1
|
Liang Z, Shu R, Xu C, Wang Y, Shang H, Mao J, Ren Z. Substrate-Free Inorganic-Based Films for Thermoelectric Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416394. [PMID: 39663748 DOI: 10.1002/adma.202416394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Indexed: 12/13/2024]
Abstract
The development of highly integrated electronic components and the Internet of Things demands efficient thermal management and uninterrupted energy harvesting, which provides exciting opportunities for thermoelectric (TE) technology since it allows direct conversion between electricity and thermal energy. The improved output performance of TE devices has traditionally been driven by advancements in inorganic materials. Recently, there has been growing interest in studying substrate-free inorganic-based TE thin films because they provide improved adherence to curved surfaces and offer a more compact size compared to the corresponding rigid form of these materials. This review begins by summarizing various methods for fabricating freestanding inorganic-based TE films, including leveraging the intrinsic plasticity of certain materials, exfoliating layered-structure materials, using sacrificial substrates, and creating composites with flexible components such as polymers and carbon-based materials. A key challenge in achieving high device performance is determining how to maintain the favorable TE properties of inorganic materials. This can be addressed through strategies such as high inorganic content loading, multicomponent engineering, and interfacial structure design. The review also discusses the applications of substrate-free inorganic-based TE devices in both power generation and solid-state cooling. Finally, it outlines current challenges and proposes potential research directions to further advance the field.
Collapse
Affiliation(s)
- Zhongxin Liang
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Rui Shu
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Congcong Xu
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Yu Wang
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Hongjing Shang
- Key Laboratory of Applied Superconductivity and Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jun Mao
- School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Zhifeng Ren
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
2
|
Hu M, Yang J, Wang Y, Xia J, Gan Q, Yang S, Xu J, Liu S, Yin W, Jia B, Xie L, Li H, He J. Helical dislocation-driven plasticity and flexible high-performance thermoelectric generator in α-Mg 3Bi 2 single crystals. Nat Commun 2025; 16:128. [PMID: 39747202 PMCID: PMC11695975 DOI: 10.1038/s41467-024-55689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025] Open
Abstract
Inorganic plastic semiconductors play a crucial role in the realm of flexible electronics. In this study, we present a cost-effective plastic thermoelectric semimetal magnesium bismuthide (α-Mg3Bi2), exhibiting remarkable thermoelectric performance. Bulk single-crystalline α-Mg3Bi2 exhibits considerable plastic deformation at room temperature, allowing for the fabrication of intricate shapes such as the letters "SUSTECH" and a flexible chain. Transmission electron microscopy, time-of-flight neutron diffraction, and chemical bonding theoretic analyses elucidate that the plasticity of α-Mg3Bi2 stems from the helical dislocation-driven interlayer slip, small-sized Mg atoms induced weak interlayer Mg-Bi bonds, and low modulus of intralayer Mg2Bi22- networks. Moreover, we achieve a power factor value of up to 26.2 µW cm-1 K-2 along the c-axis at room temperature in an n-type α-Mg3Bi2 crystal. Our out-of-plane flexible thermoelectric generator exhibit a normalized power density of 8.1 μW cm-2 K-2 with a temperature difference of 7.3 K. This high-performance plastic thermoelectric semimetal promises to advance the field of flexible and deformable electronics.
Collapse
Affiliation(s)
- Mingyuan Hu
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Advanced Thermoelectric Materials and Device Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianmin Yang
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yan Wang
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Junchao Xia
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Quan Gan
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shuhuan Yang
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Juping Xu
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Shulin Liu
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Wen Yin
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Baohai Jia
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Xie
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haifeng Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Jiaqing He
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Advanced Thermoelectric Materials and Device Physics, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Jia S, Ma H, Gao S, Yang L, Sun Q. Thermoelectric Materials and Devices for Advanced Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405019. [PMID: 39392147 DOI: 10.1002/smll.202405019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Thermoelectrics (TEs), enabling the direct conversion between heat and electrical energy, have demonstrated extensive application potential in biomedical fields. Herein, the mechanism of the TE effect, recent developments in TE materials, and the biocompatibility assessment of TE materials are provided. In addition to the fundamentals of TEs, a timely and comprehensive review of the recent progress of advanced TE materials and their applications is presented, including wearable power generation, personal thermal management, and biosensing. In addition, the new-emerged medical applications of TE materials in wound healing, disease treatment, antimicrobial therapy, and anti-cancer therapy are thoroughly reviewed. Finally, the main challenges and future possibilities are outlined for TEs in biomedical fields, as well as their material selection criteria for specific application scenarios. Together, these advancements can provide innovative insights into the development of TEs for broader applications in biomedical fields.
Collapse
Affiliation(s)
- Shiyu Jia
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610017, China
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
4
|
Han Y, Tetik H, Malakooti MH. 3D Soft Architectures for Stretchable Thermoelectric Wearables with Electrical Self-Healing and Damage Tolerance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407073. [PMID: 39212649 DOI: 10.1002/adma.202407073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Indexed: 09/04/2024]
Abstract
Flexible thermoelectric devices (TEDs) exhibit adaptability to curved surfaces, holding significant potential for small-scale power generation and thermal management. However, they often compromise stretchability, energy conversion, or robustness, thus limiting their applications. Here, the implementation of 3D soft architectures, multifunctional composites, self-healing liquid metal conductors, and rigid semiconductors is introduced to overcome these challenges. These TEDs are extremely stretchable, functioning at strain levels as high as 230%. Their unique design, verified through multiphysics simulations, results in a considerably high power density of 115.4 µW cm⁻2 at a low-temperature gradient of 10 °C. This is achieved through 3D printing multifunctional elastomers and examining the effects of three distinct thermal insulation infill ratios (0%, 12%, and 100%) on thermoelectric energy conversion and structural integrity. The engineered structure is lighter and effectively maintains the temperature gradient across the thermoelectric semiconductors, thereby resulting in higher output voltage and improved heating and cooling performance. Furthermore, these thermoelectric generators show remarkable damage tolerance, remaining fully functional even after multiple punctures and 2000 stretching cycles at 50% strain. When integrated with a 3D-printed heatsink, they can power wearable sensors, charge batteries, and illuminate LEDs by scavenging body heat at room temperature, demonstrating their application as self-sustainable electronics.
Collapse
Affiliation(s)
- Youngshang Han
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Nano-Engineered Systems, University of Washington, Seattle, WA, 98195, USA
| | - Halil Tetik
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Mohammad H Malakooti
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Nano-Engineered Systems, University of Washington, Seattle, WA, 98195, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
5
|
Kaur B, Khan EH, Routsi AM, Li L, Latulippe A, Sun H, Drew C, Kumar J, Christodouleas DC. Nanoscale-surface roughness enhances the performance of organic thin-film thermoelectrics. RSC Adv 2024; 14:37774-37780. [PMID: 39601007 PMCID: PMC11589809 DOI: 10.1039/d4ra04591b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Organic thermoelectric materials would be ideally suited for wearable thermoelectric devices but currently are not efficient enough for practical applications. Previous research efforts have tailored the composition, oxidation status, or doping levels of organic thin-film thermoelectrics to maximize their thermoelectric performance typically measured by the thermoelectric figure of merit (ZT). This study demonstrates that the thermoelectric ZT of the organic thin-films can be significantly boosted by increasing the surface roughness of the films. A simple soft-templating method that can produce nanorough thin films of organic thermoelectrics was developed and used to fabricate nanorough poly(3,4-ethylenedioxythiophene):Tosylate (PEDOT:Tos) thin films. The performance of the nanorough PEDOT:Tos films was compared to that of the smooth PEDOT:Tos films. The ZT value of the nanorough films was estimated to be 0.99, which is 83% higher than that of the smooth films and one of the highest ever reported for organic thermoelectrics. The flexibility and durability of the nanorough PEDOT:Tos films were also proved. A proof-of-concept thermoelectric device that used 5 strips of nanorough films, as the p-type thermoelectric elements, and five strips of bismuth thin films, as the n-type elements, produced 118.7 nW when ΔT = 50 K.
Collapse
Affiliation(s)
- Balwinder Kaur
- Department of Chemistry, University of Massachusetts Lowell Lowell MA 01854 USA
- Center for Advanced Materials, University of Massachusetts Lowell Lowell MA 01854 USA
| | - Ezaz Hasan Khan
- Department of Chemistry, University of Massachusetts Lowell Lowell MA 01854 USA
- Center for Advanced Materials, University of Massachusetts Lowell Lowell MA 01854 USA
| | - Anna Maria Routsi
- Department of Chemistry, University of Massachusetts Lowell Lowell MA 01854 USA
- Core Research Facilities, University of Massachusetts Lowell Lowell MA 01854 USA
| | - Lian Li
- Department of Physics and Applied Physics, University of Massachusetts Lowell Lowell MA 01854 USA
- Center for Advanced Materials, University of Massachusetts Lowell Lowell MA 01854 USA
| | - Andrew Latulippe
- Department of Mechanical Engineering, University of Massachusetts Lowell Lowell MA 01854 USA
| | - Hongwei Sun
- Department of Mechanical Engineering, University of Massachusetts Lowell Lowell MA 01854 USA
| | - Christopher Drew
- U.S. Army Combat Capabilities Development Command Soldier Center (DEVCOM SC) Natick MA 01760 USA
| | - Jayant Kumar
- Department of Physics and Applied Physics, University of Massachusetts Lowell Lowell MA 01854 USA
- Center for Advanced Materials, University of Massachusetts Lowell Lowell MA 01854 USA
| | | |
Collapse
|
6
|
Jia R, Tan K, Deng Q. Shape memory and recovery mechanism in hard magnetic soft materials. SOFT MATTER 2024; 20:9095-9103. [PMID: 39530394 DOI: 10.1039/d4sm01165a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hard-magnetic soft materials (HMSMs), which combine soft polymer matrices with hard-magnetic particles, have emerged as versatile materials capable of achieving complex deformations under magnetic fields. This work aims to provide a comprehensive understanding of the non-thermal shape memory and recovery mechanisms in HMSMs. By developing a theoretical model, we interpret the transfer of shape information between different field quantities, such as the remanent magnetization vectors and the magnetic forces. The two-dimensional thin beam model developed here implies that the two-way interaction between magnetization patterns and mechanical deformations is the key for the shape memory effect in HMSMs. Experiments also validate the theoretical model and the proposed mechanism for shape memory. Furthermore, the idea is extended to an example of information encryption and retrieval using HMSM thin films. This study offers valuable insights into the control of shape memory effects in HMSMs and presents opportunities for advancements in soft robotics, secure data storage, and responsive materials.
