1
|
Zhang Y, Li H, Wang J, Silvester DS, Warr GG, Atkin R. Potential-dependent superlubricity of stainless steel and Au(111) using a water-in-surface-active ionic liquid mixture. J Colloid Interface Sci 2025; 678:355-364. [PMID: 39208763 DOI: 10.1016/j.jcis.2024.08.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
HYPOTHESIS The friction and interfacial nanostructure of a water-in-surface-active ionic liquid mixture, 1.6 M 1-butyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate ([BMIm][AOT]), can be tuned by applying potential on Au(111) and stainless steel. EXPERIMENTAL Atomic force microscopy (AFM) was used to examine the friction and interfacial nanostructure of 1.6 M [BMIm][AOT] on Au(111) and stainless steel at different potentials. FINDINGS Superlubricity (vanishing friction) is observed for both surfaces at OCP+1.0 V up to a surface-dependent critical normal force due to [AOT]- bilayers adsorbing strongly to the positively charged surface thus allowing AFM tip to slide over solution-facing hydrated anion charged groups. High-resolution AFM imaging reveals ripple-like features within near-surface layers, with the smallest amplitudes at OCP+1 V, indicating the highest structural stability and resistance to thermal fluctuations due to highly ordered boundary [AOT]- bilayers templating robust near-surface layers. Exceeding the critical normal force at OCP+1.0 V causes the AFM tip to penetrate the hydrated [AOT]- layer and slide over alkyl chains, increasing friction. At OCP and OCP-1.0 V, higher friction correlates with more pronounced ripples, attributed to the rougher templating [BMIm]+ boundary layer. Kinetic experiments show that switching from OCP-1.0 V to OCP+1.0 V achieves superlubricity within 15 s, enabling real-time friction control.
Collapse
Affiliation(s)
- Yunxiao Zhang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia.
| | - Jianan Wang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Debbie S Silvester
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
2
|
Tang Z, Lin S, Wang ZL. Unveiling Contact-Electrification Effect on Interfacial Water Oscillation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407507. [PMID: 39210632 DOI: 10.1002/adma.202407507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Water is crucial for various physicochemical processes at the liquid-solid interfaces. In particular, the interfacial water, mediating the electric field and solvation effect along with the solid, corporately determine the electrochemical properties. Understanding the interaction between solid properties and the interface water holds significant importance in interfacial dynamics. However, the impact of alterations in the charged state of solid surfaces induced by contact electrification on interfacial water remains unknown. Here, the evolution of atomic-level resolution maps of hydration layers are reported on charged surfaces using 3D atomic force microscopy (3D-AFM). These findings demonstrate that electrostatic interactions can reinforce, distort, or collapse the characteristic structure of hydration layers. More importantly, these interactions exhibit interlayer differences and sample specificity in hydration layer structures of different substrates. In addition, similar oscillations of the hydration layer are observed at the electrochemical interface under different voltage biases. This suggests that contact-electrification has the potential to serve as a novel method for manipulating and regulating chemical reactions at the interface.
Collapse
Affiliation(s)
- Zhen Tang
- Guangzhou Institute of Blue Energy, Guangzhou, 510555, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Guangzhou Institute of Blue Energy, Guangzhou, 510555, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332-0245, USA
| |
Collapse
|
3
|
Zhang J, Zhao H, Ye X, Jia M, Lin G, Yang Z, Wang Y, Wei S, Lin Y, Sun Q, Zhama T, Yang W, Zeng Y. Self-Aligned Ionic Doping of TiO 2 Thin-Film Transistors for Enhanced Current Drivability via Postfabrication Superacid Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51010-51019. [PMID: 39283697 DOI: 10.1021/acsami.4c06206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Oxide semiconductor thin-film transistors (TFTs) have shown great potential in emerging applications such as flexible displays, radio-frequency identification tags, sensors, and back-end-of-line compatible transistors for monolithic 3D integration beyond their well-established flat-plane display technology. To meet the requirements of these appealing applications, high current drivability is essential, necessitating exploration in materials science and device engineering. In this work, we report for the first time on a simple solution-based superacid (SA) treatment to enhance the current drivability of top-gate TiO2 TFTs with a gate-offset structure. The on-current of these transistors is limited by the relatively low mobility of TiO2 due to its d-orbital conduction nature. It is found that the on-current of TiO2 TFTs is nearly doubled via a quick dip in a SA solution at room temperature in ambient air. A series of experiments, including comparative I-V measurements of TFTs with different treatments and gate structures, C-V measurements, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and device simulation, were performed to uncover the underlying reason for the current enhancement. It is believed that the protons (H+) from SA are doped into the offset region of TiO2 TFTs, forming an electron double layer and thus boosting the on-current, with the top gate serving as a self-aligned mask for ionic doping. Furthermore, the ionic size and the proportion of the offset region to the channel play crucial roles in the effectiveness of ionic doping, while the position of the incorporated ions, whether in the channel or dielectric, may result in distinct shifts in the turn-on voltage (VON) and affect the functionality of ionic doping. This study provides a pathway for enhancing the current drivability of TiO2 TFTs via selective ionic doping enabled by SA treatment and deepens our understanding of ion incorporation in electronic devices. This approach could be applicable to other material systems and may also benefit TFTs with miniaturized dimensions, thus opening up unprecedented opportunities for TiO2 TFTs in future applications requiring high current drivability.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Haochen Zhao
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Xiaofeng Ye
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Meng Jia
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Guangyang Lin
- Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Ze Yang
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Yifeng Wang
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Shubo Wei
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Yingzhen Lin
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Qingxuan Sun
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Tuofu Zhama
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Weifeng Yang
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Yuping Zeng
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Li H, Wang J, Warr GG, Atkin R. Nanostructure and Dynamics of the Locally Concentrated Ionic Liquid 2:1 (wt:wt) HMIM FAP:TFTFE and HMIM FAP on Graphite and Gold Electrodes as a Function of Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403109. [PMID: 39105361 DOI: 10.1002/smll.202403109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Video-rate atomic force microscopy (AFM) is used to record the near-surface nanostructure and dynamics of one pure ionic liquid (IL), 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate (HMIM FAP), and a locally-concentrated IL comprising HMIM FAP with the low viscosity diluent 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether (TFTFE), on highly oriented pyrolytic graphite (HOPG) and Au(111) electrodes as a function of potential. Over the potential range measured (open-circuit potential ± 1 V), different near-surface nanostructures are observed. For pure HMIM FAP, globular aggregates align in rows on HOPG, whereas elongated and worm-like nanostructures form on Au(111). For 2:1 (wt:wt) HMIM FAP:TFTFE, larger and less defined diluent swollen IL aggregates are present on both electrodes. Long-lived near-surface nanostructures for HMIM FAP and the 2:1 (wt:wt) HMIM FAP:TFTFE persist on both electrodes. 2:1 (wt:wt) HMIM FAP:TFTFE mixture diffuses more rapidly than pure HMIM FAP on both electrodes with obviously higher diffusion coefficients on HOPG than on Au(111) due to weaker electrostatic and solvophobic interactions between near-surface aggregates and Stern layer ions. These outcomes provide valuable insights for a wide range of IL applications in interface sciences, including electrolytes, catalysts, lubricants, and sensors.
Collapse
Affiliation(s)
- Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jianan Wang
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
5
|
Wang J, Li H, Warr GG, Chen F, Atkin R. Nanostructure and Dynamics of Aprotic Ionic Liquids at Graphite Electrodes as a Function of Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311353. [PMID: 38573945 DOI: 10.1002/smll.202311353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Atomic force microscope (AFM) videos reveal the near-surface nanostructure and dynamics of the ionic liquids (ILs) 1-butyl-3-methylimidazolium dicyanamide (BMIM DCA) and 1-hexyl-3-methylimidazolium dicyanamide (HMIM DCA) above highly oriented pyrolytic graphite (HOPG) electrodes as a function of surface potential. Molecular dynamics (MD) simulations reveal the molecular-level composition of the nanostructures. In combination, AFM and MD show that the near-surface aggregates form via solvophobic association of the cation alkyl chains at the electrode interface. The diffusion coefficients of interfacial nanostructures are ≈0.01 nm2 s-1 and vary with the cation alkyl chain length and the surface potential. For each IL, the nanostructure diffusion coefficients are similar at open-circuit potential (OCP) and OCP + 1V, but BMIM DCA moves about twice as fast as HMIM DCA. At negative potentials, the diffusion coefficient decreases for BMIM DCA and increases for HMIM DCA. When the surface potential is switched from negative to positive, a sudden change in the direction of the nanostructure motion is observed for both BMIM DCA and HMIM DCA. No transient dynamics are noted following other potential jumps. This study provides a new fundamental understanding regarding the dynamics of electrochemically stable ILs at electrodes vital for the rational development of IL-based electrochemical devices.
