1
|
Chu Z, Zhang W, Jiang J, Xia Z, Shi M, Li B, Dai L, Shen Y, Li Y, Greenham NC, Friend RH, Zhang X, You J. Blue Perovskite Light-Emitting Diodes Using Multifunctional Small Molecule Dopants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2409718. [PMID: 40095722 DOI: 10.1002/adma.202409718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 02/08/2025] [Indexed: 03/19/2025]
Abstract
Unbalanced charge carrier injections and high densities of non-radiative recombination channels are still major obstacles to advancing high-efficiency blue perovskite light-emitting diodes (LEDs). Here, a deep-HOMO level p-type small molecule, (2-(3,6-dibromo-9H-carbazol-9-yl)ethyl)phosphonic acid, doped in blue perovskites for building a better-balanced injection and controlling over defects is demonstrated. During the perovskite film deposition process, most small molecules are extruded from the precursor solution to the bottom and top surfaces of the perovskite films. This unique distribution of molecules can construct a better-balanced carrier injection due to improved hole and retarded electron injection by its suitable energy-level structure, along with modulation of all defects in bulk and at the surface of doped films due to the formation of covalent bonds by its functional moiety. With this approach, a series of blue perovskite LEDs is designed with external quantum efficiencies (EQEs) of up to 24.03% (at a luminance of 113 cd m-2 and emission peak of 485 nm), 16.61% (at a luminance of 51 cd m-2 and emission peak of 476 nm) and 8.55% (at a luminance of 30 cd m-2 and emission perk of 467 nm), and encouraging operational stability.
Collapse
Affiliation(s)
- Zema Chu
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Zhang
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Ji Jiang
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhengchang Xia
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mingming Shi
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Biwen Li
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Linjie Dai
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Yunxiu Shen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Richard H Friend
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Xingwang Zhang
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingbi You
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Quarti C, Gautier R, Zacharias M, Gansmuller A, Katan C. Nuclear Quadrupolar Resonance Structural Characterization of Halide Perovskites and Perovskitoids: A Roadmap from Electronic Structure Calculations for Lead-Iodide-Based Compounds. J Am Chem Soc 2025; 147:278-291. [PMID: 39718974 DOI: 10.1021/jacs.4c09877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Metal halide perovskites, including some of their related perovskitoid structures, form a semiconductor class of their own, which is arousing ever-growing interest from the scientific community. With halides being involved in the various structural arrangements, namely, pure corner-sharing MX6 (M is metal and X is halide) octahedra, for perovskite networks, or alternatively a combination of corner-, edge-, and/or face-sharing for related perovskitoids, they represent the ideal probe for characterizing the way octahedra are linked together. Well known for their inherently large quadrupolar constants, which is detrimental to the resolution of nuclear magnetic resonance spectroscopy, most abundant halide isotopes (35/37Cl, 79/81Br, 127I) are in turn attractive for magnetic field-free nuclear quadrupolar resonance (NQR) spectroscopy. Here, we investigate the possibility of exploiting NQR spectroscopy of halides to distinctively characterize the various metal halide structural arrangements, using density functional theory simulations. Our calculations nicely match the available experimental results. Furthermore, they demonstrate that compounds with different connectivities of their MX6 building blocks, including lower dimensionalities such as 2D networks, show distinct NQR signals in a broad spectral window. They finally provide a roadmap of the characteristic NQR frequency ranges for each octahedral connectivity, which may be a useful guide to experimentalists, considering the long acquisition procedures typical of NQR. We hope this work will encourage the incorporation of NQR spectroscopy to further our knowledge of the structural diversity of metal halides.
Collapse
Affiliation(s)
- Claudio Quarti
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons-UMONS, Place du Parc 20, Mons B-7000, Belgium
| | - Régis Gautier
- Univ Rennes, ENSCR, CNRS, ISCR-UMR6226, Université de Rennes, Rennes 35042, France
| | - Marios Zacharias
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON─UMR 6082, Rennes F-35000, France
| | - Axel Gansmuller
- CNRS, CRM2 UMR 7036, Université de Lorraine, Nancy F-54000, France
| | - Claudine Katan
- Univ Rennes, ENSCR, CNRS, ISCR-UMR6226, Université de Rennes, Rennes 35042, France
| |
Collapse
|
3
|
Cho JS, So HK, Balvanz A, Vasileiadou ES, Fletcher J, Kang H, Cho JB, Kim D, Jung Y, Kim B, Kim J, Lee SW, Jung TH, Kim J, Yang SM, Yoo H, Kanatzidis MG, Jung MH, Jang JI. Anomalous Behavior in Dark-Bright Splitting Impacts the Biexciton Binding Energy in (BA) 2(MA) n-1Pb nBr 3n+1 ( n = 1-3). ACS NANO 2024; 18:27793-27803. [PMID: 39344822 DOI: 10.1021/acsnano.4c11523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Two-dimensional Ruddlesden-Popper series are an excellent system for tuning physical properties of the perovskite by controlling the layer number (n). For instance, bandgap and exciton binding energies of the series gradually increase upon reducing n via enhanced quantum and dielectric confinements. Here, we present findings that challenge the anticipated trend in electron-hole exchange interaction within (BA)2MAn-1PbnBr3n+1 (n = 1-3), which causes spin-dependent exciton level splitting into bright and dark states, where the latter is partially visible near the surface of the Br-based two-dimensional Ruddlesden-Popper series. Contrary to expectations, the smallest gap between bright and dark exciton levels is observed from n = 2 at 10 K. This anomaly results in the strongest biexciton binding between two dark excitons occurring at n = 2, rather than at n = 1 as initially hypothesized. The observed anomaly arises from a phase transition induced by octahedral tilting occurring only for n = 2 near 100 K as confirmed by temperature-dependent optical and X-ray diffraction measurements. Our results show that Coulomb interaction need not vary gradually with n, which can impact the optoelectronic properties of the Ruddlesden-Popper series.