Collapse
Affiliation(s)
- Rong Jia
- Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kai Tan
- Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Deng
- Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Jang H, Ahn J, Jeong Y, Ha JH, Jeong JH, Oh MW, Park I, Jung YS. Flexible All-Inorganic Thermoelectric Yarns. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408320. [PMID: 39285801 DOI: 10.1002/adma.202408320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/02/2024] [Indexed: 11/26/2024]
Abstract
Achieving both formability and functionality in thermoelectric materials remains a significant challenge due to their inherent brittleness. Previous approaches, such as polymer infiltration, often compromise thermoelectric efficiency, underscoring the need for flexible, all-inorganic alternatives. This study demonstrates that the extreme brittleness of thermoelectric bismuth telluride (Bi2Te3) bulk compounds can be overcome by harnessing the nanoscale flexibility of Bi2Te3 nanoribbons and twisting them into a yarn structure. The resulting Bi2Te3 yarn, with a Seebeck coefficient of -126.6 µV K-1, exhibits remarkable deformability, enduring extreme bending curvatures (down to 0.5 mm-1) and tensile strains of ≈5% through over 1000 cycles without significant resistance change. This breakthrough allows the yarn to be seamlessly integrated into various applications-wound around metallic pipes, embedded within life jackets, or woven into garments-demonstrating unprecedented adaptability and durability. Moreover, a simple 4-pair thermoelectric generator comprising Bi2Te3 yarns and metallic wires generates a maximum output voltage of 67.4 mV, substantiating the effectiveness of thermoelectric yarns in waste heat harvesting. These advances not only challenge the traditional limitations posed by the brittleness of thermoelectric materials but also open new avenues for their application in wearable and structural electronics.
Collapse
Affiliation(s)
- Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Junseong Ahn
- Department of Control and Instrumentation Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Yongrok Jeong
- Radioisotope Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon, 34057, Republic of Korea
| | - Ji-Hwan Ha
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jun-Ho Jeong
- Center for Nano Lithography & Manufacturing, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Min-Wook Oh
- Department of Materials Science and Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Kang S, Chang J, Lim J, Kim DJ, Kim TS, Choi KC, Lee JH, Kim S. Graphene-enabled laser lift-off for ultrathin displays. Nat Commun 2024; 15:8288. [PMID: 39333239 PMCID: PMC11436630 DOI: 10.1038/s41467-024-52661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Laser lift-off (LLO) of ultrathin polyimide (PI) films is important in the manufacturing of ultrathin displays. However, conventional LLO technologies face challenges in separating the ultrathin PI films without causing mechanical and electrical damage to integrated devices. Here, we propose a graphene-enabled laser lift-off (GLLO) method to address the challenges. The GLLO method is developed by integrating chemical vapor deposition (CVD)-grown graphene at the interface between a transparent carrier and an ultrathin PI film, exhibiting improved processability and lift-off quality. In particular, the GLLO method significantly mitigates plastic deformation of the PI film and minimizes carbonaceous residues remaining on the carrier. The role of graphene is attributed to three factors: enhancement of interfacial UV absorption, lateral heat diffusion, and adhesion reduction, and experimentations and numerical simulations verify the mechanism. Finally, it is demonstrated that the GLLO method separates ultrathin organic light-emitting diode (OLED) devices without compromising performance. We believe that this work will pave the way for utilizing CVD graphene in various laser-based manufacturing applications.
Collapse
Affiliation(s)
- Sumin Kang
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Jaehyeock Chang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jaeseung Lim
- Semiconductor Manufacturing Research Center, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
- Department of Robot∙Manufacturing Systems, University of Science and Technology, Daejeon, Republic of Korea
| | - Dong Jun Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kyung Cheol Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jae Hak Lee
- Semiconductor Manufacturing Research Center, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Seungman Kim
- Semiconductor Manufacturing Research Center, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea.
- Department of Robot∙Manufacturing Systems, University of Science and Technology, Daejeon, Republic of Korea.
- Wm Micheal Barens'64 Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
9
|
Park JH, Pattipaka S, Hwang GT, Park M, Woo YM, Kim YB, Lee HE, Jeong CK, Zhang T, Min Y, Park KI, Lee KJ, Ryu J. Light-Material Interactions Using Laser and Flash Sources for Energy Conversion and Storage Applications. NANO-MICRO LETTERS 2024; 16:276. [PMID: 39186184 PMCID: PMC11347555 DOI: 10.1007/s40820-024-01483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/13/2024] [Indexed: 08/27/2024]
Abstract
This review provides a comprehensive overview of the progress in light-material interactions (LMIs), focusing on lasers and flash lights for energy conversion and storage applications. We discuss intricate LMI parameters such as light sources, interaction time, and fluence to elucidate their importance in material processing. In addition, this study covers various light-induced photothermal and photochemical processes ranging from melting, crystallization, and ablation to doping and synthesis, which are essential for developing energy materials and devices. Finally, we present extensive energy conversion and storage applications demonstrated by LMI technologies, including energy harvesters, sensors, capacitors, and batteries. Despite the several challenges associated with LMIs, such as complex mechanisms, and high-degrees of freedom, we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations.
Collapse
Affiliation(s)
- Jung Hwan Park
- Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Srinivas Pattipaka
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Geon-Tae Hwang
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Minok Park
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yu Mi Woo
- Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Young Bin Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Han Eol Lee
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, Jeonbuk, Republic of Korea
| | - Chang Kyu Jeong
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, Jeonbuk, Republic of Korea
| | - Tiandong Zhang
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, People's Republic of China
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, People's Republic of China
| | - Yuho Min
- Department of Materials Science and Metallurgical Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea
| | - Kwi-Il Park
- Department of Materials Science and Metallurgical Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea.
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
| | - Jungho Ryu
- School of Materials Science and Engineering, Yeungnam University, Daehak-Ro, Gyeongsan-Si, 38541, Gyeongsangbuk-do, Republic of Korea.
| |
Collapse
|
10
|
Zhang Y, Meng Y, Wang L, Lan C, Quan Q, Wang W, Lai Z, Wang W, Li Y, Yin D, Li D, Xie P, Chen D, Yang Z, Yip S, Lu Y, Wong CY, Ho JC. Pulse irradiation synthesis of metal chalcogenides on flexible substrates for enhanced photothermoelectric performance. Nat Commun 2024; 15:728. [PMID: 38272917 PMCID: PMC10810900 DOI: 10.1038/s41467-024-44970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
High synthesis temperatures and specific growth substrates are typically required to obtain crystalline or oriented inorganic functional thin films, posing a significant challenge for their utilization in large-scale, low-cost (opto-)electronic applications on conventional flexible substrates. Here, we explore a pulse irradiation synthesis (PIS) to prepare thermoelectric metal chalcogenide (e.g., Bi2Se3, SnSe2, and Bi2Te3) films on multiple polymeric substrates. The self-propagating combustion process enables PIS to achieve a synthesis temperature as low as 150 °C, with an ultrafast reaction completed within one second. Beyond the photothermoelectric (PTE) property, the thermal coupling between polymeric substrates and bismuth selenide films is also examined to enhance the PTE performance, resulting in a responsivity of 71.9 V/W and a response time of less than 50 ms at 1550 nm, surpassing most of its counterparts. This PIS platform offers a promising route for realizing flexible PTE or thermoelectric devices in an energy-, time-, and cost-efficient manner.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - You Meng
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China.
| | - Liqiang Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Changyong Lan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China
| | - Quan Quan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Wei Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Zhengxun Lai
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Weijun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Yezhan Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Di Yin
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Dengji Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Pengshan Xie
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Dong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Zhe Yang
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - SenPo Yip
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 816 8580, Japan
| | - Yang Lu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China.
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China.
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, SAR 999077, P.R. China.
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 816 8580, Japan.
| |
Collapse
|
11
|
Lee CY, Lin YT, Hong SH, Wang CH, Jeng US, Tung SH, Liu CL. Mixed Ionic-Electronic Conducting Hydrogels with Carboxylated Carbon Nanotubes for High Performance Wearable Thermoelectric Harvesters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56072-56083. [PMID: 37982689 DOI: 10.1021/acsami.3c09934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Mixed ionic-electronic conducting (MIEC) thermoelectric (TE) materials offer higher ionic conductivity and ionic Seebeck coefficient compared to those of purely ionic-conducting TE materials. These characteristics make them suitable for direct use in thermoelectric generators (TEGs) as the charge carriers can be effectively transported from one electrode to the other via the external circuit. In the present study, MIEC hydrogels are fabricated via the chemical cross-linking of polyacrylamide (PAAM) and polydopamine (PDA) to form a double network. In addition, electrically conducting carboxylated carbon nanotubes (CNT-COOH) are dispersed evenly within the hydrogel via sonication and interaction with the PDA. Moreover, the electrical properties of the hydrogel are further improved via the in situ polymerization of polyaniline (PANI). The presence of CNT-COOH facilitates the ionic conductivity and enhances the ionic Seebeck coefficient via ionic-electronic interactions between sodium ions and carboxyl groups on CNT-COOH, which can be observed in X-ray photoelectron spectroscopy results, thereby promoting the charge transport properties. As a result, the optimum device exhibits a remarkable ionic conductivity of 175.3 mS cm-1 and a high ionic Seebeck coefficient of 18.6 mV K-1, giving an ionic power factor (PFi) of 6.06 mW m-1 K-2 with a correspondingly impressive ionic figure of merit (ZTi) of 2.65. These values represent significant achievements within the field of gel-state organic TE materials. Finally, a wearable module is fabricated by embedding the PAAM/PDA/CNT-COOH/PANI hydrogel into a poly(dimethylsiloxane) mold. This configuration yields a high power density of 171.4 mW m-2, thus highlighting the considerable potential for manufacturing TEGs for wearable devices capable of harnessing waste heat.
Collapse
Affiliation(s)
- Chia-Yu Lee
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Ting Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shao-Huan Hong
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Kang M, Qu R, Sun X, Yan Y, Ma Z, Wang H, Yan K, Zhang W, Deng Y. Self-Powered Temperature Electronic Skin Based on Island-Bridge Structure and Bi-Te Micro-Thermoelectric Generator for Distributed Mini-Region Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2309629. [PMID: 37956453 DOI: 10.1002/adma.202309629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Thermoelectric (TE) effect based temperature sensor can accurately convert temperature signal into voltage without external power supply, which have great application prospects in self-powered temperature electronic skin (STES). But the fabrication of stretchable and distributed STES still remains a challenge. Here, a novel STES design strategy is proposed by combining flexible island-bridge structure with BiTe-based micro-thermoelectric generator (µ-TEG). Furthermore, a 4 × 4 vertical temperature sensor array with good stretchability and distributed sensing property has been fabricated for the first time. The interfacial chemical bonds located between the rigid islands (µ-TEG) and the flexible substrate (polydimethylsiloxane, PDMS) endow the STES with excellent stretchability, and its sensing performance remains unchanged under 30% strain (the maximum strain of human skin). Moreover, the STES sensing unit possesses high sensitivity (729 µV K-1 ), rapid response time (0.157 s), and high spatial resolution (2.75 × 2.75 mm2 ). As a proof of concept, this work demonstrates the application of the STES in the detection of mini-region heat sources in various scenarios including noncontact spatial temperature responsing, intelligent robotic thermosensing, and wearable temperature sensing. Such an inspiring design strategy is expected to provide guidance for the design and fabrication of wearable self-powered temperature sensors.