Collapse
Affiliation(s)
- Jianan Wang
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Fangfang Chen
- Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| |
Collapse
|
6
|
Yu Z, Mao J, Li Q, Hu Y, Tan Z, Xue F, Zhang Y, Zhu H, Wang C, He H. A Transpiration-Driven Electrokinetic Power Generator with a Salt Pathway for Extended Service Life in Saltwater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5183-5194. [PMID: 38436245 DOI: 10.1021/acs.langmuir.3c03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
To ensure prolonged functionality of transpiration-driven electrokinetic power generators (TEPGs) in saltwater environments, it is imperative to mitigate salt accumulation. This study presents a salt pathway transpiration-driven electrokinetic power generator (SPTEPG), incorporating MXene, graphene oxide (GO), and carbon nanotubes (CNTs) as active materials, along with cellulose nanofibers (CNF) and poly(vinyl alcohol) (PVA) as aqueous binders and nonwoven fabrics. This unique combination confers exceptional hydrophilicity and enhances the energy generation performance. When tested with deionized water, the SPTEPG achieved a maximum voltage of 0.6 V and a current of 4.2 μA. In simulated seawater conditions, the presence of conductive ions in the solution boosted these values to 0.64 V and 42 μA. The incorporation of the salt pathway mechanism facilitates the return of excess salt deposits to the bulk solution, thus extending the SPTEPG's service life in saltwater environments. This research offers a straightforward yet effective strategy for designing transpiration-driven power generators suitable for saline water applications.
Collapse
Affiliation(s)
- Zihan Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jun Mao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qiong Li
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yuanyuan Hu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhanlong Tan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fei Xue
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yonglian Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chunfang Wang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Li H, Wang J, Warr GG, Atkin R. Effect of Potential on the Nanostructure Dynamics of Ethylammonium Nitrate at a Graphite Electrode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306011. [PMID: 37806754 DOI: 10.1002/smll.202306011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Video-rate atomic force microscopy (AFM) is used to study the near-surface nanostructure dynamics of the ionic liquid ethylammonium nitrate (EAN) at a highly oriented pyrolytic graphite (HOPG) electrode as a function of potential in real-time for the first time. The effects of varying the surface potential and adding 10 wt% water on the nanostructure diffusion coefficient are probed. For both EAN and the 90 wt% EAN-water mixture, disk-like features ≈9 nm in diameter and 1 nm in height form above the Stern layer at all potentials. The nanostructure diffusion coefficient increases with potential (from OCP -0.5 V to OCP +0.5 V) and with added water. Nanostructure dynamics depends on both the magnitude and direction of the potential change. Upon switching the potential from OCP -0.5 V to OCP +0.5 V, a substantial increase in the diffusion coefficients is observed, likely due to the absence of solvophobic interactions between the nitrate (NO3 - ) anions and the ethylammonium (EA+ ) cations in the near-surface region. When the potential is reversed, EA+ is attracted to the Stern layer to replace NO3 - , but its movement is hindered by solvophobic attractions. The outcomes will aid applications, including electrochemical devices, catalysts, and lubricants.
Collapse
Affiliation(s)
- Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jianan Wang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
| |
Collapse
|
8
|
Wang J, Li H, Tavakol M, Serva A, Nener B, Parish G, Salanne M, Warr GG, Voïtchovsky K, Atkin R. Ions Adsorbed at Amorphous Solid/Solution Interfaces Form Wigner Crystal-like Structures. ACS NANO 2024; 18:1181-1194. [PMID: 38117206 DOI: 10.1021/acsnano.3c11349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
When a surface is immersed in a solution, it usually acquires a charge, which attracts counterions and repels co-ions to form an electrical double layer. The ions directly adsorbed to the surface are referred to as the Stern layer. The structure of the Stern layer normal to the interface was described decades ago, but the lateral organization within the Stern layer has received scant attention. This is because instrumental limitations have prevented visualization of the ion arrangements except for atypical, model, crystalline surfaces. Here, we use high-resolution amplitude modulated atomic force microscopy (AFM) to visualize in situ the lateral structure of Stern layer ions adsorbed to polycrystalline gold, and amorphous silica and gallium nitride (GaN). For all three substrates, when the density of ions in the layer exceeds a system-dependent threshold, correlation effects induce the formation of close packed structures akin to Wigner crystals. Depending on the surface and the ions, the Wigner crystal-like structure can be hexagonally close packed, cubic, or worm-like. The influence of the electrolyte concentration, species, and valence, as well as the surface type and charge, on the Stern layer structures is described. When the system parameters are changed to reduce the Stern layer ion surface excess below the threshold value, Wigner crystal-like structures do not form and the Stern layer is unstructured. For gold surfaces, molecular dynamics (MD) simulations reveal that when sufficient potential is applied to the surface, ion clusters form with dimensions similar to the Wigner crystal-like structures in the AFM images. The lateral Stern layer structures presented, and in particular the Wigner crystal-like structures, will influence diverse applications in chemistry, energy storage, environmental science, nanotechnology, biology, and medicine.
Collapse
Affiliation(s)
- Jianan Wang
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth 6009, Australia
| | - Mahdi Tavakol
- Department of Physics, Durham University, Durham DH1 3LE, U.K
| | - Alessandra Serva
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Paris F-75005, France
| | - Brett Nener
- School of Engineering, The University of Western Australia, Perth 6009, Australia
| | - Giacinta Parish
- School of Engineering, The University of Western Australia, Perth 6009, Australia
| | - Mathieu Salanne
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Paris F-75005, France
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney 2006, Australia
| | | | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| |
Collapse
|
9
|
Wang J, Buzolic JJ, Mullen JW, Fitzgerald PA, Aman ZM, Forsyth M, Li H, Silvester DS, Warr GG, Atkin R. Nanostructure of Locally Concentrated Ionic Liquids in the Bulk and at Graphite and Gold Electrodes. ACS NANO 2023; 17:21567-21584. [PMID: 37883191 DOI: 10.1021/acsnano.3c06609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The physical properties of ionic liquids (ILs) have led to intense research interest, but for many applications, high viscosity is problematic. Mixing the IL with a diluent that lowers viscosity offers a solution if the favorable IL physical properties are not compromised. Here we show that mixing an IL or IL electrolyte (ILE, an IL with dissolved metal ions) with a nonsolvating fluorous diluent produces a low viscosity mixture in which the local ion arrangements, and therefore key physical properties, are retained or enhanced. The locally concentrated ionic liquids (LCILs) examined are 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HMIM TFSI), 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate (HMIM FAP), or 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate (BMIM FAP) mixed with 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether (TFTFE) at 2:1, 1:1, and 1:2 (w/w) IL:TFTFE, as well as the locally concentrated ILEs (LCILEs) formed from 2:1 (w/w) HMIM TFSI-TFTFE with 0.25, 0.5, and 0.75 m lithium bis(trifluoromethylsulfonyl)imide (LiTFSI). Rheology and conductivity measurements reveal that the added TFTFE significantly reduces viscosity and increases ionic conductivity, and cyclic voltammetry (CV) reveals minimal reductions in electrochemical windows on gold and carbon electrodes. This is explained by the small- and wide-angle X-ray scattering (S/WAXS) and atomic force microscopy (AFM) data, which show that the local ion nanostructures are largely retained in LCILs and LCILEs in bulk and at gold and graphite electrodes for all potentials investigated.
Collapse
Affiliation(s)
- Jianan Wang
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| | - Joshua J Buzolic
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| | - Jesse W Mullen
- School of Molecular and Life Sciences, Curtin University, Perth 6102, Australia
| | - Paul A Fitzgerald
- Sydney Analytical, Core Research Facilities, The University of Sydney, Sydney 2050, Australia
| | - Zachary M Aman
- Department of Chemical Engineering, The University of Western Australia, Perth 6009, Australia
| | - Maria Forsyth
- Institute for Frontier Materials and the ARC Centre of Excellence for Electromaterials Science, Deakin University, Geelong 3220, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth 6009, Australia
| | - Debbie S Silvester
- School of Molecular and Life Sciences, Curtin University, Perth 6102, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney 2050, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| |
Collapse
|
10
|
Fiuza T, Sarkar M, Riedl JC, Beaughon M, Torres Bautista BE, Bhattacharya K, Cousin F, Barruet E, Demouchy G, Depeyrot J, Dubois E, Gélébart F, Geertsen V, Mériguet G, Michot L, Nakamae S, Perzynski R, Peyre V. Ion specific tuning of nanoparticle dispersion in an ionic liquid: a structural, thermoelectric and thermo-diffusive investigation. Phys Chem Chem Phys 2023; 25:28911-28924. [PMID: 37855156 DOI: 10.1039/d3cp02399k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Dispersions of charged maghemite nanoparticles (NPs) in EAN (ethylammonium nitrate) a reference Ionic Liquid (IL) are studied here using a number of static and dynamical experimental techniques; small angle scattering (SAS) of X-rays and of neutrons, dynamical light scattering and forced Rayleigh scattering. Particular insight is provided regarding the importance of tuning the ionic species present at the NP/IL interface. In this work we compare the effect of Li+, Na+ or Rb+ ions. Here, the nature of these species has a clear influence on the short-range spatial organisation of the ions at the interface and thus on the colloidal stability of the dispersions, governing both the NP/NP and NP/IL interactions, which are both evaluated here. The overall NP/NP interaction is either attractive or repulsive. It is characterised by determining, thanks to the SAS techniques, the second virial coefficient A2, which is found to be independent of temperature. The NP/IL interaction is featured by the dynamical effective charge ξeff0 of the NPs and by their entropy of transfer ŜNP (or equivalently their heat of transport ) determined here thanks to thermoelectric and thermodiffusive measurements. For repulsive systems, an activated process rules the temperature dependence of these two latter quantities.