Collapse
Affiliation(s)
- Jun Sang Cho
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Hyeon-Kyeong So
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Adam Balvanz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of California─Los Angeles, Los Angeles, California 90095, United States
| | - Jared Fletcher
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hyeokju Kang
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Jeong Bin Cho
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Donggyu Kim
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Yeonho Jung
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Beomjun Kim
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Junhyung Kim
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Sang Woo Lee
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Tae Hyun Jung
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Jeongyong Kim
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sang Mo Yang
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Hyobin Yoo
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Myung-Hwa Jung
- Department of Physics, Sogang University, Seoul 04107, South Korea
| | - Joon I Jang
- Department of Physics, Sogang University, Seoul 04107, South Korea
| |
Collapse
|
4
|
Lü J, Xu F, Zhou Y, Mo X, Ouyang Y, Tao X. Four-Phonon Enhanced the Thermoelectric Properties of ScSX (X = Cl, Br, and I) Monolayers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38712526 DOI: 10.1021/acsami.4c03637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Recently, the FeOCl-type two-dimensional materials have attracted significant attention owing to their versatile applications in fields such as thermoelectricity and photocatalysis. This study aims to systematically investigate the thermoelectric properties of ScSX (X = Cl, Br, and I) monolayers by a combination of the first-principles calculations and the machine-learning interatomic potential approach. These monolayers are indirect semiconductors with band gaps of 3.22 (ScSCl), 3.27 (ScSBr), and 2.87 eV (ScSI), respectively. The lattice thermal conductivity is decreased by 25.72% (20.90%), 44.05% (40.00%), and 30.96% (34.76%) for ScSCl, ScSBr, and ScSI along the x-axis (y-axis) when the four-phonon scattering is introduced, indicating its important role in phonon transport. Anharmonic phonon scattering yields high Grüneisen parameter and scattering rate values, hence causing these low lattice thermal conductivities. Additionally, the large Seebeck coefficients and electrical conductivities of n-type doped ScSX monolayers contribute to their excellent power factors (24.69, 25.66, and 24.99 mW/K2·m for ScSCl, ScSBr and ScSI at 300 K, respectively). Based on the excellent power factor and low thermal conductivity, the maximum values of the figure of merit are calculated to be 2.68, 3.39, and 3.21 for ScSCl, ScSBr, and ScSI monolayers at 700 K, respectively. Our research provides valuable insights into the phonon thermal transport of ScSX monolayers and suggests a promising approach to address high-order anharmonicity.
Collapse
Affiliation(s)
- Jinyang Lü
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, P. R. China
| | - Feiyang Xu
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Yulu Zhou
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, P. R. China
| | - Xiaoming Mo
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, P. R. China
| | - Yifang Ouyang
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, P. R. China
| | - Xiaoma Tao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
5
|
Liu H, He M, Zhang S. Energy Transfer-Dominated Quasi-2D Blue Perovskite Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38652581 DOI: 10.1021/acsami.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The bromide-chloride mixed quasi-two-dimensional (2D) perovskite, with a natural quantum well structure and tunable exciton binding energy, has gained significant attention for high-performance blue perovskite light-emitting diodes (PeLEDs). However, the relative importance of having a low trap state density or efficient exciton transfer for high-efficiency electroluminescence (EL) performance remains elusive. Here, two molecules with the benzoic acid group, sodium 4-fluorobenzoate (SFB) and 3,5-dibromobenzoic acid (DBA), are used to modulate the phase distribution and trap state to explore the effect between energy transfer and defect passivation. As a result, when the n = 1 phase is inhibited in both films, the DBA@SFB-modified perovskite films achieve a higher photoluminescence quantum yield (PLQY) than the SFB-modified perovskite films due to effective defect passivation. However, DBA@SFB-modified PeLEDs exhibit lower external quantum efficiency (EQE) compared to SFB-modified PeLEDs due to the poor exciton transfer between the low-dimensional phase. This demonstrates that passivation strategies may enhance photoluminescence through reducing nonradiative recombination, but the effect of phase distribution is pivotal for EL performance by efficient energy transfer in quasi-2D perovskites. Femtosecond time-resolved transient absorption measurements confirm the fastest carrier dynamics in SFB-modified perovskite films, further corroborating the above result. This work provides useful information about phase modulation and defect passivation for high-efficiency blue quasi-2D PeLEDs.
