1
|
Sun X, Guo X, Gao J, Wu J, Huang F, Zhang JH, Huang F, Lu X, Shi Y, Pan L. E-Skin and Its Advanced Applications in Ubiquitous Health Monitoring. Biomedicines 2024; 12:2307. [PMID: 39457619 PMCID: PMC11505155 DOI: 10.3390/biomedicines12102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
E-skin is a bionic device with flexible and intelligent sensing ability that can mimic the touch, temperature, pressure, and other sensing functions of human skin. Because of its flexibility, breathability, biocompatibility, and other characteristics, it is widely used in health management, personalized medicine, disease prevention, and other pan-health fields. With the proposal of new sensing principles, the development of advanced functional materials, the development of microfabrication technology, and the integration of artificial intelligence and algorithms, e-skin has developed rapidly. This paper focuses on the characteristics, fundamentals, new principles, key technologies, and their specific applications in health management, exercise monitoring, emotion and heart monitoring, etc. that advanced e-skin needs to have in the healthcare field. In addition, its significance in infant and child care, elderly care, and assistive devices for the disabled is analyzed. Finally, the current challenges and future directions of the field are discussed. It is expected that this review will generate great interest and inspiration for the development and improvement of novel e-skins and advanced health monitoring systems.
Collapse
Affiliation(s)
- Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jiansong Gao
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jing Wu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Fengchang Huang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jia-Han Zhang
- School of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, China;
| | - Fuhua Huang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| | - Xiao Lu
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210093, China;
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| |
Collapse
|
2
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
3
|
Shao B, Zhang S, Hu Y, Zheng Z, Zhu H, Wang L, Zhao L, Xu F, Wang L, Li M, Shi J. Color-Shifting Iontronic Skin for On-Site, Nonpixelated Pressure Mapping Visualization. NANO LETTERS 2024. [PMID: 38602471 DOI: 10.1021/acs.nanolett.3c04755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Mimicking the function of human skin is highly desired for electronic skins (e-skins) to perceive the tactile stimuli by both their intensity and spatial location. The common strategy using pixelated pressure sensor arrays and display panels greatly increases the device complexity and compromises the portability of e-skins. Herein, we tackled this challenge by developing a user-interactive iontronic skin that simultaneously achieves electrical pressure sensing and on-site, nonpixelated pressure mapping visualization. By merging the electrochromic and iontronic pressure sensing units into an integrated multilayer device, the interlayer charge transfer is regulated by applied pressure, which induces both color shifting and a capacitance change. The iontronic skin could visualize the trajectory of dynamic forces and reveal both the intensity and spatial information on various human activities. The integration of dual-mode pressure responsivity, together with the scalable fabrication and explicit signal output, makes the iontronic skin highly promising in biosignal monitoring and human-machine interaction.
Collapse
Affiliation(s)
- Boyuan Shao
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Shun Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118 People's Republic of China
| | - Yunfei Hu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118 People's Republic of China
| | - Zetao Zheng
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Hang Zhu
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Liu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Lingyu Zhao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Fang Xu
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Luyang Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118 People's Republic of China
| | - Mu Li
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Jidong Shi
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| |
Collapse
|
4
|
Zhou X, Wang Z, Xiong T, He B, Wang Z, Zhang H, Hu D, Liu Y, Yang C, Li Q, Chen M, Zhang Q, Wei L. Fiber Crossbars: An Emerging Architecture of Smart Electronic Textiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300576. [PMID: 37042804 DOI: 10.1002/adma.202300576] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Smart wearables have a significant impact on people's daily lives, enabling personalized motion monitoring, realizing the Internet of Things, and even reshaping the next generation of telemedicine systems. Fiber crossbars (FCs), constructed by crossing two fibers, have become an emerging architecture among the accessible structures of state-of-the-art smart electronic textiles. The mechanical, chemical, and electrical interactions between crossing fibers result in extensive functionalities, leading to the significant development of innovative electronic textiles employing FCs as their basic units. This review provides a timely and comprehensive overview of the structure designs, material selections, and assembly techniques of FC-based devices. The recent advances in FC-based devices are summarized, including multipurpose sensing, multiple-mode computing, high-resolution display, high-efficient power supply, and large-scale textile systems. Finally, current challenges, potential solutions, and future perspectives for FC-based systems are discussed for their further development in scale-up production and commercial applications.
Collapse
Affiliation(s)
- Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Haozhe Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dongmei Hu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yanting Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chunlei Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Ming Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- The Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
5
|
Cheng L, Hao X, Liu G, Zhang W, Cui J, Zhang G, Yang Y, Wang R. A Flexible Pressure Sensor Based on Silicon Nanomembrane. BIOSENSORS 2023; 13:bios13010131. [PMID: 36671966 PMCID: PMC9856423 DOI: 10.3390/bios13010131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 05/17/2023]
Abstract
With advances in new materials and technologies, there has been increasing research focused on flexible sensors. However, in most flexible pressure sensors made using new materials, it is challenging to achieve high detection sensitivity across a wide pressure range. Although traditional silicon-based sensors have good performance, they are not formable and, because of their rigidity and brittleness, they are not suitable for fitting with soft human skin, which limits their application in wearable devices to collect various signals. Silicon nanomembranes are ultra-thin, flexible materials with excellent piezoresistive properties, and they can be applied in various fields, such as in soft robots and flexible devices. In this study, we developed a flexible pressure sensor based on the use of silicon nanomembranes (with a thickness of only 340 nm) as piezoresistive units, which were transferred onto a flexible polydimethylsiloxane (PDMS) substrate. The flexible pressure sensor operated normally in the range of 0-200 kPa, and the sensitivity of the sensor reached 0.0185 kPa-1 in the low-pressure range of 0-5 kPa. In the high-pressure range of 5-200 kPa, the sensitivity of the sensor was maintained at 0.0023 kPa-1. The proposed sensor exhibited a fast response and excellent long-term stability and could recognize human movements, such as the bending of fingers and wrist joints, while maintaining a stable output. Thus, the developed flexible pressure sensor has promising applications in body monitoring and wearable devices.
Collapse
Affiliation(s)
- Lixia Cheng
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
- Department of Mechanical Engineering, Taiyuan Institute of Technology, Taiyuan 030051, China
| | - Xiaojian Hao
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
- Correspondence: (X.H.); (R.W.)
| | - Guochang Liu
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
| | - Wendong Zhang
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
| | - Jiangong Cui
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
| | - Guojun Zhang
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
| | - Yuhua Yang
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
| | - Renxin Wang
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
- Correspondence: (X.H.); (R.W.)
| |
Collapse
|
6
|
Kim D, Chhetry A, Zahed MA, Sharma S, Jeong S, Song H, Park JY. Highly Sensitive and Reliable Piezoresistive Strain Sensor Based on Cobalt Nanoporous Carbon-Incorporated Laser-Induced Graphene for Smart Healthcare Wearables. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1475-1485. [PMID: 36571793 DOI: 10.1021/acsami.2c15500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of highly sensitive, reliable, and cost-effective strain sensors is a big challenge for wearable smart electronics and healthcare applications, such as soft robotics, point-of-care systems, and electronic skins. In this study, we newly fabricated a highly sensitive and reliable piezoresistive strain sensor based on polyhedral cobalt nanoporous carbon (Co-NPC)-incorporated laser-induced graphene (LIG) for wearable smart healthcare applications. The synergistic integration of Co-NPC and LIG enables the performance improvement of the strain sensor by providing an additional conductive pathway and robust mechanical properties with a high surface area of Co-NPC nanoparticles. The proposed porous graphene nanosheets exploited with Co-NPC nanoparticles demonstrated an outstanding sensitivity of 1,177 up to a strain of 18%, which increased to 39,548 beyond 18%. Additionally, the fabricated sensor exhibited an ultralow limit of detection (0.02%) and excellent stability over 20,000 cycles even under high strain conditions (10%). Finally, we successfully demonstrated and evaluated the sensor performance for practical use in healthcare wearables by monitoring wrist pulse, neck pulse, and joint flexion movement. Owing to the outstanding performance of the sensor, the fabricated sensor has great potential in electronic skins, human-machine interactions, and soft robotics applications.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Ashok Chhetry
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Md Abu Zahed
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Sudeep Sharma
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Seonghoon Jeong
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Hyesu Song
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Jae Yeong Park
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| |
Collapse
|
7
|
Tuli A, Singh AP. Polymer-based wearable nano-composite sensors: a review. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2023. [DOI: 10.1080/1023666x.2022.2161737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Aashish Tuli
- Mechanical Engineering, UIET Panjab University, Chandigarh, India
| | | |
Collapse
|
8
|
Tung TT, Tran MT, Pereira AL, Cordeiro CM, Nguyen DD, Tai NH, Tran VV, Hsu CC, Joshi P, Yoshimura M, Feller JF, Castro M, Hassan K, Nine MJ, Stanley N, Losic D. Graphene woven fabric-polydimethylsiloxane piezoresistive films for smart multi-stimuli responses. Colloids Surf B Biointerfaces 2023; 221:112940. [DOI: 10.1016/j.colsurfb.2022.112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/24/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
9
|
Zhang W, Wen J, Yang J, Li M, Peng F, Ma M, Bian J. Multifunctional hybrid hydrogel with transparency, conductivity, and self-adhesion for soft sensors using hemicellulose-decorated polypyrrole as a conductive matrix. Int J Biol Macromol 2022; 223:1-10. [PMID: 36336151 DOI: 10.1016/j.ijbiomac.2022.10.262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Polymers with high conductivity and cross-linking ability are ideal materials for the preparation of conductive hydrogels for application in wearable electronic devices. However, the fabrication of conductive polymer-incorporated hydrogels with good synergistic properties remains a great challenge due to the hydrophobicity and opacity of conjugated π conductive polymers. In this study, a multifunctional hybrid hydrogel was prepared by incorporating hemicellulose-decorated polypyrrole (H/PPY), polyvinyl alcohol (PVA), and tannic acid (TA) into a polyacrylamide (PAM) network. The addition of excess ammonium persulfate (APS) in the process of gelation not only initiated the polymerization of PAM but also resulted in the change of the hydrogel from opaque to transparent by continuously breaking and reducing the size of the PPY particles. The hybrid hydrogel exhibited high transparency and conductivity, good adhesion ability and mechanical performance, and high resistance strain sensitivity and could accurately monitor the strain signals of the index finger and elbow flexion and pulse beat during rest and exercise, which has promising potential for use in wearable or implantable smart sensor devices, electronic skins, and artificial intelligence applications.