Collapse
Affiliation(s)
- T Fiuza
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
- Grupo de Fluidos Complexos, Inst. de Fisíca, Univ. de Brasília, Brasília (DF), Brazil
| | - M Sarkar
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
| | - J C Riedl
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
| | - M Beaughon
- Service de Physique de l'état condensé, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette, CEDEX, France
| | - B E Torres Bautista
- Service de Physique de l'état condensé, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette, CEDEX, France
| | - K Bhattacharya
- Service de Physique de l'état condensé, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette, CEDEX, France
| | - F Cousin
- Lab. Léon Brillouin-UMR 12 CNRS-CEA CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - E Barruet
- Univ. Paris-Saclay, CEA, CNRS, NIMBE-LIONS, 91191 Gif sur Yvette, CEDEX, France
| | - G Demouchy
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
- Univ. de Cergy Pontoise-Dpt de physique, 33 Bd du Port, 95011 Cergy-Pontoise, France
| | - J Depeyrot
- Grupo de Fluidos Complexos, Inst. de Fisíca, Univ. de Brasília, Brasília (DF), Brazil
| | - E Dubois
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
| | - F Gélébart
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
| | - V Geertsen
- Univ. Paris-Saclay, CEA, CNRS, NIMBE-LIONS, 91191 Gif sur Yvette, CEDEX, France
| | - G Mériguet
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
| | - L Michot
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
| | - S Nakamae
- Service de Physique de l'état condensé, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette, CEDEX, France
| | - R Perzynski
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
| | - V Peyre
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
| |
Collapse
|
11
|
Chatterjee A, Sun J, Rawat KS, Van Speybroeck V, Van Der Voort P. Exploring the Charge Storage Dynamics in Donor-Acceptor Covalent Organic Frameworks Based Supercapacitors by Employing Ionic Liquid Electrolyte. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303189. [PMID: 37471172 DOI: 10.1002/smll.202303189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Two donor-acceptor type tetrathiafulvalene (TTF)-based covalent organic frameworks (COFs) are investigated as electrodes for symmetric supercapacitors in different electrolytes, to understand the charge storage and dynamics in 2D COFs. Till-date, most COFs are investigated as Faradic redox pseudocapacitors in aqueous electrolytes. For the first time, it is tried to enhance the electrochemical performance and stability of pristine COF-based supercapacitors by operating them in the non-Faradaic electrochemically double layer capacitance region. It is found that the charge storage mechanism of ionic liquid (IL) electrolyte based supercapacitors is dependent on the micropore size and surface charge density of the donor-acceptor COFs. The surface charge density alters due to the different electron acceptor building blocks, which in turn influences the dense packing of the IL near its pore. The micropores induce pore confinement of IL in the COFs by partial breaking of coulomb ordering and rearranging it. The combination of these two factors enhance the charge storage in the highly microporous COFs. The density functional theory calculations support the same. At 1 A g-1 , TTF-porphyrin COF provides capacitance of 42, 70, and 130 F g-1 in aqueous, organic, and IL electrolyte respectively. TTF-diamine COF shows a similar trend with 100 F g-1 capacitance in IL.
Collapse
Affiliation(s)
- Amrita Chatterjee
- COMOC-Centre for Ordered Materials, Organometallics and Catalysis; Department of Chemistry, University of Ghent, Krijgslaan 281 (S3), Ghent, 9000, Belgium
| | - Jiamin Sun
- COMOC-Centre for Ordered Materials, Organometallics and Catalysis; Department of Chemistry, University of Ghent, Krijgslaan 281 (S3), Ghent, 9000, Belgium
| | - Kuber Singh Rawat
- Center for Molecular Modeling (CMM), Ghent University, Zwijnaarde, Ghent, B-9052, Belgium
| | | | - Pascal Van Der Voort
- COMOC-Centre for Ordered Materials, Organometallics and Catalysis; Department of Chemistry, University of Ghent, Krijgslaan 281 (S3), Ghent, 9000, Belgium
| |
Collapse
|
12
|
Käärik M, Arulepp M, Perkson A, Leis J. Effect of Pore Size Distribution on Energy Storage of Nanoporous Carbon Materials in Neat and Dilute Ionic Liquid Electrolytes. Molecules 2023; 28:7191. [PMID: 37894670 PMCID: PMC10609406 DOI: 10.3390/molecules28207191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigates three carbide-derived carbon (CDC) materials (TiC, NbC, and Mo2C) characterized by uni-, bi-, and tri-modal pore sizes, respectively, for energy storage in both neat and acetonitrile-diluted 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. A distribution of micro- and mesopores was studied through low-temperature N2 and CO2 adsorption. To elucidate the relationships between porosity and the electrochemical properties of carbon materials, cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy measurements were conducted using three-electrode test cells. The ultramicroporous TiC-derived carbon is characterized by a high packing density of 0.85 g cm-3, resulting in superior cathodic and anodic capacitances for both neat ionic liquid (IL) and a 1.9 M IL/acetonitrile electrolyte (93.6 and 75.8 F cm-3, respectively, in the dilute IL). However, the bi-modal pore-sized microporous NbC-derived carbon, with slightly lower cathodic and anodic capacitances (i.e., 85.0 and 73.7 F cm-3 in the dilute IL, respectively), has a lower pore resistance, making it more suitable for real-world applications. A symmetric two-electrode capacitor incorporating microporous CDC-NbC electrodes revealed an acceptable cycle life. After 10,000 cycles, the cell retained approximately 75% of its original capacitance, while the equivalent series resistance (ESR) only increased by 13%.
Collapse
Affiliation(s)
- Maike Käärik
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Mati Arulepp
- Skeleton Technologies, Sepise 7, 11415 Tallinn, Estonia
| | - Anti Perkson
- Skeleton Technologies, Sepise 7, 11415 Tallinn, Estonia
| | - Jaan Leis
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
- Skeleton Technologies, Sepise 7, 11415 Tallinn, Estonia
| |
Collapse
|
13
|
Garvey CJ, Bryant SJ, Elbourne A, Hunt T, Kent B, Kreuzer M, Strobl M, Steitz R, Bryant G. Phase separation in a ternary DPPC/DOPC/POPC system with reducing hydration. J Colloid Interface Sci 2023; 638:719-732. [PMID: 36774881 DOI: 10.1016/j.jcis.2023.01.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The maintenance of plasma membrane structure is vital for the viability of cells. Disruption of this structure can lead to cell death. One important example is the macroscopic phase separation observed during dehydration associated with desiccation and freezing, often leading to loss of permeability and cell death. It has previously been shown that the hybrid lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) can act as a line-active component in ternary lipid systems, inhibiting macroscopic phase separation and stabilising membrane microdomains in lipid vesicles [1]. The domain size is found to decrease with increasing POPC concentration until complete mixing is observed. However, no such studies have been carried out at reduced hydration. To examine if this phase separation is unique to vesicles in excess water, we have conducted studies on several binary and ternary model membrane systems at both reduced hydration ("powder" type samples and oriented membrane stacks) and in excess water (supported lipid bilayers) at 0.2 mol fraction POPC, in the range where microdomain stabilisation is reported. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) are used to map phase transition temperatures, with X-ray and neutron scattering providing details of the changes in lipid packing and phase information within these boundaries. Atomic force microscopy (AFM) is used to image bilayers on a substrate in excess water. In all cases, macroscopic phase separation was observed rather than microdomain formation at this molar ratio. Thus POPC does not stabilise microdomains under these conditions, regardless of the type of model membrane, hydration or temperature. Thus we conclude that the driving force for separation under these conditions overcomes any linactant effects of the hybrid lipid.
Collapse
Affiliation(s)
- Christopher J Garvey
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany.
| | | | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, Australia
| | - Taavi Hunt
- School of Science, RMIT University, Melbourne, Australia
| | - Ben Kent
- Centre for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney 2052, Australia; Institute for Soft Matter and Functional Materials, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin, Germany
| | - Martin Kreuzer
- Institute for Soft Matter and Functional Materials, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin, Germany; ALBA Synchrotron, Barcelona, Spain
| | - Markus Strobl
- Institute for Soft Matter and Functional Materials, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin, Germany; Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Roland Steitz
- Institute for Soft Matter and Functional Materials, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin, Germany
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, Australia.
| |
Collapse
|
14
|
Zheng Q, Goodwin ZAH, Gopalakrishnan V, Hoane AG, Han M, Zhang R, Hawthorne N, Batteas JD, Gewirth AA, Espinosa-Marzal RM. Water in the Electrical Double Layer of Ionic Liquids on Graphene. ACS NANO 2023; 17:9347-9360. [PMID: 37163519 DOI: 10.1021/acsnano.3c01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The performance of electrochemical devices using ionic liquids (ILs) as electrolytes can be impaired by water uptake. This work investigates the influence of water on the behavior of hydrophilic and hydrophobic ILs─with ethylsulfate and tris(perfluoroalkyl)trifluorophosphate or bis(trifluoromethyl sulfonyl)imide (TFSI) anions, respectively─on electrified graphene, a promising electrode material. The results show that water uptake slightly reduces the IL electrochemical stability and significantly influences graphene's potential of zero charge, which is justified by the extent of anion depletion from the surface. Experiments confirm the dominant contribution of graphene's quantum capacitance (CQ) to the total interfacial capacitance (Cint) near the PZC, as expected from theory. Combining theory and experiments reveals that the hydrophilic IL efficiently screens surface charge and exhibits the largest double layer capacitance (CIL ∼ 80 μF cm-2), so that CQ governs the charge stored. The hydrophobic ILs are less efficient in charge screening and thus exhibit a smaller capacitance (CIL ∼ 6-9 μF cm-2), which governs Cint already at small potentials. An increase in the total interfacial capacitance is observed at positive voltages for humid TFSI-ILs relative to dry ones, consistent with the presence of a satellite peak. Short-range surface forces reveal the change of the interfacial layering with potential and water uptake owing to reorientation of counterions, counterion binding, co-ion repulsion, and water enrichment. These results are consistent with the charge being mainly stored in a ∼2 nm-thick double layer, which implies that ILs behave as highly concentrated electrolytes. This knowledge will advance the design of IL-graphene-based electrochemical devices.
