECM research is frequently interdisciplinary, bridging areas ranging from electrochemistry, nanotechnology, and materials science to biomedical research. Although SECM is considered a modern electroanalytical technique, it appears that less attention is paid to so-called analytical figures of merit, which are essential also in electroanalytical chemistry. Besides instrumental developments, this review focuses on aspects such as reliability, repeatability, and reproducibility of SECM data. The review is intended to spark discussion within the community on this topic, but also to raise awareness of the challenges faced during the evaluation of quantitative SECM data.
Collapse
Affiliation(s)
- Javier Izquierdo
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Peter Knittel
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Fraunhofer Institute for Applied Solid State Physics, Tullastraße 72, 79108, Freiburg, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
41
|
Perry D, Page A, Chen B, Frenguelli BG, Unwin PR. Differential-Concentration Scanning Ion Conductance Microscopy. Anal Chem 2017; 89:12458-12465. [DOI: 10.1021/acs.analchem.7b03543] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- David Perry
- Department
of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Ashley Page
- Department
of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Baoping Chen
- Department
of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Bruno G. Frenguelli
- Department
of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Department
of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
42
|
Real-time tracking of metal nucleation via local perturbation of hydration layers. Nat Commun 2017; 8:971. [PMID: 29042564 PMCID: PMC5645439 DOI: 10.1038/s41467-017-01087-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022] Open
Abstract
The real-time visualization of stochastic nucleation events at electrode surfaces is one of the most complex challenges in electrochemical phase formation. The early stages of metal deposition on foreign substrates are characterized by a highly dynamic process in which nanoparticles nucleate and dissolve prior to reaching a critical size for deposition and growth. Here, high-speed non-contact lateral molecular force microscopy employing vertically oriented probes is utilized to explore the evolution of hydration layers at electrode surfaces with the unprecedented spatiotemporal resolution, and extremely low probe-surface interaction forces required to avoid disruption or shielding the critical nucleus formation. To the best of our knowledge, stochastic nucleation events of nanoscale copper deposits are visualized in real time for the first time and a highly dynamic topographic environment prior to the formation of critical nuclei is unveiled, featuring formation/re-dissolution of nuclei, two-dimensional aggregation and nuclei growth. Electrochemical deposition is important for industrial processes however, tracking the early stages of metallic phase nucleation is challenging. Here, the authors visualize the birth and growth of metal nuclei at electrode surfaces in real time via high-speed non-contact lateral molecular force microscopy.
Collapse
|
43
|
Page A, Perry D, Unwin PR. Multifunctional scanning ion conductance microscopy. Proc Math Phys Eng Sci 2017; 473:20160889. [PMID: 28484332 PMCID: PMC5415692 DOI: 10.1098/rspa.2016.0889] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential-time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science.
Collapse
Affiliation(s)
- Ashley Page
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - David Perry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Patrick R. Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
44
|
Page A, Kang M, Armitstead A, Perry D, Unwin PR. Quantitative Visualization of Molecular Delivery and Uptake at Living Cells with Self-Referencing Scanning Ion Conductance Microscopy-Scanning Electrochemical Microscopy. Anal Chem 2017; 89:3021-3028. [DOI: 10.1021/acs.analchem.6b04629] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ashley Page
- Department of Chemistry and ‡MOAC Doctoral
Training Centre, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department of Chemistry and ‡MOAC Doctoral
Training Centre, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Alexander Armitstead
- Department of Chemistry and ‡MOAC Doctoral
Training Centre, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - David Perry
- Department of Chemistry and ‡MOAC Doctoral
Training Centre, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Department of Chemistry and ‡MOAC Doctoral
Training Centre, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
45
|
Affiliation(s)
- Wenqing Shi
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Alicia K. Friedman
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A. Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
46
|
Takahashi Y, Kumatani A, Shiku H, Matsue T. Scanning Probe Microscopy for Nanoscale Electrochemical Imaging. Anal Chem 2016; 89:342-357. [DOI: 10.1021/acs.analchem.6b04355] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yasufumi Takahashi
- Division
of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Akichika Kumatani
- Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Graduate
School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Hitoshi Shiku
- Department
of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Tomokazu Matsue
- Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Graduate
School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
47
|
Page A, Perry D, Young P, Mitchell D, Frenguelli BG, Unwin PR. Fast Nanoscale Surface Charge Mapping with Pulsed-Potential Scanning Ion Conductance Microscopy. Anal Chem 2016; 88:10854-10859. [DOI: 10.1021/acs.analchem.6b03744] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ashley Page
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, and ∥Warwick Medical
School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - David Perry
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, and ∥Warwick Medical
School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Philip Young
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, and ∥Warwick Medical
School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Daniel Mitchell
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, and ∥Warwick Medical
School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Bruno G. Frenguelli
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, and ∥Warwick Medical
School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, and ∥Warwick Medical
School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
48
|
Perry D, Parker AS, Page A, Unwin PR. Electrochemical Control of Calcium Carbonate Crystallization and Dissolution in Nanopipettes. ChemElectroChem 2016. [DOI: 10.1002/celc.201600547] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David Perry
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
- MOAC Doctoral Training Centre; University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| | - Alexander S. Parker
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| | - Ashley Page
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
- MOAC Doctoral Training Centre; University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| | - Patrick R. Unwin
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
49
|
Momotenko D, Page A, Adobes-Vidal M, Unwin PR. Write-Read 3D Patterning with a Dual-Channel Nanopipette. ACS NANO 2016; 10:8871-8. [PMID: 27569272 DOI: 10.1021/acsnano.6b04761] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nanopipettes are becoming extremely versatile and powerful tools in nanoscience for a wide variety of applications from imaging to nanoscale sensing. Herein, the capabilities of nanopipettes to build complex free-standing three-dimensional (3D) nanostructures are demonstrated using a simple double-barrel nanopipette device. Electrochemical control of ionic fluxes enables highly localized delivery of precursor species from one channel and simultaneous (dynamic and responsive) ion conductance probe-to-substrate distance feedback with the other for reliable high-quality patterning. Nanopipettes with 30-50 nm tip opening dimensions of each channel allowed confinement of ionic fluxes for the fabrication of high aspect ratio copper pillar, zigzag, and Γ-like structures, as well as permitted the subsequent topographical mapping of the patterned features with the same nanopipette probe as used for nanostructure engineering. This approach offers versatility and robustness for high-resolution 3D "printing" (writing) and read-out at the nanoscale.
Collapse
Affiliation(s)
- Dmitry Momotenko
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick , Coventry, CV4 7AL, United Kingdom
| | - Ashley Page
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick , Coventry, CV4 7AL, United Kingdom
| | - Maria Adobes-Vidal
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick , Coventry, CV4 7AL, United Kingdom
| | - Patrick R Unwin
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick , Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
50
|
Klausen LH, Fuhs T, Dong M. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy. Nat Commun 2016; 7:12447. [PMID: 27561322 PMCID: PMC5007656 DOI: 10.1038/ncomms12447] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/04/2016] [Indexed: 01/21/2023] Open
Abstract
Local surface charge density of lipid membranes influences membrane–protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values. Surface charges on lipid bilayers deeply influence the way proteins interact with cellular membranes, yet their precise quantification has proven challenging. Here, the authors report on a quantitative method to map and evaluate surface charge densities under physiological conditions.
Collapse
Affiliation(s)
- Lasse Hyldgaard Klausen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø DK-2100, Denmark
| | - Thomas Fuhs
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|