Collapse
Affiliation(s)
- Wanjing Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jingyun Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jiyou Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Mingfei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Mingguo Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Kumar A, Rajamanickam R, Hazra J, Mahapatra NR, Ghosh P. Engineering the Nonmorphing Point of Actuation for Controlled Drug Release by Hydrogel Bilayer across the pH Spectrum. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56321-56330. [PMID: 36475612 DOI: 10.1021/acsami.2c16658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hydrogel-based pH-responsive bilayer actuators exhibit bidirectional actuation due to the differences in the concentration gradient developed across the thickness, the volume expansion due to swelling, and the mechanical stiffness of the layers involved. At a pH value (point), where the sum of these factors generates moments of equal magnitudes, the moments cancel each other and result in no net actuation. This pH point is termed here as a "nonmorphing point". In this work, we present a bilayer of chitosan (CS) and carboxymethyl cellulose (CMC) cross-linked with citric acid (CA) with tunable nonmorphing points across the pH spectrum by modulating the concentration and cross-linking density of the layers involved. The standard CS/CMC bilayer films took about 40 s to completely fold (clockwise) in 0.1 M HCl and 78 s to completely fold (anticlockwise) in 0.1 M NaOH. Generally, pH-responsive actuators are designed for targeted drug delivery to a specific site inside the body as they show bidirectional (clockwise/anticlockwise) actuation around a single nonmorphing point. The same pH-responsive system cannot be applied for drug release at another site with a different functioning pH. Thus, having a pH-responsive system with multiple nonmorphing points is highly desirable. Drug release experiments were performed with FITC and EtBr as model drugs loaded in CS and CMC layers. Moreover, the clockwise/anticlockwise actuation of the bilayer around the nonmorphing point can facilitate or inhibit the release of a drug. The clockwise actuation resulted in 55% FITC release and inhibited EtBr release to 4%; anticlockwise actuation resulted in 50% EtBr release and inhibited FITC release to 5%. We demonstrated morphing induced drug release by hydrogel bilayer films with tunable nonmorphing points across the pH spectrum.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Raja Rajamanickam
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pijush Ghosh
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for Responsive Soft Matter, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
11
|
Kumar S, Suryanarayana P. On the bending of rectangular atomic monolayers along different directions: an ab initiostudy. NANOTECHNOLOGY 2022; 34:085701. [PMID: 36541459 DOI: 10.1088/1361-6528/aca4d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
We study the bending of rectangular atomic monolayers along different directions from first principles. Specifically, choosing the phosphorene, GeS, TiS3, and As2S3monolayers as representative examples, we perform Kohn-Sham density functional theory calculations to determine the variation in transverse flexoelectric coefficient and bending modulus with the direction of bending. We find that while the flexoelectric coefficient is nearly isotropic, there is significant and complex anisotropy in bending modulus that also differs between the monolayers, with extremal values not necessarily occurring along the principal directions. In particular, the commonly adopted orthotropic continuum plate model with uniform thickness fails to describe the observed variations in bending modulus for GeS, TiS3, and As2S3. We determine the direction-dependent effective thickness for use in such continuum models. We also show that the anisotropy in bending modulus is not associated with the rehybridization of atomic orbitals.
Collapse
Affiliation(s)
- Shashikant Kumar
- College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Phanish Suryanarayana
- College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| |
Collapse
|
12
|
Di X, Hou J, Yang M, Wu G, Sun P. A bio-inspired, ultra-tough, high-sensitivity, and anti-swelling conductive hydrogel strain sensor for motion detection and information transmission. MATERIALS HORIZONS 2022; 9:3057-3069. [PMID: 36239123 DOI: 10.1039/d2mh00456a] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conductive hydrogels are excellent candidates for the next-generation wearable materials and are being extensively investigated for their potential use in health monitoring devices, human-machine interfaces, and other fields. However, their relatively low mechanical strength and performance degradation due to swelling have presented challenges in their practical application. Inspired by the multiscale heterogeneous architecture of biological tissue, a dynamic cross-linked, ultra-tough, and high-sensitivity hydrogel with a swelling resistance characteristic was fabricated by the principle of multiple non-covalent interaction matching and a step-by-step construction strategy. A heterogeneous structure was constructed by the combination of a 'soft' hydrophobic-conjugated micro-region structural domain with inter/intra-molecular hydrogen bonding and π-π stacking along with 'rigid' cross-linking via strong ionic coordination interactions. Reversible cross-linking synergies and variations in the content of rigid and flexible components guaranteed the hydrogel to undergo flexible and efficient modulation of the structures and gain excellent mechanics, including elongation at break (>2000%), toughness (∼60 MJ m-3), and recovery (>88%). Notably, hydrogels displayed good anti-swelling properties even in solutions with different pH (pH 2-11) and solvents. Moreover, the hydrogel further exhibited fast response (47.4 ms) and high sensitivity due to the presence of dynamic ions (Fe3+, Na+, and Cl-); therefore, it was assembled into a sensor to detect various human motions and used as a signal transmitter for the encryption and decryption of information according to Morse code. This study provides basis for the development of a variety of robust and flexible conductive hydrogels with multifunctional sensing applications in next-generation wearable devices.
Collapse
Affiliation(s)
- Xiang Di
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Jiawen Hou
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Mingming Yang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Guolin Wu
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
13
|
Yang Y, Wei Y, Guo Z, Hou W, Liu Y, Tian H, Ren TL. From Materials to Devices: Graphene toward Practical Applications. SMALL METHODS 2022; 6:e2200671. [PMID: 36008156 DOI: 10.1002/smtd.202200671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Graphene, as an emerging 2D material, has been playing an important role in flexible electronics since its discovery in 2004. The representative fabrication methods of graphene include mechanical exfoliation, liquid-phase exfoliation, chemical vapor deposition, redox reaction, etc. Based on its excellent mechanical, electrical, thermo-acoustical, optical, and other properties, graphene has made a great progress in the development of mechanical sensors, microphone, sound source, electrophysiological detection, solar cells, synaptic transistors, light-emitting devices, and so on. In different application fields, large-scale, low-cost, high-quality, and excellent performance are important factors that limit the industrialization development of graphene. Therefore, laser scribing technology, roll-to-roll technology is used to reduce the cost. High-quality graphene can be obtained through chemical vapor deposition processes. The performance can be improved through the design of structure of the devices, and the homogeneity and stability of devices can be achieved by mechanized machining means. In total, graphene devices show promising prospect for the practical fields of sports monitoring, health detection, voice recognition, energy, etc. There is a hot issue for industry to create and maintain the market competitiveness of graphene products through increasing its versatility and killer application fields.