Collapse
Affiliation(s)
- Qianlu Zheng
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zachary A H Goodwin
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Varun Gopalakrishnan
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alexis G Hoane
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mengwei Han
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ruixian Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nathaniel Hawthorne
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - James D Batteas
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Urikhinbam SS, Shagolsem LS. Size-Polydisperse Model Ionic Liquid in Bulk. J Phys Chem B 2023; 127:2739-2748. [PMID: 36920477 DOI: 10.1021/acs.jpcb.2c08315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The static and the dynamic properties of a size-polydisperse model ionic liquid is studied using molecular dynamics simulations. Here, the size of the anions is derived from a Gaussian distribution while keeping cation size fixed, resulting in a system that closely corresponds to IL mixtures with a common cation. We systematically explore the behavior of thermodynamic transition temperatures, spatial ordering of ions, and the resulting screening behavior as a function of polydispersity index, δ. We observe a nonmonotonic dependence of transition temperatures on δ, and this nonmonotonic behavior is also reflected in other properties such as screening length. Furthermore, from the radial distribution function analysis it is found that, upon varying δ, the spatial ordering of cations is affected, while no such changes is seen for anion. On the other hand, the analysis of ion motion through mean-square displacement show that for all δ values considered both inertial and diffusive regimes are observed (as expected in the liquid state). However, in contrast to the neutral counterpart, the overall relaxation time of the polydisperse IL system increases (and hence decreasing diffusion coefficient) with increasing δ.
Collapse
Affiliation(s)
| | - Lenin S Shagolsem
- Department of Physics, National Institute of Technology Manipur, Imphal 795001, India
| |
Collapse
|
16
|
Freeman JS, Mamme MH, Ustarroz J, Warr GG, Li H, Atkin R. Molecular Resolution Nanostructure and Dynamics of the Deep Eutectic Solvent-Graphite Interface as a Function of Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204993. [PMID: 36627266 DOI: 10.1002/smll.202204993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Interest in deep eutectic solvents (DESs), particularly for electrochemical applications, has boomed in the past decade because they are more versatile than conventional electrolyte solutions and are low cost, renewable, and non-toxic. The molecular scale lateral nanostructures as a function of potential at the solid-liquid interface-critical design parameters for the use of DESs as electrochemical solvents-are yet to be revealed. In this work, in situ amplitude modulated atomic force microscopy complemented by molecular dynamics simulations is used to probe the Stern and near-surface layers of the archetypal and by far most studied DES, 1:2 choline chloride:urea (reline), at the highly orientated pyrolytic graphite surface as a function of potential, to reveal highly ordered lateral nanostructures with unprecedented molecular resolution. This detail allows identification of choline, chloride, and urea in the Stern layer on graphite, and in some cases their orientations. Images obtained after the potential is switched from negative to positive show the dynamics of the Stern layer response, revealing that several minutes are required to reach equilibrium. These results provide valuable insight into the nanostructure and dynamics of DESs at the solid-liquid interface, with implications for the rational design of DESs for interfacial applications.
Collapse
Affiliation(s)
- Justin S Freeman
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Mesfin Haile Mamme
- Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Jon Ustarroz
- Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
- Chemistry of Surfaces, Interfaces and Nanomaterials (ChemSIN), Université Libre de Bruxelles, Boulevard du Triomphe 2, Brussels, 1050, Belgium
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
| |
Collapse
|
17
|
Rotnicki K, Sterczyńska A, Fojud Z, Jażdżewska M, Beskrovnyi A, Waliszewski J, Beguin F, Śliwińska-Bartkowiak M. The effect of pore size of the nanoporous activated carbon on the thermal behavior of confined 1–ethyl–3–methylimidazolium bis(trifluorosulfonyl)imide [EMIM TFSI]. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Bonagiri LKS, Panse KS, Zhou S, Wu H, Aluru NR, Zhang Y. Real-Space Charge Density Profiling of Electrode-Electrolyte Interfaces with Angstrom Depth Resolution. ACS NANO 2022; 16:19594-19604. [PMID: 36351178 DOI: 10.1021/acsnano.2c10819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The accumulation and depletion of charges at electrode-electrolyte interfaces is crucial for all types of electrochemical processes. However, the spatial profile of such interfacial charges remains largely elusive. Here we develop charge profiling three-dimensional (3D) atomic force microscopy (CP-3D-AFM) to experimentally quantify the real-space charge distribution of the electrode surface and electric double layers (EDLs) with angstrom depth resolution. We first measure the 3D force maps at different electrode potentials using our recently developed electrochemical 3D-AFM. Through statistical analysis, peak deconvolution, and electrostatic calculations, we derive the depth profile of the local charge density. We perform such charge profiling for two types of emergent electrolytes, ionic liquids, and highly concentrated aqueous solutions, observe pronounced sub-nanometer charge variations, and find the integrated charge densities to agree with those derived from macroscopic electrochemical measurements.
Collapse
Affiliation(s)
- Lalith Krishna Samanth Bonagiri
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Kaustubh S Panse
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Shan Zhou
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Haiyi Wu
- Walker Department of Mechanical Engineering and Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, Texas78712, United States
| | - Narayana R Aluru
- Walker Department of Mechanical Engineering and Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, Texas78712, United States
| | - Yingjie Zhang
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| |
Collapse
|
19
|
Kariuki R, Penman R, Bryant SJ, Orrell-Trigg R, Meftahi N, Crawford RJ, McConville CF, Bryant G, Voïtchovsky K, Conn CE, Christofferson AJ, Elbourne A. Behavior of Citrate-Capped Ultrasmall Gold Nanoparticles on a Supported Lipid Bilayer Interface at Atomic Resolution. ACS NANO 2022; 16:17179-17196. [PMID: 36121776 DOI: 10.1021/acsnano.2c07751] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanomaterials have the potential to transform biological and biomedical research, with applications ranging from drug delivery and diagnostics to targeted interference of specific biological processes. Most existing research is aimed at developing nanomaterials for specific tasks such as enhanced biocellular internalization. However, fundamental aspects of the interactions between nanomaterials and biological systems, in particular, membranes, remain poorly understood. In this study, we provide detailed insights into the molecular mechanisms governing the interaction and evolution of one of the most common synthetic nanomaterials in contact with model phospholipid membranes. Using a combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations, we elucidate the precise mechanisms by which citrate-capped 5 nm gold nanoparticles (AuNPs) interact with supported lipid bilayers (SLBs) of pure fluid (DOPC) and pure gel-phase (DPPC) phospholipids. On fluid-phase DOPC membranes, the AuNPs adsorb and are progressively internalized as the citrate capping of the NPs is displaced by the surrounding lipids. AuNPs also interact with gel-phase DPPC membranes where they partially embed into the outer leaflet, locally disturbing the lipid organization. In both systems, the AuNPs cause holistic perturbations throughout the bilayers. AFM shows that the lateral diffusion of the particles is several orders of magnitude smaller than that of the lipid molecules, which creates some temporary scarring of the membrane surface. Our results reveal how functionalized AuNPs interact with differing biological membranes with mechanisms that could also have implications for cooperative membrane effects with other molecules.
Collapse
Affiliation(s)
- Rashad Kariuki
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Rowan Penman
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Rebecca Orrell-Trigg
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Russell J Crawford
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Chris F McConville
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
- Deakin University, Geelong, VIC 3220, Australia
| | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Kislon Voïtchovsky
- University of Durham, Physics Department, Durham DH1 3LE, United Kingdom
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Andrew J Christofferson
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Aaron Elbourne
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
20
|
An R, Laaksonen A, Wu M, Zhu Y, Shah FU, Lu X, Ji X. Atomic force microscopy probing interactions and microstructures of ionic liquids at solid surfaces. NANOSCALE 2022; 14:11098-11128. [PMID: 35876154 DOI: 10.1039/d2nr02812c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ionic liquids (ILs) are room temperature molten salts that possess preeminent physicochemical properties and have shown great potential in many applications. However, the use of ILs in surface-dependent processes, e.g. energy storage, is hindered by the lack of a systematic understanding of the IL interfacial microstructure. ILs on the solid surface display rich ordering, arising from coulombic, van der Waals, solvophobic interactions, etc., all giving near-surface ILs distinct microstructures. Therefore, it is highly important to clarify the interactions of ILs with solid surfaces at the nanoscale to understand the microstructure and mechanism, providing quantitative structure-property relationships. Atomic force microscopy (AFM) opens a surface-sensitive way to probe the interaction force of ILs with solid surfaces in the layers from sub-nanometers to micrometers. Herein, this review showcases the recent progress of AFM in probing interactions and microstructures of ILs at solid interfaces, and the influence of IL characteristics, surface properties and external stimuli is thereafter discussed. Finally, a summary and perspectives are established, in which, the necessities of the quantification of IL-solid interactions at the molecular level, the development of in situ techniques closely coupled with AFM for probing IL-solid interfaces, and the combination of experiments and simulations are argued.