Collapse
Affiliation(s)
- Man Kang
- Research Institute for Frontier Science, Beihang University, Beijing, 100191, China
| | - Ruixiang Qu
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311121, China
| | - Xiaowen Sun
- Research Institute for Frontier Science, Beihang University, Beijing, 100191, China
| | - Yuedong Yan
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051, China
| | - Zhijun Ma
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311121, China
| | - He Wang
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051, China
| | - Kaifen Yan
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051, China
| | - Weifeng Zhang
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051, China
| | - Yuan Deng
- Research Institute for Frontier Science, Beihang University, Beijing, 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051, China
| |
Collapse
|
13
|
Li G, Wong TW, Shih B, Guo C, Wang L, Liu J, Wang T, Liu X, Yan J, Wu B, Yu F, Chen Y, Liang Y, Xue Y, Wang C, He S, Wen L, Tolley MT, Zhang AM, Laschi C, Li T. Bioinspired soft robots for deep-sea exploration. Nat Commun 2023; 14:7097. [PMID: 37925504 PMCID: PMC10625581 DOI: 10.1038/s41467-023-42882-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
The deep ocean, Earth's untouched expanse, presents immense challenges for exploration due to its extreme pressure, temperature, and darkness. Unlike traditional marine robots that require specialized metallic vessels for protection, deep-sea species thrive without such cumbersome pressure-resistant designs. Their pressure-adaptive forms, unique propulsion methods, and advanced senses have inspired innovation in designing lightweight, compact soft machines. This perspective addresses challenges, recent strides, and design strategies for bioinspired deep-sea soft robots. Drawing from abyssal life, it explores the actuation, sensing, power, and pressure resilience of multifunctional deep-sea soft robots, offering game-changing solutions for profound exploration and operation in harsh conditions.
Collapse
Affiliation(s)
- Guorui Li
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China.
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China.
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China.
| | - Tuck-Whye Wong
- Center for X-Mechanics, Zhejiang University, Hangzhou, China
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Benjamin Shih
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Chunyu Guo
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Luwen Wang
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, China
| | - Jiaqi Liu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Tao Wang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Xiaobo Liu
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Jiayao Yan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, MA, USA
| | - Baosheng Wu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Fajun Yu
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
| | - Yunsai Chen
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
| | | | - Yaoting Xue
- Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Chengjun Wang
- Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Shunping He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Li Wen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Michael T Tolley
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, MA, USA
| | - A-Man Zhang
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Cecilia Laschi
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Tiefeng Li
- Center for X-Mechanics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Lee JS, Kim JW, Lee JH, Son YK, Kim YB, Woo K, Lee C, Kim ID, Seok JY, Yu JW, Park JH, Lee KJ. Flash-Induced High-Throughput Porous Graphene via Synergistic Photo-Effects for Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2023; 15:191. [PMID: 37532956 PMCID: PMC10397175 DOI: 10.1007/s40820-023-01157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/17/2023] [Indexed: 08/04/2023]
Abstract
Porous 2D materials with high conductivity and large surface area have been proposed for potential electromagnetic interference (EMI) shielding materials in future mobility and wearable applications to prevent signal noise, transmission inaccuracy, system malfunction, and health hazards. Here, we report on the synthesis of lightweight and flexible flash-induced porous graphene (FPG) with excellent EMI shielding performance. The broad spectrum of pulsed flashlight induces photo-chemical and photo-thermal reactions in polyimide films, forming 5 × 10 cm2-size porous graphene with a hollow pillar structure in a few milliseconds. The resulting material demonstrated low density (0.0354 g cm-3) and outstanding absolute EMI shielding effectiveness of 1.12 × 105 dB cm2 g-1. The FPG was characterized via thorough material analyses, and its mechanical durability and flexibility were confirmed by a bending cycle test. Finally, the FPG was utilized in drone and wearable applications, showing effective EMI shielding performance for internal/external EMI in a drone radar system and reducing the specific absorption rate in the human body.
Collapse
Affiliation(s)
- Jin Soo Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong-Wook Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong Koo Son
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young Bin Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyoohee Woo
- Department of Printed Electronics, Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon, 34103, Republic of Korea
| | - Chanhee Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Young Seok
- Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Jong Won Yu
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung Hwan Park
- Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea.
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
15
|
Zhang X, Hou Y, Yang Y, Wang Z, Liang X, He Q, Xu Y, Sun X, Ma H, Liang J, Liu Y, Wu W, Yu H, Guo H, Xiong R. Stamp-Like Energy Harvester and Programmable Information Encrypted Display Based on Fully Printable Thermoelectric Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207723. [PMID: 36445020 DOI: 10.1002/adma.202207723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Thermoelectric (TE) devices exhibit considerable application potential in Internet of Things and personal health monitoring systems. However, TE self-powered devices are expensive and their fabrication process is complex. Therefore, large-scale preparation of the TE devices remains challenging. In this work, simple screen-printing technology is used to fabricate a user-friendly and high-performance paper-based TE device, which can be used in both stamp-like paper-based TE generators and infrared displays. When used as a paper-based TE generator, an output power of 940.8 µW is achieved with a temperature difference of 40 K. The programmable infrared pattern based on the TE array display could be used to realize encryption and anti-counterfeiting properties. Moreover, a visual extraction algorithm is used to develop a mobile application for processing and decoding the infrared quick response code information. These findings offer an exciting approach to using paper-based TEGs in applications such as energy harvesting devices, optical encryption, anti-counterfeiting, and dynamic infrared display.
Collapse
Affiliation(s)
- Xingzhong Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Yue Hou
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077, China
| | - Yang Yang
- Department of Mechanical Engineering, San Diego State University, Campanile Drive, San Diego, CA, 92182, USA
| | - Ziyu Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaosa Liang
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingqing He
- Department of Mechanical Engineering, San Diego State University, Campanile Drive, San Diego, CA, 92182, USA
| | - Yufeng Xu
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaolong Sun
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Hongyu Ma
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jing Liang
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Yong Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Hongyu Yu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077, China
| | - Haizhong Guo
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Rui Xiong
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
16
|
Gao W, Wang Y, Lai F. Thermoelectric energy harvesting for personalized healthcare. SMART MEDICINE 2022; 1:e20220016. [PMID: 39188740 PMCID: PMC11235962 DOI: 10.1002/smmd.20220016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/03/2022] [Indexed: 08/28/2024]
Abstract
In recent decades, there has been increased research interest in miniaturizing and decentralizing diagnostic platforms to enable continuous personalized healthcare and free patients from long-term hospitalization. However, the lack of reliable and portable power supplies has limited the working time of the personalized healthcare platform. Compared with the current power supplies (e.g., batteries and supercapacitors) that require manual intervention, thermoelectric devices promise to continuously harvest waste heat from the human body to satisfy the energy consumption of personalized healthcare platforms. Herein, this review discusses thermoelectric energy harvesting for personalized healthcare. It begins with the fundamental concepts of different thermoelectric materials, including electron thermoelectric generators (TEGs), ionic thermogalvanic cells (TGCs), and ionic thermoelectric capacitors (TECs). Then, the wearable and implantable applications of thermoelectric devices are presented. Finally, future directions of next-generation thermoelectric devices for personalized healthcare are discussed. It is hoped that developing high-performance thermoelectric devices will change the landscape of personalized healthcare in the future.
Collapse
Affiliation(s)
- Wei Gao
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Yang Wang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Feili Lai
- Department of ChemistryKU LeuvenLeuvenBelgium
- Department of Molecular SpectroscopyMax Planck Institute for Polymer ResearchMainzGermany
| |
Collapse
|
17
|
Huang J, Chen W. Flexible strategy of epitaxial oxide thin films. iScience 2022; 25:105041. [PMID: 36157575 PMCID: PMC9489952 DOI: 10.1016/j.isci.2022.105041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Applying functional oxide thin films to flexible devices is of great interests within the rapid development of information technology. The challenges involve the contradiction between the high-temperature growth of high-quality oxide films and low melting point of the flexible supports. This review summarizes the developed methods to fabricate high-quality flexible oxide thin films with novel functionalities and applications. We start from the fabrication methods, e.g. direct growth on flexible buffered metal foils and layered mica, etching and transfer approach, as well as remote epitaxy technique. Then, various functionalities in flexible oxide films will be introduced, specifically, owing to the mechanical flexibility, some unique properties can be induced in flexible oxide films. Taking the advantages of the excellent physical properties, the flexible oxide films have been employed in various devices. Finally, future perspectives in this research field will be proposed to further develop this field from fabrication, functionality to device.
Collapse
Affiliation(s)
- Jijie Huang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Weijin Chen
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
18
|
Yang Q, Yang S, Qiu P, Peng L, Wei TR, Zhang Z, Shi X, Chen L. Flexible thermoelectrics based on ductile semiconductors. Science 2022; 377:854-858. [PMID: 35981042 DOI: 10.1126/science.abq0682] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Flexible thermoelectrics provide a different solution for developing portable and sustainable flexible power supplies. The discovery of silver sulfide-based ductile semiconductors has driven a shift in the potential for flexible thermoelectrics, but the lack of good p-type ductile thermoelectric materials has restricted the reality of fabricating conventional cross-plane π-shaped flexible devices. We report a series of high-performance p-type ductile thermoelectric materials based on the composition-performance phase diagram in AgCu(Se,S,Te) pseudoternary solid solutions, with high figure-of-merit values (0.45 at 300 kelvin and 0.68 at 340 kelvin) compared with other flexible thermoelectric materials. We further demonstrate thin and flexible π-shaped devices with a maximum normalized power density that reaches 30 μW cm-2 K-2. This output is promising for the use of flexible thermoelectrics in wearable electronics.
Collapse
Affiliation(s)
- Qingyu Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqi Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liming Peng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Ran Wei
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Zhang
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, 75103 Uppsala, Sweden
| | - Xun Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lidong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14159483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thermo-electrochemical cells (also known as thermocells, TECs) represent a promising technology for harvesting and exploiting low-grade waste heat (<100–150 °C) ubiquitous in the modern environment. Based on temperature-dependent redox reactions and ion diffusion, emerging liquid-state thermocells convert waste heat energy into electrical energy, generating power at low costs, with minimal material consumption and negligible carbon footprint. Recent developments in thermocell performances are reviewed in this article with specific focus on new redox couples, electrolyte optimisation towards enhancing power output and operating temperature regime and the use of carbon and other nanomaterials for producing electrodes with high surface area for increasing current density and device performance. The highest values of output power and cell potentials have been achieved for the redox ferri/ferrocyanide system and Co2+/3+, with great opportunities for further development in both aqueous and non-aqueous solvents. New thermoelectric applications in the field include wearable and portable electronic devices in the health and performance-monitoring sectors; using body heat as a continuous energy source, thermoelectrics are being employed for long-term, continuous powering of these devices. Energy storage in the form of micro supercapacitors and in lithium ion batteries is another emerging application. Current thermocells still face challenges of low power density, conversion efficiency and stability issues. For waste-heat conversion (WHC) to partially replace fossil fuels as an alternative energy source, power generation needs to be commercially viable and cost-effective. Achieving greater power density and operations at higher temperatures will require extensive research and significant developments in the field.