Collapse
Affiliation(s)
- Hongxin Liu
- College of Physics, Sichuan University, Chengdu 610065, Sichuan, China
| | - Min He
- Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Sijie Zhang
- College of Physics, Sichuan University, Chengdu 610065, Sichuan, China
- Guizhou University of Engineering Science, Bijie 551700, Guizhou, China
| |
Collapse
|
6
|
Zhang L, Wang S, Jiang Y, Yuan M. Stable and Efficient Mixed-halide Perovskite LEDs. CHEMSUSCHEM 2024; 17:e202301205. [PMID: 38081803 DOI: 10.1002/cssc.202301205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Tailoring bandgap by mixed-halide strategy in perovskites has attracted extraordinary attention due to the flexibility of halide ion combinations and has emerged as the most direct and effective approach to precisely tune the emission wavelength throughout the entire visible light spectrum. Mixed-halide perovskites, yet, still suffered from several problems, particularly phase segregation under external stimuli because of ions migration. Understanding the essential cause and finding sound strategies, thus, remains a challenge for stable and efficient mixed-halide perovskite light-emitting diodes (PeLEDs). The review herein presents an overview of the diverse application scenarios and the profound significance associated with mixed-halide perovskites. We then summarize the challenges and potential research directions toward developing high stable and efficient mixed-halide PeLEDs. The review thus provides a systematic and timely summary for the community to deepen the understanding of mixed-halide perovskite materials and resulting PeLEDs.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Stor1age Center (RECAST), College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Saike Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Stor1age Center (RECAST), College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Yuanzhi Jiang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Stor1age Center (RECAST), College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Stor1age Center (RECAST), College of Chemistry, Nankai University, Tianjin, P. R. China
| |
Collapse
|
7
|
Lai PT, Chen CY, Lin HC, Chuang BY, Kuo KH, Greve CR, Su TK, Tan GH, Li CF, Huang SW, Hsiao KY, Herzig EM, Lu MY, Huang YC, Wong KT, Lin HW. Harnessing 2D Ruddlesden-Popper Perovskite with Polar Organic Cation for Ultrasensitive Multibit Nonvolatile Transistor-Type Photomemristors. ACS NANO 2023; 17:25552-25564. [PMID: 38096149 DOI: 10.1021/acsnano.3c09595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Photomemristors have been regarded as one of the most promising candidates for next-generation hardware-based neuromorphic computing due to their potentials of fast data transmission and low power consumption. However, intriguingly, so far, photomemristors seldom display truly nonvolatile memory characteristics with high light sensitivity. Herein, we demonstrate ultrasensitive photomemristors utilizing two-dimensional (2D) Ruddlesden-Popper (RP) perovskites with a highly polar donor-acceptor-type push-pull organic cation, 4-(5-(2-aminoethyl)thiophen-2-yl)benzonitrile+ (EATPCN+), as charge-trapping layers. High linearity and almost zero-decay retention are observed in (EATPCN)2PbI4 devices, which are very distinct from that of the traditional 2D RP perovskite devices consisting of nonpolar organic cations, such as phenethylamine+ (PEA+) and octylamine+ (OA+), and traditional 3D perovskite devices consisting of methylamine+ (MA+). The 2-fold advantages, including desirable spatial crystal arrangement and engineered energetic band alignment, clarify the mechanism of superior performance in (EATPCN)2PbI4 devices. The optimized (EATPCN)2PbI4 photomemristor also shows a memory window of 87.9 V and an on/off ratio of 106 with a retention time of at least 2.4 × 105 s and remains unchanged after >105 writing-reading-erasing-reading endurance cycles. Very low energy consumptions of 1.12 and 6 fJ for both light stimulation and the reading process of each status update are also demonstrated. The extremely low power consumption and high photoresponsivity were simultaneously achieved. The high photosensitivity surpasses that of a state-of-the-art commercial pulse energy meter by several orders of magnitude. With their outstanding linearity and retention, rabbit images have been rebuilt by (EATPCN)2PbI4 photomemristors, which truthfully render the image without fading over time. Finally, by utilizing the powerful ∼8 bits of nonvolatile potentiation and depression levels of (EATPCN)2PbI4 photomemristors, the accuracies of the recognition tasks of CIFAR-10 image classification and MNIST handwritten digit classification have reached 89% and 94.8%, respectively. This study represents the first report of utilizing a functional donor-acceptor type of organic cation in 2D RP perovskites for high-performance photomemristors with characteristics that are not found in current halide perovskites.