Collapse
Affiliation(s)
- Rong An
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Aatto Laaksonen
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700469, Romania
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Muqiu Wu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yudan Zhu
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden
| | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
| |
Collapse
|
21
|
Horvath A, Anaredy RS, Shaw SK. Solvents and Stabilization in Ionic Liquid Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9372-9381. [PMID: 35862667 PMCID: PMC10111422 DOI: 10.1021/acs.langmuir.2c01258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
We report the interfacial structures and chemical environments of ionic liquid films as a function of dilution with molecular solvents and over a range of film thicknesses (a few micrometers). Data from spectroscopic ellipsometry and infrared spectroscopy measurements show differences between films comprised of neat ionic liquids, as well as films comprised of ionic liquids diluted with two molecular solvents (water and acetonitrile). While the water-diluted IL films follow thickness trends predicted by the Landau-Levich model, neat IL and IL/MeCN films deviate significantly from predicted behaviors. Specifically, these film thicknesses are far greater than the predicted values, suggesting enhanced intermolecular interactions or other non-Newtonian behaviors not captured by the theory. We correlate film thicknesses with trends in the infrared intensity profiles across film thicknesses and IL-solvent dilution conditions and interpret the changes from expected behaviors as varying amounts of the film volume existing in isotropic (bulk) vs anisotropic (interfacial) states. The hydrogen bonding network of water-diluted ionic liquids is implicated in the agreement of this system with the Landau-Levich model's thickness predictions.
Collapse
|
22
|
Qin X, Guo J, Li X, Shao Z. Influence of SiO2-Doping on Reduce Graphite Oxide Anode Material for Lithium-Ion Battery. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s003602442208026x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Analysis of Impedance: The Distribution of Capacitance in Halide Ion Treated Supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Jeanmairet G, Rotenberg B, Salanne M. Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chem Rev 2022; 122:10860-10898. [PMID: 35389636 PMCID: PMC9227719 DOI: 10.1021/acs.chemrev.1c00925] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Electrochemical double-layer capacitors (EDLCs) are devices allowing the storage or production of electricity. They function through the adsorption of ions from an electrolyte on high-surface-area electrodes and are characterized by short charging/discharging times and long cycle-life compared to batteries. Microscopic simulations are now widely used to characterize the structural, dynamical, and adsorption properties of these devices, complementing electrochemical experiments and in situ spectroscopic analyses. In this review, we discuss the main families of simulation methods that have been developed and their application to the main family of EDLCs, which include nanoporous carbon electrodes. We focus on the adsorption of organic ions for electricity storage applications as well as aqueous systems in the context of blue energy harvesting and desalination. We finally provide perspectives for further improvement of the predictive power of simulations, in particular for future devices with complex electrode compositions.
Collapse
Affiliation(s)
- Guillaume Jeanmairet
- Sorbonne
Université, CNRS, Physico-chimie
des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
| | - Benjamin Rotenberg
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Électrochimique de l’Énergie
(RS2E), FR CNRS 3459, 80039 Amiens, France
| | - Mathieu Salanne
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Institut
Universitaire de France (IUF), 75231 Paris Cedex 05, France
| |
Collapse
|
25
|
Self-assembled nanostructure induced in deep eutectic solvents via an amphiphilic hydrogen bond donor. J Colloid Interface Sci 2022; 616:121-128. [DOI: 10.1016/j.jcis.2022.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
|
26
|
Seebeck J, Merlet C, Meißner RH. Elucidating Curvature-Capacitance Relationships in Carbon-Based Supercapacitors. PHYSICAL REVIEW LETTERS 2022; 128:086001. [PMID: 35275675 DOI: 10.1103/physrevlett.128.086001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Nanoscale surface curvatures, either convex or concave, strongly influence the charging behavior of supercapacitors. Rationalizing individual influences of electrode atoms to the capacitance is possible by interpreting distinct elements of the charge-charge covariance matrix derived from individual charge variations of the electrode atoms. An ionic liquid solvated in acetonitrile and confined between two electrodes, each consisting of three undulated graphene layers, serves as a demonstrator to illustrate pronounced and nontrivial features of the capacitance with respect to the electrode curvature. In addition, the applied voltage determines whether a convex or concave surface contributes to increased capacitance. While at lower voltages capacitance variations are in general correlated with ion number density variations in the double layer formed in the concave region of the electrode, for certain electrode designs a surprisingly strong contribution of the convex part to the differential capacitance is found both at higher and lower voltages.
Collapse
Affiliation(s)
- Jannes Seebeck
- Institute of Polymers and Composites, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Céline Merlet
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex 9 - France and Réseau sur le Stockage Electrochimique de l'Energie (RS2E), Fédération de Recherche CNRS 3459, HUB de l'Energie, Rue Baudelocque, 80039 Amiens, France
| | - Robert H Meißner
- Institute of Polymers and Composites, Hamburg University of Technology, 21073 Hamburg, Germany and Helmholtz-Zentrum Hereon, Institute of Surface Science, 21502 Geesthacht, Germany
| |
Collapse
|
27
|
Montes-Campos H, Rivera-Pousa A, Méndez-Morales T. Density functional theory of alkali metals at the IL/graphene electrochemical interface. J Chem Phys 2022; 156:014706. [PMID: 34998333 DOI: 10.1063/5.0077449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mechanism of charge transfer between metal ions and graphene in the presence of an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) is investigated by means of density functional theory calculations. For that purpose, two different comparisons are established: (i) the behavior of Li+ and K+ when adsorbed onto the basal plane of graphene and (ii) the differences between Li+ approaching the carbon surface from the basal plane and being intercalated through the edge plane of trilayer graphene. In the first case, it is found that the metal ions must overcome high energy barriers due to their interaction with the ionic liquid before reaching an equilibrium position close to the interface. In addition, no significant charge transfer between any of the metals and graphene takes place until very close energetically unfavorable distances. The second configuration shows that Li+ has no equilibrium position in the proximity of the interface but instead has an equilibrium position when it is inside the electrode for which it has to cross an energy barrier. In this case, the formation of a LiC12 complex is observed since the charge transfer at the equilibrium distance is achieved to a considerable extent. Thus, the interfacial charge transfer resistance on the electrode in energy devices based on ionic liquids clearly depends not only on the binding of the ionic liquid to the metal cations and their ability to form a dense solvation shell around them but also on the surface topography and its effect on the ion packing on the surface.
Collapse
Affiliation(s)
- H Montes-Campos
- Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - A Rivera-Pousa
- Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - T Méndez-Morales
- Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
28
|
Du Hill L, De Keersmaecker M, Colbert AE, Hill JW, Placencia D, Boercker JE, Armstrong NR, Ratcliff EL. Rationalizing energy level alignment by characterizing Lewis acid/base and ionic interactions at printable semiconductor/ionic liquid interfaces. MATERIALS HORIZONS 2022; 9:471-481. [PMID: 34859805 DOI: 10.1039/d1mh01306h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Charge transfer and energy conversion processes at semiconductor/electrolyte interfaces are controlled by local electric field distributions, which can be especially challenging to measure. Herein we leverage the low vapor pressure and vacuum compatibility of ionic liquid electrolytes to undertake a layer-by-layer, ultra-high vacuum deposition of a prototypical ionic liquid EMIM+ (1-ethyl-3-methylimidazolium) and TFSI- (bis(trifluoromethylsulfonyl)-imide) on the surfaces of different electronic materials. We consider a case-by-case study between a standard metal (Au) and four printed electronic materials, where interfaces are characterized by a combination of X-ray and ultraviolet photoemission spectroscopies (XPS/UPS). For template-stripped gold surfaces, we observe through XPS a preferential orientation of the TFSI anion at the gold surface, enabling large electric fields (∼108 eV m-1) within the first two monolayers detected by a large surface vacuum level shift (0.7 eV) in UPS. Conversely, we observe a much more random orientation on four printable semiconductor surfaces: methyl ammonium lead triiodide (MAPbI3), regioregular poly(3-hexylthiophene-2,5-diyl (P3HT)), sol-gel nickel oxide (NiOx), and PbIx-capped PbS quantum dots. For the semiconductors considered, the ionization energy (IE) of the ionic liquid at 3 ML coverage is highly substrate dependent, indicating that underlying chemical reactions are dominating interface level alignment (electronic equilibration) prior to reaching bulk electronic structure. This indicates there is no universal rule for energy level alignment, but that relative strengths of Lewis acid/base sites and ion-molecular interactions should be considered. Specifically, for P3HT, interactions are found to be relatively weak and occurring through the π-bonding structure in the thiophene ring. Alternatively, for NiOx, PbS/PbIx quantum dots, and MAPbI3, our XPS data suggest a combination of ionic bonding and Lewis acid/base reactions between the semiconductor and IL, with MAPbI3 being the most reactive surface. Collectively, our results point towards new directions in interface engineering, where strategically chosen ionic liquid-based anions and cations can be used to preferentially passivate and/or titrate surface defects of heterogeneous surfaces while simultaneously providing highly localized electric fields. These opportunities are expected to be translatable to opto-electronic and electrochemical devices, including energy conversion and storage and biosensing applications.