Collapse
Affiliation(s)
- Yi Yang
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yuhong Wei
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Zhanfeng Guo
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Weiwei Hou
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yingjie Liu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - He Tian
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Hao Y, Wang C, Jiang W, Yoo CG, Ji X, Yang G, Chen J, Lyu G. Lignin-silver triggered multifunctional conductive hydrogels for skinlike sensor applications. Int J Biol Macromol 2022; 221:1282-1293. [PMID: 36113594 DOI: 10.1016/j.ijbiomac.2022.09.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Conductive hydrogels have attracted tremendous attention as a novel generation of wearable devices and body monitoring due to their great stretchability and high flexibility. Here, a multifunctional cellulose nanocrystal @sodium lignosulfonate-silver-poly(acrylamide) nanocomposite hydrogel was prepared by radical polymerization within only a few minutes. This polymerization rapidly occurred by lignosulfonate-silver (Ls-Ag) dynamic catalysis that efficiently activated ammonium persulfate (APS) to initiate the free-radical polymerization. In particular, the hydrogel exhibited excellent tensile strength (406 kPa), ultrahigh stretchability (1880 %), self-recovery, and fatigue resistance. Furthermore, due to the inclusion of Ls-Ag metal ion nanocomposite in the hydrogels, the composite hydrogel presented repeated adhesion to various objects, excellent conductivity (σ ∼ 9.5 mS cm-1), remarkable UV resistance (100 % shielding of the UV spectral region), and high antibacterial activity (above 98 %), which enabled the hydrogel to be applied to epidermal sensors. In addition, the high-sensitivity (gauge factor of 2.46) sensor constructed of the hydrogel monitored the large and subtle movements of the human body and was used as a biological electrode to collect human electromyography and electrocardiographic signals. This work provided a novel strategy for the high-value utilization of lignin, which had potential application prospects in many fields such as wearable bioelectrodes.
Collapse
Affiliation(s)
- Yanping Hao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Weikun Jiang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Gaojin Lyu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
15
|
Zeng Z, Wu N, Yang W, Xu H, Liao Y, Li C, Luković M, Yang Y, Zhao S, Su Z, Lu X. Sustainable-Macromolecule-Assisted Preparation of Cross-linked, Ultralight, Flexible Graphene Aerogel Sensors toward Low-Frequency Strain/Pressure to High-Frequency Vibration Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202047. [PMID: 35570715 DOI: 10.1002/smll.202202047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Ultralight and highly flexible aerogel sensors, composed of reduced graphene oxide cross-linked by sustainable-macromolecule-derived carbon, are prepared via facile freeze-drying and thermal annealing. The synergistic combination of cross-linked graphene nanosheets and micrometer-sized honeycomb pores gives rise to the exceptional properties of the aerogels, including superior compressibility and resilience, good mechanical strength and durability, satisfactory fire-resistance, and outstanding electromechanical sensing performances. The corresponding aerogel sensors, operated at an ultralow voltage of 0.2 V, can efficiently respond to a wide range of strains (0.1-80%) and pressures (13-2750 Pa) even at temperatures beyond 300 °C. Moreover, the ultrahigh-pressure sensitivity of 10 kPa-1 and excellent sensing stability and durability are accomplished. Strikingly, the aerogel sensors can also sense the vibration signals with ultrahigh frequencies of up to 4000 Hz for >1 000 000 cycles, significantly outperforming those of other sensors. These enable successful demonstration of the exceptional performance of the cross-linked graphene-based biomimetic aerogels for sensitive monitoring of mechanical signals, e.g., acting as wearable devices for monitoring human motions, and for nondestructive monitoring of cracks on engineering structures, showing the great potential of the aerogel sensors as next-generation electronics.
Collapse
Affiliation(s)
- Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Na Wu
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Weidong Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, China
| | - Hao Xu
- School of Aeronautics and Astronautics, Dalian University of Technology, Dalian, 116024, China
| | - Yaozhong Liao
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Chenwei Li
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Mirko Luković
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Yunfei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Shanyu Zhao
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Zhongqing Su
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xuehong Lu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
16
|
Banerjee AN. Green syntheses of graphene and its applications in internet of things (IoT)-a status review. NANOTECHNOLOGY 2022; 33:322003. [PMID: 35395654 DOI: 10.1088/1361-6528/ac6599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Internet of Things (IoT) is a trending technological field that converts any physical object into a communicable smarter one by converging the physical world with the digital world. This innovative technology connects the device to the internet and provides a platform to collect real-time data, cloud storage, and analyze the collected data to trigger smart actions from a remote location via remote notifications, etc. Because of its wide-ranging applications, this technology can be integrated into almost all the industries. Another trending field with tremendous opportunities is Nanotechnology, which provides many benefits in several areas of life, and helps to improve many technological and industrial sectors. So, integration of IoT and Nanotechnology can bring about the very important field of Internet of Nanothings (IoNT), which can re-shape the communication industry. For that, data (collected from trillions of nanosensors, connected to billions of devices) would be the 'ultimate truth', which could be generated from highly efficient nanosensors, fabricated from various novel nanomaterials, one of which is graphene, the so-called 'wonder material' of the 21st century. Therefore, graphene-assisted IoT/IoNT platforms may revolutionize the communication technologies around the globe. In this article, a status review of the smart applications of graphene in the IoT sector is presented. Firstly, various green synthesis of graphene for sustainable development is elucidated, followed by its applications in various nanosensors, detectors, actuators, memory, and nano-communication devices. Also, the future market prospects are discussed to converge various emerging concepts like machine learning, fog/edge computing, artificial intelligence, big data, and blockchain, with the graphene-assisted IoT field to bring about the concept of 'all-round connectivity in every sphere possible'.
Collapse
|
17
|
Chiolerio A, Dehshibi MM, Manfredi D, Adamatzky A. Living wearables: Bacterial reactive glove. Biosystems 2022; 218:104691. [PMID: 35595195 DOI: 10.1016/j.biosystems.2022.104691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
Abstract
A reactive bacterial glove is a cotton glove colonised by Acetobacter aceti, an example of biofabrication of a living electronic sensing device. The bacterial colony, supported by a cellulose-based hydrogel, forms a several millimetres-thick living coating on the surface of the glove. This paper proposes a novel method for analysing the complex electrical activity of trains of spikes generated by a living colony. The proposed method, which primarily focuses on dynamic entropy analysis, shows that the bacterial glove responds to mechanical triaxial stimuli by producing travelling patterns of electrical activity. Kolmogorov complexity further supports our investigation into the evolution of dynamic patterns of such waves in the hydrogel and shows how stimuli initiate electrical activity waves across the glove. These waves are diffractive and ultimately are suppressed by depression. Our experiments demonstrate that living substrates could be used to enable reactive sensing wearable by means of living colonies of bacteria, once the paradigm of excitation wave propagation and reflection is implemented.
Collapse
Affiliation(s)
- Alessandro Chiolerio
- Center for Converging Technologies, Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Via Morego 30, 10163 Genova, Italy; Unconventional Computing Laboratory, University of the West England, Bristol, UK.
| | - Mohammad Mahdi Dehshibi
- Department of Computer Science, Universidad Carlos III de Madrid, Madrid, Spain; Unconventional Computing Laboratory, University of the West England, Bristol, UK
| | - Diego Manfredi
- Applied Science and Technology Department, Politecnico di Torino, Torino, Italy
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West England, Bristol, UK
| |
Collapse
|
18
|
Lin JC, Liatsis P, Alexandridis P. Flexible and Stretchable Electrically Conductive Polymer Materials for Physical Sensing Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2059673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jui-Chi Lin
- Department of Biomedical Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Panos Liatsis
- Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, UAE
| | - Paschalis Alexandridis
- Department of Biomedical Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| |
Collapse
|
19
|
Abodurexiti A, Maimaitiyiming X. Carbon Nanotubes‐Based 3D Printing Ink for multifunctional “artificial epidermis” with Long‐Term Environmental Stability. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ayinuer Abodurexiti
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Key Laboratory of Advanced Functional Materials Autonomous Region Institute of Applied Chemistry College of Chemistry Xinjiang University Urumqi Xinjiang 830046 PR China
| | - Xieraili Maimaitiyiming
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Key Laboratory of Advanced Functional Materials Autonomous Region Institute of Applied Chemistry College of Chemistry Xinjiang University Urumqi Xinjiang 830046 PR China
| |
Collapse
|
20
|
Carvalho AF, Kulyk B, Fernandes AJS, Fortunato E, Costa FM. A Review on the Applications of Graphene in Mechanical Transduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101326. [PMID: 34288155 DOI: 10.1002/adma.202101326] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/26/2021] [Indexed: 05/26/2023]
Abstract
A pressing need to develop low-cost, environmentally friendly, and sensitive sensors has arisen with the advent of the always-connected paradigm of the internet-of-things (IoT). In particular, mechanical sensors have been widely studied in recent years for applications ranging from health monitoring, through mechanical biosignals, to structure integrity analysis. On the other hand, innovative ways to implement mechanical actuation have also been the focus of intense research in an attempt to close the circle of human-machine interaction, and move toward applications in flexible electronics. Due to its potential scalability, disposability, and outstanding properties, graphene has been thoroughly studied in the field of mechanical transduction. The applications of graphene in mechanical transduction are reviewed here. An overview of sensor and actuator applications is provided, covering different transduction mechanisms such as piezoresistivity, capacitive sensing, optically interrogated displacement, piezoelectricity, triboelectricity, electrostatic actuation, chemomechanical and thermomechanical actuation, as well as thermoacoustic emission. A critical review of the main approaches is presented within the scope of a wider discussion on the future of this so-called wonder material in the field of mechanical transduction.