Collapse
|
20
|
Lv Z, Wang C, Wan C, Wang R, Dai X, Wei J, Xia H, Li W, Zhang W, Cao S, Zhang F, Yang H, Loh XJ, Chen X. Strain-Driven Auto-Detachable Patterning of Flexible Electrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202877. [PMID: 35638695 DOI: 10.1002/adma.202202877] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Flexible electrodes that are multilayer, multimaterial, and conformal are pivotal for multifunctional wearable electronics. Traditional electronic circuits manufacturing requires substrate-supported transfer printing, which limits their multilayer integrity and device conformability on arbitrary surfaces. Herein, a "shrinkage-assisted patterning by evaporation" (SHAPE) method is reported, by employing evaporation-induced interfacial strain mismatch, to fabricate auto-detachable, freestanding, and patternable electrodes. The SHAPE method utilizes vacuum-filtration of polyaniline/bacterial cellulose (PANI/BC) ink through a masked filtration membrane to print high-resolution, patterned, and multilayer electrodes. The strong interlayer hydrogen bonding ensures robust multilayer integrity, while the controllable evaporative shrinking property of PANI/BC induces mismatch between the strains of the electrode and filtration membrane at the interface and thus autodetachment of electrodes. Notably, a 500-layer substrateless micro-supercapacitor fabricated using the SHAPE method exhibits an energy density of 350 mWh cm-2 at a power density of 40 mW cm-2 , 100 times higher than reported substrate-confined counterparts. Moreover, a digital circuit fabricated using the SHAPE method functions stably on a deformed glove, highlighting the broad wearable applications of the SHAPE method.
Collapse
Affiliation(s)
- Zhisheng Lv
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Changxian Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changjin Wan
- School of Electronic Science & Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Renheng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiangyu Dai
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jiaqi Wei
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Huarong Xia
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wenlong Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Wei Zhang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Shengkai Cao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Feilong Zhang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Haiyue Yang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
21
|
Zadan M, Patel DK, Sabelhaus AP, Liao J, Wertz A, Yao L, Majidi C. Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200857. [PMID: 35384096 DOI: 10.1002/adma.202200857] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to control. In this work, LCEs are combined with soft, stretchable thermoelectrics to create transducers capable of electrically controlled actuation, active cooling, and thermal-to-electrical energy conversion. The thermoelectric layers are composed of semiconductors embedded within a 3D printed elastomer matrix and wired together with eutectic gallium-indium (EGaIn) liquid metal interconnects. This layer is covered on both sides with LCE, which alternately heats and cools to achieve cyclical bending actuation in response to voltage-controlled Peltier activation. Moreover, the thermoelectric layer can harvest energy from thermal gradients between the two LCE layers through the Seebeck effect, allowing for regenerative energy harvesting. As demonstrations, first, closed-loop control of the transducer is performed to rapidly track a changing actuator position. Second, a soft robotic walker that is capable of walking toward a heat source and harvesting energy is introduced. Lastly, phototropic-inspired autonomous deflection of the limbs toward a heat source is shown, demonstrating an additional method to increase energy recuperation efficiency for soft systems.
Collapse
Affiliation(s)
- Mason Zadan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Dinesh K Patel
- Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Andrew P Sabelhaus
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jiahe Liao
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Anthony Wertz
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Lining Yao
- Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
22
|
Fan W, Shen Z, Zhang Q, Liu F, Fu C, Zhu T, Zhao X. High-Power-Density Wearable Thermoelectric Generators for Human Body Heat Harvesting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21224-21231. [PMID: 35482595 DOI: 10.1021/acsami.2c03431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wearable thermoelectrics has attracted significant interest in recent years. Among them, rigid-structure thermoelectric generators (TEGs) were seldomly employed for wearable applications, although those exhibit significant advantages of high device output performance and impact resistance. Here, we report a type of rigid wearable TEGs (w-TEGs) without ceramic substrates made using a simple cutting-and-bonding method. Owing to the small contact area, the w-TEGs comprising 48-n/p-pairs can be well attached to the human body. The lack of ceramic substrates leaves more space in the height direction, which benefits the wearability in practical applications and high power density. We demonstrated that increasing the height of w-TEGs from 1.38 to 3.14 mm significantly improves the power density by a factor of 10. As a result, the maximum power densities of 7.9 μW cm-2 and 43.6 μW cm-2 for the w-TEGs were realized under the breezeless condition and a wind speed for normal walking, respectively. This work provides a feasible design solution for rigid-structure free-substrate w-TEGs with very high power density, which will speed up the research of wearable thermoelectrics.
Collapse
Affiliation(s)
- Wusheng Fan
- State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ziyan Shen
- State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qi Zhang
- State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Feng Liu
- State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chenguang Fu
- State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tiejun Zhu
- State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinbing Zhao
- State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
23
|
Abstract
Wearable thermoelectric generators (WTEGs) can incessantly convert body heat into electricity to power electronics. However, the low efficiency of thermoelectric materials, tiny terminal temperature difference, rigidity, and neglecting optimization of lateral heat transfer preclude WTEGs from broad utilization. In this review, we aim to comprehensively summarize the state-of-the-art strategies for the realization of flexibility and high normalized power density in thermoelectric generators by establishing the links among materials, TE performance, and advanced design of WTEGs (structure, heatsinks, thermal regulation, thermal analysis, etc.) based on inorganic bulk TE materials. Each section starts with a concise summary of its fundamentals and carefully selected examples. In the end, we point out the controversies, challenges, and outlooks toward the future development of wearable thermoelectric devices and potential applications. Overall, this review will serve to help materials scientists, electronic engineers, particularly students and young researchers, in selecting suitable thermoelectric devices and potential applications.
Collapse
|
24
|
Burton M, Howells G, Atoyo J, Carnie M. Printed Thermoelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108183. [PMID: 35080059 DOI: 10.1002/adma.202108183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The looming impact of climate change and the diminishing supply of fossil fuels both highlight the need for a transition to more sustainable energy sources. While solar and wind can produce much of the energy needed, to meet all our energy demands there is a need for a diverse sustainable energy generation mix. Thermoelectrics can play a vital role in this, by harvesting otherwise wasted heat energy and converting it into useful electrical energy. While efficient thermoelectric materials have been known since the 1950s, thermoelectrics have not been utilized beyond a few niche applications. This can in part be attributed to the high cost of manufacturing and the geometrical restraints of current commercial manufacturing techniques. Printing offers a potential route to manufacture thermoelectric materials at a lower price point and allows for the fabrication of generators that are custom built to meet the waste heat source requirements. This review details the significant progress that has been made in recent years in printing of thermoelectric materials in all thermoelectric material groups and printing methods, and highlights very recent publications that show printing can now offer comparable performance to commercially manufactured thermoelectric materials.
Collapse
Affiliation(s)
- Matthew Burton
- SPECIFIC, Materials Research Centre, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| | - Geraint Howells
- M2A, Materials Research Centre, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| | - Jonathan Atoyo
- M2A, Materials Research Centre, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| | - Matthew Carnie
- SPECIFIC, Materials Research Centre, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| |
Collapse
|
25
|
Zhang D, Mao Y, Bai P, Li Q, He W, Cui H, Ye F, Li C, Ma R, Chen Y. Multifunctional Superelastic Graphene-Based Thermoelectric Sponges for Wearable and Thermal Management Devices. NANO LETTERS 2022; 22:3417-3424. [PMID: 35404612 DOI: 10.1021/acs.nanolett.2c00696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Power generation through harvesting human thermal energy provides an ideal strategy for self-powered wearable design. However, existing thermoelectric fibers, films, and blocks have small power generation capacity and poor flexibility, which hinders the development of self-powered wearable electronics. Here, we report a multifunctional superelastic graphene-based thermoelectric (TE) sponge for wearable electronics and thermal management. The sponge has a high Seebeck coefficient of 49.2 μV/K and a large compressive strain of 98%. After 10 000 cyclic compressions at 30% strain, the sponge shows excellent mechanical and TE stability. A wearable sponge array TE device was designed to drive medical equipment for monitoring physiological signals by harvesting human thermal energy. Furthermore, a 4 × 4 array TE device placed on the surface of a normal working Central Processing Unit (CPU) can generate a stable voltage and reduce the CPU temperature by 8 K, providing a feasible strategy for simultaneous power generation and thermal management.
Collapse
Affiliation(s)
- Ding Zhang
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Yin Mao
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Peijia Bai
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Qi Li
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Wen He
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Heng Cui
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Fei Ye
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Chenxi Li
- Center for Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, P. R. China
| | - Rujun Ma
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Yongsheng Chen
- Center for Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, P. R. China
| |
Collapse
|
26
|
Shi Q, Yang Y, Sun Z, Lee C. Progress of Advanced Devices and Internet of Things Systems as Enabling Technologies for Smart Homes and Health Care. ACS MATERIALS AU 2022; 2:394-435. [PMID: 36855708 PMCID: PMC9928409 DOI: 10.1021/acsmaterialsau.2c00001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the Internet of Things (IoT) era, various devices (e.g., sensors, actuators, energy harvesters, etc.) and systems have been developed toward the realization of smart homes/buildings and personal health care. These advanced devices can be categorized into ambient devices and wearable devices based on their usage scenarios, to enable motion tracking, health monitoring, daily care, home automation, fall detection, intelligent interaction, assistance, living convenience, and security in smart homes. With the rapidly increasing number of such advanced devices and IoT systems, achieving fully self-sustained and multimodal intelligent systems is becoming more and more important to realize a sustainable and all-in-one smart home platform. Hence, in this Review, we systematically present the recent progress of the development of advanced materials, fabrication techniques, devices, and systems for enabling smart home and health care applications. First, advanced polymer, fiber, and fabric materials as well as their respective fabrication techniques for large-scale manufacturing are discussed. After that, functional devices classified into ambient devices (at home ambiance such as door, floor, table, chair, bed, toilet, window, wall, etc.) and wearable devices (on body parts such as finger, wrist, arm, throat, face, back, etc.) are presented for diverse monitoring and auxiliary applications. Next, the current developments of self-sustained systems and intelligent systems are reviewed in detail, indicating two promising research directions in this field. Last, conclusions and outlook pinpointed on the existing challenges and opportunities are provided for the research community to consider.
