1
|
Wang R, Liu Y, Zhang Y, Yu S, Zhuo H, Huang Y, Lyu J, Lin Y, Zhang X, Mi Z, Liu Y. Identification and characterization of the capsule depolymerase Dpo27 from phage IME-Ap7 specific to Acinetobacter pittii. Front Cell Infect Microbiol 2024; 14:1373052. [PMID: 38808067 PMCID: PMC11130378 DOI: 10.3389/fcimb.2024.1373052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/11/2024] [Indexed: 05/30/2024] Open
Abstract
Among the Acinetobacter genus, Acinetobacter pittii stands out as an important opportunistic infection causative agent commonly found in hospital settings, which poses a serious threat to human health. Recently, the high prevalence of carbapenem-resistant A. pittii isolates has created significant therapeutic challenges for clinicians. Bacteriophages and their derived enzymes are promising therapeutic alternatives or adjuncts to antibiotics effective against multidrug-resistant bacterial infections. However, studies investigating the depolymerases specific to A. pittii strains are scarce. In this study, we identified and characterized a capsule depolymerase, Dpo27, encoded by the bacteriophage IME-Ap7, which targets A. pittii. A total of 23 clinical isolates of Acinetobacter spp. were identified as A. pittii (21.91%, 23/105), and seven A. pittii strains with various K locus (KL) types (KL14, KL32, KL38, KL111, KL163, KL207, and KL220) were used as host bacteria for phage screening. The lytic phage IME-Ap7 was isolated using A. pittii 7 (KL220) as an indicator bacterium and was observed for depolymerase activity. A putative tail fiber gene encoding a polysaccharide-degrading enzyme (Dpo27) was identified and expressed. The results of the modified single-spot assay showed that both A. pittii 7 and 1492 were sensitive to Dpo27, which was assigned the KL220 type. After incubation with Dpo27, A. pittii strain was susceptible to killing by human serum; moreover, the protein displayed no hemolytic activity against erythrocytes. Furthermore, the protein exhibited sustained activity across a wide pH range (5.0-10.0) and at temperatures between 20 and 50°C. In summary, the identified capsule depolymerase Dpo27 holds promise as an alternative treatment for combating KL220-type A. pittii infections.
Collapse
Affiliation(s)
- Rentao Wang
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yannan Liu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yaqian Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shijun Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hailong Zhuo
- Department of Transfusion Medicine, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jinhui Lyu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhiqiang Mi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Youning Liu
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Zhu Z, He C, Sha J, Xiao K, Zhu L. Cation-exchange fibers and silver nanoparticles-modified carbon electrodes for selective removal of hardness ions and simultaneous deactivation of microorganisms in capacitive deionization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171318. [PMID: 38423341 DOI: 10.1016/j.scitotenv.2024.171318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
The hardness and microorganism contamination are common problems of water quality around the world. Capacitive deionization (CDI) is a much-discussed solution to help solve the water crisis by providing efficient water softening while killing microorganism. Carboxylic (Na) cation-exchange fiber (CCEF) is an adsorbent material with good affinity for hardness ions. Silver nanoparticles (AgNPs) is a broad-spectrum microbicide. In this paper, the CCEF modified activated carbon (CCEF-AC) was used as cathode and showed excellent hardness ion adsorption selectivity at the optimum CCEF doping level (αCa2+/Na of 15.0, αMg2+/Na of 13.5). Its electrosorption capacity of Ca2+ reached 311 μmol/g, much higher than that of the AC cathode (188 μmol/g). It also showed good regenerable performance, retaining over 85 % of Ca2+ electrosorption capacity after 50 cycles stability test. The activated carbon modified with AgNPs (AC-Ag) was used as anode. When enhanced by an electric field, it could kill bacteria and microalgae with over 99 % and 90 % inhibition rates, respectively. This work has opened up a new way to simultaneously remove multiple pollutants (organic or inorganic) from water.
Collapse
Affiliation(s)
- Zhonghao Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Can He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jia Sha
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kaijun Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Liang Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Hu ZT, Chen Y, Fei YF, Loo SL, Chen G, Hu M, Song Y, Zhao J, Zhang Y, Wang J. An overview of nanomaterial-based novel disinfection technologies for harmful microorganisms: Mechanism, synthesis, devices and application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155720. [PMID: 35525366 DOI: 10.1016/j.scitotenv.2022.155720] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Harmful microorganism (e.g., new coronavirus) based infection is the most important security concern in life sciences and healthcare. This article aims to provide a state-of-the-art review on the development of advanced technology based on nanomaterial disinfection/sterilization techniques (NDST) for the first time including the nanomaterial types, disinfection techniques, bactericidal devices, sterilization products, and application scenarios (i.e., water, air, medical healthcare), with particular brief account of bactericidal behaviors referring to varied systems. In this emerging research area spanning the years from 1998 to 2021, total of ~200 publications selected for the type of review paper and research articles were reviewed. Four typical functional materials (namely type of metal/metal oxides, S-based, C-based, and N-based) with their development progresses in disinfection/sterilization are summarized with a list of synthesis and design. Among them, the widely used silver nanoparticles (AgNPs) are considered as the most effective bacterial agents in the type of nanomaterials at present and has been reported for inactivation of viruses, fungi, protozoa. Some methodologies against (1) disinfection by-products (DBPs) in traditional sterilization, (2) noble metal nanoparticles (NPs) agglomeration and release, (3) toxic metal leaching, (4) solar spectral response broadening, and (5) photogenerated e-/h+ pairs recombination are reviewed and discussed in this field, namely (1) alternative techniques and nanomaterials, (2) supporter anchoring effect, (3) nonmetal functional nanomaterials, (4) element doping, and (5) heterojunction constructing. The feasible strategies in the perspective of NDST are proposed to involve (1) non-noble metal disinfectors, (2) multi-functional nanomaterials, (3) multi-component nanocomposite innovation, and (4) hybrid techniques for disinfection/sterilization system. It is promising to achieve 100% bactericidal efficiency for 108 CFU/mL within a short time of less than 30 min.
Collapse
Affiliation(s)
- Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yue Chen
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yan-Fei Fei
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Siew-Leng Loo
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yujie Song
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China.
| |
Collapse
|
4
|
Xu Z, Wang T, Liu J. Recent Development of Polydopamine Anti-Bacterial Nanomaterials. Int J Mol Sci 2022; 23:ijms23137278. [PMID: 35806281 PMCID: PMC9266540 DOI: 10.3390/ijms23137278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Polydopamine (PDA), as a mussel-inspired material, exhibits numerous favorable performance characteristics, such as a simple preparation process, prominent photothermal transfer efficiency, excellent biocompatibility, outstanding drug binding ability, and strong adhesive properties, showing great potential in the biomedical field. The rapid development of this field in the past few years has engendered substantial progress in PDA antibacterial materials. This review presents recent advances in PDA-based antimicrobial materials, including the preparation methods and antibacterial mechanisms of free-standing PDA materials and PDA-based composite materials. Furthermore, the urgent challenges and future research opportunities for PDA antibacterial materials are discussed.
Collapse
Affiliation(s)
- Zhengwei Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China;
| | - Tingting Wang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
- Correspondence: (T.W.); (J.L.)
| | - Junqiu Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China;
- Correspondence: (T.W.); (J.L.)
| |
Collapse
|
5
|
Alipoor R, Ayan M, Hamblin MR, Ranjbar R, Rashki S. Hyaluronic Acid-Based Nanomaterials as a New Approach to the Treatment and Prevention of Bacterial Infections. Front Bioeng Biotechnol 2022; 10:913912. [PMID: 35757807 PMCID: PMC9213665 DOI: 10.3389/fbioe.2022.913912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022] Open
Abstract
Bacterial contamination of medical devices is a great concern for public health and an increasing risk for hospital-acquired infections. The ongoing increase in antibiotic-resistant bacterial strains highlights the urgent need to find new effective alternatives to antibiotics. Hyaluronic acid (HA) is a valuable polymer in biomedical applications, partly due to its bactericidal effects on different platforms such as contact lenses, cleaning solutions, wound dressings, cosmetic formulations, etc. Because the pure form of HA is rapidly hydrolyzed, nanotechnology-based approaches have been investigated to improve its clinical utility. Moreover, a combination of HA with other bactericidal molecules could improve the antibacterial effects on drug-resistant bacterial strains, and improve the management of hard-to-heal wound infections. This review summarizes the structure, production, and properties of HA, and its various platforms as a carrier in drug delivery. Herein, we discuss recent works on numerous types of HA-based nanoparticles to overcome the limitations of traditional antibiotics in the treatment of bacterial infections. Advances in the fabrication of controlled release of antimicrobial agents from HA-based nanosystems can allow the complete eradication of pathogenic microorganisms.
Collapse
Affiliation(s)
- Reza Alipoor
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Somaye Rashki
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Xue H, Zhang Z, Lin Z, Su J, Panayi AC, Xiong Y, Hu L, Hu Y, Chen L, Yan C, Xie X, Shi Y, Zhou W, Mi B, Liu G. Enhanced tissue regeneration through immunomodulation of angiogenesis and osteogenesis with a multifaceted nanohybrid modified bioactive scaffold. Bioact Mater 2022; 18:552-568. [PMID: 35845319 PMCID: PMC9256949 DOI: 10.1016/j.bioactmat.2022.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Zhenhe Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jin Su
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chenchen Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xudong Xie
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
- Corresponding author. Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
- Corresponding author. Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
7
|
Wang X, Shan M, Zhang S, Chen X, Liu W, Chen J, Liu X. Stimuli-Responsive Antibacterial Materials: Molecular Structures, Design Principles, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104843. [PMID: 35224893 PMCID: PMC9069201 DOI: 10.1002/advs.202104843] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/30/2022] [Indexed: 05/03/2023]
Abstract
Infections are regarded as the most severe complication associated with human health, which are urgent to be solved. Stimuli-responsive materials are appealing therapeutic platforms for antibacterial treatments, which provide great potential for accurate theranostics. In this review, the advantages, the response mechanisms, and the key design principles of stimuli-responsive antibacterial materials are highlighted. The biomedical applications, the current challenges, and future directions of stimuli-responsive antibacterial materials are also discussed. First, the categories of stimuli-responsive antibacterial materials are comprehensively itemized based on different sources of stimuli, including external physical environmental stimuli (e.g., temperature, light, electricity, salt, etc.) and bacterial metabolites stimuli (e.g., acid, enzyme, redox, etc.). Second, structural characteristics, design principles, and biomedical applications of the responsive materials are discussed, and the underlying interrelationships are revealed. The molecular structures and design principles are closely related to the sources of stimuli. Finally, the challenging issues of stimuli-responsive materials are proposed. This review will provide scientific guidance to promote the clinical applications of stimuli-responsive antibacterial materials.