Collapse
Affiliation(s)
- Po-Ting Lai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Yueh Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hao-Cheng Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bo-Yuan Chuang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Hua Kuo
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Christopher R Greve
- Dynamics and Structure Formation─Herzig Group, University of Bayreuth, 95447 Bayreuth, Germany
| | - Tsung-Kai Su
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Guang-Hsun Tan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chia-Feng Li
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Sheng-Wen Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Kai-Yuan Hsiao
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Eva M Herzig
- Dynamics and Structure Formation─Herzig Group, University of Bayreuth, 95447 Bayreuth, Germany
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ching Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Ken-Tsung Wong
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Wu Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
8
|
Wang X, Zhou L, Zhao X, Ma W, Wang X. Ligand-Enhanced Neodymium Doping of Perovskite Quantum Dots for Superior Exciton Confinement. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7585. [PMID: 38138726 PMCID: PMC10744661 DOI: 10.3390/ma16247585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
In this study, all-inorganic perovskite quantum dots (QDs) for pure blue emission are explored for full-color displays. We prepared CsPbBr3 and Cs3NdCl6 QDs via hot injection methods and mixed in various ratios at room temperature for color blending. Nd-doped CsPb(Cl/Br)3 QDs showed a blueshift in emission, and the photoluminescence quantum yields (PLQY, ΦPL) were lower in the 460-470 nm range due to surface halogen and Cs vacancies. To address this, we introduced a silane molecule, APTMS, via a ligand exchange process, effectively repairing these vacancies and enhancing Nd doping into the lattice. This modification promotes the PLQY to 94% at 466 nm. Furthermore, combining these QDs with [1]Benzothieno[3,2-b][1]benzothiophene (BTBT), a conjugated small-molecule semiconductor, in a composite film reduced PLQY loss caused by FRET in solid-state QD films. This approach achieved a wide color gamut of 124% National Television System Committee (NTSC), using a UV LED backlight and RGB perovskite QDs in a BTBT-based organic matrix as the color conversion layer. Significantly, the photostability of this composite was enhanced when used as a color conversion layer (CCL) under blue-LED excitation.
Collapse
Affiliation(s)
- Xianghua Wang
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electric Technology, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China; (L.Z.); (X.Z.); (W.M.); (X.W.)
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lin Zhou
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electric Technology, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China; (L.Z.); (X.Z.); (W.M.); (X.W.)
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xudong Zhao
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electric Technology, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China; (L.Z.); (X.Z.); (W.M.); (X.W.)
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wenlong Ma
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electric Technology, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China; (L.Z.); (X.Z.); (W.M.); (X.W.)
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinjun Wang
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electric Technology, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China; (L.Z.); (X.Z.); (W.M.); (X.W.)
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
9
|
Chen G, Liu X, An J, Wang S, Zhao X, Gu Z, Yuan C, Xu X, Bao J, Hu HS, Li J, Wang X. Nucleation-mediated growth of chiral 3D organic-inorganic perovskite single crystals. Nat Chem 2023; 15:1581-1590. [PMID: 37550390 DOI: 10.1038/s41557-023-01290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Although their zero- to two-dimensional counterparts are well known, three-dimensional chiral hybrid organic-inorganic perovskite single crystals have remained difficult because they contain no chiral components and their crystal phases belong to centrosymmetric achiral point groups. Here we report a general approach to grow single-crystalline 3D lead halide perovskites with chiroptical activity. Taking MAPbBr3 (MA, methylammonium) perovskite as a representative example, whereas achiral MAPbBr3 crystallized from precursors in solution by inverse temperature crystallization method, the addition of micro- or nanoparticles as nucleating agents promoted the formation of chiral crystals under a near equilibrium state. Experimental characterization supported by calculations showed that the chirality of the 3D APbX3 (where A is an ammonium ion and X is Cl, Br or mixed Cl-Br or Br-I) perovskites arises from chiral patterns of the A-site cations and their interaction with the [PbX6]4- octahedra in the perovskite structure. The chiral structure obeys the lowest-energy principle and thereby thermodynamically stable. The chiral 3D hybrid organic-inorganic perovskites served in a circularly polarized light photodetector prototype successfully.
Collapse
Affiliation(s)
- Gaoyu Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Xiaoyu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Jiakun An
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Shibin Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaokun Zhao
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhongzheng Gu
- Jiangsu Key Laboratory of Optoelectronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing, China
| | - Caojin Yuan
- Jiangsu Key Laboratory of Optoelectronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing, China
| | - Xiangxing Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China.