Collapse
Affiliation(s)
- Qiongfeng Shi
- Department
of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore,Center
for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore,Suzhou
Research Institute (NUSRI), National University
of Singapore, Suzhou Industrial Park, Suzhou 215123, China
| | - Yanqin Yang
- Department
of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore,Center
for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore,Suzhou
Research Institute (NUSRI), National University
of Singapore, Suzhou Industrial Park, Suzhou 215123, China
| | - Zhongda Sun
- Department
of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore,Center
for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore,Suzhou
Research Institute (NUSRI), National University
of Singapore, Suzhou Industrial Park, Suzhou 215123, China
| | - Chengkuo Lee
- Department
of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore,Center
for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore,Suzhou
Research Institute (NUSRI), National University
of Singapore, Suzhou Industrial Park, Suzhou 215123, China,NUS
Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore,
| |
Collapse
|
27
|
Jeong MH, Kim K, Kim J, Choi KJ. Operation of Wearable Thermoelectric Generators Using Dual Sources of Heat and Light. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104915. [PMID: 35199951 PMCID: PMC9036048 DOI: 10.1002/advs.202104915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/02/2022] [Indexed: 06/14/2023]
Abstract
A wearable thermoelectric generator (WTEG) that utilizes human body heat can be a promising candidate for the wearable power generators. The temperature difference (ΔT) between the body and the environment is a stable source driving the WTEG, but this driving force is limited by the ambient temperature itself at the same time. Here, a novel WTEG that can be operated using the dual source of body heat and light with exceptionally high driving force is fabricated. The printable solar absorbing layer attached to the bottom of the WTEG absorbs ≈95% of the light from ultraviolet to far infrared and converts it into heat. To optimize the power density of WTEGs, the fill factor of the thermoelectric (TE) leg/electrode is considered through finite-difference time-domain (FDTD) simulation. When operated by the dual sources, the WTEG exhibits a power density of 15.33 µW cm-2 , which is the highest under "actual operating conditions" among all kinds of WTEGs. In addition, unlike conventional WTEGs, the WTEG retains 83.1% of its output power at an ambient temperature of 35 °C compared to its output power at room temperature. This study will accelerate the commercialization of WTEGs by introducing a novel method to overcome their limitations.
Collapse
Affiliation(s)
- Myeong Hoon Jeong
- Department of Materials Science and EngineeringUlsan National Institute of Science and TechnologyUlsan44919Republic of Korea
| | - Kwang‐Chon Kim
- Center for Electronic MaterialsKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jin‐Sang Kim
- KIST Jeonbuk Institute of Advanced Composite MaterialsWanju‐gun55324Republic of Korea
| | - Kyoung Jin Choi
- Department of Materials Science and EngineeringUlsan National Institute of Science and TechnologyUlsan44919Republic of Korea
| |
Collapse
|
28
|
Li L, Feng S, Bai Y, Yang X, Liu M, Hao M, Wang S, Wu Y, Sun F, Liu Z, Zhang T. Enhancing hydrovoltaic power generation through heat conduction effects. Nat Commun 2022; 13:1043. [PMID: 35210414 PMCID: PMC8873497 DOI: 10.1038/s41467-022-28689-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
Restricted ambient temperature and slow heat replenishment in the phase transition of water molecules severely limit the performance of the evaporation-induced hydrovoltaic generators. Here we demonstrate a heat conduction effect enhanced hydrovoltaic power generator by integrating a flexible ionic thermoelectric gelatin material with a porous dual-size Al2O3 hydrovoltaic generator. In the hybrid heat conduction effect enhanced hydrovoltaic power generator, the ionic thermoelectric gelatin material can effectively improve the heat conduction between hydrovoltaic generator and near environment, thus increasing the water evaporation rate to improve the output voltage. Synergistically, hydrovoltaic generator part with continuous water evaporation can induce a constant temperature difference for the thermoelectric generator. Moreover, the system can efficiently achieve solar-to-thermal conversion to raise the temperature difference, accompanied by a stable open circuit voltage of 6.4 V for the hydrovoltaic generator module, the highest value yet.
Collapse
Affiliation(s)
- Lianhui Li
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, 215123, Suzhou, P. R. China
| | - Sijia Feng
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, 215123, Suzhou, P. R. China
| | - Yuanyuan Bai
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, 215123, Suzhou, P. R. China
| | - Xianqing Yang
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, 215123, Suzhou, P. R. China
| | - Mengyuan Liu
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, 215123, Suzhou, P. R. China
| | - Mingming Hao
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, 215123, Suzhou, P. R. China
| | - Shuqi Wang
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, 215123, Suzhou, P. R. China
| | - Yue Wu
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, 215123, Suzhou, P. R. China
| | - Fuqin Sun
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, 215123, Suzhou, P. R. China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ting Zhang
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, 215123, Suzhou, P. R. China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences (CAS), 320 Yueyang Rod, 200031, Shanghai, China.
- Gusu laboratory of materials, 388 Ruoshui Road, 215123, Suzhou, P. R. China.
| |
Collapse
|
29
|
Wang YL, Chen TH, Giri K, Chen CH. Periodic DLC Interlayer-Functionalized Bi-Sb-Te-Based Nanostructures: A Novel Concept for Building Heterogenized Superarchitectures with Enhanced Thermoelectric Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9307-9317. [PMID: 35148074 DOI: 10.1021/acsami.1c23206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
According to the innovative design concept of omnidirectional quasi-order hetero-nanocomposites proposed for potentially realizing high thermoelectric performance, a series of superarchitectures consisting of longitudinally periodic diamond-like carbon (DLC) interlayers in latitudinally well-aligned Bi-Sb-Te (BST)-based nanostructures were successfully demonstrated for the first time using dual-beam pulsed laser deposition. This work confirmed that the periodic appearance of DLC is a practical approach to instantly resetting the BST deposition into another new crystal growth cycle. The optimized Seebeck coefficient of ∼500 μV K-1 and the corresponding power factor of ∼40 μW cm-1 K-2 achieved are comparable to or higher than the reported values for BST or BST-based nanocomposites, which evidently originated from the periodically added DLC, as clarified in the Pisarenko plot. In addition, the DLC additives effectively reduce the thermal transport as qualitatively evidenced by micro-Raman characterizations.
Collapse
Affiliation(s)
- Yan-Lin Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsin-Chu, 30010 Taiwan, ROC
| | - Tsung-Han Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsin-Chu, 30010 Taiwan, ROC
| | - Karan Giri
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsin-Chu, 30010 Taiwan, ROC
| | - Chun-Hua Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsin-Chu, 30010 Taiwan, ROC
| |
Collapse
|
30
|
Zeng M, Zavanelli D, Chen J, Saeidi-Javash M, Du Y, LeBlanc S, Snyder GJ, Zhang Y. Printing thermoelectric inks toward next-generation energy and thermal devices. Chem Soc Rev 2021; 51:485-512. [PMID: 34761784 DOI: 10.1039/d1cs00490e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability of thermoelectric (TE) materials to convert thermal energy to electricity and vice versa highlights them as a promising candidate for sustainable energy applications. Despite considerable increases in the figure of merit zT of thermoelectric materials in the past two decades, there is still a prominent need to develop scalable synthesis and flexible manufacturing processes to convert high-efficiency materials into high-performance devices. Scalable printing techniques provide a versatile solution to not only fabricate both inorganic and organic TE materials with fine control over the compositions and microstructures, but also manufacture thermoelectric devices with optimized geometric and structural designs that lead to improved efficiency and system-level performances. In this review, we aim to provide a comprehensive framework of printing thermoelectric materials and devices by including recent breakthroughs and relevant discussions on TE materials chemistry, ink formulation, flexible or conformable device design, and processing strategies, with an emphasis on additive manufacturing techniques. In addition, we review recent innovations in the flexible, conformal, and stretchable device architectures and highlight state-of-the-art applications of these TE devices in energy harvesting and thermal management. Perspectives of emerging research opportunities and future directions are also discussed. While this review centers on thermoelectrics, the fundamental ink chemistry and printing processes possess the potential for applications to a broad range of energy, thermal and electronic devices.
Collapse
Affiliation(s)
- Minxiang Zeng
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Duncan Zavanelli
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA.
| | - Jiahao Chen
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Mortaza Saeidi-Javash
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Yipu Du
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Saniya LeBlanc
- Department of Mechanical & Aerospace Engineering, George Washington University, 801 22nd St. NW, Suite 739, Washington, DC 20052, USA
| | - G Jeffrey Snyder
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA.
| | - Yanliang Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
31
|
Maji T, Rousti AM, Kazi AP, Drew C, Kumar J, Christodouleas DC. Wearable Thermoelectric Devices Based on Three-Dimensional PEDOT:Tosylate/CuI Paper Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46919-46926. [PMID: 34546722 DOI: 10.1021/acsami.1c12237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermoelectric composites of organic and inorganic materials exhibit significantly enhanced thermoelectric properties compared with pristine organic thermoelectrics so they might be better suited as core materials of wearable thermoelectric devices. This study describes the development of three-dimensional (3D) paper PEDOT:tosylate/CuI composites that could be shaped as 3 mm thick blocks to convert a temperature difference between their bottom and top sides into power; the majority of organic thermoelectric materials are shaped as thin strips usually on a planar substrate and convert a temperature difference between the opposite edges of the strips into power. The 3D paper PEDOT:tosylate/CuI composites can produce a power density equal to 4.8 nW/cm2 (ΔΤ = 6 Κ) that is 10 times higher than that of the pristine paper PEDOT:Tos composites. The enhanced thermoelectric properties of the paper PEDOT:tosylate/CuI composites are attributed to the CuI nanocrystals entrapped inside the composite that increases the Seebeck coefficient of the composite to 225 μV K-1; the Seebeck coefficient of paper PEDOT:Tos is 65 μV K-1. A proof-of-concept wearable thermoelectric device that uses 36 blocks of the paper PEDOT:tosylate/CuI composites (as p-type elements) and 36 wires of monel (as n-type elements) can produce up to 4.7 μW of power at ΔΤ = 20 K. The device has a footprint of 64 cm2 and can be placed directly over the skin or can be embedded into clothing.
Collapse
Affiliation(s)
- Tanmoy Maji
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Anna Maria Rousti
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Abbas Parvez Kazi
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Christopher Drew
- US Army DEVCOM Soldier Center, Natick Massachusetts 01760, United States
| | - Jayant Kumar
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
- Center for Advanced Material and Science, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | | |
Collapse
|
32
|
Jia Y, Jiang Q, Sun H, Liu P, Hu D, Pei Y, Liu W, Crispin X, Fabiano S, Ma Y, Cao Y. Wearable Thermoelectric Materials and Devices for Self-Powered Electronic Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102990. [PMID: 34486174 DOI: 10.1002/adma.202102990] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/05/2021] [Indexed: 05/11/2023]
Abstract
The emergence of artificial intelligence and the Internet of Things has led to a growing demand for wearable and maintenance-free power sources. The continual push toward lower operating voltages and power consumption in modern integrated circuits has made the development of devices powered by body heat finally feasible. In this context, thermoelectric (TE) materials have emerged as promising candidates for the effective conversion of body heat into electricity to power wearable devices without being limited by environmental conditions. Driven by rapid advances in processing technology and the performance of TE materials over the past two decades, wearable thermoelectric generators (WTEGs) have gradually become more flexible and stretchable so that they can be used on complex and dynamic surfaces. In this review, the functional materials, processing techniques, and strategies for the device design of different types of WTEGs are comprehensively covered. Wearable self-powered systems based on WTEGs are summarized, including multi-function TE modules, hybrid energy harvesting, and all-in-one energy devices. Challenges in organic TE materials, interfacial engineering, and assessments of device performance are discussed, and suggestions for future developments in the area are provided. This review will promote the rapid implementation of wearable TE materials and devices in self-powered electronic systems.