Collapse
Affiliation(s)
- Xianghong Wang
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Mengyao Shan
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Shike Zhang
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Xin Chen
- College of Food Science and EngineeringNational Engineering Research Center for Wheat & Corn Further ProcessingHenan University of TechnologyZhengzhou450001China
| | - Wentao Liu
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Jinzhou Chen
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Xuying Liu
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
8
|
Gao H, Xu Q, Wang J, Ning C, Liu Y, Xie Y, Lu R. Beyond the Pore Size Limitation of a Nanoporous Graphene Monolayer Membrane for Water Desalination Assisted by an External Electric Field. J Phys Chem Lett 2022; 13:258-266. [PMID: 34968068 DOI: 10.1021/acs.jpclett.1c03834] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One efficient strategy for addressing the global water shortage is advanced membrane separation, which depends on the precise pore size being close to the hydrated ion size and other surface properties like charge and polarity. However, it is very difficult to fabricate uniform pores with diameters of <1 nm on monolayer membranes. By applying an electric field (bias voltage) perpendicular to the direction of the pressure difference, herein we demonstrate for the first time that a monolayer nanoporous graphene membrane with pores much larger than hydrated ions exhibits high salt rejection and allows a high rate of water transport. This theoretical proposal goes beyond the pore size limitation and shows promise for the design of high-performance reverse osmosis membranes.
Collapse
Affiliation(s)
- Haiqi Gao
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Qinghao Xu
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Jing Wang
- Institute of Ultrafast Optical Physics, MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Cai Ning
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Yuzhen Liu
- Institute of Ultrafast Optical Physics, MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Ruifeng Lu
- Institute of Ultrafast Optical Physics, MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
9
|
Liu N, Ren P, Saleem A, Feng W, Huo J, Ma H, Li S, Li P, Huang W. Simultaneous Efficient Decontamination of Bacteria and Heavy Metals via Capacitive Deionization Using Polydopamine/Polyhexamethylene Guanidine Co-deposited Activated Carbon Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61669-61680. [PMID: 34915703 DOI: 10.1021/acsami.1c20145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The contamination of pathogenic micro-organisms and heavy metals in drinking water sources poses a serious threat to human health, which raises the demand for efficient water treatments. Herein, multi-functional capacitive deionization (CDI) electrodes were developed for the simultaneous decontamination of bacteria and heavy metal contaminants. Polyhexamethylene guanidine (PHMG), an antibacterial polymer, was deposited on the surface of the activated carbon (AC) electrode with the assistance of mussel-inspired polydopamine (PDA) chemistry. The main characterization results proved successful co-deposition of PDA and PHMG on the AC electrode, forming a hydrophilic coating layer in one step. Electrochemical analyses indicated that the AC-PDA/PHMG electrodes presented satisfactory capacitive behaviors, with outstanding salt adsorption capacity and cycling stability. The modified electrodes also exhibit excellent disinfection performance and heavy metal adsorption performance. The bacterial elimination rate of co-deposited electrodes grew along with the increase in the PHMG content. Particularly, AC-PDA/PHMG2 electrodes successfully removed and deactivated 99.11% Escherichia coli and 98.67% Pseudomonas aeruginosa (104 CFU mL-1) in water within 60 min. Furthermore, three flow cells made by AC-PDA/PHMG2 electrodes connected in series achieved efficient removal of salt, heavy metals such as lead and cadmium, and bacteria simultaneously, which indicated that the adsorption performance is significantly improved compared with pristine AC electrodes. These results denote the enormous potential of this one-step prepared multi-functional electrodes for facile and effective water purification using CDI technology.
Collapse
Affiliation(s)
- Nian Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Panyu Ren
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Atif Saleem
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Wei Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jingjing Huo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Huifang Ma
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
10
|
Shi W, Xue M, Qian X, Xu X, Gao X, Zheng D, Liu W, Wu F, Gao C, Shen J, Cao X. Achieving Enhanced Capacitive Deionization by Interfacial Coupling in PEDOT Reinforced Cobalt Hexacyanoferrate Nanoflake Arrays. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000128. [PMID: 34377532 PMCID: PMC8335821 DOI: 10.1002/gch2.202000128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/22/2021] [Indexed: 05/12/2023]
Abstract
Capacitive deionization (CDI) as a novel energy and cost-efficient water treatment technology has attracted increasing attention. The recent development of various faradaic electrode materials has greatly enhanced the performance of CDI as compared with traditional carbon electrodes. Prussian blue (PB) has emerged as a promising CDI electrode material due to its open framework for the rapid intercalation/de-intercalation of sodium ions. However, the desalination efficiency, and durability of previously reported PB-based materials are still unsatisfactory. Herein, a self-template strategy is employed to prepare a Poly(3,4-ethylenedioxythiophene) (PEDOT) reinforced cobalt hexacyanoferrate nanoflakes anchored on carbon cloth (denoted as CoHCF@PEDOT). With the high conductivity and structural stability achieved by coupling with a thin PEDOT layer, the as-prepared CoHCF@PEDOT electrode exhibits a high capacity of 126.7 mAh g-1 at 125 mA g-1. The fabricated hybrid CDI cell delivers a high desalination capacity of 146.2 mg g-1 at 100 mA g-1, and good cycling stability. This strategy provides an efficient method for the design of high-performance faradaic electrode materials in CDI applications.
Collapse
Affiliation(s)
- Wenhui Shi
- Center for Membrane and Water Science & TechnologyCollege of Chemical EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Meiting Xue
- Center for Membrane and Water Science & TechnologyCollege of Chemical EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Xin Qian
- Center for Membrane and Water Science & TechnologyCollege of Chemical EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Xilian Xu
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Xinlong Gao
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Dong Zheng
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Wenxian Liu
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Fangfang Wu
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Congjie Gao
- Center for Membrane and Water Science & TechnologyCollege of Chemical EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Jiangnan Shen
- Center for Membrane and Water Science & TechnologyCollege of Chemical EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Xiehong Cao
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| |
Collapse
|
11
|
Lee N, Liu ML, Wu MC, Chen TH, Hou CH. The effect of redox potential on the removal characteristic of divalent cations during activated carbon-based capacitive deionization. CHEMOSPHERE 2021; 274:129762. [PMID: 33548648 DOI: 10.1016/j.chemosphere.2021.129762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/26/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The main objective of the study is to explore the removal characteristics of Cu2+ and Zn2+ ions in activated carbon-based capacitive deionization (CDI). In this work, CDI experiments were performed to remove divalent ions (e.g., Cu2+, Zn2+, and Ca2+) from single- and multicomponent aqueous solutions. As evidenced, divalent heavy metals could be successfully removed by charging the CDI cell at 1.2 V. Notably, the preferential removal of Cu2+ ions over Zn2+ and Ca2+ ions was observed in the charging step. The removal capacities for Cu2+, Zn2+, and Ca2+ ions in a competitive environment were 29.6, 19.6, and 13.8 μmol/g, respectively. In contrast, the regeneration efficiencies for the removal of Cu2+ and Zn2+ were much lower than that of Ca2+, suggesting the occurrence of irreversible Faradaic reactions on the cathode. X-ray photoelectron spectroscopy analysis demonstrated that Cu2+ ions were reduced to Cu(I) and Zn2+ ions were transformed to ZnO/Zn(OH)2 on the cathode. Therefore, there were two major mechanisms for the removal of divalent heavy metal ions: capacitive electrosorption and cathodic electrodeposition. Specifically, the reduction potential played a crucial role in determining the removal characteristics. When regarding divalent cations with similar hydrated sizes, the divalent cation with a higher reduction potential tended to be separated by cathodic electrodeposition rather than double-layer charging, indicating the high removal selectivity of activated carbon-based CDI. This paper constitutes a significant contribution to promoting the application of CDI for contaminant sequestration.
Collapse
Affiliation(s)
- Nung Lee
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd., Taipei, 10617, Taiwan
| | - Meng-Ling Liu
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd., Taipei, 10617, Taiwan
| | - Min-Chen Wu
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd., Taipei, 10617, Taiwan
| | - Tsai-Hsuan Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd., Taipei, 10617, Taiwan
| | - Chia-Hung Hou
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd., Taipei, 10617, Taiwan; Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
12
|
Alayande AB, Kang Y, Jang J, Jee H, Lee YG, Kim IS, Yang E. Antiviral Nanomaterials for Designing Mixed Matrix Membranes. MEMBRANES 2021; 11:membranes11070458. [PMID: 34206245 PMCID: PMC8303748 DOI: 10.3390/membranes11070458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 01/02/2023]
Abstract
Membranes are helpful tools to prevent airborne and waterborne pathogenic microorganisms, including viruses and bacteria. A membrane filter can physically separate pathogens from air or water. Moreover, incorporating antiviral and antibacterial nanoparticles into the matrix of membrane filters can render composite structures capable of killing pathogenic viruses and bacteria. Such membranes incorporated with antiviral and antibacterial nanoparticles have a great potential for being applied in various application scenarios. Therefore, in this perspective article, we attempt to explore the fundamental mechanisms and recent progress of designing antiviral membrane filters, challenges to be addressed, and outlook.
Collapse
Affiliation(s)
| | - Yesol Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Jaewon Jang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Hobin Jee
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong-si 53064, Korea;
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Chuncheon-si 24341, Korea;
| | - In S. Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong-si 53064, Korea;
- Correspondence:
| |
Collapse
|
13
|
Barbhuiya NH, Singh SP, Makovitzki A, Narkhede P, Oren Z, Adar Y, Lupu E, Cherry L, Monash A, Arnusch CJ. Virus Inactivation in Water Using Laser-Induced Graphene Filters. MATERIALS (BASEL, SWITZERLAND) 2021; 14. [PMID: 34207716 DOI: 10.26434/chemrxiv.13489398.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 05/18/2023]
Abstract
Interest in the pathogenesis, detection, and prevention of viral infections has increased broadly in many fields of research over the past year. The development of water treatment technology to combat viral infection by inactivation or disinfection might play a key role in infection prevention in places where drinking water sources are biologically contaminated. Laser-induced graphene (LIG) has antimicrobial and antifouling surface effects mainly because of its electrochemical properties and texture, and LIG-based water filters have been used for the inactivation of bacteria. However, the antiviral activity of LIG-based filters has not yet been explored. Here we show that LIG filters also have antiviral effects by applying electrical potential during filtration of the model prototypic poxvirus Vaccinia lister. This antiviral activity of the LIG filters was compared with its antibacterial activity, which showed that higher voltages were required for the inactivation of viruses compared to that of bacteria. The generation of reactive oxygen species, along with surface electrical effects, played a role in the mechanism of virus inactivation. This new property of LIG highlights its potential for use in water and wastewater treatment for the electrochemical disinfection of various pathogenic microorganisms, including bacteria and viruses.