Collapse
Affiliation(s)
- Linze Du Hill
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721, USA.
| | - Michel De Keersmaecker
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721, USA.
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
| | - Adam E Colbert
- US. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC. 20375, USA
| | - Joshua W Hill
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721, USA.
| | - Diogenes Placencia
- US. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC. 20375, USA
| | - Janice E Boercker
- US. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC. 20375, USA
| | - Neal R Armstrong
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
| | - Erin L Ratcliff
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721, USA.
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
- Department of Materials Science and Engineering, University of Arizona, 1235 E. James E. Rogers Way, Tucson, AZ 85721, USA
| |
Collapse
|
29
|
WATANABE Y, TAKEUCHI Y, TAKI M, MIZUTANI H, IWASAKI M. Physicochemical Properties of Bis(fluorosulfonyl)amide-Based Ionic Liquids Mixed with Mg and Sr Doped Cubic Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> Powder. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Li Z, Morales-Collazo O, Chrostowski R, Brennecke JF, Mangolini F. In situ nanoscale evaluation of pressure-induced changes in structural morphology of phosphonium phosphate ionic liquid at single-asperity contacts. RSC Adv 2021; 12:413-419. [PMID: 35424509 PMCID: PMC8978665 DOI: 10.1039/d1ra08026a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
In this work, we perform atomic force microscopy (AFM) experiments to evaluate in situ the dependence of the structural morphology of trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate ([P6,6,6,14][DEHP]) ionic liquid (IL) on applied pressure. The experimental results obtained upon sliding a diamond-like-carbon-coated silicon AFM tip on mechanically polished steel at an applied pressure up to 5.5 ± 0.3 GPa indicate a structural transition of confined [P6,6,6,14][DEHP] molecules. This pressure-induced morphological change of [P6,6,6,14][DEHP] IL leads to the generation of a lubricious, solid-like interfacial layer, whose growth rate increases with applied pressure and temperature. The structural variation of [P6,6,6,14][DEHP] IL is proposed to derive from the well-ordered layering of the polar groups of ions separated by the apolar tails. These results not only shed new light on the structural organization of phosphonium-based ILs under elevated pressure, but also provide novel insights into the normal pressure-dependent lubrication mechanisms of ILs in general.
Collapse
Affiliation(s)
- Zixuan Li
- Texas Materials Institute, The University of Texas at Austin Austin TX 78712 USA
- Materials Science and Engineering Program, The University of Texas at Austin Austin TX 78712 USA
| | - Oscar Morales-Collazo
- McKetta Department of Chemical Engineering, The University of Texas at Austin Austin TX 78712 USA
| | - Robert Chrostowski
- Texas Materials Institute, The University of Texas at Austin Austin TX 78712 USA
- Materials Science and Engineering Program, The University of Texas at Austin Austin TX 78712 USA
| | - Joan F Brennecke
- McKetta Department of Chemical Engineering, The University of Texas at Austin Austin TX 78712 USA
| | - Filippo Mangolini
- Texas Materials Institute, The University of Texas at Austin Austin TX 78712 USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|
31
|
Benaglia S, Uhlig MR, Hernández-Muñoz J, Chacón E, Tarazona P, Garcia R. Tip Charge Dependence of Three-Dimensional AFM Mapping of Concentrated Ionic Solutions. PHYSICAL REVIEW LETTERS 2021; 127:196101. [PMID: 34797127 DOI: 10.1103/physrevlett.127.196101] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
A molecular scale understanding of the organization and structure of a liquid near a solid surface is currently a major challenge in surface science. It has implications across different fields from electrochemistry and energy storage to molecular biology. Three-dimensional AFM generates atomically resolved maps of solid-liquid interfaces. The imaging mechanism behind those maps is under debate, in particular, for concentrated ionic solutions. Theory predicts that the observed contrast should depend on the tip's charged state. Here, by using neutrally, negatively, and positively charged tips, we demonstrate that the 3D maps depend on the tip's polarization. A neutral tip will explore the total particle density distribution (water and ions) while a charged tip will reveal the charge density distribution. The experimental data reproduce the key findings of the theory.
Collapse
Affiliation(s)
- Simone Benaglia
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Manuel R Uhlig
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Jose Hernández-Muñoz
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Enrique Chacón
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Pedro Tarazona
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| |
Collapse
|
32
|
Bulk and interfacial nanostructure and properties in deep eutectic solvents: Current perspectives and future directions. J Colloid Interface Sci 2021; 608:2430-2454. [PMID: 34785053 DOI: 10.1016/j.jcis.2021.10.163] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022]
Abstract
Deep eutectic solvents (DESs) are a tailorable class of solvents that are rapidly gaining scientific and industrial interest. This is because they are distinct from conventional molecular solvents, inherently tuneable via careful selection of constituents, and possess many attractive properties for applications, including catalysis, chemical extraction, reaction media, novel lubricants, materials chemistry, and electrochemistry. DESs are a class of solvents composed solely of hydrogen bond donors and acceptors with a melting point lower than the individual components and are often fluidic at room temperature. A unique feature of DESs is that they possess distinct bulk liquid and interfacial nanostructure, which results from intra- and inter-molecular interactions, including coulomb forces, hydrogen bonding, van der Waals interactions, electrostatics, dispersion forces, and apolar-polar segregation. This nanostructure manifests as preferential spatial arrangements of the different species, and exists over several length scales, from molecular- to nano- and meso-scales. The physicochemical properties of DESs are dictated by structure-property relationships; however, there is a significant gap in our understanding of the underlying factors which govern their solvent properties. This is a major limitation of DES-based technologies, as nanostructure can significantly influence physical properties and thus potential applications. This perspective provides an overview of the current state of knowledge of DES nanostructure, both in the bulk liquid and at solid interfaces. We provide definitions which clearly distinguish DESs as a unique solvent class, rather than a subset of ILs. An appraisal of recent work provides hints towards trends in structure-property relationships, while also highlighting inconsistencies within the literature suggesting new research directions for the field. It is hoped that this review will provide insight into DES nanostructure, their potential applications, and development of a robust framework for systematic investigation moving forward.
Collapse
|
33
|
Yang C, Jiang K, Zheng Q, Li X, Mao H, Zhong W, Chen C, Sun B, Zheng H, Zhuang X, Reimer JA, Liu Y, Zhang J. Chemically Stable Polyarylether-Based Metallophthalocyanine Frameworks with High Carrier Mobilities for Capacitive Energy Storage. J Am Chem Soc 2021; 143:17701-17707. [PMID: 34618453 DOI: 10.1021/jacs.1c08265] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covalent organic frameworks (COFs) with efficient charge transport and exceptional chemical stability are emerging as an import class of semiconducting materials for opto-/electronic devices and energy-related applications. However, the limited synthetic chemistry to access such materials and the lack of mechanistic understanding of carrier mobility greatly hinder their practical applications. Herein, we report the synthesis of three chemically stable polyarylether-based metallophthalocyanine COFs (PAE-PcM, M = Cu, Ni, and Co) and facile in situ growth of their thin films on various substrates (i.e., SiO2/Si, ITO, quartz) under solvothermal conditions. We show that PAE-PcM COFs thin films with van der Waals layered structures exhibit p-type semiconducting properties with the intrinsic mobility up to ∼19.4 cm2 V-1 s-1 and 4 orders of magnitude of increase in conductivity for PAE-PcCu film (0.2 S m-1) after iodine doping. Density functional theory calculations reveal that the carrier transport in the framework is anisotropic, with the out-of-plane hole transport along columnar stacked phthalocyanine more favorable. Furthermore, PAE-PcCo shows the redox behavior maximumly contributes ∼88.5% of its capacitance performance, giving rise to a high surface area normalized capacitance of ∼19 μF cm-2. Overall, this work not only offers fundamental understandings of electronic properties of polyarylether-based 2D COFs but also paves the way for their energy-related applications.
Collapse
Affiliation(s)
- Chongqing Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kaiyue Jiang
- The meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xinle Li
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, Clark Atlanta University, Atlanta, Georgia 30314, United States
| | - Haiyan Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Wenkai Zhong
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Chen
- The meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Sun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xiaodong Zhuang
- The meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jeffrey A Reimer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jian Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
34
|
Lu Y, Xu Y, Lu L, Xu Z, Liu H. Interfacial interactions and structures of protic ionic liquids on a graphite surface: A first-principles study and comparison with aprotic ionic liquids. Phys Chem Chem Phys 2021; 23:18338-18348. [PMID: 34612375 DOI: 10.1039/d1cp02100a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protic ionic liquids (PILs) have currently been indicated as promising alternative electrolytes in electrical storage devices, such as lithium-ion batteries and supercapacitors. However, compared with the well-studied aprotic ionic liquids (AILs), the knowledge of the interface between PILs and electrode material surfaces is very rare to date. In this work, the adsorption behaviors of three groups of PILs, i.e. pyrrolidinium-based, imidazolium-based, and ammonium-based, on graphite was systematically investigated using first-principles calculations. The corresponding AILs were also taken into account for comparison. The adsorption mechanism of these ILs on the surface is controlled by the interplay of strong electrostatic interactions between adsorbed ions, weak vdW forces between ILs and substrate, and many aromatic interactions including π-π stacking and C-H/N-Hπ contacts. PILs do show quite different preferential interfacial interactions and structures on the graphite surface with respect to AILs, arising mainly from the anion-substrate interactions. Particularly, proton transfer takes place in the PILs consisting of the imidazolium/ammonium cation and the nitrate anion in the gas phase, but it tends to be attenuated or even disappears on graphite caused by interfacial interactions.