Collapse
Affiliation(s)
- Yanhua Jia
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Qinglin Jiang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Peipei Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Dehua Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yanzhong Pei
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Weishu Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xavier Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
33
|
Heo S, Ha J, Son SJ, Choi IS, Lee H, Oh S, Jekal J, Kang MH, Lee GJ, Jung HH, Yea J, Lee T, Lee Y, Choi JW, Xu S, Choi JH, Jeong JW, Song YM, Rah JC, Keum H, Jang KI. Instant, multiscale dry transfer printing by atomic diffusion control at heterogeneous interfaces. SCIENCE ADVANCES 2021; 7:eabh0040. [PMID: 34244149 PMCID: PMC8270493 DOI: 10.1126/sciadv.abh0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/27/2021] [Indexed: 05/09/2023]
Abstract
Transfer printing is a technique that integrates heterogeneous materials by readily retrieving functional elements from a grown substrate and subsequently printing them onto a specific target site. These strategies are broadly exploited to construct heterogeneously integrated electronic devices. A typical wet transfer printing method exhibits limitations related to unwanted displacement and shape distortion of the device due to uncontrollable fluid movement and slow chemical diffusion. In this study, a dry transfer printing technique that allows reliable and instant release of devices by exploiting the thermal expansion mismatch between adjacent materials is demonstrated, and computational studies are conducted to investigate the fundamental mechanisms of the dry transfer printing process. Extensive exemplary demonstrations of multiscale, sequential wet-dry, circuit-level, and biological topography-based transfer printing demonstrate the potential of this technique for many other emerging applications in modern electronics that have not been achieved through conventional wet transfer printing over the past few decades.
Collapse
Affiliation(s)
- Seungkyoung Heo
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Jeongdae Ha
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Sook Jin Son
- Korea Brain Research Institute, Daegu 41062, South Korea
| | - In Sun Choi
- Korea Brain Research Institute, Daegu 41062, South Korea
| | - Hyeokjun Lee
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Saehyuck Oh
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Janghwan Jekal
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Min Hyung Kang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Gil Ju Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Han Hee Jung
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Junwoo Yea
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Taeyoon Lee
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Youngjeon Lee
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk-do 28116, South Korea
| | - Ji-Woong Choi
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Sheng Xu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093-0448, USA
| | - Joon Ho Choi
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
- Korea Brain Research Institute, Daegu 41062, South Korea
| | - Jae-Woong Jeong
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jong-Cheol Rah
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea.
- Korea Brain Research Institute, Daegu 41062, South Korea
| | - Hohyun Keum
- Korea Institute of Industrial Technology, Cheonan, 31056 South Korea.
| | - Kyung-In Jang
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea.
- Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
- Korea Brain Research Institute, Daegu 41062, South Korea
| |
Collapse
|
34
|
Yang S, Qiu P, Chen L, Shi X. Recent Developments in Flexible Thermoelectric Devices. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Shiqi Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Pengfei Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Lidong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Xun Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
35
|
Gong Z. Layer-Scale and Chip-Scale Transfer Techniques for Functional Devices and Systems: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:842. [PMID: 33806237 PMCID: PMC8065746 DOI: 10.3390/nano11040842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
Hetero-integration of functional semiconductor layers and devices has received strong research interest from both academia and industry. While conventional techniques such as pick-and-place and wafer bonding can partially address this challenge, a variety of new layer transfer and chip-scale transfer technologies have been developed. In this review, we summarize such transfer techniques for heterogeneous integration of ultrathin semiconductor layers or chips to a receiving substrate for many applications, such as microdisplays and flexible electronics. We showed that a wide range of materials, devices, and systems with expanded functionalities and improved performance can be demonstrated by using these technologies. Finally, we give a detailed analysis of the advantages and disadvantages of these techniques, and discuss the future research directions of layer transfer and chip transfer techniques.
Collapse
Affiliation(s)
- Zheng Gong
- Institute of Semiconductors, Guangdong Academy of Sciences, No. 363 Changxing Road, Tianhe District, Guangzhou 510650, China;
- Foshan Debao Display Technology Co Ltd., Room 508-1, Level 5, Block A, Golden Valley Optoelectronics, Nanhai District, Foshan 528200, China
| |
Collapse
|
36
|
Ren W, Sun Y, Zhao D, Aili A, Zhang S, Shi C, Zhang J, Geng H, Zhang J, Zhang L, Xiao J, Yang R. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. SCIENCE ADVANCES 2021; 7:7/7/eabe0586. [PMID: 33568483 PMCID: PMC7875524 DOI: 10.1126/sciadv.abe0586] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/21/2020] [Indexed: 05/06/2023]
Abstract
Thermoelectric generators (TEGs) are an excellent candidate for powering wearable electronics and the "Internet of Things," due to their capability of directly converting heat to electrical energy. Here, we report a high-performance wearable TEG with superior stretchability, self-healability, recyclability, and Lego-like reconfigurability, by combining modular thermoelectric chips, dynamic covalent polyimine, and flowable liquid-metal electrical wiring in a mechanical architecture design of "soft motherboard-rigid plugin modules." A record-high open-circuit voltage among flexible TEGs is achieved, reaching 1 V/cm2 at a temperature difference of 95 K. Furthermore, this TEG is integrated with a wavelength-selective metamaterial film on the cold side, leading to greatly improved device performance under solar irradiation, which is critically important for wearable energy harvesting during outdoor activities. The optimal properties and design concepts of TEGs reported here can pave the way for delivering the next-generation high-performance, adaptable, customizable, durable, economical, and eco-friendly energy-harvesting devices with wide applications.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Yan Sun
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Center of Analysis and Measurement, Harbin Institute of Technology, Harbin 150001, China
| | - Dongliang Zhao
- School of Energy and Environment, Southeast University, Nanjing 210096, China
- Engineering Research Center of Building Equipment, Energy, and Environment, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Ablimit Aili
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Shun Zhang
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Chuanqian Shi
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Jialun Zhang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Huiyuan Geng
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Jie Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Center of Analysis and Measurement, Harbin Institute of Technology, Harbin 150001, China
| | - Lixia Zhang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.
| | - Jianliang Xiao
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Ronggui Yang
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
37
|
Shi Q, Sun Z, Zhang Z, Lee C. Triboelectric Nanogenerators and Hybridized Systems for Enabling Next-Generation IoT Applications. RESEARCH (WASHINGTON, D.C.) 2021; 2021:6849171. [PMID: 33728410 PMCID: PMC7937188 DOI: 10.34133/2021/6849171] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/27/2020] [Indexed: 01/08/2023]
Abstract
In the past few years, triboelectric nanogenerator-based (TENG-based) hybrid generators and systems have experienced a widespread and flourishing development, ranging among almost every aspect of our lives, e.g., from industry to consumer, outdoor to indoor, and wearable to implantable applications. Although TENG technology has been extensively investigated for mechanical energy harvesting, most developed TENGs still have limitations of small output current, unstable power generation, and low energy utilization rate of multisource energies. To harvest the ubiquitous/coexisted energy forms including mechanical, thermal, and solar energy simultaneously, a promising direction is to integrate TENG with other transducing mechanisms, e.g., electromagnetic generator, piezoelectric nanogenerator, pyroelectric nanogenerator, thermoelectric generator, and solar cell, forming the hybrid generator for synergetic single-source and multisource energy harvesting. The resultant TENG-based hybrid generators utilizing integrated transducing mechanisms are able to compensate for the shortcomings of each mechanism and overcome the above limitations, toward achieving a maximum, reliable, and stable output generation. Hence, in this review, we systematically introduce the key technologies of the TENG-based hybrid generators and hybridized systems, in the aspects of operation principles, structure designs, optimization strategies, power management, and system integration. The recent progress of TENG-based hybrid generators and hybridized systems for the outdoor, indoor, wearable, and implantable applications is also provided. Lastly, we discuss our perspectives on the future development trend of hybrid generators and hybridized systems in environmental monitoring, human activity sensation, human-machine interaction, smart home, healthcare, wearables, implants, robotics, Internet of things (IoT), and many other fields.
Collapse
Affiliation(s)
- Qiongfeng Shi
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Smart Systems Institute, National University of Singapore, 3 Research Link, Singapore, Singapore 117602
| | - Zhongda Sun
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Smart Systems Institute, National University of Singapore, 3 Research Link, Singapore, Singapore 117602
| | - Zixuan Zhang
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Smart Systems Institute, National University of Singapore, 3 Research Link, Singapore, Singapore 117602
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Smart Systems Institute, National University of Singapore, 3 Research Link, Singapore, Singapore 117602
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore 117456
| |
Collapse
|
38
|
High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nat Commun 2020; 11:5948. [PMID: 33230141 PMCID: PMC7684283 DOI: 10.1038/s41467-020-19756-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/28/2020] [Indexed: 11/25/2022] Open
Abstract
Softening of thermoelectric generators facilitates conformal contact with arbitrary-shaped heat sources, which offers an opportunity to realize self-powered wearable applications. However, existing wearable thermoelectric devices inevitably exhibit reduced thermoelectric conversion efficiency due to the parasitic heat loss in high-thermal-impedance polymer substrates and poor thermal contact arising from rigid interconnects. Here, we propose compliant thermoelectric generators with intrinsically stretchable interconnects and soft heat conductors that achieve high thermoelectric performance and unprecedented conformability simultaneously. The silver-nanowire-based soft electrodes interconnect bismuth-telluride-based thermoelectric legs, effectively absorbing strain energy, which allows our thermoelectric generators to conform perfectly to curved surfaces. Metal particles magnetically self-assembled in elastomeric substrates form soft heat conductors that significantly enhance the heat transfer to the thermoelectric legs, thereby maximizing energy conversion efficiency on three-dimensional heat sources. Moreover, automated additive manufacturing paves the way for realizing self-powered wearable applications comprising hundreds of thermoelectric legs with high customizability under ambient conditions. Though flexible thermoelectric generators (TEGs) are attractive for energy harvesting applications, existing devices show low efficiency due to heat loss and poor thermal contact. Here, the authors report high-performance conformable TEGs with stretchable interconnects and soft heat conductors.