Collapse
Affiliation(s)
- Alexandre F Carvalho
- I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Bohdan Kulyk
- I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
| | | | - Elvira Fortunato
- I3N/CENIMAT, Materials Science Department, Faculty of Sciences and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica, 2829-516, Portugal
| | - Florinda M Costa
- I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
21
|
Mechanical sensors based on two-dimensional materials: Sensing mechanisms, structural designs and wearable applications. iScience 2022; 25:103728. [PMID: 35072014 PMCID: PMC8762477 DOI: 10.1016/j.isci.2021.103728] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Compared with bulk materials, atomically thin two-dimensional (2D) crystals possess a range of unique mechanical properties, including relatively high in-plane stiffness and large bending flexibility. The atomic 2D building blocks can be reassembled into precisely designed heterogeneous composite structures of various geometries with customized mechanical sensing behaviors. Due to their small specific density, high flexibility, and environmental adaptability, mechanical sensors based on 2D materials can conform to soft and curved surfaces, thus providing suitable solutions for functional applications in future wearable devices. In this review, we summarize the latest developments in mechanical sensors based on 2D materials from the perspective of function-oriented applications. First, typical mechanical sensing mechanisms are introduced. Second, we attempt to establish a correspondence between typical structure designs and the performance/multi-functions of the devices. Afterward, several particularly promising areas for potential applications are discussed, following which we present perspectives on current challenges and future opportunities
Collapse
|
22
|
Adamatzky A, Ayres P, Beasley AE, Chiolerio A, Dehshibi MM, Gandia A, Albergati E, Mayne R, Nikolaidou A, Roberts N, Tegelaar M, Tsompanas MA, Phillips N, Wösten HAB. Fungal electronics. Biosystems 2021; 212:104588. [PMID: 34979157 DOI: 10.1016/j.biosystems.2021.104588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022]
Abstract
Fungal electronics is a family of living electronic devices made of mycelium bound composites or pure mycelium. Fungal electronic devices are capable of changing their impedance and generating spikes of electrical potential in response to external control parameters. Fungal electronics can be embedded into fungal materials and wearables or used as stand alone sensing and computing devices.
Collapse
Affiliation(s)
| | - Phil Ayres
- The Centre for Information Technology and Architecture, Royal Danish Academy, Copenhagen, Denmark
| | | | - Alessandro Chiolerio
- Unconventional Computing Laboratory, UWE, Bristol, UK; Center for Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Via Morego 30, 10163 Genova, Italy
| | - Mohammad M Dehshibi
- Department of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Antoni Gandia
- Institute for Plant Molecular and Cell Biology, CSIC-UPV, Valencia, Spain
| | - Elena Albergati
- Department of Design, Politecnico di Milano, Milan, Italy; MOGU S.r.l., Inarzo, Italy
| | - Richard Mayne
- Unconventional Computing Laboratory, UWE, Bristol, UK
| | | | - Nic Roberts
- Unconventional Computing Laboratory, UWE, Bristol, UK
| | - Martin Tegelaar
- Microbiology, Department of Biology, University of Utrecht, Utrecht, The Netherlands
| | | | - Neil Phillips
- Unconventional Computing Laboratory, UWE, Bristol, UK
| | - Han A B Wösten
- Microbiology, Department of Biology, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
23
|
Zhang F, Ma PC, Wang J, Zhang Q, Feng W, Zhu Y, Zheng Q. Anisotropic conductive networks for multidimensional sensing. MATERIALS HORIZONS 2021; 8:2615-2653. [PMID: 34617540 DOI: 10.1039/d1mh00615k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the past decade, flexible physical sensors have attracted great attention due to their wide applications in many emerging areas including health-monitoring, human-machine interfaces, smart robots, and entertainment. However, conventional sensors are typically designed to respond to a specific stimulus or a deformation along only one single axis, while directional tracking and accurate monitoring of complex multi-axis stimuli is more critical in practical applications. Multidimensional sensors with distinguishable signals for simultaneous detection of complex postures and movements in multiple directions are highly demanded for the development of wearable electronics. Recently, many efforts have been devoted to the design and fabrication of multidimensional sensors that are capable of distinguishing stimuli from different directions accurately. Benefiting from their unique decoupling mechanisms, anisotropic architectures have been proved to be promising structures for multidimensional sensing. This review summarizes the present state and advances of the design and preparation strategies for fabricating multidimensional sensors based on anisotropic conducting networks. The fabrication strategies of different anisotropic structures, the working mechanism of various types of multidimensional sensing and their corresponding unique applications are presented and discussed. The potential challenges faced by multidimensional sensors are revealed to provide an insightful outlook for the future development.
Collapse
Affiliation(s)
- Fei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Peng-Cheng Ma
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, P. R. China
| | - Jiangxin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Yanwu Zhu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| |
Collapse
|
24
|
Li Z, Li B, Chen B, Zhang J, Li Y. 3D printed graphene/polyurethane wearable pressure sensor for motion fitness monitoring. NANOTECHNOLOGY 2021; 32:395503. [PMID: 34126609 DOI: 10.1088/1361-6528/ac0b1b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
The structural design of three-dimensional (3D) flexible wearable sensors using conductive polymer composites is a hot spot in current research. In this paper, honeycomb-shaped flexible resistive pressure sensors with three different support structures were manufactured by using thermoplastic polyurethane and graphene nanoplatelets composites based on fused deposition 3D printing technology. Based on the various 3D conductive network of the sensors, the flexible sensor exhibit excellent piezoresistive performance, such as adjustable gauge factor (GF) (13.70-54.58), exceptional durability and stability. A combination of representative volume element and finite element simulations was used to simulate the stress distribution of sensors with different structures to predict the structure's effect on the sensor GF. In addition, the sensor can be attached to human body to monitor the body's swallowing and walking behaviors. The sensor has prospective process applications for intelligent wearable devices.
Collapse
Affiliation(s)
- Zhongming Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Bin Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Boqi Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Jin Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Yang Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| |
Collapse
|
25
|
Adamatzky A, Gandia A, Chiolerio A. Towards fungal sensing skin. Fungal Biol Biotechnol 2021; 8:6. [PMID: 33980304 PMCID: PMC8117569 DOI: 10.1186/s40694-021-00113-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
A fungal skin is a thin flexible sheet of a living homogeneous mycelium made by a filamentous fungus. The skin could be used in future living architectures of adaptive buildings and as a sensing living skin for soft self-growing/adaptive robots. In experimental laboratory studies we demonstrate that the fungal skin is capable for recognising mechanical and optical stimulation. The skin reacts differently to loading of a weight, removal of the weight, and switching illumination on and off. These are the first experimental evidences that fungal materials can be used not only as mechanical 'skeletons' in architecture and robotics but also as intelligent skins capable for recognition of external stimuli and sensorial fusion.
Collapse
Affiliation(s)
| | | | - Alessandro Chiolerio
- Unconventional Computing Laboratory, UWE, Bristol, UK
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Torino, Italy
| |
Collapse
|
26
|
Chiolerio A, Adamatzky A. Acetobacter Biofilm: Electronic Characterization and Reactive Transduction of Pressure. ACS Biomater Sci Eng 2021; 7:1651-1662. [PMID: 33780232 PMCID: PMC8153400 DOI: 10.1021/acsbiomaterials.0c01804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/17/2021] [Indexed: 11/28/2022]
Abstract
The bacterial skin studied here is a several centimeter-wide colony of Acetobacter aceti living on a cellulose-based hydrogel. We demonstrate that the colony exhibits trains of spikes of extracellular electrical potential, with amplitudes of the spikes varying from 1 to 17 mV. The bacterial pad responds to mechanical stimulation with distinctive changes in its electrical activity. While studying the passive electrical properties of the bacterial pad, we found that the pad provides an open-circuit voltage drop (between 7 and 25 mV) and a small short-circuit current (1.5-4 nA). We also observed by pulsed tomography and spatially resolved impedance spectroscopy that the conduction occurs along preferential paths, with the peculiar side-effect of having a higher resistance between closer electrodes. We speculate that the Acetobacter biofilms could be utilized in the development of living skin for soft robots: such skin will act as an electrochemical battery and a reactive tactile sensor. It could even be used for wearable devices.