Collapse
Affiliation(s)
- Najmul Haque Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Pradnya Narkhede
- Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 8499000, Israel
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| | - Ziv Oren
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Yaakov Adar
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Edith Lupu
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Lilach Cherry
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Arik Monash
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| |
Collapse
|
14
|
Barbhuiya NH, Singh SP, Makovitzki A, Narkhede P, Oren Z, Adar Y, Lupu E, Cherry L, Monash A, Arnusch CJ. Virus Inactivation in Water Using Laser-Induced Graphene Filters. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3179. [PMID: 34207716 PMCID: PMC8226673 DOI: 10.3390/ma14123179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
Interest in the pathogenesis, detection, and prevention of viral infections has increased broadly in many fields of research over the past year. The development of water treatment technology to combat viral infection by inactivation or disinfection might play a key role in infection prevention in places where drinking water sources are biologically contaminated. Laser-induced graphene (LIG) has antimicrobial and antifouling surface effects mainly because of its electrochemical properties and texture, and LIG-based water filters have been used for the inactivation of bacteria. However, the antiviral activity of LIG-based filters has not yet been explored. Here we show that LIG filters also have antiviral effects by applying electrical potential during filtration of the model prototypic poxvirus Vaccinia lister. This antiviral activity of the LIG filters was compared with its antibacterial activity, which showed that higher voltages were required for the inactivation of viruses compared to that of bacteria. The generation of reactive oxygen species, along with surface electrical effects, played a role in the mechanism of virus inactivation. This new property of LIG highlights its potential for use in water and wastewater treatment for the electrochemical disinfection of various pathogenic microorganisms, including bacteria and viruses.
Collapse
Affiliation(s)
- Najmul Haque Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India;
| | - Swatantra P. Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India;
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Pradnya Narkhede
- Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 8499000, Israel;
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| | - Ziv Oren
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Yaakov Adar
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Edith Lupu
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Lilach Cherry
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Arik Monash
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Christopher J. Arnusch
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| |
Collapse
|
15
|
Li J, Guo M, Shao Y, Yu H, Ni K. Electrocatalytic Properties of a Novel β-PbO 2/Halloysite Nanotube Composite Electrode. ACS OMEGA 2021; 6:5436-5444. [PMID: 33681583 PMCID: PMC7931436 DOI: 10.1021/acsomega.0c05651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/08/2021] [Indexed: 06/01/2023]
Abstract
To improve the efficiency of electrochemical degradation of wastewater, lead dioxide was synthesized by a hydrothermal method with low cost, simple operation, and high conversion rate. β-PbO2/HNT composites were prepared by a hydrothermal method with Halloysite nanotubes (HNTs) and β-PbO2. The PbO2/HNT/ITO electrode was prepared by modifying the β-PbO2/HNT composite on an indium tin oxide (ITO) conductive glass electrode. The morphology of the material was characterized by scanning electron microscopy and transmission electron microscopy. The electrochemical performance of the electrode was measured by cyclic voltammetry, the galvanostatic charge-discharge method, and the AC impedance method. Electrolysis of typical dye wastewater by electrochemical oxidation was carried out. The effect of electrochemical degradation of wastewater with new electrodes was investigated and the degree of electrodes falling off was compared. The solubility of electrodes was investigated by inductively coupled plasma mass spectrometry lead element analysis of wastewater. The results showed that the β-PbO2/HNT electrodes were prepared successfully and had good charge-discharge performance and lifetime. The removal rate of electrolytic dye wastewater was 85.86%, and the degradation effect was better than that of pure PbO2 electrodes. In this work, a new type of β-PbO2/HNT/ITO electrode has been prepared, which improved the degradation efficiency of wastewater and opened up the prospect of HNT application.
Collapse
Affiliation(s)
- Jiajun Li
- College
of Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Ming Guo
- College
of Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
- College
of Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yan Shao
- College
of Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Hongwei Yu
- College
of Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Kaijie Ni
- College
of Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
16
|
|
17
|
Yang Y, Dong Z, Li M, Liu L, Luo H, Wang P, Zhang D, Yang X, Zhou K, Lei S. Graphene Oxide/Copper Nanoderivatives-Modified Chitosan/Hyaluronic Acid Dressings for Facilitating Wound Healing in Infected Full-Thickness Skin Defects. Int J Nanomedicine 2020; 15:8231-8247. [PMID: 33149572 PMCID: PMC7604465 DOI: 10.2147/ijn.s278631] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Wound healing, especially of infected wounds, remains a clinical challenge in plastic surgery. This study aimed to manufacture a novel and multifunctional wound dressing by combining graphene oxide/copper nanocomposites (GO/Cu) with chitosan/hyaluronic acid, providing significant opportunities for the therapy of wound repair in wounds with a high risk of bacterial infection. METHODS In this study, GO/Cu-decorated chitosan/hyaluronic acid dressings (C/H/GO/Cu) were prepared using sodium trimetaphosphate (STMP) crosslinking and the vacuum freeze-drying method, and chitosan/hyaluronic acid dressings (C/H) and GO-incorporated chitosan/hyaluronic acid dressings (C/H/GO) served as controls. The surface characterization, in vitro degradation under various pH values, antimicrobial potential, cytocompatibility and in vivo therapeutic efficacy in a bacteria-infected full-thickness skin defect model were systematically evaluated. RESULTS Our experimental results indicated that the acidic environment facilitated the release of copper (CuNPs and Cu2+) from the dressings, and prepared C/H/GO/Cu dressings exhibited significant in vitro antimicrobial activities against the two tested bacterial strains (ATCC35984 and ATCC25923). All three dressings showed satisfactory cytocompatibility with mouse fibroblasts (NIH/3T3-L1). Moreover, remarkably accelerated wound healing was found in the C/H/GO/Cu group, with controlled inflammatory infiltration and improved angiogenesis in granulation tissues. In addition, no pathological damage was noted in the tissue structures of the tested organs (heart, lung, liver and kidney) in any of the four groups. CONCLUSION Collectively, GO/Cu-incorporated chitosan/hyaluronic acid dressings suggested a synergistic antimicrobial efficacy and acceptable biocompatibility both in vitro and in vivo, as well as a significantly accelerated healing process of bacteria-infected wounds. Thus, the multifunctional C/H/GO/Cu composite is expected to be a potential alternative for wound dressings, especially for the management of intractable wounds caused by bacterial infection.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha410083, People’s Republic of China
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha410008, People’s Republic of China
| | - Zhonggen Dong
- Department of Orthopedic Surgery, Second Xiangya Hospital, Central South University, Changsha410011, People’s Republic of China
| | - Min Li
- Department of Oncology, Changsha Central Hospital, University of South China, Changsha410004, People’s Republic of China
| | - Lihong Liu
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha410083, People’s Republic of China
- Department of Orthopedic Surgery, Second Xiangya Hospital, Central South University, Changsha410011, People’s Republic of China
| | - Hang Luo
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha410083, People’s Republic of China
| | - Pu Wang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha410008, People’s Republic of China
| | - Dou Zhang
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha410083, People’s Republic of China
| | - Xinghua Yang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha410008, People’s Republic of China
| | - Kechao Zhou
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha410083, People’s Republic of China
| | - Shaorong Lei
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha410008, People’s Republic of China
| |
Collapse
|
18
|
Wang S, Wang G, Wang Y, Song H, Lv S, Li T, Li C. In Situ Formation of Prussian Blue Analogue Nanoparticles Decorated with Three-Dimensional Carbon Nanosheet Networks for Superior Hybrid Capacitive Deionization Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44049-44057. [PMID: 32880429 DOI: 10.1021/acsami.0c12421] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Capacitive deionization (CDI) is considered to be an alternative water purification technology because of its low cost and low driven energy. However, the desalination performance of traditional CDI still cannot meet the requirement of actual operations, which is the limited adsorption capacity of carbon electrodes. Here, we report a feasible and simple strategy for the synthesis of a three-dimensional hierarchical composite with homogeneous Prussian blue analogue nanoparticles, decorating hierarchical porous carbon nanosheet networks (NiHCF@3DC-2) as a redox-active intercalation electrode material for hybrid capacitive deionization (HCDI). The interconnected network structure, accompanied by its unique porous characteristic and uniform NiHCF nanoparticles, endows the prepared NiHCF@3DC-2 with enough straining space for alleviating the effect of volume change upon the regeneration process and guarantees fast transmission kinetics for both electrons and salt ions. As a consequence, an HCDI cell with NiHCF@3DC-2 and activated carbon showed superior desalination ability with a high ion removal capacity of 47.8 mg g-1 (107.5 mg g-1 NiHCF@3DC-2) and good cyclic regenerative performance. Moreover, the Na+ ions storage mechanism and the interfacial synergy of the NiHCF@3DC-2 were also explored by structure and electrochemistry analyses during the CDI process. Our work provides a promising redox-active intercalation electrode material to highly efficient hybrid capacitive deionization for brine.