| | - Jianchun Bao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Han-Shi Hu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Jun Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
Sheikh MA, Kowal D, Mahyuddin MH, Cala’ R, Auffray E, Witkowski ME, Makowski M, Drozdowski W, Wang H, Dujardin C, Cortecchia D, Birowosuto MD. A 2B n-1Pb nI 3n+1 (A = BA, PEA; B = MA; n = 1, 2): Engineering Quantum-Well Crystals for High Mass Density and Fast Scintillators. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:10737-10747. [PMID: 37313122 PMCID: PMC10258843 DOI: 10.1021/acs.jpcc.3c00824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Indexed: 06/15/2023]
Abstract
Quantum-well (QW) hybrid organic-inorganic perovskite (HOIP) crystals, e.g., A2PbX4 (A = BA, PEA; X = Br, I), demonstrated significant potentials as scintillating materials for wide energy radiation detection compared to their individual three-dimensional (3D) counterparts, e.g., BPbX3 (B = MA). Inserting 3D into QW structures resulted in new structures, namely A2BPb2X7 perovskite crystals, and they may have promising optical and scintillation properties toward higher mass density and fast timing scintillators. In this article, we investigate the crystal structure as well as optical and scintillation properties of iodide-based QW HOIP crystals, A2PbI4 and A2MAPb2I7. A2PbI4 crystals exhibit green and red emission with the fastest PL decay time <1 ns, while A2MAPb2I7 crystals exhibit a high mass density of >3.0 g/cm3 and tunable smaller bandgaps <2.1 eV resulting from quantum and dielectric confinement. We observe that A2PbI4 and PEA2MAPb2I7 show emission under X- and γ-ray excitations. We further observe that some QW HOIP iodide scintillators exhibit shorter radiation absorption lengths (∼3 cm at 511 keV) and faster scintillation decay time components (∼0.5 ns) compared to those of QW HOIP bromide scintillators. Finally, we investigate the light yields of iodide-based QW HOIP crystals at 10 K (∼10 photons/keV), while at room temperature they still show pulse height spectra with light yields between 1 and 2 photons/keV, which is still >5 times lower than those for bromides. The lower light yields can be the drawbacks of iodide-based QW HOIP scintillators, but the promising high mass density and decay time results of our study can provide the right pathway for further improvements toward fast-timing applications.
Collapse
Affiliation(s)
- Md Abdul
Kuddus Sheikh
- Łukasiewicz
Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Dominik Kowal
- Łukasiewicz
Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Muhammad Haris Mahyuddin
- Research
Group of Advanced Functional Materials and Research Center for Nanoscience
and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 Indonesia
| | - Roberto Cala’
- Dipartimento
di Fisica, Università di Milano-Bicocca, Milan 20126, Italy
- CERN, Esplanade des Particules 1, 1211 Meyrin, Switzerland
| | | | - Marcin Eugeniusz Witkowski
- Institute
of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Michal Makowski
- Institute
of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Winicjusz Drozdowski
- Institute
of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Hong Wang
- School of
Electrical and Electronic Engineering, Nanyang
Technological University, Singapore 639798, Singapore
| | - Christophe Dujardin
- Institut
Lumière Matière, UMR5306, Université Claude Bernard Lyon1 and CNRS Lyon, 69622 Lyon, France
| | - Daniele Cortecchia
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, 40136 Bologna, Italy
| | - Muhammad Danang Birowosuto
- Łukasiewicz
Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| |
Collapse
|
11
|
Liu Z, Qin X, Chen Q, Jiang T, Chen Q, Liu X. Metal-Halide Perovskite Nanocrystal Superlattice: Self-Assembly and Optical Fingerprints. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209279. [PMID: 36738101 DOI: 10.1002/adma.202209279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Self-assembly of nanocrystals into superlattices is a fascinating process that not only changes geometric morphology, but also creates unique properties that considerably enrich the material toolbox for new applications. Numerous studies have driven the blossoming of superlattices from various aspects. These include precise control of size and morphology, enhancement of properties, exploitation of functions, and integration of the material into miniature devices. The effective synthesis of metal-halide perovskite nanocrystals has advanced research on self-assembly of building blocks into micrometer-sized superlattices. More importantly, these materials exhibit abundant optical features, including highly coherent superfluorescence, amplified spontaneous laser emission, and adjustable spectral redshift, facilitating basic research and state-of-the-art applications. This review summarizes recent advances in the field of metal-halide perovskite superlattices. It begins with basic packing models and introduces various stacking configurations of superlattices. The potential of multiple capping ligands is also discussed and their crucial role in superlattice growth is highlighted, followed by detailed reviews of synthesis and characterization methods. How these optical features can be distinguished and present contemporary applications is then considered. This review concludes with a list of unanswered questions and an outlook on their potential use in quantum computing and quantum communications to stimulate further research in this area.
Collapse
Affiliation(s)
- Zhuang Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Qihao Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Tianci Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Xiaogang Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
12
|
Kostopoulou A, Konidakis I, Stratakis E. Two-dimensional metal halide perovskites and their heterostructures: from synthesis to applications. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1643-1710. [PMID: 39634119 PMCID: PMC11501535 DOI: 10.1515/nanoph-2022-0797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 12/07/2024]
Abstract
Size- and shape-dependent unique properties of the metal halide perovskite nanocrystals make them promising building blocks for constructing various electronic and optoelectronic devices. These unique properties together with their easy colloidal synthesis render them efficient nanoscale functional components for multiple applications ranging from light emission devices to energy conversion and storage devices. Recently, two-dimensional (2D) metal halide perovskites in the form of nanosheets (NSs) or nanoplatelets (NPls) are being intensively studied due to their promising 2D geometry which is more compatible with the conventional electronic and optoelectronic device structures where film-like components are usually employed. In particular, 2D perovskites exhibit unique thickness-dependent properties due to the strong quantum confinement effect, while enabling the bandgap tuning in a wide spectral range. In this review the synthesis procedures of 2D perovskite nanostructures will be summarized, while the application-related properties together with the corresponding applications will be extensively discussed. In addition, perovskite nanocrystals/2D material heterostructures will be reviewed in detail. Finally, the wide application range of the 2D perovskite-based structures developed to date, including pure perovskites and their heterostructures, will be presented while the improved synergetic properties of the multifunctional materials will be discussed in a comprehensive way.