Collapse
Affiliation(s)
- Alessandro Chiolerio
- Center
for Sustainable Future Technologies, Istituto
Italiano di Tecnologia, Via Livorno 60, Torino 10144, Italy
- Unconventional
Computing Laboratory, University of the
West of England, Coldharbour
Lane, Bristol BS16 1QY, United Kingdom
| | - Andrew Adamatzky
- Unconventional
Computing Laboratory, University of the
West of England, Coldharbour
Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
27
|
Sharma S, Chhetry A, Zhang S, Yoon H, Park C, Kim H, Sharifuzzaman M, Hui X, Park JY. Hydrogen-Bond-Triggered Hybrid Nanofibrous Membrane-Based Wearable Pressure Sensor with Ultrahigh Sensitivity over a Broad Pressure Range. ACS NANO 2021; 15:4380-4393. [PMID: 33444498 DOI: 10.1021/acsnano.0c07847] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recently, flexible capacitive pressure sensors have received significant attention in the field of wearable electronics. The high sensitivity over a wide linear range combined with long-term durability is a critical requirement for the fabrication of reliable pressure sensors for versatile applications. Herein, we propose a special approach to enhance the sensitivity and linearity range of a capacitive pressure sensor by fabricating a hybrid ionic nanofibrous membrane as a sensing layer composed of Ti3C2Tx MXene and an ionic salt of lithium sulfonamides in a poly(vinyl alcohol) elastomer matrix. The reversible ion pumping triggered by a hydrogen bond in the hybrid sensing layer leads to high sensitivities of 5.5 and 1.5 kPa-1 in the wide linear ranges of 0-30 and 30-250 kPa, respectively, and a fast response time of 70.4 ms. In addition, the fabricated sensor exhibits a minimum detection limit of 2 Pa and high durability over 20 000 continuous cycles even under a high pressure of 45 kPa. These results indicate that the proposed sensor can be potentially used in mobile medical monitoring devices and next-generation artificial e-skin.
Collapse
Affiliation(s)
- Sudeep Sharma
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Ashok Chhetry
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Shipeng Zhang
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Hyosang Yoon
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Chani Park
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Hyunsik Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Md Sharifuzzaman
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Xue Hui
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Jae Yeong Park
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| |
Collapse
|
28
|
Adamatzky A, Gandia A, Chiolerio A. Fungal sensing skin. Fungal Biol Biotechnol 2021; 8:3. [PMID: 33731205 PMCID: PMC7972235 DOI: 10.1186/s40694-021-00110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/10/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND A fungal skin is a thin flexible sheet of a living homogeneous mycelium made by a filamentous fungus. The skin could be used in future living architectures of adaptive buildings and as a sensing living skin for soft self-growing/adaptive robots. RESULTS In experimental laboratory studies we demonstrate that the fungal skin is capable for recognising mechanical and optical stimulation. The skin reacts differently to loading of a weight, removal of the weight, and switching illumination on and off. CONCLUSION These are the first experimental evidences that fungal materials can be used not only as mechanical 'skeletons' in architecture and robotics but also as intelligent skins capable for recognition of external stimuli and sensorial fusion.
Collapse
Affiliation(s)
| | | | - Alessandro Chiolerio
- Unconventional Computing Laboratory, UWE, Bristol, UK
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Torino, Italy
| |
Collapse
|
29
|
Wu Z, Yang X, Wu J. Conductive Hydrogel- and Organohydrogel-Based Stretchable Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2128-2144. [PMID: 33405508 DOI: 10.1021/acsami.0c21841] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Conductive hydrogels have drawn significant attention in the field of stretchable/wearable sensors due to their intrinsic stretchability, tunable conductivity, biocompatibility, multistimuli sensitivity, and self-healing ability. Recent advancements in hydrogel- and organohydrogel-based sensors, including a novel sensing mechanism, outstanding performance, and broad application scenarios, suggest the great potential of hydrogels for stretchable electronics. However, a systematic summary of hydrogel- and organohydrogel-based sensors in terms of their working principles, unique properties, and promising applications is still lacking. In this spotlight, we present recent advances in hydrogel- and organohydrogel-based stretchable sensors with four main sections: improved stability of hydrogels, fabrication and characterization of organohydrogel, working principles, and performance of different types of sensors. We particularly highlight our recent work on ultrastretchable and high-performance strain, temperature, humidity, and gas sensors based on polyacrylamide/carrageenan double network hydrogel and ethylene glycol/glycerol modified organohydrogels obtained via a facile solvent displacement strategy. The organohydrogels display higher stability (drying and freezing tolerances) and sensing performances than corresponding hydrogels. The sensing mechanisms, key factors influencing the performance, and application prospects of these sensors are revealed. Especially, we find that the hindering effect of polymer networks on the ionic transport is one of the key mechanisms applicable for all four of these kinds of sensors.
Collapse
Affiliation(s)
- Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xing Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
30
|
Cheng L, Wang R, Hao X, Liu G. Design of Flexible Pressure Sensor Based on Conical Microstructure PDMS-Bilayer Graphene. SENSORS 2021; 21:s21010289. [PMID: 33406679 PMCID: PMC7796102 DOI: 10.3390/s21010289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
As a new material, graphene shows excellent properties in mechanics, electricity, optics, and so on, which makes it widely concerned by people. At present, it is difficult for graphene pressure sensor to meet both high sensitivity and large pressure detection range at the same time. Therefore, it is highly desirable to produce flexible pressure sensors with sufficient sensitivity in a wide working range and with simple process. Herein, a relatively high flexible pressure sensor based on piezoresistivity is presented by combining the conical microstructure polydimethylsiloxane (PDMS) with bilayer graphene together. The piezoresistive material (bilayer graphene) attached to the flexible substrate can convert the local deformation caused by the vertical force into the change of resistance. Results show that the pressure sensor based on conical microstructure PDMS-bilayer graphene can operate at a pressure range of 20 kPa while maintaining a sensitivity of 0.122 ± 0.002 kPa−1 (0–5 kPa) and 0.077 ± 0.002 kPa−1 (5–20 kPa), respectively. The response time of the sensor is about 70 ms. In addition to the high sensitivity of the pressure sensor, it also has excellent reproducibility at different pressure and temperature. The pressure sensor based on conical microstructure PDMS-bilayer graphene can sense the motion of joint well when the index finger is bent, which makes it possible to be applied in electronic skin, flexible electronic devices, and other fields.
Collapse
Affiliation(s)
- Lixia Cheng
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China; (L.C.); (X.H.); (G.L.)
- Taiyuan Institute of Technology, Taiyuan 030051, China
| | - Renxin Wang
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China; (L.C.); (X.H.); (G.L.)
- Science and Technology on Sonar Laboratory, Hangzhou 310000, China
- Correspondence:
| | - Xiaojian Hao
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China; (L.C.); (X.H.); (G.L.)
| | - Guochang Liu
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China; (L.C.); (X.H.); (G.L.)
| |
Collapse
|
31
|
Abstract
This review outlines progress in hydrogels with well-defined heterogeneity in structures and responsiveness by using sequential synthesis, photolithography, 3D/4D printing, and macroscopic assembling for programmable shape morphing or actuations.
Collapse
Affiliation(s)
- Feng-mei Cheng
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University
- Jiaxing
- P. R. China
| | - Hong-xu Chen
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University
- Jiaxing
- P. R. China
| | - Hai-dong Li
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University
- Jiaxing
- P. R. China
| |
Collapse
|
32
|
Yu R, Zhu C, Wan J, Li Y, Hong X. Review of Graphene-Based Textile Strain Sensors, with Emphasis on Structure Activity Relationship. Polymers (Basel) 2021; 13:polym13010151. [PMID: 33401466 PMCID: PMC7795091 DOI: 10.3390/polym13010151] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Graphene-based textile strain sensors were reviewed in terms of their preparation methods, performance, and applications with particular attention on its forming method, the key properties (sensitivity, stability, sensing range and response time), and comparisons. Staple fiber strain sensors, staple and filament strain sensors, nonwoven fabric strain sensors, woven fabric strain sensors and knitted fabric strain sensors were summarized, respectively. (i) In general, graphene-based textile strain sensors can be obtained in two ways. One method is to prepare conductive textiles through spinning and weaving techniques, and the graphene worked as conductive filler. The other method is to deposit graphene-based materials on the surface of textiles, the graphene served as conductive coatings and colorants. (ii) The gauge factor (GF) value of sensor refers to its mechanical and electromechanical properties, which are the key evaluation indicators. We found the absolute value of GF of graphene-based textile strain sensor could be roughly divided into two trends according to its structural changes. Firstly, in the recoverable deformation stage, GF usually decreased with the increase of strain. Secondly, in the unrecoverable deformation stage, GF usually increased with the increase of strain. (iii) The main challenge of graphene-based textile strain sensors was that their application capacity received limited studies. Most of current studies only discussed washability, seldomly involving the impact of other environmental factors, including friction, PH, etc. Based on these developments, this work was done to provide some merit to references and guidelines for the progress of future research on flexible and wearable electronics.
Collapse
Affiliation(s)
- Rufang Yu
- College of Textiles (International Silk Institute), Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (C.Z.); (Y.L.)