Collapse
Affiliation(s)
- Shiyong Wang
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523106 Guangdong, China
| | - Gang Wang
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523106 Guangdong, China
| | - Yuwei Wang
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523106 Guangdong, China
| | - Haoran Song
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523106 Guangdong, China
| | - Sihao Lv
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523106 Guangdong, China
| | - Tianzhu Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030 Heilongjiang, China
| | - Changping Li
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523106 Guangdong, China
| |
Collapse
|
19
|
Shi W, Liu X, Deng T, Huang S, Ding M, Miao X, Zhu C, Zhu Y, Liu W, Wu F, Gao C, Yang SW, Yang HY, Shen J, Cao X. Enabling Superior Sodium Capture for Efficient Water Desalination by a Tubular Polyaniline Decorated with Prussian Blue Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907404. [PMID: 32656808 DOI: 10.1002/adma.201907404] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/26/2020] [Indexed: 06/11/2023]
Abstract
The application of electrochemical energy storage materials to capacitive deionization (CDI), a low-cost and energy-efficient technology for brackish water desalination, has recently been proven effective in solving problems of traditional CDI electrodes, i.e., low desalination capacity and incompatibility in high salinity water. However, Faradaic electrode materials suffer from slow salt removal rate and short lifetime, which restrict their practical usage. Herein, a simple strategy is demonstrated for a novel tubular-structured electrode, i.e., polyaniline (PANI)-tube-decorated with Prussian blue (PB) nanocrystals (PB/PANI composite). This composite successfully combines characteristics of two traditional Faradaic materials, and achieves high performance for CDI. Benefiting from unique structure and rationally designed composition, the obtained PB/PANI exhibits superior performance with a large desalination capacity (133.3 mg g-1 at 100 mA g-1 ), and ultrahigh salt-removal rate (0.49 mg g-1 s-1 at 2 A g-1 ). The synergistic effect, interfacial enhancement, and desalination mechanism of PB/PANI are also revealed through in situ characterization and theoretical calculations. Particularly, a concept for recovery of the energy applied to CDI process is demonstrated. This work provides a facile strategy for design of PB-based composites, which motivates the development of advanced materials toward high-performance CDI applications.
Collapse
Affiliation(s)
- Wenhui Shi
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Xiaoyue Liu
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Tianqi Deng
- Institute of High Performance Computing, Agency for Science Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Shaozhuan Huang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Meng Ding
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, 18 Shilongshan Road, Cloud Town, Hangzhou, 310024, China
| | - Chongzhi Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Yihan Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Wenxian Liu
- College of Materials Science and Engineering, and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Fangfang Wu
- College of Materials Science and Engineering, and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Shuo-Wang Yang
- Institute of High Performance Computing, Agency for Science Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Jiangnan Shen
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Xiehong Cao
- College of Materials Science and Engineering, and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| |
Collapse
|
20
|
Qian J, Gao X, Pan B. Nanoconfinement-Mediated Water Treatment: From Fundamental to Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8509-8526. [PMID: 32511915 DOI: 10.1021/acs.est.0c01065] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Safe and clean water is of pivotal importance to all living species and the ecosystem on earth. However, the accelerating economy and industrialization of mankind generate water pollutants with much larger quantity and higher complexity than ever before, challenging the efficacy of traditional water treatment technologies. The flourishing researches on nanomaterials and nanotechnologies in the past decade have generated new understandings on many fundamental processes and brought revolutionary upgrades to various traditional technologies in almost all areas, including water treatment. An indispensable step toward the real application of nanomaterials in water treatment is to confine them in large processable substrate to address various inherent issues, such as spontaneous aggregation, difficult operation and potential environmental risks. Strikingly, when the size of the spatial restriction provided by the substrate is on the order of only one or several nanometers, referred to as nanoconfinement, the phase behavior of matter and the energy diagram of a chemical reaction could be utterly changed. Nevertheless, the relationship between such changes under nanoconfinement and their implications for water treatment is rarely elucidated systematically. In this Critical Review, we will briefly summarize the current state-of-the-art of the nanomaterials, as well as the nanoconfined analogues (i.e., nanocomposites) developed for water treatment. Afterward, we will put emphasis on the effects of nanoconfinement from three aspects, that is, on the structure and behavior of water molecules, on the formation (e.g., crystallization) of confined nanomaterials, and on the nanoenabled chemical reactions. For each aspect, we will build the correlation between the nanoconfinement effects and the current studies for water treatment. More importantly, we will make proposals for future studies based on the missing links between some of the nanoconfinement effects and the water treatment technologies. Through this Critical Review, we aim to raise the research attention on using nanoconfinement as a fundamental guide or even tool to advance water treatment technologies.
Collapse
Affiliation(s)
- Jieshu Qian
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023 China
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 China
| | - Xiang Gao
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023 China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023 China
- State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023 China
| |
Collapse
|
21
|
Zhu Y, Zhang G, Xu C, Wang L. Interconnected Graphene Hollow Shells for High-Performance Capacitive Deionization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29706-29716. [PMID: 32502337 DOI: 10.1021/acsami.0c08509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemical capacitive deionization (CDI) is a promising technology for distributed and energy-efficient water desalination. The development of high-performance capacitive electrodes is critical for enhancing CDI properties and scaling up its applications. Herein, a three-dimensional graphene porous architecture with high CDI performance is successfully constructed by assembling intentionally designed incomplete graphene-based spherical hollow shells. Small graphene oxide (GO) sheets are purposely adopted to prepare sphere shells by wrapping the surface of polystyrene sphere templates. Because the small-sized GO sheets cannot enwrap the spherical templates seamlessly, a unique graphene hollow shell structure with integrally interconnected feature forms upon removal of the templates. Compared to control samples with typical isolated pore structure (3DGA-C) prepared with commonly used large-sized GO sheets, such open and interconnected porous architectures (3DGA-OP) greatly increase their accessibility of specific surface area and pore volume, enabling superior electrochemical performance. The optimized CDI capacities of 3DGA-OP electrodes reach up to 14.4 mg·g-1 in NaCl aqueous of 500 mg·L-1 at 1.2 V, which is about 2 times the 3DGA-C ones (6.7 mg·g-1) and exceeds the CDI values of most reported pure graphene electrodes under the same experimental conditions. This strategy of improving the open interconnectivity between pores illuminates new avenues for developing high performance CDI porous electrodes assembled from two-dimensional materials.
Collapse
Affiliation(s)
- Yueshuai Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Gujia Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Chao Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Lianzhou Wang
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
22
|
Ordered Mesoporous Carbon with Chitosan for Disinfection of Water via Capacitive Deionization. NANOMATERIALS 2020; 10:nano10030489. [PMID: 32182736 PMCID: PMC7153265 DOI: 10.3390/nano10030489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/30/2020] [Indexed: 11/23/2022]
Abstract
Capacitive deionization (CDI) with water disinfection materials is a potential method to produce fresh water from aqueous solutions. Therefore, an ordered mesoporous carbon with chitosan (OMC-CS) was coated on the active carbon (AC) electrode as a capacitive deionization disinfection (CDI) electrode. Comparing with OMC-CS-4,6,8 as CDI electrodes, it was found that OMC-CS-6 as a CDI electrode had an excellent disinfection efficiency, killing about 99.99% Escherichia coli (E. coli) in the CDI process at an applied 1.2 V. The OMC-CS material was did not pollute the water and will not contaminate to the environment in comparison with other chemical antibacterial agents. This CDI electrode could play a huge role in biocontaminated water in the future.
Collapse
|
23
|
Han DC, Zhang CM, Guan J, Gai LH, Yue RY, Liu LN, Afzal MZ, Song C, Wang SG, Sun XF. High-performance capacitive deionization using nitrogen and phosphorus-doped three-dimensional graphene with tunable pore size. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135639] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Liu Y, Leung SSY, Huang Y, Guo Y, Jiang N, Li P, Chen J, Wang R, Bai C, Mi Z, Gao Z. Identification of Two Depolymerases From Phage IME205 and Their Antivirulent Functions on K47 Capsule of Klebsiella pneumoniae. Front Microbiol 2020; 11:218. [PMID: 32117192 PMCID: PMC7034173 DOI: 10.3389/fmicb.2020.00218] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/30/2020] [Indexed: 01/08/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) pose a significant threat to global public health. In present research, a total of 80 CRKP strains belonging to ST11 were collected with 70% (56 of 80 isolates) expressing a K47 capsular type. Thus, it is significant to prevent and control infections caused by these bacteria. Capsule depolymerases could degrade bacterial surface polysaccharides to reduce their virulence and expose bacteria to host immune attack. Previous studies have demonstrated the potential of phage-encoded depolymerases as antivirulent agents in treating CRKP infections in vitro and in vivo. Here, two capsule depolymerases (Dpo42 and Dpo43) derived from phage IME205 were expressed and characterized. Although both depolymerases act on strains with a capsular serotype K47, they are active against different subsets of strains, indicating subtle differences in capsule composition that exist within this serotype. The host range of phage IME205 matched to the sum of specificity range of Dpo42 and Dpo43. These two enzymes maintained stable activity in a relatively broad range of pH levels (pH 5.0–8.0 for Dpo42 and pH 4.0–8.0 for Dpo43) and temperatures (20–70°C). Besides, both Dpo42 and Dpo43 could make host bacteria fully susceptible to the killing effect of serum complement and display no hemolytic activity to erythrocytes. In summary, capsule depolymerases are promising antivirulent agents to combat CRKP infections.
Collapse
Affiliation(s)
- Yannan Liu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | | | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yatao Guo
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Ning Jiang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Puyuan Li
- Department of Respiratory and Critical Care Medicine, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Beijing, China
| | - Rentao Wang
- Department of Respiratory and Critical Care Medicine, The First Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Changqing Bai
- Department of Respiratory and Critical Care Medicine, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|
25
|
Kalfa A, Shapira B, Shopin A, Cohen I, Avraham E, Aurbach D. Capacitive deionization for wastewater treatment: Opportunities and challenges. CHEMOSPHERE 2020; 241:125003. [PMID: 31590019 DOI: 10.1016/j.chemosphere.2019.125003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Capacitive deionization (CDI) is an emerging method for removal of charged ionic species from aqueous solutions, based on electrostatic interactions between (mostly) inorganic ions and porous carbon electrodes. Inspection of recent publications related to CDI processes, revealed that the majority of the publications are related to the removal of salt (NaCl) from the water (desalination) or electrosorption processes. However, such a water desalination is only one process in the improvement of the quality water, it is interesting to review the literature in the context of CDI processes for other water treatment processes. Herein wastewater treatments are discussed. In this paper, we critically review the last publications that relate to capacitive deionization with wastewater treatments. Since wastewater treatments may involve broad aspects, we address in this review four specific water treatment processes that are thought to be connected with CDI processes: organic fouling of CDI cells, removal of heavy metals by CDI processes, removal of organic micropollutants with CDI processes and disinfection with CDI processes. We also evaluate herein the status of several research efforts in this area and suggest future directions.