Collapse
Affiliation(s)
- Athanasia Kostopoulou
- Foundation for Research & Technology – Hellas (FORTH), Institute of Electronic Structure & Laser (IESL), Vassilika Vouton, Heraklion700 13, Greece
| | - Ioannis Konidakis
- Foundation for Research & Technology – Hellas (FORTH), Institute of Electronic Structure & Laser (IESL), Vassilika Vouton, Heraklion700 13, Greece
| | - Emmanuel Stratakis
- Foundation for Research & Technology – Hellas (FORTH), Institute of Electronic Structure & Laser (IESL), Vassilika Vouton, Heraklion700 13, Greece
| |
Collapse
|
13
|
Li P, Yan L, Cao Q, Liang C, Zhu H, Peng S, Yang Y, Liang Y, Zhao R, Zang S, Zhang Y, Song Y. Dredging the Charge-Carrier Transfer Pathway for Efficient Low-Dimensional Ruddlesden-Popper Perovskite Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202217910. [PMID: 36720705 DOI: 10.1002/anie.202217910] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Low-dimensional Ruddlesden-Popper (LDRP) perovskites still suffer from inferior carrier transport properties. Here, we demonstrate that efficient exciton dissociation and charge transfer can be achieved in LDRP perovskite by introducing γ-aminobutyric acid (GABA) as a spacer. The hydrogen bonding links adjacent spacing sheets in (GABA)2 MA3 Pb4 I13 (MA=CH3 NH3 + ), leading to the charges localized in the van der Waals gap, thereby constructing "charged-bridge" for charge transfer through the spacing region. Additionally, the polarized GABA weakens dielectric confinement, decreasing the (GABA)2 MA3 Pb4 I13 exciton binding energy as low as ≈73 meV. Benefiting from these merits, the resultant GABA-based solar cell yields a champion power conversion efficiency (PCE) of 18.73 % with enhanced carrier transport properties. Furthermore, the unencapsulated device maintains 92.8 % of its initial PCE under continuous illumination after 1000 h and only lost 3 % of its initial PCE under 65 °C for 500 h.
Collapse
Affiliation(s)
- Pengwei Li
- College of Chemistry, Zhengzhou university, Zhengzhou, 450001, P. R. China
| | - Linfang Yan
- College of Chemistry, Zhengzhou university, Zhengzhou, 450001, P. R. China
| | - Qingli Cao
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chao Liang
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - He Zhu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Sihui Peng
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yongpeng Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yuncai Liang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Rudai Zhao
- College of Chemistry, Zhengzhou university, Zhengzhou, 450001, P. R. China.,Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Shuangquan Zang
- College of Chemistry, Zhengzhou university, Zhengzhou, 450001, P. R. China
| | - Yiqiang Zhang
- College of Chemistry, Zhengzhou university, Zhengzhou, 450001, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| |
Collapse
|
14
|
Wang Y, Liu J, Wang A, Gao S, Li Z, Li J, Yan S, Cheng S, Song Z, Zhang Y, Dong J, Cao J, Wang F, Huang W, Qin T. Heterostructural Nanosheets Consisting of Polycyclic Aromatic Hydrocarbon Shields and Layered Perovskite Cores for Optical Image Encryption. J Phys Chem Lett 2023; 14:2047-2055. [PMID: 36795606 DOI: 10.1021/acs.jpclett.3c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Optical image encryption technology, in which the emission on/off can be controlled by using specially appointed wavelengths, is useful in information storage and protection. Herein, we report a family of sandwiched heterostructural nanosheets, consisting of three-layered (n = 3) perovskite (PSK) frameworks in center with two different polycyclic aromatic hydrocarbons [triphenylene (Tp) and pyrene (Py)] in periphery. Both heterostructural nanosheets (Tp-PSK and Py-PSK) exhibit blue emissions under UVA-I irradiation; however, different photoluminescent properties are observed under UVA-II. A bright emission of Tp-PSK is attributed to the fluorescence resonance energy transfer (FRET) from Tp-shield to PSK-core, whereas the observed photoquenching phenomenon in Py-PSK is due to the competitive absorption between Py-shield and PSK-core. We exploited the unique photophysical features (on/off emission) of the two nanosheets in a narrow UV window (320-340 nm) for optical image encrypting.