- Tongxiang Research Institute, Zhejiang Sci-Tech University, Tongxiang 314599, China;
| | - Chengyan Zhu
- College of Textiles (International Silk Institute), Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (C.Z.); (Y.L.)
- Tongxiang Research Institute, Zhejiang Sci-Tech University, Tongxiang 314599, China;
| | - Junmin Wan
- Tongxiang Research Institute, Zhejiang Sci-Tech University, Tongxiang 314599, China;
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yongqiang Li
- College of Textiles (International Silk Institute), Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (C.Z.); (Y.L.)
- Tongxiang Research Institute, Zhejiang Sci-Tech University, Tongxiang 314599, China;
| | - Xinghua Hong
- College of Textiles (International Silk Institute), Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (C.Z.); (Y.L.)
- Tongxiang Research Institute, Zhejiang Sci-Tech University, Tongxiang 314599, China;
- Correspondence: ; Tel.: +86-0571-86843262
| |
Collapse
|
33
|
Xu W, Huang Y, Zhao X, Jiang X, Yang T, Zhu H. Patterning of graphene for highly sensitive strain sensing on various curved surfaces. NANO SELECT 2021. [DOI: 10.1002/nano.202000115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Wei Xu
- Tribology Research Institute School of Mechanical Engineering Southwest Jiaotong University Chengdu 610031 China
- Microsystem and Terahertz Research Center Institute of Electronic Engineering China Academy of Engineering Physics Mianyang 621900 China
| | - Yuehua Huang
- College of Engineering and Technology Southwest University Chongqing 400715 China
| | - Xuanliang Zhao
- State Key Lab of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Xin Jiang
- State Key Lab of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Tingting Yang
- Tribology Research Institute School of Mechanical Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
34
|
Yang T, Wang W, Huang Y, Jiang X, Zhao X. Accurate Monitoring of Small Strain for Timbre Recognition via Ductile Fragmentation of Functionalized Graphene Multilayers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57352-57361. [PMID: 33301304 DOI: 10.1021/acsami.0c16855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sensitivity and linearity are two key parameters of flexible strain sensors. Although the introduction of microstructures (e.g., channel crack inspired by the geometry of the spider's slit organ) can effectively improve the sensitivity, the sudden breakage of the conductive path in turn leads to poor linearity. In practical applications, in order to achieve precise detection of subtle strains, high sensitivity and high linearity are required simultaneously. Here, we report a strain sensor design strategy based on the ductile fragmentation of functionalized graphene multilayers (FGMs) in which the conductive path is gradually broken to ensure high sensitivity while greatly improving the linear response of the sensor. The presence of oxygen-containing functional groups plays a key role in the deformation and fracture behaviors of the sensitive layer. High sensitivity (gauge factor ∼ 200) and high linearity (adjusted R-square ∼ 0.99936) have been achieved simultaneously in the strain range of 0-2.5%. In addition, the sensor also shows an ultralow detection limit (ε < 0.001%), an ultrafast response (response time ∼ 50 μs), good stability, and good patterning capability compatible with complex curved surface manufacturing. These outstanding performances allow the FGM-based strain sensors to accurately distinguish the sound amplitude and frequency, highlighting the sensor's potential as smart devices for human voice detection. Such sensors have potential applications in the fields of smart skin, wearable electronics, robotics, and so on.
Collapse
Affiliation(s)
- Tingting Yang
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wen Wang
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuehua Huang
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Xin Jiang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xuanliang Zhao
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Zheng C, Lu K, Lu Y, Zhu S, Yue Y, Xu X, Mei C, Xiao H, Wu Q, Han J. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydr Polym 2020; 250:116905. [DOI: 10.1016/j.carbpol.2020.116905] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
|
36
|
Cheng M, Zhu G, Zhang F, Tang WL, Jianping S, Yang JQ, Zhu LY. A review of flexible force sensors for human health monitoring. J Adv Res 2020; 26:53-68. [PMID: 33133683 PMCID: PMC7584676 DOI: 10.1016/j.jare.2020.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In recent years, health monitoring systems (HMS) have aroused great interest due to their broad prospects in preventive medicine. As an important component of HMS, flexible force sensors (FFS) with high flexibility and stretch-ability can monitor vital health parameters and detect physical movements. AIM OF REVIEW In this review, the novel materials, the advanced additive manufacturing technologies, the selective sensing mechanisms and typical applications in both wearable and implantable HMS are discussed. KEY SCIENTIFIC CONCEPTS AND IMPORTANT FINDINGS OF REVIEW We recognized that the next generation of the FFS will have higher sensitivity, wider linear range as well as better durability, self-power supplied and multifunctional integrated. In conclusion, the FFS will provide powerful socioeconomic benefits and improve people's quality of life in the future.
Collapse
Affiliation(s)
- Ming Cheng
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, China
| | - Guotao Zhu
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, China
- Nanjing Institute of Intelligent Advanced Equipment Industry Co., Ltd., Nanjing, China
| | - Wen-lai Tang
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, China
- Nanjing Institute of Intelligent Advanced Equipment Industry Co., Ltd., Nanjing, China
| | - Shi Jianping
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, China
- Nanjing Institute of Intelligent Advanced Equipment Industry Co., Ltd., Nanjing, China
| | - Ji-quan Yang
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, China
- Nanjing Institute of Intelligent Advanced Equipment Industry Co., Ltd., Nanjing, China
| | - Li-ya Zhu
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, China
- Nanjing Institute of Intelligent Advanced Equipment Industry Co., Ltd., Nanjing, China
| |
Collapse
|
37
|
Wang L, Dou W, Chen J, Lu K, Zhang F, Abdulaziz M, Su W, Li A, Xu C, Sun Y. A CNT-PDMS wearable device for simultaneous measurement of wrist pulse pressure and cardiac electrical activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111345. [PMID: 32919692 DOI: 10.1016/j.msec.2020.111345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 06/16/2020] [Accepted: 07/17/2020] [Indexed: 11/18/2022]
Abstract
Simultaneous measurement of multi-physiological signals can provide effective diagnosis and therapeutic assessment of diseases. This paper reports a carbon nanotube (CNT) - Polydimethylsiloxane (PDMS) - based wearable device with piezo-resistive and voltage-sensing capabilities for simultaneously capturing wrist pulse pressure and cardiac electrical signal. The layout design of sensing elements in the device was guided by analyzing strain distribution and electric field distribution for minimizing the interference between wrist pulse and cardiac electric activity during measurement. Each device was preconditioned under the strain of 20% until the resistance change of the device reached equilibrium. After preconditioning, the relationship between the resistance change and the pressure was calibrated, which determined the device sensitivity to be 0.01 Pa-1 and the linear pressure range of the device to be 0.4 kPa to 14.0 kPa. Mechanisms of CNT-PDMS for sensing strain signal and electrical pulse signal were explored by scanning electron microscopy (SEM) imaging and equivalent circuit modeling. The device was applied to monitor the wrist pulse and ECG signals of volunteers during the recovering process after physical exercises.
Collapse
Affiliation(s)
- Li Wang
- Advanced Micro and Nanoinstruments Center (AMNC), School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Jun Chen
- Advanced Micro and Nanoinstruments Center (AMNC), School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China.
| | - Kechao Lu
- Advanced Micro and Nanoinstruments Center (AMNC), School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Feng Zhang
- Advanced Micro and Nanoinstruments Center (AMNC), School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Mohammed Abdulaziz
- Department of Mechanical and Process Engineering, University of Duisburg Essen, Forsthausweg 247057, Germany
| | - Weiguang Su
- Advanced Micro and Nanoinstruments Center (AMNC), School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Anqing Li
- Advanced Micro and Nanoinstruments Center (AMNC), School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Chonghai Xu
- Advanced Micro and Nanoinstruments Center (AMNC), School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China.
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| |
Collapse
|
38
|
Huang L, Wang H, Wu P, Huang W, Gao W, Fang F, Cai N, Chen R, Zhu Z. Wearable Flexible Strain Sensor Based on Three-Dimensional Wavy Laser-Induced Graphene and Silicone Rubber. SENSORS 2020; 20:s20154266. [PMID: 32751740 PMCID: PMC7435625 DOI: 10.3390/s20154266] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
Laser-induced graphene (LIG) has the advantages of one-step fabrication, prominent mechanical performance, as well as high conductivity; it acts as the ideal material to fabricate flexible strain sensors. In this study, a wearable flexible strain sensor consisting of three-dimensional (3D) wavy LIG and silicone rubber was reported. With a laser to scan on a polyimide film, 3D wavy LIG could be synthesized on the wavy surface of a mold. The wavy-LIG strain sensor was developed by transferring LIG to silicone rubber substrate and then packaging. For stress concentration, the ultimate strain primarily took place in the troughs of wavy LIG, resulting in higher sensitivity and less damage to LIG during stretching. As a result, the wavy-LIG strain sensor achieved high sensitivity (gauge factor was 37.8 in a range from 0% to 31.8%, better than the planar-LIG sensor), low hysteresis (1.39%) and wide working range (from 0% to 47.7%). The wavy-LIG strain sensor had a stable and rapid dynamic response; its reversibility and repeatability were demonstrated. After 5000 cycles, the signal peak varied by only 2.32%, demonstrating the long-term durability. Besides, its applications in detecting facial skin expansion, muscle movement, and joint movement, were discussed. It is considered a simple, efficient, and low-cost method to fabricate a flexible strain sensor with high sensitivity and structural robustness. Furthermore, the wavy-LIG strain senor can be developed into wearable sensing devices for virtual/augmented reality or electronic skin.