Collapse
Affiliation(s)
- Ayelet Kalfa
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel; The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Barak Shapira
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel; The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Alexey Shopin
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel; The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Izaak Cohen
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel; The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Eran Avraham
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel; The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - Doron Aurbach
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
26
|
Tang X, Xu H, Shi Y, Wu M, Tian H, Liang J. Porous antimicrobial starch particles containing N-halamine functional groups. Carbohydr Polym 2020; 229:115546. [PMID: 31826415 DOI: 10.1016/j.carbpol.2019.115546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
Abstract
The porous antimicrobial starch particles containing N-Halamine functional groups (PST-MBA-Cl particles) were synthesized by a crosslinking polymerization between starch (ST) and N, N'-methylenebisacrylamide (MBA), and then a chlorination of amide groups of MBA. The synthetic process used only water as the solvent and was environmentally friendly. The results showed that under the optimal preparation conditions, the as-synthesized PST-MBA-Cl particles could have a Cl+% of 8.60 %. Antimicrobial tests showed that PST-MBA-Cl particles had very powerful antimicrobial efficacy against both Staphylococcus aureus and Escherichia coli and could completely kill Staphylococcus aureus with a concentration of 2.1 × 106 CFU/mL and Escherichia coli with a concentration of 5.6 × 106 CFU/mL within a contact time of one minute. Furthermore, the N-Halamine functional groups of PST-MBA-Cl particles also showed excellent stability under storage and reproducibility. Therefore, the as-synthesized PST-MBA-Cl particles will have potential applications in water disinfection.
Collapse
Affiliation(s)
- Xuan Tang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Haidong Xu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Yuqing Shi
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Mingwei Wu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Hongru Tian
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Jie Liang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China.
| |
Collapse
|
27
|
Synthesis of sandwich-structured silver@polydopamine@silver shells with enhanced antibacterial activities. J Colloid Interface Sci 2019; 558:47-54. [PMID: 31580954 DOI: 10.1016/j.jcis.2019.09.091] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 01/18/2023]
Abstract
The unique antibacterial characteristics of Ag nanomaterials offer a wide potential range of applications, but achieving rapid and durable antibacterial efficacy is challenging. This is because the speed and durability of the antibacterial function make conflicting demands on the structural design: the former requires the direct exposure of Ag to the surrounding environment, whereas the durability requires Ag to be protected from the environment. To overcome this incompatibility, we synthesize sandwich-structured polydopamine shells decorated both internally and externally with Ag nanoparticles, which exhibit prompt and lasting bioactivity in applications. These shells are biocompatible and can be used in vivo to counter bacterial infection caused by methicillin-resistant Staphylococcus aureus superbugs and to inhibit biofilm formation. This work represents a new paradigm for the design of composite materials with enhanced antibacterial properties.
Collapse
|
28
|
Bolotsky A, Butler D, Dong C, Gerace K, Glavin NR, Muratore C, Robinson JA, Ebrahimi A. Two-Dimensional Materials in Biosensing and Healthcare: From In Vitro Diagnostics to Optogenetics and Beyond. ACS NANO 2019; 13:9781-9810. [PMID: 31430131 DOI: 10.1021/acsnano.9b03632] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since the isolation of graphene in 2004, there has been an exponentially growing number of reports on layered two-dimensional (2D) materials for applications ranging from protective coatings to biochemical sensing. Due to the exceptional, and often tunable, electrical, optical, electrochemical, and physical properties of these materials, they can serve as the active sensing element or a supporting substrate for diverse healthcare applications. In this review, we provide a survey of the recent reports on the applications of 2D materials in biosensing and other emerging healthcare areas, ranging from wearable technologies to optogenetics to neural interfacing. Specifically, this review provides (i) a holistic evaluation of relevant material properties across a wide range of 2D systems, (ii) a comparison of 2D material-based biosensors to the state-of-the-art, (iii) relevant material synthesis approaches specifically reported for healthcare applications, and (iv) the technological considerations to facilitate mass production and commercialization.
Collapse
Affiliation(s)
| | | | - Chengye Dong
- State Key Lab of Electrical Insulation and Power Equipment , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , People's Republic of China
| | | | - Nicholas R Glavin
- Materials and Manufacturing Directorate , Air Force Research Laboratory , WPAFB , Ohio 45433 , United States
| | - Christopher Muratore
- Department of Chemical and Materials Engineering , University of Dayton , Dayton , Ohio 45469 , United States
| | | | | |
Collapse
|
29
|
Lv J, Jin J, Chen J, Cai B, Jiang W. Antifouling and Antibacterial Properties Constructed by Quaternary Ammonium and Benzyl Ester Derived from Lysine Methacrylamide. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25556-25568. [PMID: 31265220 DOI: 10.1021/acsami.9b06281] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hemocompatibility and antibacterial property are essential for blood contact devices and medical intervention materials. In this study, positively charged quaternary ammonium (QAC) and hydrophobic benzyl group (OBzl) were introduced onto hydrophilic lysine methacrylamide (LysAAm) to obtain two monomers LysAAm-QAC and LysAAm-OBzl, respectively. The structure characterizations of LysAAm-QAC and LysAAm-OBzl were determined by proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, and time-of-flight secondary ion mass spectrometry. LysAAm-QAC and LysAAm-OBzl were cografted onto a silicon wafer with different feeding ratios to construct antifouling and antibacterial properties. The results of fibrinogen adsorption and platelet adhesion proved that the modified sample with the feeding ratio of 3:7 had superior antifouling property. Furthermore, an antimicrobial test with both 2 and 24 h indicated that the modified sample with the feeding ratio of 3:7 had antibacterial ability. The antifouling property was provided by the high surface coverage of LysAAm-QAC and LysAAm-OBzl (91.49%) and the hydrophilic main structure LysAAm on LysAAm-QAC and LysAAm-OBzl (water contact angle was 43.6°). The antibacterial property was improved with the proportion of LysAAm-OBzl (43.6-58.5%) because the increasing hydrophobic OBzl enhanced the ability to insert into the membrane of bacteria and raise the bactericidal efficiency. In application, LysAAm-QAC and LysAAm-OBzl with the feeding ratio of 3:7 were grafted onto the surface of poly(styrene-b-(ethylene-co-butylene)-b-styrene), and a bifunctional surface with antifouling and antibacterial properties was fabricated, which had promising applications in blood contact devices and medical intervention materials.
Collapse
Affiliation(s)
- Jianhua Lv
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
- University of Science and Technology of China , Hefei , Anhui 230026 , PR China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
| | - Jiayue Chen
- Wego Holding Company Limited , Weihai 264210 , PR China
| | - Bing Cai
- Wego Holding Company Limited , Weihai 264210 , PR China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
- University of Science and Technology of China , Hefei , Anhui 230026 , PR China
| |
Collapse
|
30
|
Shende P, Khair R, Gaud RS. Nanostructured cochleates: a multi-layered platform for cellular transportation of therapeutics. Drug Dev Ind Pharm 2019; 45:869-881. [PMID: 30767577 DOI: 10.1080/03639045.2019.1583757] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Among lipid-based nanocarriers, multi-layered cochleates emerge as a novel delivery system because of prevention of oxidation of hydrophobic and hydrophilic drugs, enhancement in permeability, and reduction in dose of drugs. It also improves oral bioavailability and increases the safety of a drug by targeting at a specific site with less side effects. Nanostructured cochleates are used as a carrier for the delivery of water-insoluble or hydrophobic drugs of anticancer, antiviral and anti-inflammatory action. This review article focuses on different methods for preparation of cochleates, mechanism of formation of cochleates, mechanism of action like cochleate undergoes macrophagic endocytosis and release the drug into the systemic circulation by acting on membrane proteins, phospholipids, and receptors. Advanced methods such as calcium-substituted and β-cyclodextrin-based cochleates, novel techniques include microfluidic and modified trapping method. Cochleates showed enhancement in oral bioavailability of amphotericin B, delivery of factor VII, oral mucosal vaccine adjuvant-delivery system, and delivery of volatile oil. In near future, cochleate will be one of the interesting delivery systems to overcome the stability and encapsulation efficiency issues associated with liposomes. The current limiting factors for commercial preparation of cochleates involve high cost of manufacturing, lack of standardization, and specialized equipments.
Collapse
Affiliation(s)
- Pravin Shende
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM's NMIMS , Mumbai , India
| | - Rohan Khair
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM's NMIMS , Mumbai , India
| | - Ram S Gaud
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM's NMIMS , Mumbai , India
| |
Collapse
|
31
|
Liu Y, Leung SSY, Guo Y, Zhao L, Jiang N, Mi L, Li P, Wang C, Qin Y, Mi Z, Bai C, Gao Z. The Capsule Depolymerase Dpo48 Rescues Galleria mellonella and Mice From Acinetobacter baumannii Systemic Infections. Front Microbiol 2019; 10:545. [PMID: 30936862 PMCID: PMC6431613 DOI: 10.3389/fmicb.2019.00545] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/01/2019] [Indexed: 01/12/2023] Open
Abstract
The emergence of multidrug- and extensively drug-resistant Acinetobacter baumannii has made it difficult to treat and control infections caused by this bacterium. Thus, alternatives to conventional antibiotics for management of severe A. baumannii infections is urgently needed. In our previous study, we found that a capsule depolymerase Dpo48 could strip bacterial capsules, and the non-capsuled A. baumannii were significantly decreased in the presence of serum complement in vitro. Here, we further explored its potential as a therapeutic agent for controlling systemic infections caused by extensively drug-resistant A. baumannii. Prior to mammalian studies, the anti-virulence efficacy of Dpo48 was first tested in a Galleria mellonella infection model. Survival rate of Dpo48-pretreated bacteria or Dpo48 treatment group was significantly increased compared to the infective G. mellonella without treatment. Furthermore, the safety and therapeutic efficacy of Dpo48 to mice were evaluated. The mice treated with Dpo48 displayed normal serum levels of TBIL, AST, ALT, ALP, Cr, BUN and LDH, while no significant histopathology changes were observed in tissues of liver, spleen, lung, and kidney. Treatment with Dpo48 could rescue normal and immunocompromised mice from lethal peritoneal sepsis, with the bacterial counts in blood, liver, spleen, lung, and kidney significantly reduced by 1.4-3.3 log colony-forming units at 4 h posttreatment. Besides, the hemolysis and cytotoxicity assays showed that Dpo48 was non-homolytic to human red blood cells and non-toxic to human lung, liver and kidney cell lines. Overall, the present study demonstrated the promising potential of capsule depolymerases as therapeutic agents to prevent antibiotic-resistant A. baumannii infections.