Collapse
Affiliation(s)
- Yunxiang Lu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | | | | | | | | |
Collapse
|
35
|
Riedl JC, Sarkar M, Fiuza T, Cousin F, Depeyrot J, Dubois E, Mériguet G, Perzynski R, Peyre V. Design of concentrated colloidal dispersions of iron oxide nanoparticles in ionic liquids: Structure and thermal stability from 25 to 200 °C. J Colloid Interface Sci 2021; 607:584-594. [PMID: 34509733 DOI: 10.1016/j.jcis.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022]
Abstract
HYPOTHESIS Some of the most promising fields of application of ionic liquid-based colloids imply elevated temperatures. Their careful design and analysis is therefore essential. We assume that tuning the structure of the nanoparticle-ionic liquid interface through its composition can ensure colloidal stability for a wide temperature range, from room temperature up to 200 °C. EXPERIMENTS The system under study consists of iron oxide nanoparticles (NPs) dispersed in ethylmethylimidazolium bistriflimide (EMIM TFSI). The key parameters of the solid-liquid interface, tuned at room temperature, are the surface charge density and the nature of the counterions. The thermal stability of these nanoparticle dispersions is then analysed on the short and long term up to 200 °C. A multiscale analysis is performed combining dynamic light scattering (DLS), small angle X-ray/neutron scattering (SAXS/SANS) and thermogravimetric analysis (TGA). FINDINGS Following the proposed approach with a careful choice of the species at the solid-liquid interface, ionic liquid-based colloidal dispersions of iron oxide NPs in EMIM TFSI stable over years at room temperature can be obtained, also stable at least over days up to 200 °C and NPs concentrations up to 12 vol% (≈30 wt%) thanks to few near-surface ionic layers.
Collapse
Affiliation(s)
- J C Riedl
- Sorbonne Université, CNRS, Laboratoire PHENIX, 4 place Jussieu, case 51, 75005 Paris, France.
| | - M Sarkar
- Sorbonne Université, CNRS, Laboratoire PHENIX, 4 place Jussieu, case 51, 75005 Paris, France.
| | - T Fiuza
- Sorbonne Université, CNRS, Laboratoire PHENIX, 4 place Jussieu, case 51, 75005 Paris, France; Inst. de Fisica, Complex Fluid Group, Universidade de Brasília, Brasília, Brazil.
| | - F Cousin
- Laboratoire Léon Brillouin, UMR 12 CNRS-CEA, CEA-Saclay, 91191 Gif-sur-Yvette, France.
| | - J Depeyrot
- Inst. de Fisica, Complex Fluid Group, Universidade de Brasília, Brasília, Brazil
| | - E Dubois
- Sorbonne Université, CNRS, Laboratoire PHENIX, 4 place Jussieu, case 51, 75005 Paris, France.
| | - G Mériguet
- Sorbonne Université, CNRS, Laboratoire PHENIX, 4 place Jussieu, case 51, 75005 Paris, France.
| | - R Perzynski
- Sorbonne Université, CNRS, Laboratoire PHENIX, 4 place Jussieu, case 51, 75005 Paris, France.
| | - V Peyre
- Sorbonne Université, CNRS, Laboratoire PHENIX, 4 place Jussieu, case 51, 75005 Paris, France.
| |
Collapse
|
36
|
Insight into the adsorption of Imidazolium-based ionic liquids on graphene by first principles simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Interfacial interactions and structures of imidazolium-based ionic liquids on black phosphorus surface from first-principles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Gao Q, Tsai W, Balke N. In situ and operando force‐based atomic force microscopy for probing local functionality in energy storage materials. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Qiang Gao
- Department of Chemistry University of Wisconsin‐Madison Madison Wisconsin USA
| | - Wan‐Yu Tsai
- Chemical Science Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Nina Balke
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee USA
| |
Collapse
|
39
|
Elbourne A, Meftahi N, Greaves TL, McConville CF, Bryant G, Bryant SJ, Christofferson AJ. Nanostructure of a deep eutectic solvent at solid interfaces. J Colloid Interface Sci 2021; 591:38-51. [PMID: 33592524 DOI: 10.1016/j.jcis.2021.01.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Deep eutectic solvents (DESs) are an attractive class of tunable solvents. However, their uptake for relevant applications has been limited due to a lack of detailed information on their structure-property relationships, both in the bulk and at interfaces. The lateral nanostructure of the DES-solid interfaces is likely to be more complex than previously reported and requires detailed, high-resolution investigation. EXPERIMENTS We employ a combination of high-resolution amplitude-modulated atomic force microscopy and molecular dynamics simulations to elucidate the lateral nanostructure of a DES at the solid-liquid interface. Specifically, the lateral and near-surface nanostructure of the DES choline chloride:glycerol is probed at the mica and highly-ordered pyrolytic graphite interfaces. FINDINGS The lateral nanostructure of the DES-solid interface is heterogeneous and well-ordered in both systems. At the mica interface, the DES is strongly ordered via polar interactions. The adsorbed layer has a distinct rhomboidal symmetry with a repeat spacing of ~0.9 nm comprising all DES species. At the highly ordered pyrolytic graphite interface, the adsorbed layer appears distinctly different, forming an apolor-driven row-like structure with a repeat spacing of ~0.6 nm, which largely excludes the chloride ion. The interfacial nanostructure results from a delicate balance of substrate templating, liquid-liquid interactions, species surface affinity, and packing constraints of cations, anions, and molecular components within the DES. For both systems, distinct near-surface nanostructural layering is observed, which becomes more pronounced close to the substrate. The surface nanostructures elucidated here significantly expand our understanding of DES interfacial behavior and will enhance the optimization of DES systems for surface-based applications.
Collapse
Affiliation(s)
- Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Tamar L Greaves
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Christopher F McConville
- School of Science, RMIT University, Melbourne, VIC 3000, Australia; Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Saffron J Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | | |
Collapse
|
40
|
Moreno-Fernández G, Boulanger N, Nordenström A, Iakunkov A, Talyzin A, Carriazo D, Mysyk R. Ball-milling-enhanced capacitive charge storage of activated graphene in aqueous, organic and ionic liquid electrolytes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137738] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Multi-ionic effects on the equilibrium and dynamic properties of electric double layers based on the Bikerman correction. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Zhou S, Panse KS, Motevaselian MH, Aluru NR, Zhang Y. Three-Dimensional Molecular Mapping of Ionic Liquids at Electrified Interfaces. ACS NANO 2020; 14:17515-17523. [PMID: 33227191 DOI: 10.1021/acsnano.0c07957] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electric double layers (EDLs), occurring ubiquitously at solid-liquid interfaces, are critical for electrochemical energy conversion and storage processes such as capacitive charging and redox reactions. However, to date the molecular-scale structure of EDLs remains elusive. Here we report an advanced technique, electrochemical three-dimensional atomic force microscopy (EC-3D-AFM), and use it to directly image the molecular-scale EDL structure of an ionic liquid under different electrode potentials. We observe not only multiple discrete ionic layers in the EDL on a graphite electrode but also a quasi-periodic molecular density distribution within each layer. Furthermore, we find pronounced 3D reconfiguration of the EDL at different voltages, especially in the first layer. Combining the experimental results with molecular dynamics simulations, we find potential-dependent molecular redistribution and reorientation in the innermost EDL layer, both of which are critical to EDL capacitive charging. We expect this mechanistic understanding to have profound impacts on the rational design of electrode-electrolyte interfaces for energy conversion and storage.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Kaustubh S Panse
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | | | - Narayana R Aluru
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Yingjie Zhang
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
Tuffnell JM, Morzy JK, Kelly ND, Tan R, Song Q, Ducati C, Bennett TD, Dutton SE. Comparison of the ionic conductivity properties of microporous and mesoporous MOFs infiltrated with a Na-ion containing IL mixture. Dalton Trans 2020; 49:15914-15924. [PMID: 33166378 DOI: 10.1039/d0dt02576c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
IL@MOF (IL: ionic liquid; MOF: metal-organic framework) materials have been proposed as a candidate for solid-state electrolytes, combining the inherent non-flammability and high thermal and chemical stability of the ionic liquid with the host-guest interactions of the MOF. In this work, we compare the structure and ionic conductivity of a sodium ion containing IL@MOF composite formed from a microcrystalline powder of the zeolitic imidazolate framework (ZIF), ZIF-8 with a hierarchically porous sample of ZIF-8 containing both micro- and mesopores from a sol-gel synthesis. Although the crystallographic structures were shown to be the same by X-ray diffraction, significant differences in particle size, packing and morphology were identified by electron microscopy techniques which highlight the origins of the hierarchical porosity. After incorporation of Na0.1EMIM0.9TFSI (abbreviated to NaIL; EMIM = 1-ethyl-3-methylimidazolium; TFSI = bis(trifluoromethylsulfonyl)imide), the hierarchically porous composite exhibited a 40% greater filling capacity than the purely microporous sample which was confirmed by elemental analysis and digestive proton NMR. Finally, the ionic conductivity properties of the composite materials were probed by electrochemical impedance spectroscopy. The results showed that despite the 40% increased loading of NaIL in the NaIL@ZIF-8micro sample, the ionic conductivities at 25 °C were 8.4 × 10-6 and 1.6 × 10-5 S cm-1 for NaIL@ZIF-8meso and NaIL@ZIF-8micro respectively. These results exemplify the importance of the long range, continuous ion pathways contributed by the microcrystalline pores, as well as the limited contribution from the discontinuous mesopores to the overall ionic conductivity.