Collapse
Affiliation(s)
- Lixiong Huang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment (2019DG780017), Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, Ultra-Precision Manufacturing Equipment Guangdong-Hong Kong Joint Laboratory, Key Laboratory of Precision Electronic Manufacturing Equipment and Technology, Ministry of Education, School of Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (L.H.); (P.W.); (F.F.)
| | - Han Wang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment (2019DG780017), Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, Ultra-Precision Manufacturing Equipment Guangdong-Hong Kong Joint Laboratory, Key Laboratory of Precision Electronic Manufacturing Equipment and Technology, Ministry of Education, School of Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (L.H.); (P.W.); (F.F.)
- Correspondence:
| | - Peixuan Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment (2019DG780017), Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, Ultra-Precision Manufacturing Equipment Guangdong-Hong Kong Joint Laboratory, Key Laboratory of Precision Electronic Manufacturing Equipment and Technology, Ministry of Education, School of Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (L.H.); (P.W.); (F.F.)
| | - Weimin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Wei Gao
- Department of Chemical and Materials Engineering, the University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Feiyu Fang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment (2019DG780017), Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, Ultra-Precision Manufacturing Equipment Guangdong-Hong Kong Joint Laboratory, Key Laboratory of Precision Electronic Manufacturing Equipment and Technology, Ministry of Education, School of Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (L.H.); (P.W.); (F.F.)
| | - Nian Cai
- School of Information Science, Guangdong University of Technology, Guangzhou 510006, China;
| | - Rouxi Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Ziming Zhu
- Foshan Lepton Precision M&C Tech Co., Ltd., Foshan 528225, China;
| |
Collapse
|
39
|
Abolpour Moshizi S, Azadi S, Belford A, Razmjou A, Wu S, Han ZJ, Asadnia M. Development of an Ultra-Sensitive and Flexible Piezoresistive Flow Sensor Using Vertical Graphene Nanosheets. NANO-MICRO LETTERS 2020; 12:109. [PMID: 34138091 PMCID: PMC7770822 DOI: 10.1007/s40820-020-00446-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/20/2020] [Indexed: 05/21/2023]
Abstract
This paper suggests development of a flexible, lightweight, and ultra-sensitive piezoresistive flow sensor based on vertical graphene nanosheets (VGNs) with a mazelike structure. The sensor was thoroughly characterized for steady-state and oscillatory water flow monitoring applications. The results demonstrated a high sensitivity (103.91 mV (mm/s)-1) and a very low-velocity detection threshold (1.127 mm s-1) in steady-state flow monitoring. As one of many potential applications, we demonstrated that the proposed VGNs/PDMS flow sensor can closely mimic the vestibular hair cell sensors housed inside the semicircular canals (SCCs). As a proof of concept, magnetic resonance imaging of the human inner ear was conducted to measure the dimensions of the SCCs and to develop a 3D printed lateral semicircular canal (LSCC). The sensor was embedded into the artificial LSCC and tested for various physiological movements. The obtained results indicate that the flow sensor is able to distinguish minute changes in the rotational axis physical geometry, frequency, and amplitude. The success of this study paves the way for extending this technology not only to vestibular organ prosthesis but also to other applications such as blood/urine flow monitoring, intravenous therapy (IV), water leakage monitoring, and unmanned underwater robots through incorporation of the appropriate packaging of devices.
Collapse
Affiliation(s)
| | - Shohreh Azadi
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Andrew Belford
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Amir Razmjou
- UNESCO Centre for Membrane Science and Technology, School of Chemical Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shuying Wu
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Zhao Jun Han
- CSIRO Manufacturing, PO Box 218, 36 Bradfield Road, Lindfield, NSW, 2070, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
40
|
Chen M, Cheng Q, Qian Y, He J, Dong X. Alkali cation incorporated MnO2 cathode and carbon cloth anode for flexible aqueous supercapacitor with high wide-voltage and power density. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Lou M, Abdalla I, Zhu M, Wei X, Yu J, Li Z, Ding B. Highly Wearable, Breathable, and Washable Sensing Textile for Human Motion and Pulse Monitoring. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19965-19973. [PMID: 32275380 DOI: 10.1021/acsami.0c03670] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
At present, pressure sensor textiles are of great significance in the area of wearable electronics, especially for making smart or intelligent textiles. However, the design of these textile-based devices with sensitive ability, simple fabrication, and low cost is still challenging. In this study, we developed a triboelectric sensing textile constructed with core-shell yarns. Nylon filament and polytetrafluoroethylene filament were selected as the positive and negative layers, respectively, in the woven structure while the built-in helical stainless steel yarn was serving as the inner electrode layer. The sensitivity of the sensing textile can reach up to 1.33 V·kPa-1 and 0.32 V·kPa-1 in the pressure range of 1.95-3.13 kPa and 3.20-4.61 kPa, respectively. This sensing textile presented good mechanical stability and sensing capability even after 4200 cycles of continuous operation or after 4 h continuous water washing. Benefiting from the favorable merits of being highly flexible, breathable, lightweight, and even dyeable, the fabricated device was capable of being placed on any desired body parts for quantifying the dynamic human motions. It can be effectively used to measure and monitor various human movements associated with different joints, such as the hand, elbow, knee, and underarm. Moreover, the sensing textile was able to capture real-time pulse signals and reflect the current health status for human beings. This study affords an innovative and promising track for multifunctional pressure sensor textiles with wide applications in smart textiles and personalized healthcare.
Collapse
Affiliation(s)
- Mengna Lou
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
| | - Ibrahim Abdalla
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Miaomiao Zhu
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xuedian Wei
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, P. R. China
| | - Zhaoling Li
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, P. R. China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, P. R. China
| |
Collapse
|
42
|
You X, Yang J, Wang M, Zhou H, Gao L, Hu J, Zhang X, Dong S. Novel Graphene Planar Architecture with Ultrahigh Stretchability and Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18913-18923. [PMID: 32239910 DOI: 10.1021/acsami.0c02692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene has attracted increasing attention for strain sensing due to its unique electrical and mechanical properties by tailoring and assembling functional macrostructures with a well-defined configuration. Here a novel graphene-based planar network (GPN) with highly stretchable strain sensing is developed by direct ink writing. The integrated and regulated structure of GPN indicates an excellent response sensitivity and cyclic stability to various strain modes compared with the traditional graphene-based woven fabric (GWF) structure. An equivalent resistance network is introduced to analyze the resistance change mechanism and fracture failure mode of the network structures, in which the difference can be mainly attributed to the interfacial resistance at the crosspoints of the crossed ribbons. The tunable and interconnected GPN shows a significant difference in the response sensitivity under stretching strain in different directions, and the relative resistance change is up to 20 and 3 in horizontal and vertical directions after 1000 cycles for a 20% stretching strain, respectively, which can be explained by the transformation of the stretching mode from macro-structural stretching to micromaterial stretching. The controllable fabrication of GPN can be utilized not only for the detection of full-range human activities but monitoring external stress distribution in real-time by integration.
Collapse
Affiliation(s)
- Xiao You
- State Key Laboratory of High Performance Ceramics & Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinshan Yang
- State Key Laboratory of High Performance Ceramics & Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Mengmeng Wang
- State Key Laboratory of High Performance Ceramics & Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Haijun Zhou
- State Key Laboratory of High Performance Ceramics & Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Le Gao
- State Key Laboratory of High Performance Ceramics & Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jianbao Hu
- State Key Laboratory of High Performance Ceramics & Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiangyu Zhang
- State Key Laboratory of High Performance Ceramics & Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shaoming Dong
- State Key Laboratory of High Performance Ceramics & Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
43
|
Wang T, Ouyang Z, Wang F, Liu Y. A review on graphene strain sensors based on fiber assemblies. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2641-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
44
|
|
45
|
Dinh T, Nguyen T, Phan HP, Nguyen TK, Dau VT, Nguyen NT, Dao DV. Advances in Rational Design and Materials of High-Performance Stretchable Electromechanical Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905707. [PMID: 32101372 DOI: 10.1002/smll.201905707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Stretchable and wearable sensor technology has attracted significant interests and created high technological impact on portable healthcare and smart human-machine interfaces. Wearable electromechanical systems are an important part of this technology that has recently witnessed tremendous progress toward high-performance devices for commercialization. Over the past few years, great attention has been paid to simultaneously enhance the sensitivity and stretchability of the electromechanical sensors toward high sensitivity, ultra-stretchability, low power consumption or self-power functionalities, miniaturisation as well as simplicity in design and fabrication. This work presents state-of-the-art advanced materials and rational designs of electromechanical sensors for wearable applications. Advances in various sensing concepts and structural designs for intrinsic stretchable conductive materials as well as advanced rational platforms are discussed. In addition, the practical applications and challenges in the development of stretchable electromechanical sensors are briefly mentioned and highlighted.