Collapse
Affiliation(s)
- Yannan Liu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China.,Department of Respiratory and Critical Care Medicine, 307th Hospital of Chinese People's Liberation Army, Beijing, China
| | | | - Yatao Guo
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Ning Jiang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Liyuan Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Puyuan Li
- Department of Respiratory and Critical Care Medicine, 307th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Can Wang
- Department of Respiratory and Critical Care Medicine, 307th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Yanhong Qin
- Department of Respiratory and Critical Care Medicine, 307th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Changqing Bai
- Department of Respiratory and Critical Care Medicine, 307th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|
32
|
Tang W, Liang J, He D, Gong J, Tang L, Liu Z, Wang D, Zeng G. Various cell architectures of capacitive deionization: Recent advances and future trends. WATER RESEARCH 2019; 150:225-251. [PMID: 30528919 DOI: 10.1016/j.watres.2018.11.064] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Substantial consumption and widespread contamination of the available freshwater resources necessitate a continuing search for sustainable, cost-effective and energy-efficient technologies for reclaiming this valuable life-sustaining liquid. With these key advantages, capacitive deionization (CDI) has emerged as a promising technology for the facile removal of ions or other charged species from aqueous solutions via capacitive effects or Faradaic interactions, and is currently being actively explored for water treatment with particular applications in water desalination and wastewater remediation. Over the past decade, the CDI research field has progressed enormously with a constant spring-up of various cell architectures assembled with either capacitive electrodes or battery electrodes, specifically including flow-by CDI, membrane CDI, flow-through CDI, inverted CDI, flow-electrode CDI, hybrid CDI, desalination battery and cation intercalation desalination. This article presents a timely and comprehensive review on the recent advances of various CDI cell architectures, particularly the flow-by CDI and membrane CDI with their key research activities subdivided into materials, application, operational mode, cell design, Faradaic reactions and theoretical models. Moreover, we discuss the challenges remaining in the understanding and perfection of various CDI cell architectures and put forward the prospects and directions for CDI future development.
Collapse
Affiliation(s)
- Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China.
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Di He
- Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China.
| |
Collapse
|
33
|
Ko K, Kim MJ, Lee JY, Kim W, Chung H. Effects of graphene oxides and silver-graphene oxides on aquatic microbial activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1087-1095. [PMID: 30266053 DOI: 10.1016/j.scitotenv.2018.09.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/15/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Graphene oxide (GO) and silver-graphene oxide (Ag-GO) are used in various fields, such as biotechnology and environmental engineering, due to their unique material properties, including hydrophilicity, high surface area, mechanical strength, and antibacterial activity. With the increase in the usage of such nanomaterials, they are likely to enter the aquatic environment during the manufacturing process, product use, and disposal. However, the effects of GO and Ag-GO on aquatic microbial activities are not well understood. In this study, we aimed to determine the effects of GO and Ag-GO on the aquatic microbial communities inhabiting a river and a lake located in Seoul, South Korea. Unfiltered natural surface water samples were exposed to GO and Ag-GO at a final concentration of 10 to 100 mg L-1 for 48 h. The activity of leucine aminopeptidase was significantly lowered within 1 h of GO and Ag-GO treatments and nitrification rate was significantly lowered. An increase in intracellular lactate dehydrogenase levels of up to 5% was observed in natural waters under GO and Ag-GO treatments compared to the control (0%), indicating cell membrane damage. In addition, generation of intracellular reactive oxygen species increased up to 184% under 100 mg GO L-1 and 102% under 100 mg Ag-GO L-1 treatment compared to the control (0%). Our results indicate that the activities of microorganisms inhabiting natural surface waters may have been inhibited by oxidative stress and cell membrane damage induced by GO and Ag-GO. We believe that our results may contribute to the development of regulatory guidelines on the release of emerging engineered nanomaterials to the environment.
Collapse
Affiliation(s)
- Kwanyoung Ko
- Department of Environmental Engineering, Konkuk University, Seoul 143-701, Republic of Korea
| | - Min-Ji Kim
- Department of Materials Science and Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Ji-Yeon Lee
- Department of Environmental Engineering, Konkuk University, Seoul 143-701, Republic of Korea
| | - Woong Kim
- Department of Materials Science and Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Haegeun Chung
- Department of Environmental Engineering, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
34
|
Hills KD, Oliveira DA, Cavallaro ND, Gomes CL, McLamore ES. Actuation of chitosan-aptamer nanobrush borders for pathogen sensing. Analyst 2019. [PMID: 29541704 DOI: 10.1039/c7an02039b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We demonstrate a sensing mechanism for rapid detection of Listeria monocytogenes in food samples using the actuation of chitosan-aptamer nanobrush borders. The bio-inspired soft material and sensing strategy mimic natural symbiotic systems, where low levels of bacteria are selectively captured from complex matrices. To engineer this biomimetic system, we first develop reduced graphene oxide/nanoplatinum (rGO-nPt) electrodes, and characterize the fundamental electrochemical behavior in the presence and absence of chitosan nanobrushes during actuation (pH-stimulated osmotic swelling). We then characterize the electrochemical behavior of the nanobrush when receptors (antibodies or DNA aptamers) are conjugated to the surface. Finally, we test various techniques to determine the most efficient capture strategy based on nanobrush actuation, and then apply the biosensors in a food product. Maximum cell capture occurs when aptamers conjugated to the nanobrush bind cells in the extended conformation (pH < 6), followed by impedance measurement in the collapsed nanobrush conformation (pH > 6). The aptamer-nanobrush hybrid material was more efficient than the antibody-nanobrush material, which was likely due to the relatively high adsorption capacity for aptamers. The biomimetic material was used to develop a rapid test (17 min) for selectively detecting L. monocytogenes at concentrations ranging from 9 to 107 CFU mL-1 with no pre-concentration, and in the presence of other Gram-positive cells (Listeria innocua and Staphylococcus aureus). Use of this bio-inspired material is among the most efficient for L. monocytogenes sensing to date, and does not require sample pretreatment, making nanobrush borders a promising new material for rapid pathogen detection in food.
Collapse
|
35
|
Zhang P, Fritz PA, Schroën K, Duan H, Boom RM, Chan-Park MB. Zwitterionic Polymer Modified Porous Carbon for High-Performance and Antifouling Capacitive Desalination. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33564-33573. [PMID: 30188680 DOI: 10.1021/acsami.8b11708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Capacitive deionization (CDI) is an emerging technology for effective brackish water desalination to address fresh water scarcity. It is of great interest due to its high energy efficiency, environmental friendliness, and low-cost operation compared with traditional desalination technologies. However, electrode fouling, caused by dissolved organic matter and resulting in reduction of electrode electrosorption capacity and device lifespan, is an impediment to practical application of CDI. Herein, we report a novel salty water desalination electrode with excellent antifouling properties. The antifouling electrode is prepared by coating zwitterionic polymer brushes, i.e., poly(sulfobetaine methacrylate) (SBMA), on porous carbon (PC) via surface-initiated atom transfer radical polymerization. The successful coating of zwitterionic polymer on PC surface is confirmed by transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, and other characterizations. Coating with polySBMA did not affect the electrosorption capacity of PC electrodes and imparted antifouling properties (versus fouling by model foulant bovine serum albumin) during long-term salt removal tests (100 desalination/regeneration cycles). This is an important step toward practical application of capacitive deionization technology for brackish water desalination.
Collapse
Affiliation(s)
- Penghui Zhang
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459
- Centre for Antimicrobial Bioengineering , Nanyang Technological University , Singapore 637459
- Food Process Engineering Laboratory , Wageningen University , Bornse Weilanden 9 , Wageningen 6708 WG , The Netherlands
| | - Pina Atalanta Fritz
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459
- Centre for Antimicrobial Bioengineering , Nanyang Technological University , Singapore 637459
- Food Process Engineering Laboratory , Wageningen University , Bornse Weilanden 9 , Wageningen 6708 WG , The Netherlands
| | - Karin Schroën
- Food Process Engineering Laboratory , Wageningen University , Bornse Weilanden 9 , Wageningen 6708 WG , The Netherlands
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459
| | - Remko M Boom
- Food Process Engineering Laboratory , Wageningen University , Bornse Weilanden 9 , Wageningen 6708 WG , The Netherlands
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459
- Centre for Antimicrobial Bioengineering , Nanyang Technological University , Singapore 637459
| |
Collapse
|
36
|
Iqbal MF, Mahmood‐Ul‐Hassan, Razaq A, Ashiq MN, Kaneti YV, Azhar AA, Yasmeen F, Saleem Joya K, Abbass S. Effect of Graphene Oxide Thin Film on Growth and Electrochemical Performance of Hierarchical Zinc Sulfide Nanoweb for Supercapacitor Applications. ChemElectroChem 2018. [DOI: 10.1002/celc.201800633] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muhammad F. Iqbal
- Materials Growth and Simulation LaboratoryDepartment of PhysicsUniversity of The Punjab Lahore 54590 Pakistan
- International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan
- Department of PhysicsLahore Garrison University Sector C DHA Phase-VI Lahore Pakistan
| | - Mahmood‐Ul‐Hassan
- Materials Growth and Simulation LaboratoryDepartment of PhysicsUniversity of The Punjab Lahore 54590 Pakistan
| | - Aamir Razaq
- Department of PhysicsCOMSATS Institute of Information Technology Lahore 54000 Pakistan
| | - Muhammad N. Ashiq
- Institute of Chemical SciencesBahauddin Zakariya University Multan 60800 Pakistan
| | - Yusuf V. Kaneti
- International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan
| | - Azhar A. Azhar
- International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan
| | - Farhat Yasmeen
- University of Engineering and Technology, Institute of Environmental Engineering and Research GT Road 54890 Lahore Punjab Pakistan
| | - Khurrum Saleem Joya
- University of Engineering and Technology, Institute of Environmental Engineering and Research GT Road 54890 Lahore Punjab Pakistan
- Department of Energy Conversion and StorageDenmark Technical University (DTU) Roskilde Denmark
- Department of ChemistryKing Fahad University of Petroleum and Minerals (KFUPM) Dhahran Saudi Arabia
| | - Shafqat Abbass
- Institute of Chemical SciencesBahauddin Zakariya University Multan 60800 Pakistan
| |
Collapse
|
37
|
Karahan HE, Wang Y, Li W, Liu F, Wang L, Sui X, Riaz MA, Chen Y. Antimicrobial graphene materials: the interplay of complex materials characteristics and competing mechanisms. Biomater Sci 2018; 6:766-773. [PMID: 29387845 DOI: 10.1039/c7bm00987a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graphene materials (GMs) exhibit attractive antimicrobial activities promising for biomedical and environmental applications. However, we still lack full control over their behaviour and performance mainly due to the complications arising from the coexistence and interplay of multiple factors. Therefore, in this minireview, we attempt to illustrate the structure-property-activity relationships of GMs' antimicrobial activity. We first examine the chemical/physical complexity of GMs focusing on five aspects of their materials characteristics: (i) chemical composition, (ii) impurities and imperfections, (iii) lateral dimension, (iv) self-association (e.g., restacking), and (v) composite/hybrid formation. Next, we briefly summarise the current understanding of their antimicrobial mechanisms. Then, we assign the outlined materials characteristics of GMs to the proposed antimicrobial mechanisms. Lastly, we share our vision regarding the future of research and development in this fast-emerging field.