Collapse
Affiliation(s)
- Joshua M Tuffnell
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge, CB3 0FS, UK. and Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK.
| | - Jędrzej K Morzy
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge, CB3 0FS, UK.
| | - Nicola D Kelly
- Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK.
| | - Rui Tan
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Qilei Song
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Caterina Ducati
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge, CB3 0FS, UK.
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge, CB3 0FS, UK.
| | - Siân E Dutton
- Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK.
| |
Collapse
|
44
|
Fu Y, Qin H, Xu X, Zhang X, Guo Z. Tribological performance of ionic liquid‐lubricated carbon brush/collector ring current‐carrying friction system. BIOSURFACE AND BIOTRIBOLOGY 2020. [DOI: 10.1049/bsbt.2020.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yang Fu
- Hubei Key Laboratory of Hydroelectric Machinery Design & MaintenanceChina Three Gorges UniversityHubei Yichang443002People's Republic of China
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000People's Republic of China
| | - Hongling Qin
- Hubei Key Laboratory of Hydroelectric Machinery Design & MaintenanceChina Three Gorges UniversityHubei Yichang443002People's Republic of China
| | - Xiang Xu
- Hubei Key Laboratory of Hydroelectric Machinery Design & MaintenanceChina Three Gorges UniversityHubei Yichang443002People's Republic of China
| | - Xiaolong Zhang
- Hubei Key Laboratory of Hydroelectric Machinery Design & MaintenanceChina Three Gorges UniversityHubei Yichang443002People's Republic of China
| | - Zhiguang Guo
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000People's Republic of China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei UniversityWuhan430062People's Republic of China
| |
Collapse
|
45
|
Rotenberg B. Use the force! Reduced variance estimators for densities, radial distribution functions, and local mobilities in molecular simulations. J Chem Phys 2020; 153:150902. [DOI: 10.1063/5.0029113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-Chimie des électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| |
Collapse
|
46
|
Rakov DA, Chen F, Ferdousi SA, Li H, Pathirana T, Simonov AN, Howlett PC, Atkin R, Forsyth M. Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes. NATURE MATERIALS 2020; 19:1096-1101. [PMID: 32367080 DOI: 10.1038/s41563-020-0673-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/31/2020] [Indexed: 05/28/2023]
Abstract
Non-uniform metal deposition and dendrite formation in high-density energy storage devices reduces the efficiency, safety and life of batteries with metal anodes. Superconcentrated ionic-liquid electrolytes (for example 1:1 ionic liquid:alkali ion) coupled with anode preconditioning at more negative potentials can completely mitigate these issues, and therefore revolutionize high-density energy storage devices. However, the mechanisms by which very high salt concentration and preconditioning potential enable uniform metal deposition and prevent dendrite formation at the metal anode during cycling are poorly understood, and therefore not optimized. Here, we use atomic force microscopy and molecular dynamics simulations to unravel the influence of these factors on the interface chemistry in a sodium electrolyte, demonstrating how a molten-salt-like structure at the electrode surface results in dendrite-free metal cycling at higher rates. Such a structure will support the formation of a more favourable solid electrolyte interphase, accepted as being a critical factor in stable battery cycling. This new understanding will enable engineering of efficient anode electrodes by tuning the interfacial nanostructure via salt concentration and high-voltage preconditioning.
Collapse
Affiliation(s)
- Dmitrii A Rakov
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, Victoria, Australia
| | - Fangfang Chen
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia.
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, Victoria, Australia.
| | - Shammi A Ferdousi
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia
| | - Hua Li
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Crawley, Western Australia, Australia
| | - Thushan Pathirana
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia
| | - Alexandr N Simonov
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria, Australia
| | - Patrick C Howlett
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, Victoria, Australia
| | - Rob Atkin
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia.
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, Victoria, Australia.
| |
Collapse
|
47
|
Umeda K, Kobayashi K, Minato T, Yamada H. Molecular-Scale Solvation Structures of Ionic Liquids on a Heterogeneously Charged Surface. J Phys Chem Lett 2020; 11:8094-8099. [PMID: 32893644 DOI: 10.1021/acs.jpclett.0c02356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the sub-nanoscale solvation structures of ionic liquids is crucial for the development of innovative functional "devices" across numerous fields. We previously demonstrated the atomic-scale solvation measurements using an ultralow noise 3D frequency-modulation atomic force microscopy combined with molecular dynamics simulations. However, to facilitate practical applications, the molecular distribution on a heterosurface must be verified. Here, we unveil the local solvation structures on a heterogeneously charged phyllosilicate surface in an ionic liquid solution and pure liquid. By identifying adsorbed ion species from the molecular sizes and orientations, we experimentally demonstrate that anions and cations preferentially adsorbed onto the positive and negative surfaces exhibit different orientations and water miscibility. Moreover, we reveal that neutral intermediate regions are formed at the boundary region in ionic liquid media as well as a KCl solution. In the future, this technique will be essential for the evolution of ionic-liquid functional "devices".
Collapse
Affiliation(s)
- Kenichi Umeda
- Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
- Department of Advanced Material Science, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
- Nano Life Science Institute, Institute for Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Kei Kobayashi
- Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Taketoshi Minato
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Katsura, Nishikyo, Kyoto 615-8530, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Hirofumi Yamada
- Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
48
|
Rotnicki K, Sterczyńska A, Fojud Z, Jażdżewska M, Beskrovnyi A, Waliszewski J, Śliwińska-Bartkowiak M. Phase transitions, molecular dynamics and structural properties of 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Meusel M, Lexow M, Gezmis A, Schötz S, Wagner M, Bayer A, Maier F, Steinrück HP. Atomic Force and Scanning Tunneling Microscopy of Ordered Ionic Liquid Wetting Layers from 110 K up to Room Temperature. ACS NANO 2020; 14:9000-9010. [PMID: 32609482 PMCID: PMC7391993 DOI: 10.1021/acsnano.0c03841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/01/2020] [Indexed: 05/31/2023]
Abstract
Ionic liquids (ILs) are used as ultrathin films in many applications. We studied the nanoscale arrangement within the first layer of 1,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C1C1Im] [Tf2N]) on Au(111) between 400 and 110 K in ultrahigh vacuum by scanning tunneling and noncontact atomic force microscopy with molecular resolution. Compared to earlier studies on similar ILs, a different behavior is observed, which we attribute to the small size and symmetrical shape of the cation: (a) In both AFM and STM only the anions are imaged; (b) only long-range-ordered but no amorphous phases are observed; (c) the hexagonal room-temperature phase melts 30-50 K above the IL's bulk melting point; (d) at 110 K, striped and hexagonal superstructures with two and three ion pairs per unit cell, respectively, are found. AFM turned out to be more stable at higher temperature, while STM revealed more details at low temperature.
Collapse
Affiliation(s)
- Manuel Meusel
- Lehrstuhl
für Physikalische Chemie II, Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Matthias Lexow
- Lehrstuhl
für Physikalische Chemie II, Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Afra Gezmis
- Lehrstuhl
für Physikalische Chemie II, Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Simon Schötz
- Lehrstuhl
für Physikalische Chemie II, Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Margareta Wagner
- Lehrstuhl
für Physikalische Chemie II, Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/134, 1040 Vienna, Austria
| | - Andreas Bayer
- Lehrstuhl
für Physikalische Chemie II, Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Florian Maier
- Lehrstuhl
für Physikalische Chemie II, Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Hans-Peter Steinrück
- Lehrstuhl
für Physikalische Chemie II, Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
50
|
Zhuang Y, Cui B, Yang H, Gao F, Parkin SSP. Ionic Liquid Gate-Induced Modifications of Step Edges at SrCoO 2.5 Surfaces. ACS NANO 2020; 14:8562-8569. [PMID: 32609490 PMCID: PMC7467809 DOI: 10.1021/acsnano.0c02880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Intense electric fields developed during gating at the interface between an ionic liquid and an oxide layer have been shown to lead to significant structural and electronic phase transitions in the entire oxide layer. An archetypical example is the reversible transformation between the brownmillerite SrCoO2.5 and the perovskite SrCoO3 engendered by ionic liquid gating. Here we show using in situ atomic force microscopy studies with photothermal excitation detection, that allows for high quality measurements in the viscous environment of the ionic liquid that the edges of atomically smooth terraces at the surface of SrCoO2.5 films are significantly modified by ionic liquid gating but that the terraces themselves remain smooth. The edges develop ridges that we show, using complementary X-ray photoemission spectroscopy studies, result from the adsorption of hydroxyl groups. Our findings exhibit a way of electrically controlled surface modifications in emergent ionitronic applications.
Collapse
Affiliation(s)
| | | | - Hao Yang
- Max Planck Institute for Microstructure
Physics, Halle (Saale) 06120, Germany
| | - Fang Gao
- Max Planck Institute for Microstructure
Physics, Halle (Saale) 06120, Germany
| | | |
Collapse
|