Collapse
Affiliation(s)
- Yanchen Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Jiaxin Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Aifei Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Song Gao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Zihao Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Junjie Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Suhao Yan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Suwen Cheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Zhicheng Song
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Yupeng Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Jingjin Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Jiupeng Cao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Fangfang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Tianshi Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| |
Collapse
|
15
|
Guo Q, Wang L, Yang L, Duan J, Du H, Ji G, Liu N, Zhao X, Chen C, Xu L, Gao L, Luo J, Tang J. Spectra stable deep-blue light-emitting diodes based on cryolite-like cerium(III) halides with nanosecond d-f emission. SCIENCE ADVANCES 2022; 8:eabq2148. [PMID: 36525491 PMCID: PMC9757739 DOI: 10.1126/sciadv.abq2148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/14/2022] [Indexed: 06/03/2023]
Abstract
Next-generation wide color gamut displays require the development of efficient and toxic-free light-emitting materials meeting the crucial Rec. 2020 standard. With the rapid progress of green and red perovskite light-emitting diodes (PeLEDs), blue PeLEDs remain a central challenge because of the undesirable color coordinates and poor spectra stability. Here, we report Cs3CeBrxI6-x (x = 0 to 6) with the cryolite-like structure and stable and tunable color coordinates from (0.17, 0.02) to (0.15, 0.04). Further encouraged by the short exciton lifetime (26.1 ns) and high photoluminescence quantum yield (~76%), we construct Cs3CeBrxI6-x-based rare-earth LEDs via thermal evaporation. A seed layer strategy is conducted to improve the device's performance. The optimal Cs3CeI6 device achieves a maximum external quantum efficiency of 3.5% and a luminance of 470 cd m-2 with stable deep-blue color coordinates of (0.15, 0.04). Our work opens another avenue to achieving efficient and spectrally stable deep-blue LEDs.
Collapse
Affiliation(s)
- Qingxun Guo
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Liang Wang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Longbo Yang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Jiashun Duan
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Hainan Du
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Guoqi Ji
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Nian Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Xue Zhao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Chao Chen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Ling Xu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Liang Gao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, P. R. China
| | - Jiajun Luo
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, P. R. China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, P. R. China
| |
Collapse
|
16
|
Marcato T, Krumeich F, Shih CJ. Confinement-Tunable Transition Dipole Moment Orientation in Perovskite Nanoplatelet Solids and Binary Blends. ACS NANO 2022; 16:18459-18471. [PMID: 36350363 DOI: 10.1021/acsnano.2c06600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tuning the transition dipole moment (TDM) orientation in low-dimensional semiconductors is of fundamental and practical interest, as it enables high-efficiency nanophotonics and light-emitting diodes. However, despite recent progress in nanomaterials physics and chemistry, material systems that allow continuous tuning of the TDM orientation remain rare. Here, combining k-space photoluminescence spectroscopy and multiscale modeling, we demonstrate that the TDM orientation in lead halide perovskite (LHP) nanoplatelet (NPL) solids is largely confinement-tunable through the NPL geometry that regulates the anisotropy of Bloch states, dielectric confinement, and exciton fine structure. We further quantified the role of uniaxial ordering during NPL assembly in modifying the macroscopic emission directionality of thin films, which is especially important in actual optoelectronic devices. Our theoretical framework successfully corroborates the previous prediction of exciton bright level order reversal with experimental evidence of a counterintuitive reduction of in-plane dipole ratio in ultrathin (one- and two-monolayer-thick) NPLs, even at room temperature. More interestingly, the NPLs retain their TDM orientation in binary blends irrespective of interparticle energy transfer, owing to the phase segregation and NPL-NPL decoupling, enabling the design of films whose fluorescence exhibits an intrinsic angle-dependent color gradient.
Collapse
Affiliation(s)
- Tommaso Marcato
- Institute for Chemical and Bioengineering, ETH Zürich, 8093Zürich, Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, ETH Zürich, 8093Zürich, Switzerland
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, ETH Zürich, 8093Zürich, Switzerland
| |
Collapse
|
17
|
Dai M, Zhou B, Fang X, Yan D. Two-Dimensional Hybrid Perovskitoid Micro/nanosheets: Colorful Ultralong Phosphorescence, Delayed Fluorescence, and Anisotropic Optical Waveguide. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40223-40231. [PMID: 35998354 DOI: 10.1021/acsami.2c11164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular persistent luminescence, such as room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF), have attracted broad attention in the fields of biological imaging, information security, and optoelectronic devices. However, the development of molecular micro/nanostructures combining both RTP and TADF properties is still in an early stage. Herein, a new type of organic metal hybrid perovskitoid (OMHP) two-dimensional (2D) microcrystal has been fabricated through a facile solution method. The long-lived TADF-RTP dual emission can be highly tuned by changing the excitation wavelength, temperature, and decayed time. Moreover, the 2D OMHP microsheet exhibits an asymmetric and anisotropic optical waveguide with low optical loss coefficient, together with extremely high linearly polarized fluorescence-phosphorescence emission (anisotropy = 0.96), which is promising for the development of polarization-sensitive luminescent materials. Therefore, this work not only demonstrates new OMHP showing colorful persistent luminescence under different modes (such as excitation wavelength, temperature, polarization, lifetime, and dimension) but also takes advantage of the 2D micro/nanostructure to provide potential applications as optical logic gates and for delicate multiple information encryption.