Collapse
Affiliation(s)
- H Enis Karahan
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW 2006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lv Q, Zhang B, Xing X, Zhao Y, Cai R, Wang W, Gu Q. Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: Novel approach and mechanisms investigation. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:141-149. [PMID: 29304452 DOI: 10.1016/j.jhazmat.2017.12.070] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/11/2017] [Accepted: 12/28/2017] [Indexed: 05/02/2023]
Abstract
Metallic nanoparticle based disinfection represents a promising approach for microbial pollution control in drinking water and thus, biosynthesis of non precious metal nanoparticles is of considerable interest. Herein, an original and efficient route for directly microbial synthesis of copper nanoparticles (Cu-NPs) by Shewanella loihica PV-4 is described and their satisfactorily antimicrobial activities are established. Cu-NPs were successfully synthesized and most of them attaching on the bacterial cell surfaces suggested extracellular Cu(II) bioreduction mainly contributed to this biosynthesis. Using a suite of characterization methods, polycrystalline nature and face centered cubic lattice of Cu-NPs were revealed, with size in the range of 10-16 nm. With Cu-NPs dosage of 100 μg/mL and 105 CFU/mL fresh Escherichia coli suspension, the obtained antibacterial efficiency reached as high as 86.3 ± 0.2% within 12 h. Cell damages were primarily caused by the generated reactive oxygen species with H2O2 playing significant roles. Both cell membrane and cytoplasm components were destroyed, while the key inactivation mechanisms were lipid peroxidation and DNA damage as concluded through correlation analysis. The cost-effective and eco-friendly biosynthesis of Cu-NPs with high antibacterial activities make them particularly attractive for drinking water disinfection.
Collapse
Affiliation(s)
- Qing Lv
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Xuan Xing
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Ruquan Cai
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Wei Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Qian Gu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
39
|
Laxman K, Kimoto D, Sahakyan A, Dutta J. Nanoparticulate Dielectric Overlayer for Enhanced Electric Fields in a Capacitive Deionization Device. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5941-5948. [PMID: 29369615 DOI: 10.1021/acsami.7b16540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The magnitude and distribution of the electric field between two conducting electrodes of a capacitive deionization (CDI) device plays an important role in governing the desalting capacity. A dielectric coating on these electrodes can polarize under an applied potential to modulate the net electric field and hence the salt adsorption capacity of the device. Using finite element models, we show the extent and nature of electric field modulation, associated with changes in the size, thickness, and permittivity of commonly used nanostructured dielectric coatings such as zinc oxide (ZnO) and titanium dioxide (TiO2). Experimental data pertaining to the simulation are obtained by coating activated carbon cloth (ACC) with nanoparticles of ZnO and TiO2 and using them as electrodes in a CDI device. The dielectric-coated electrodes displayed faster desalting kinetics of 1.7 and 1.55 mg g-1 min-1 and higher unsaturated specific salt adsorption capacities of 5.72 and 5.3 mg g-1 for ZnO and TiO2, respectively. In contrast, uncoated ACC had a salt adsorption rate and capacity of 1.05 mg g-1 min-1 and 3.95 mg g-1, respectively. The desalting data is analyzed with respect to the electrical parameters of the electrodes extracted from cyclic voltammetry and impedance measurements. Additionally, the obtained results are correlated with the simulation data to ascertain the governing principles for the changes observed and advances that can be achieved through dielectric-based electrode modifications for enhancing the CDI device performance.
Collapse
Affiliation(s)
- Karthik Laxman
- Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology , Isafjordsgatan 22, Kista, SE-164 40 Stockholm, Sweden
| | - Daiki Kimoto
- Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology , Isafjordsgatan 22, Kista, SE-164 40 Stockholm, Sweden
| | - Armen Sahakyan
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology , Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Joydeep Dutta
- Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology , Isafjordsgatan 22, Kista, SE-164 40 Stockholm, Sweden
| |
Collapse
|
40
|
Zhang C, He D, Ma J, Tang W, Waite TD. Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review. WATER RESEARCH 2018; 128:314-330. [PMID: 29107916 DOI: 10.1016/j.watres.2017.10.024] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 05/04/2023]
Abstract
Capacitive deionization (CDI) is considered to be one of the most promising technologies for the desalination of brackish water with low to medium salinity. In practical applications, Faradaic redox reactions occurring in CDI may have both negative and positive effects on CDI performance. In this review, we present an overview of the types and mechanisms of Faradaic reactions in CDI systems including anodic oxidation of carbon electrodes, cathodic reduction of oxygen and Faradaic ion storage and identify their apparent negative and positive effects on water desalination. A variety of strategies including development of novel electrode materials and use of alternative configurations and/or operational modes are proposed for the purpose of mitigation or elimination of the deterioration of electrodes and the formation of byproducts caused by undesired side Faradaic reactions. It is also recognized that Faradaic reactions facilitate a variety of exciting new applications including i) the incorporation of intercalation electrodes to enhance water desalination or to selectively separate certain ions through reversible Faradaic reactions and ii) the use of particular anodic oxidation and cathodic reduction reactions to realize functions such as water disinfection and contaminant removal.
Collapse
Affiliation(s)
- Changyong Zhang
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Di He
- Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jinxing Ma
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - T David Waite
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
41
|
Muthu M, Wu HF, Gopal J, Sivanesan I, Chun S. Exploiting Microbial Polysaccharides for Biosorption of Trace Elements in Aqueous Environments-Scope for Expansion via Nanomaterial Intervention. Polymers (Basel) 2017; 9:E721. [PMID: 30966021 PMCID: PMC6418523 DOI: 10.3390/polym9120721] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022] Open
Abstract
With pollution sounding high alarms all around us, there is an immediate necessity for remediation. In most cases, the remediation measures require further remediation-the anti-pollutants themselves cause pollution. In this correspondence, the search deepens towards natural biogenic components that can be used for bioremediation. Polysaccharide and biosorption have been themes in discussion for quite some time, where a slow decline in the enthusiasm in this area has been observed. This review revisits the importance of using polysaccharide based materials for biosorption. The need for polysaccharide-based nanocomposites, which hold better promise for greater deliverables, is emphasized as a means of rejuvenating the future perspectives in this area of application.
Collapse
Affiliation(s)
- Manikandan Muthu
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea.
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Judy Gopal
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea.
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Konkuk University, 1, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| | - Sechul Chun
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
42
|
Singh SP, Li Y, Be'er A, Oren Y, Tour JM, Arnusch CJ. Laser-Induced Graphene Layers and Electrodes Prevents Microbial Fouling and Exerts Antimicrobial Action. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18238-18247. [PMID: 28520397 DOI: 10.1021/acsami.7b04863] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Prevention of fouling on surfaces is a major challenge that broadly impacts society. Water treatment technologies, hospital infrastructure, and seawater pipes exemplify surfaces that are susceptible to biofouling. Here we show that laser-induced graphene (LIG) printed on a polyimide film by irradiation with a CO2 infrared laser under ambient conditions is extremely biofilm resistant while as an electrode is strongly antibacterial. We investigated the antibacterial activity of the LIG surface using LIG powder in suspension or deposited on surfaces, and its activity depended on the particle size and oxygen content. Remarkably, the antimicrobial effects of the surface were greatly amplified when voltages in the range of 1.1-2.5 were applied in an electrode configuration in bacterial solutions. The bactericidal mechanism was directly observed using microscopy and fast photography, which showed a rapid bacterial movement toward the LIG surface and subsequent bacterial killing. In addition, electrochemical generation of H2O2 was observed; however, the bacterial killing mechanism depended strongly on the physical and electrical contact of the bacterial cells to the surfaces. The anti-biofilm activity of the LIG surfaces and electrodes could lead to efficient protection of surfaces that are susceptible to biofouling in environmental applications by incorporating LIG onto the surfaces.
Collapse
Affiliation(s)
- Swatantra P Singh
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev , Sede-Boqer Campus, 84990, Israel
| | - Yilun Li
- Department of Chemistry, Department of Materials Science and NanoEngineering, Smalley-Curl Institute and NanoCarbon Center, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Avraham Be'er
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev , Sede-Boqer Campus, 84990, Israel
| | - Yoram Oren
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev , Sede-Boqer Campus, 84990, Israel
| | - James M Tour
- Department of Chemistry, Department of Materials Science and NanoEngineering, Smalley-Curl Institute and NanoCarbon Center, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev , Sede-Boqer Campus, 84990, Israel
| |
Collapse
|
43
|
Si Y, Li J, Zhao C, Deng Y, Ma Y, Wang D, Sun G. Biocidal and Rechargeable N-Halamine Nanofibrous Membranes for Highly Efficient Water Disinfection. ACS Biomater Sci Eng 2017; 3:854-862. [DOI: 10.1021/acsbiomaterials.7b00111] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | - Dong Wang
- Materials
Science and Engineering, Wuhan Textile University, Wuhan 430073, China
| | | |
Collapse
|
44
|
Zhi Z, Su Y, Xi Y, Tian L, Xu M, Wang Q, Pandidan S, Padidan S, Li P, Huang W. Dual-Functional Polyethylene Glycol-b-polyhexanide Surface Coating with in Vitro and in Vivo Antimicrobial and Antifouling Activities. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10383-10397. [PMID: 28263055 DOI: 10.1021/acsami.6b12979] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In recent years, microbial colonization on the surface of biomedical implants/devices has become a severe threat to human health. Herein, surface-immobilized guanidine derivative block copolymers create an antimicrobial and antifouling dual-functional coating. We report the preparation of an antimicrobial and antifouling block copolymer by the conjugation of polyhexanide (PHMB) with either allyl glycidyl ether or allyloxy polyethylene glycol (APEG; MW 1200 and 2400). The allyl glycidyl ether modified PHMB (A-PHMB) and allyloxy polyethylene glycol1200/2400 modified PHMB (APEG1200/2400-PHMB) copolymers were grafted onto a silicone rubber surface as a bottlebrush-like coating, respectively, using a plasma-UV-assisted surface-initiated polymerization. Both A-PHMB and APEG1200/2400-PHMB coatings exhibited excellent broad-spectrum antimicrobial properties against Gram-negative/positive bacteria and fungi. The APEG2400-PHMB coating displayed an improved antibiofilm as well as antifouling properties and a long reusable cycle, compared with two other coatings, due to its abundant PEG blocks among those copolymers. Also, the APEG2400-PHMB-coated silicone coupons were biocompatible toward mammalian cells, as revealed by in vitro hemocompatibile and cytotoxic assays. An in vivo study showed a significant decline of Escherichia coli colonies with a 5-log reduction, indicating the APEG2400-PHMB coating surface worked effectively in the rodent subcutaneous infection model. This PHMB-based block copolymer coating is believed to be an effective strategy to prevent biomaterial-associated infections.