Collapse
Affiliation(s)
- Toan Dinh
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, 4111, Queensland, Australia
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Brisbane, 4300, Queensland, Australia
| | - Thanh Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, 4111, Queensland, Australia
| | - Hoang-Phuong Phan
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, 4111, Queensland, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, 4111, Queensland, Australia
| | - Van Thanh Dau
- School of Engineering and Built Environment, Griffith University, Gold Coast, 4125, Queensland, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, 4111, Queensland, Australia
| | - Dzung Viet Dao
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, 4111, Queensland, Australia
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Brisbane, 4300, Queensland, Australia
| |
Collapse
|
46
|
Pang Y, Yang Z, Yang Y, Ren TL. Wearable Electronics Based on 2D Materials for Human Physiological Information Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1901124. [PMID: 31364311 DOI: 10.1002/smll.201901124] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/07/2019] [Indexed: 05/12/2023]
Abstract
Recently, advancement in materials production, device fabrication, and flexible circuit has led to the huge prosperity of wearable electronics for human healthcare monitoring and medical diagnosis. Particularly, with the emergence of 2D materials many merits including light weight, high stretchability, excellent biocompatibility, and high performance are used for those potential applications. Thus, it is urgent to review the wearable electronics based on 2D materials for the detection of various human signals. In this work, the typical graphene-based materials, transition-metal dichalcogenides, and transition metal carbides or carbonitrides used for the wearable electronics are discussed. To well understand the human physiological information, it is divided into two dominated categories, namely, the human physical and the human chemical signals. The monitoring of body temperature, electrograms, subtle signals, and limb motions is described for the physical signals while the detection of body fluid including sweat, breathing gas, and saliva is reviewed for the chemical signals. Recent progress and development toward those specific utilizations are highlighted in the Review with the representative examples. The future outlook of wearable healthcare techniques is briefly discussed for their commercialization.
Collapse
Affiliation(s)
- Yu Pang
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Zhen Yang
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yi Yang
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tian-Ling Ren
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
47
|
Lou M, Abdalla I, Zhu M, Yu J, Li Z, Ding B. Hierarchically Rough Structured and Self-Powered Pressure Sensor Textile for Motion Sensing and Pulse Monitoring. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1597-1605. [PMID: 31840486 DOI: 10.1021/acsami.9b19238] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nowadays, real-time human motion sensing and pulse monitoring can provide significant basis for health assessment and medical diagnosis. Nevertheless, it is still a big challenge to design a lightweight, flexible, and energy-sustainable pressure sensor with high sensitivity and breathability. Here, we fabricated a triboelectric all-fiber structured pressure sensor via a facile electrospinning technique. The constructed sensor textile holds a composite structure made up of a polyvinylidene fluoride/Ag nanowire nanofibrous membrane (NFM), an ethyl cellulose NFM, and two layers of conductive fabrics. This wearable device with high shape adaptability exhibited excellent sensing capability because of the introduced hierarchically rough structure on the nanofibers. The sensitivity can reach up to 1.67 and 0.20 V·kPa-1 in the pressure range of 0-3 and 3-32 kPa, respectively. The fabricated sensor textile also showed a superior mechanical stability even after continuous operation of 7200 working cycles. This sensor textile was easily conformable on different desired body parts for dynamic motion sensing and real-time pulse monitoring. It can work in a self-powered manner to detect and quantify various human motions associated with joints, such as elbows, knees, and ankles. Additionally, it can be placed on the carotid artery to capture the pulse signals, serving as a reliable way to reflect the state of health. This work has great possibilities to promote the rapid advancement and broad applications of multifunctional pressure sensors and next-generation wearable electronics.
Collapse
Affiliation(s)
| | | | | | - Jianyong Yu
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Zhaoling Li
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Bin Ding
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| |
Collapse
|
48
|
Stretchable Graphene Thin Film Enabled Yarn Sensors with Tunable Piezoresistivity for Human Motion Monitoring. Sci Rep 2019; 9:18644. [PMID: 31819146 PMCID: PMC6901454 DOI: 10.1038/s41598-019-55262-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/26/2019] [Indexed: 11/08/2022] Open
Abstract
1D graphene based flexible sensors as wearable electronics have recently attracted considerable attentions because of lightweight, high extensibility, easy to wind and weave, and superior sensitivity. In this research, we established a facile and low-cost strategy to construct graphene thin film enabled yarn sensors (GYS) by combining the process of graphene oxide (GO) coating and reducing on polyester (PE) wound spandex yarns. According to systematic processing-property relationship study, a key finding of this work discovers that the degree of resistance recovery as well as gauge sensitivity of GYS can be well controlled and modulated by a pre-stretch treatment. Specifically, as the level of pre-stretch increases from 0 to 60%, the deformable range of sensor that guarantees full resistance recovery prolongs evidently from 0% to ~50%. Meanwhile, the gauge factor of GYS is tunable in the range from 6.40 to 12.06. To understand the pre-stretch process dependent sensing performance, SEM analysis was assisted to evidence the growing size of micro-cracks determining dominantly the behavior of electron transport. Lastly, to take better advantage of GYS, a new wearing mode was demonstrated by direct winding the yarn sensor on varied portions of human body for monitoring different body movements and muscle contracting & relaxing.
Collapse
|
49
|
Song M, Wang Y, Zhang L, Lu H, Feng S. A Multifunctional Imidazolium-Based Silicone Material with Conductivity, Self-Healing, Fluorescence, and Stretching Sensitivity. Macromol Rapid Commun 2019; 40:e1900469. [PMID: 31804763 DOI: 10.1002/marc.201900469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/16/2019] [Indexed: 01/05/2023]
Abstract
Wearable devices have gained substantial interest for a wide range of applications, including biomonitoring and entertainment. They are basically composed of sensors and substrate materials. Recently, silicone materials have been extensively used in wearable devices because of their unique properties. Silicone materials, which possess remarkable insulation, predominantly serve as a substrate instead of a signaling material due to the indispensable electrical conductivity in wearable devices. Herein, a novel kind of silicone material, with both good conductivity and excellent self-healing efficiency, is designed by introducing imidazolium into the silicone polymer in one step. The free ions afford an ionic conductivity as high as 2.79 × 10-4 S m-1 , representing a significant improvement over traditional silicone materials. Because of the good conductivity, the silicone material is sensitive to stretching and can be applied as a flexible sensor. On the other hand, the material exhibits a high healing efficiency, reaching 89% in 6 h, due to the dynamic supramolecular interaction of the ion crosslink sites at the crack surface. Furthermore, the silicone material emits a yellow-green fluorescence under UV light.
Collapse
Affiliation(s)
- Miaomiao Song
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yuchen Wang
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Lin Zhang
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Hang Lu
- Zhejiang Wynca Chemical Industrial Group Co., Ltd., Hangzhou, 311600, P. R. China
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
50
|
Cutrone A, Micera S. Implantable Neural Interfaces and Wearable Tactile Systems for Bidirectional Neuroprosthetics Systems. Adv Healthc Mater 2019; 8:e1801345. [PMID: 31763784 DOI: 10.1002/adhm.201801345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Neuroprosthetics and neuromodulation represent a promising field for several related applications in the central and peripheral nervous system, such as the treatment of neurological disorders, the control of external robotic devices, and the restoration of lost tactile functions. These actions are allowed by the neural interface, a miniaturized implantable device that most commonly exploits electrical energy to fulfill these operations. A neural interface must be biocompatible, stable over time, low invasive, and highly selective; the challenge is to develop a safe, compact, and reliable tool for clinical applications. In case of anatomical impairments, neuroprosthetics is bound to the need of exploring the surrounding environment by fast-responsive and highly sensitive artificial tactile sensors that mimic the natural sense of touch. Tactile sensors and neural interfaces are closely interconnected since the readouts from the first are required to convey information to the neural implantable apparatus. The role of these devices is pivotal hence technical improvements are essential to ensure a secure system to be eventually adopted in daily life. This review highlights the fundamental criteria for the design and microfabrication of neural interfaces and artificial tactile sensors, their use in clinical applications, and future enhancements for the release of a second generation of devices.
Collapse
Affiliation(s)
- Annarita Cutrone
- The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Silvestro Micera
- The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, CH-1202, Switzerland
| |
Collapse
|