Collapse
|
39
|
Lee SI, Jang SH, Han YJ, Lee JY, Choi J, Cho KH. Xenon Flash Lamp Lift-Off Technology without Laser for Flexible Electronics. MICROMACHINES 2020; 11:mi11110953. [PMID: 33105826 PMCID: PMC7690583 DOI: 10.3390/mi11110953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022]
Abstract
This study experimentally investigated process mechanisms and characteristics of newly developed xenon flash lamp lift-off (XF-LO) technology, a novel thin film lift-off method using a light to heat conversion layer (LTHC) and a xenon flash lamp (XFL). XF-LO technology was used to lift-off polyimide (PI) films of 8.68–19.6 μm thickness. When XFL energy irradiated to the LTHC was 2.61 J/cm2, the PI film was completely released from the carrier substrate. However, as the energy intensity of the XFL increased, it became increasingly difficult to completely release the PI film from the carrier substrate. Using thermal gravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR) and transmittance analysis, the process mechanism of XF-LO technology was investigated. Thermal durability of the PI film was found to deteriorate with increasing XFL energy intensity, resulting in structural deformation and increased roughness of the PI film surface. The optimum energy intensity of 2.61 J/cm2 or less was found to be effective for performing XF-LO technology. This study provides an attractive method for manufacturing flexible electronic boards outside the framework of existing laser lift-off (LLO) technology.
Collapse
Affiliation(s)
- Sang Il Lee
- Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (S.I.L.); (Y.J.H.); (J.y.L.)
| | - Seong Hyun Jang
- Human Convergence Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea;
| | - Young Joon Han
- Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (S.I.L.); (Y.J.H.); (J.y.L.)
| | - Jun yeub Lee
- Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (S.I.L.); (Y.J.H.); (J.y.L.)
| | - Jun Choi
- Human Convergence Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea;
- Correspondence: (J.C.); (K.H.C.)
| | - Kwan Hyun Cho
- Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (S.I.L.); (Y.J.H.); (J.y.L.)
- Correspondence: (J.C.); (K.H.C.)
| |
Collapse
|
40
|
Sanad MF, Shalan AE, Abdellatif SO, Serea ESA, Adly MS, Ahsan MA. Thermoelectric Energy Harvesters: A Review of Recent Developments in Materials and Devices for Different Potential Applications. Top Curr Chem (Cham) 2020; 378:48. [PMID: 33037928 DOI: 10.1007/s41061-020-00310-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/10/2020] [Indexed: 11/30/2022]
Abstract
The thermoelectric effect encompasses three different effects, i.e. Seebeck effect, Peltier effect, and Thomson effect, which are considered as thermally activated materials that alter directions in smart materials. It is currently considered one of the most challenging green energy harvesting mechanisms among researchers. The ability to utilize waste thermal energy that is generated by different applications promotes the use of thermoelectric harvesters across a wide range of applications. This review illustrates the different attempts to fabricate efficient, robust and sustainable thermoelectric harvesters, considering the material selection, characterization, device fabrication and potential applications. Thermoelectric harvesters with a wide range of output power generated reaching the milliwatt range have been considered in this work, with a special focus on the main advantages and disadvantages in these devices. Additionally, this review presents various studies reported in the literature on the design and fabrication of thermoelectric harvesters and highlights their potential applications. In order to increase the efficiency of equipment and processes, the generation of thermoelectricity via thermoelectric materials is achieved through the harvesting of residual energy. The review discusses the main challenges in the fabrication process associated with thermoelectric harvester implementation, as well as the considerable advantages of the proposed devices. The use of thermoelectric harvesters in a wide range of applications where waste thermal energy is used and the impact of the thermoelectric harvesters is also highlighted in this review.
Collapse
Affiliation(s)
- Mohamed Fathi Sanad
- FabLab, Centre for Emerging Learning Technologies (CELT), Electrical Engineering Department, The British University in Egypt (BUE), Cairo, 11387, Egypt
| | - Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, 11421, Cairo, Egypt. .,BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena S/N, 48940, Leioa, Spain.
| | - Sameh O Abdellatif
- FabLab, Centre for Emerging Learning Technologies (CELT), Electrical Engineering Department, The British University in Egypt (BUE), Cairo, 11387, Egypt
| | - Esraa Samy Abu Serea
- Chemistry and Biochemistry Department, Faculty of Science, Cairo University, Cairo, Egypt.,BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena S/N, 48940, Leioa, Spain
| | - Mina Shawky Adly
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.,Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Md Ariful Ahsan
- The University of Texas at El Paso, 500 W University Ave, El Paso, TX, 79968, USA
| |
Collapse
|
41
|
Zhou C, Yu Y, Lee YL, Ge B, Lu W, Cojocaru-Mirédin O, Im J, Cho SP, Wuttig M, Shi Z, Chung I. Exceptionally High Average Power Factor and Thermoelectric Figure of Merit in n-type PbSe by the Dual Incorporation of Cu and Te. J Am Chem Soc 2020; 142:15172-15186. [PMID: 32786777 DOI: 10.1021/jacs.0c07712] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermoelectric materials with high average power factor and thermoelectric figure of merit (ZT) has been a sought-after goal. Here, we report new n-type thermoelectric system CuxPbSe0.99Te0.01 (x = 0.0025, 0.004, and 0.005) exhibiting record-high average ZT ∼ 1.3 over 400-773 K ever reported for n-type polycrystalline materials including the state-of-the-art PbTe. We concurrently alloy Te to the PbSe lattice and introduce excess Cu to its interstitial voids. Their resulting strong attraction facilitates charge transfer from Cu atoms to the crystal matrix significantly. It follows the increased carrier concentration without damaging its mobility and the consequently improved electrical conductivity. This interaction also increases effective mass of electron in the conduction band according to DFT calculations, thereby raising the magnitude of Seebeck coefficient without diminishing electrical conductivity. Resultantly, Cu0.005PbSe0.99Te0.01 attains an exceptionally high average power factor of ∼27 μW cm-1 K-2 from 400 to 773 K with a maximum of ∼30 μW cm-1 K-2 at 300 K, the highest among all n- and p-type PbSe-based materials. Its ∼23 μW cm-1 K-2 at 773 K is even higher than ∼21 μW cm-1 K-2 of the state-of-the-art n-type PbTe. Interstitial Cu atoms induce the formation of coherent nanostructures. They are highly mobile, displacing Pb atoms from the ideal octahedral center and severely distorting the local microstructure. This significantly depresses lattice thermal conductivity to ∼0.2 Wm-1 K-1 at 773 K below the theoretical lower bound. The multiple effects of the dual incorporation of Cu and Te synergistically boosts a ZT of Cu0.005PbSe0.99Te0.01 to ∼1.7 at 773 K.
Collapse
Affiliation(s)
| | - Yuan Yu
- Institute of Physics (IA), RWTH Aachen University, 52056 Aachen, Germany
| | - Yea-Lee Lee
- Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Bangzhi Ge
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | | | | | - Jino Im
- Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | | | - Matthias Wuttig
- Institute of Physics (IA), RWTH Aachen University, 52056 Aachen, Germany.,JARA-FIT Institute Green-IT, RWTH Aachen University and Forschungszentrum Jülich, 52056 Aachen, Germany
| | - Zhongqi Shi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - In Chung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
42
|
Shim GW, Hong W, Cha JH, Park JH, Lee KJ, Choi SY. TFT Channel Materials for Display Applications: From Amorphous Silicon to Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907166. [PMID: 32176401 DOI: 10.1002/adma.201907166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/16/2019] [Indexed: 06/10/2023]
Abstract
As the need for super-high-resolution displays with various form factors has increased, it has become necessary to produce high-performance thin-film transistors (TFTs) that enable faster switching and higher current driving of each pixel in the display. Over the past few decades, hydrogenated amorphous silicon (a-Si:H) has been widely utilized as a TFT channel material. More recently, to meet the requirement of new types of displays such as organic light-emitting diode displays, and also to overcome the performance and reliability issues of a-Si:H, low-temperature polycrystalline silicon and amorphous oxide semiconductors have partly replaced a-Si:H channel materials. Basic material properties and device structures of TFTs in commercial displays are explored, and then the potential of atomically thin layered transition metal dichalcogenides as next-generation channel materials is discussed.
Collapse
Affiliation(s)
- Gi Woong Shim
- Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Display, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Woonggi Hong
- Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Display, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Jun-Hwe Cha
- Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Display, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Jung Hwan Park
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sung-Yool Choi
- Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Display, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| |
Collapse
|
43
|
Zhu C, Guo D, Ye D, Jiang S, Huang Y. Flexible PZT-Integrated, Bilateral Sensors via Transfer-Free Laser Lift-Off for Multimodal Measurements. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37354-37362. [PMID: 32814403 DOI: 10.1021/acsami.0c10083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fabrication of functional devices that require a high-temperature annealing process on a thin, temperature-sensitive substrate is a long-standing, crucial issue in flexible electronics. Herein, we propose a transfer-free laser lift-off method to directly fabricate lead zirconate titanate (PZT) piezoelectric sensors that commonly undergo a high-temperature annealing (∼650 °C) on ubiquitous flexible substrates, including polyimide (∼300 °C), polyethylene terephthalate (∼120 °C), and polydimethylsiloxane (∼150 °C). The method includes the steps of fabricating sensors, encapsulating a flexible substrate, and peeling off the device by melting the sacrificial PZT layer at the interface with a sapphire glass. The appropriate fluence of laser energy has been figured out to avoid inadequate stripping or damage of the device. In addition, a process window for reliable stripping of the device has been established among the laser fluence and the thickness of the sacrificial layer and the supporting substrate. Furthermore, the capability of the newly proposed technique has been verified and expanded by successfully integrating several sensors that need skillful low-temperature heating treatment on top of a flexible supporting substrate accordingly before stripping. Finally, a PZT-integrated, bilateral multimodal sensor on a PI substrate has been fabricated, and the device demonstrates excellent performance and stability toward perceiving distributed dynamic pressure and temperature stimuli, revealing its high potential for the fabrication of high-performance devices for multimodal sensing applications.
Collapse
Affiliation(s)
- Chen Zhu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongliang Guo
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dong Ye
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shan Jiang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - YongAn Huang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
44
|
Thermal display glove for interacting with virtual reality. Sci Rep 2020; 10:11403. [PMID: 32647270 PMCID: PMC7347636 DOI: 10.1038/s41598-020-68362-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/23/2020] [Indexed: 11/08/2022] Open
Abstract
Thermal perception is essential for the survival and daily activities of people. Thus, it is desirable to realize thermal feedback stimulation for improving the sense of realism in virtual reality (VR) for users. For thermal stimulus, conventional systems utilize liquid circulation with bulky external sources or thermoelectric devices (TEDs) on rigid structures. However, these systems are difficult to apply to compact wearable gear used for complex hand motions to interact with VR. Furthermore, generating a rapid temperature difference, especially cooling, in response to a thermal stimulus in real-time is challenging for the conventional systems. To overcome this challenge and enhance wearability, we developed an untethered real-time thermal display glove. This glove comprised piezoelectric sensors enabling hand motion sensing and flexible TEDs for bidirectional thermal stimulus on skin. The customized flexible TEDs can decrease the temperature by 10 °C at room temperature in less than 0.5 s. Moreover, they have sufficiently high durability to withstand over 5,000 bends and high flexibility under a bending radius of 20 mm. In a user test with 20 subjects, the correlation between thermal perception and the displayed object's color was verified, and a survey result showed that the thermal display glove provided realistic and immersive experiences to users when interacting with VR.