Collapse
Affiliation(s)
- Zelun Zhi
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816, China
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Yajuan Su
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an 710049, China
| | - Yuewei Xi
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an 710049, China
| | - Liang Tian
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816, China
| | - Miao Xu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816, China
| | - Qianqian Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816, China
| | | | - Sara Padidan
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Peng Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816, China
| |
Collapse
|
45
|
Gao Q, Yu M, Su Y, Xie M, Zhao X, Li P, Ma PX. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties. Acta Biomater 2017; 51:112-124. [PMID: 28131941 DOI: 10.1016/j.actbio.2017.01.061] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 12/15/2022]
Abstract
Numerous antimicrobial coatings have been developed for biomedical devices/implants, but few can simultaneously fulfill the requirements for antimicrobial and antifouling ability and biocompatibility. In this study, to develop an antimicrobial and antibiofilm surface coating, diblock amphiphilic molecules with antimicrobial and antifouling segments in a single chain were rationally designed and synthesized. Cationic antimicrobial polypeptides (AMP) were first synthesized by N-carboxyanhydride ring-opening polymerization (NCA-ROP). Heterofunctionalized poly(ethylene glycol) with different lengths (methacrylate-PEGn-tosyl, n=10/45/90) was synthesized and site-specifically conjugated with polypeptides to form diblock amphiphiles. Along with increased PEG chain length, hemolytic activity was considerably improved, and broad-spectrum antimicrobial activity is retained. Three MA-PEGn-b-AMP copolymers were further grafted onto the surface of silicone rubber (a commonly used catheter material) via plasma/UV-induced surface polymerizations to form a bottlebrush-like coating with excellent antimicrobial activity against several pathogenic bacteria (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus), and effectively prevent biofilm formation. This bottlebrush coating also greatly reduced protein adsorption and platelet adhesion, indicating its excellent antifouling ability. An in vitro cytotoxicity study also demonstrated that this coating is biocompatible with mammalian cells. After subcutaneous implantation of the materials in rats, we demonstrated that the g-PEG45-b-AMP bottlebrush coating exhibits significant anti-infective activity in vivo. Thus, this facilely synthesized PEGylated AMP bottlebrush coating is a feasible method to prevent biomedical devices-associated infections. STATEMENT OF SIGNIFICANCE Current antimicrobial coatings are often associated with concerns such as antibiotic resistance, environmental pollution, short-time antimicrobial activity, biofouling, poor blood compatibility and cytotoxicity, etc. To overcome these drawbacks, a robust PEGylated cationic amphiphilic peptides-based bottlebrush-like surface coating is demonstrated here, which fulfil the requirements of antimicrobial and antifouling as well as biocompatibility in the meantime. Briefly, the rational designed g-PEGn-b-AMP block copolymers (n=10/45/90) were synthesized and grafted on silicone surface. This bottlebrush-like coating efficiently kill the contacted bacteria and prevent the biofilm formation, greatly reduced protein and platelet adhesion. It also exhibits excellent blood compatibility and low cytotoxicity in vitro. In particular, g-PEG45-b-AMP coating exhibits significant anti-infection effect in vivo. This coating offering an effective strategy for combating biomedical devices-associated infections.
Collapse
|
46
|
Su Y, Zhi Z, Gao Q, Xie M, Yu M, Lei B, Li P, Ma PX. Autoclaving-Derived Surface Coating with In Vitro and In Vivo Antimicrobial and Antibiofilm Efficacies. Adv Healthc Mater 2017; 6. [PMID: 28128893 DOI: 10.1002/adhm.201601173] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/25/2016] [Indexed: 12/12/2022]
Abstract
Biomedical device-associated infections which engender severe threat to public health require feasible solutions. In this study, block copolymers consisting of antimicrobial, antifouling, and surface-tethering segments in one molecule are synthesized and grafted on polymeric substrates by a facile plasma/autoclave-assisted method. Hetero-bifunctional polyethylene glycol (PEG) with allyl and tosyl groups (APEG-OTs) is first prepared. PEGs with different molecular weights (1200 and 2400 Da) are employed. Polyhexamethylene guanidine (PHMG) which has excellent broad-spectrum antimicrobial activity and thermal/chemical stability, is conjugated with APEG-OTs to generate the block copolymer (APEG-PHMG). Allyl terminated PHMG (A-PHMG) without PEG segments is also synthesized by reacting PHMG with allyl glycidyl ether. The synthesized copolymers are thermal initiated by autoclaving and grafted on plasma pretreated silicone surface, forming permanently bonded bottlebrush-like coatings. Both A-PHMG and APEG1200/2400 -PHMG coatings exhibit potent antimicrobial activity against gram-positive/negative bacteria and fungus, whereas APEG1200/2400 -PHMG coatings show superior antifouling activity and long-term reusability to A-PHMG coating. APEG2400 -PHMG coating demonstrates the most effective in vitro antibiofilm and protein/platelet-resistant properties, as well as excellent hemo/biocompatibility. Furthermore, APEG2400 -PHMG greatly reduces the bacteria number with 5-log reduction in a rodent subcutaneous infection model. This rationally designed dual-functional antimicrobial and antifouling coating has great potential in combating biomedical devices/implant-associated infections.
Collapse
Affiliation(s)
- Yajuan Su
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
| | - Zelun Zhi
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); Nanjing 211816 China
| | - Qiang Gao
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
| | - Meihua Xie
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
| | - Meng Yu
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
| | - Bo Lei
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
| | - Peng Li
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); Nanjing 211816 China
| | - Peter X. Ma
- Department of Biomedical Engineering; University of Michigan; Ann Arbor MI 48109 USA
- Department of Biologic and Materials Sciences; University of Michigan; Ann Arbor MI 48109 USA
- Macromolecular Science and Engineering Center; University of Michigan; Ann Arbor MI 48109 USA
- Department of Materials Science and Engineering; University of Michigan; Ann Arbor MI 48109 USA
| |
Collapse
|
47
|
Akhtar FH, Kumar M, Peinemann KV. Pebax®1657/Graphene oxide composite membranes for improved water vapor separation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.10.045] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Liu M, Zhong X, Yang Z. Chitosan functionalized nanocochleates for enhanced oral absorption of cyclosporine A. Sci Rep 2017; 7:41322. [PMID: 28112262 PMCID: PMC5282608 DOI: 10.1038/srep41322] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/14/2016] [Indexed: 11/17/2022] Open
Abstract
It remains a significant challenge to overcome the poor permeability of cyclosporine A and enhance its oral absorption. In this study, we have identified a positively charged chitosan that is able to induce coiling up of anionic lipids to form nanocochleates with an average size of 114.2 ± 0.8 nm, without the need for calcium ions. These functional chitosan-induced nanocochleates enhanced gastrointestinal absorption of cyclosporine A, up to a 3-fold increase in oral bioavailability. A fluorescence-labeling study confirmed that absorption mainly occurred in the duodenum and jejunum. Transport studies indicated that uptake of chitosan-induced nanocochleates by Caco-2 cells was by clathrin- and caveolae-mediated endocytosis, but not by macropinocytosis. Furthermore, three cellular tight junction proteins, ZO-1, F-actin and claudin-4, were significantly down-regulated, suggesting that chitobiose-induced nanocochleates are able to reconstruct and open tight junctions in intestinal epithelial cells to enhance drug absorption. In summary, these novel bifunctional chitosan-induced nanocochleates appear to have potential to facilitate oral delivery of cyclosporine A.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Urology Department, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Xiaoming Zhong
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Jiangxi Province Tumor Hospital, Nanchang, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
49
|
Su Y, Tian L, Yu M, Gao Q, Wang D, Xi Y, Yang P, Lei B, Ma PX, Li P. Cationic peptidopolysaccharides synthesized by ‘click’ chemistry with enhanced broad-spectrum antimicrobial activities. Polym Chem 2017. [DOI: 10.1039/c7py00528h] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of broad-spectrum antimicrobial cationic peptidopolysaccharides have been synthesized using a facile thiol–ene ‘click’ chemistry.
Collapse
|
50
|
Tang W, Kovalsky P, Cao B, He D, Waite TD. Fluoride Removal from Brackish Groundwaters by Constant Current Capacitive Deionization (CDI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10570-10579. [PMID: 27608070 DOI: 10.1021/acs.est.6b03307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Charging capacitive deionization (CDI) at constant voltage (CV) produces an effluent stream in which ion concentrations vary with time. Compared to CV, charging CDI at constant current (CC) has several advantages, particularly a stable and adjustable effluent ion concentration. In this work, the feasibility of removing fluoride from brackish groundwaters by single-pass constant-current (SPCC) CDI in both zero-volt and reverse-current desorption modes was investigated and a model developed to describe the selective electrosorption of fluoride and chloride. It was found that chloride is preferentially removed from the bulk solution during charging. Both experimental and theoretical results are presented showing effects of operating parameters, including adsorption/desorption current, pump flow rate and fluoride/chloride feed concentrations, on the effluent fluoride concentration, average fluoride adsorption rate and water recovery. Effects of design parameters are also discussed using the validated model. Finally, we describe a possible CDI assembly in which, under appropriate conditions, fluoride water quality targets can be met. The model developed here adequately describes the experimental results obtained and shows how change in the selected system design and operating conditions may impact treated water quality.
Collapse
Affiliation(s)
- Wangwang Tang
- School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Peter Kovalsky
- School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Baichuan Cao
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University , Beijing 100044, P. R. China
| | - Di He
- School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| |
Collapse
|