Collapse
|
45
|
Sahu A, Russ B, Liu M, Yang F, Zaia EW, Gordon MP, Forster JD, Zhang YQ, Scott MC, Persson KA, Coates NE, Segalman RA, Urban JJ. In-situ resonant band engineering of solution-processed semiconductors generates high performance n-type thermoelectric nano-inks. Nat Commun 2020; 11:2069. [PMID: 32350274 PMCID: PMC7190739 DOI: 10.1038/s41467-020-15933-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 04/01/2020] [Indexed: 11/25/2022] Open
Abstract
Thermoelectric devices possess enormous potential to reshape the global energy landscape by converting waste heat into electricity, yet their commercial implementation has been limited by their high cost to output power ratio. No single “champion” thermoelectric material exists due to a broad range of material-dependent thermal and electrical property optimization challenges. While the advent of nanostructuring provided a general design paradigm for reducing material thermal conductivities, there exists no analogous strategy for homogeneous, precise doping of materials. Here, we demonstrate a nanoscale interface-engineering approach that harnesses the large chemically accessible surface areas of nanomaterials to yield massive, finely-controlled, and stable changes in the Seebeck coefficient, switching a poor nonconventional p-type thermoelectric material, tellurium, into a robust n-type material exhibiting stable properties over months of testing. These remodeled, n-type nanowires display extremely high power factors (~500 µW m−1K−2) that are orders of magnitude higher than their bulk p-type counterparts. The design of solution-processed thermoelectric nanomaterials with efficient, stable performance remains a challenge. Here, the authors report an in-situ doping method based on nanoscale interface engineering to realize n-type thermoelectric nanowires with high performance and stability.
Collapse
Affiliation(s)
- Ayaskanta Sahu
- Department of Chemical and Biomolecular Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.,The Molecular Foundry, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Boris Russ
- The Molecular Foundry, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California Berkeley, 201 Gilman Hall, Berkeley, CA, 94720, USA
| | - Miao Liu
- Institute of Physics, Chinese Academy of Sciences, No.8 3rd South Street, Zhongguancun, Haidian District, Beijing, 100190, P.R. China.,Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Fan Yang
- The Molecular Foundry, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Department of Mechanical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA.,Department of Mechanical Engineering, University of California Berkeley, 6141 Etcheverry Hall, Berkeley, CA, 94720, USA
| | - Edmond W Zaia
- The Molecular Foundry, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California Berkeley, 201 Gilman Hall, Berkeley, CA, 94720, USA
| | - Madeleine P Gordon
- The Molecular Foundry, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Applied Science and Technology Graduate Group, University of California Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA, 94720, USA
| | - Jason D Forster
- The Molecular Foundry, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ya-Qian Zhang
- Department of Materials Science and Engineering, University of California Berkeley, 2607 Hearst Ave, Berkeley, CA, 94720, USA.,National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - Mary C Scott
- Department of Materials Science and Engineering, University of California Berkeley, 2607 Hearst Ave, Berkeley, CA, 94720, USA.,National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - Kristin A Persson
- Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Department of Materials Science and Engineering, University of California Berkeley, 2607 Hearst Ave, Berkeley, CA, 94720, USA
| | - Nelson E Coates
- The Molecular Foundry, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Department of Physics, University of Portland, 5000 N. Willamette Blvd., Portland, OR, 97203, USA
| | - Rachel A Segalman
- Departments of Chemical Engineering and Materials, University of California Santa Barbara, Engineering II Building, Santa Barbara, CA, 93106, USA
| | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
| |
Collapse
|
46
|
Zadan M, Malakooti MH, Majidi C. Soft and Stretchable Thermoelectric Generators Enabled by Liquid Metal Elastomer Composites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17921-17928. [PMID: 32208638 DOI: 10.1021/acsami.9b19837] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stretchable thermoelectric generators (TEGs) capable of harvesting electrical energy from body heat under cold weather conditions have the potential to make wearable electronic and robotic systems more lightweight and portable by reducing their dependency on on-board batteries. However, progress depends on the integration of soft conductive materials for robust electrical wiring and thermal management. The use of thermally conductive soft elastomers is especially important for conforming to the body, absorbing body heat, and maintaining a temperature gradient between the two sides of the TEGs in order to generate power. Here, we introduce a soft-matter TEG architecture composed of electrically and thermally conductive liquid metal embedded elastomer (LMEE) composites with integrated arrays of n-type and p-type Bi2Te3 semiconductors. The incorporation of a LMEE as a multifunctional encapsulating material allows for the seamless integration of 100 thermoelectric semiconductor elements into a simplified material layup that has a dimension of 41.0 × 47.3 × 3.0 mm. These stretchable thermoelectric devices generate voltages of 59.96 mV at Δ10 °C, 130 mV at Δ30 °C, and 278.6 mV and a power of 86.6 μW/cm2 at Δ60 °C. Moreover, they do not electrically or mechanically fail when stretched to strains above 50%, making them well-suited for energy harvesting in soft electronics and wearable computing applications.
Collapse
Affiliation(s)
- Mason Zadan
- Physics Department, University of Richmond, Richmond, Virginia 23173, United States
| | - Mohammad H Malakooti
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
47
|
Novel Flexible Triboelectric Nanogenerator based on Metallized Porous PDMS and Parylene C. ENERGIES 2020. [DOI: 10.3390/en13071625] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Triboelectric nanogenerators (TENGs) have recently become a powerful technology for energy harvesting and self-powered sensor networks. One of their main advantages is the possibility to employ a wide range of materials, especially for fabricating inexpensive and easy-to-use devices. This paper reports the fabrication and preliminary characterization of a novel flexible triboelectric nanogenerator which could be employed for driving future low power consumption wearable devices. The proposed TENG is a single-electrode device operating in contact-separation mode for applications in low-frequency energy harvesting from intermittent tapping loads involving the human body, such as finger or hand tapping. The novelty of the device lies in the choice of materials: it is based on a combination of a polysiloxane elastomer and a poly (para-xylylene). In particular, the TENG is composed, sequentially, of a poly (dimethylsiloxane) (PDMS) substrate which was made porous and rough with a steam-curing step; then, a metallization layer with titanium and gold, deposited on the PDMS surface with an optimal substrate–electrode adhesion. Finally, the metallized structure was coated with a thin film of parylene C serving as friction layer. This material provides excellent conformability and high charge-retaining capability, playing a crucial role in the triboelectric process; it also makes the device suitable for employment in harsh, wet environments owing to its inertness and barrier properties. Preliminary performance tests were conducted by measuring the open-circuit voltage and power density under finger tapping (~2 N) at ~5 Hz. The device exhibited a peak-to-peak voltage of 1.6 V and power density peak of 2.24 mW/m2 at ~0.4 MΩ. The proposed TENG demonstrated ease of process, simplicity, cost-effectiveness, and flexibility.
Collapse
|
48
|
Thermoelectric Performance Enhancement of Naturally Occurring Bi and Chitosan Composite Films Using Energy Efficient Method. ELECTRONICS 2020. [DOI: 10.3390/electronics9030532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This work presents an energy efficient technique for fabricating flexible thermoelectric generators while using printable ink. We have fabricated thermoelectric composite thick films using two different mesh sizes of n-type bismuth particles, various binder to thermoelectric material weight ratios, and two different pressures, 200 MPa and 300 MPa, in order to optimize the thermoelectric properties of the composite films. The use of chitosan dissolved in dimethylsulfoxide with less than 0.2 wt. % of chitosan, the first time chitosan has been used in this process, was sufficient for fabricating TE inks and composite films. Low temperature curing processes, along with uniaxial pressure, were used to evaporate the solvent from the drop-casted inks. This combination reduced the temperature needed compared to traditional curing processes while simultaneously increasing the packing density of the film by removing the pores and voids in the chitosan-bismuth composite film. Microstructural analysis of the composite films reveals low amounts of voids and pores when pressed at sufficiently high pressures. The highest performing composite film was obtained with the weight ratio of 1:2000 binder to bismuth, 100-mesh particle size, and 300 MPa of pressure. The best performing bismuth chitosan composite film that was pressed at 300 MPa had a power factor of 4009 ± 391 μW/m K2 with high electrical conductivity of 7337 ± 522 S/cm. The measured thermal conductivity of this same sample was 4.4 ± 0.8 W/m K and the corresponding figure of merit was 0.27 at room temperature.
Collapse
|
49
|
Growth of Freestanding Gallium Nitride (GaN) Through Polyporous Interlayer Formed Directly During Successive Hydride Vapor Phase Epitaxy (HVPE) Process. CRYSTALS 2020. [DOI: 10.3390/cryst10020141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The progress of nitride technology is widely limited and hindered by the lack of high-quality gallium nitride (GaN) wafers. Therefore, a large number of GaN epitaxial devices are grown on heterogeneous substrates. Although various additional treatments of substrate have been used to promote crystal quality, there is still plenty of room for its improvement, in terms of direct and continuous growth based on the hydride vapor phase epitaxy (HVPE) technique. Here, we report a three-step process that can be used to enhance the quality of GaN crystal by tuning V/III rate during successive HVPE process. In the growth, a metal-organic chemical vapor deposition (MOCVD) grown GaN on sapphire (MOCVD-GaN/Al2O3) was employed as substrate, and a high-quality GaN polyporous interlayer, with successful acquisition, without any additional substrate treatment, caused the growth stress to decrease to 0.06 GPa. Meanwhile the quality of GaN improved, and the freestanding GaN was directly obtained during the growth process.
Collapse
|
50
|
Shi J, Liu S, Zhang L, Yang B, Shu L, Yang Y, Ren M, Wang Y, Chen J, Chen W, Chai Y, Tao X. Smart Textile-Integrated Microelectronic Systems for Wearable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901958. [PMID: 31273850 DOI: 10.1002/adma.201901958] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/02/2019] [Indexed: 05/21/2023]
Abstract
The programmable nature of smart textiles makes them an indispensable part of an emerging new technology field. Smart textile-integrated microelectronic systems (STIMES), which combine microelectronics and technology such as artificial intelligence and augmented or virtual reality, have been intensively explored. A vast range of research activities have been reported. Many promising applications in healthcare, the internet of things (IoT), smart city management, robotics, etc., have been demonstrated around the world. A timely overview and comprehensive review of progress of this field in the last five years are provided. Several main aspects are covered: functional materials, major fabrication processes of smart textile components, functional devices, system architectures and heterogeneous integration, wearable applications in human and nonhuman-related areas, and the safety and security of STIMES. The major types of textile-integrated nonconventional functional devices are discussed in detail: sensors, actuators, displays, antennas, energy harvesters and their hybrids, batteries and supercapacitors, circuit boards, and memory devices.
Collapse
Affiliation(s)
- Jidong Shi
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Su Liu
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lisha Zhang
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Bao Yang
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lin Shu
- School of Electronic and Information Engineering, Southern China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Ying Yang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ming Ren
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yang Wang
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiewei Chen
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yang Chai
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xiaoming Tao
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|