Collapse
Affiliation(s)
- Meiqi Dai
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Bo Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
18
|
Antrack T, Kroll M, Sudzius M, Cho C, Imbrasas P, Albaladejo‐Siguan M, Benduhn J, Merten L, Hinderhofer A, Schreiber F, Reineke S, Vaynzof Y, Leo K. Optical Properties of Perovskite-Organic Multiple Quantum Wells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200379. [PMID: 35780500 PMCID: PMC9403629 DOI: 10.1002/advs.202200379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
A comprehensive study of the optical properties of CsPbBr3 perovskite multiple quantum wells (MQW) with organic barrier layers is presented. Quantum confinement is observed by a blue-shift in absorption and emission spectra with decreasing well width and agrees well with simulations of the confinement energies. A large increase of emission intensity with thinner layers is observed, with a photoluminescence quantum yield up to 32 times higher than that of bulk layers. Amplified spontaneous emission (ASE) measurements show very low thresholds down to 7.3 µJ cm-2 for a perovskite thickness of 8.7 nm, significantly lower than previously observed for CsPbBr3 thin-films. With their increased photoluminescence efficiency and low ASE thresholds, MQW structures with CsPbBr3 are excellent candidates for high-efficiency perovskite-based LEDs and lasers.
Collapse
Affiliation(s)
- Tobias Antrack
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Martin Kroll
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Markas Sudzius
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Changsoon Cho
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Paulius Imbrasas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Miguel Albaladejo‐Siguan
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Lena Merten
- Institut für Angewandte PhysikUniversität TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Alexander Hinderhofer
- Institut für Angewandte PhysikUniversität TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Frank Schreiber
- Institut für Angewandte PhysikUniversität TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Yana Vaynzof
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| |
Collapse
|
19
|
Cao R, Fan S, Yin P, Ma C, Zeng Y, Wang H, Khan K, Wageh S, Al-Ghamd AA, Tareen AK, Al-Sehemi AG, Shi Z, Xiao J, Zhang H. Mid-Infrared Optoelectronic Devices Based on Two-Dimensional Materials beyond Graphene: Status and Trends. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2260. [PMID: 35808105 PMCID: PMC9268368 DOI: 10.3390/nano12132260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023]
Abstract
Since atomically thin two-dimensional (2D) graphene was successfully synthesized in 2004, it has garnered considerable interest due to its advanced properties. However, the weak optical absorption and zero bandgap strictly limit its further development in optoelectronic applications. In this regard, other 2D materials, including black phosphorus (BP), transition metal dichalcogenides (TMDCs), 2D Te nanoflakes, and so forth, possess advantage properties, such as tunable bandgap, high carrier mobility, ultra-broadband optical absorption, and response, enable 2D materials to hold great potential for next-generation optoelectronic devices, in particular, mid-infrared (MIR) band, which has attracted much attention due to its intensive applications, such as target acquisition, remote sensing, optical communication, and night vision. Motivated by this, this article will focus on the recent progress of semiconducting 2D materials in MIR optoelectronic devices that present a suitable category of 2D materials for light emission devices, modulators, and photodetectors in the MIR band. The challenges encountered and prospects are summarized at the end. We believe that milestone investigations of 2D materials beyond graphene-based MIR optoelectronic devices will emerge soon, and their positive contribution to the nano device commercialization is highly expected.
Collapse
Affiliation(s)
- Rui Cao
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| | - Sidi Fan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| | - Peng Yin
- College of Photoelectrical Engineering, Changchun University of Science and Technology, Changchun 130022, China;
| | - Chunyang Ma
- Research Center of Circuits and Systems, Peng Cheng Laboratory (PCL), Shenzhen 518055, China;
| | - Yonghong Zeng
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| | - Huide Wang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| | - Karim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.W.); (A.A.A.-G.)
| | - Ahmed A. Al-Ghamd
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.W.); (A.A.A.-G.)
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China;
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia;
| | - Zhe Shi
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Jing Xiao
- College of Physics and Electronic Engineering, Taishan University, Tai’an 271000, China
| | - Han Zhang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| |
Collapse
|
20
|
3D and 2D Metal Halide Perovskites for Blue Light-Emitting Diodes. MATERIALS 2022; 15:ma15134571. [PMID: 35806695 PMCID: PMC9267590 DOI: 10.3390/ma15134571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022]
Abstract
Metal halide perovskites (MHPs) are emerging next-generation light emitters that have attracted attention in academia and industry owing to their low material cost, simple synthesis, and wide color gamut. Efficient strategies for MHP modification are being actively studied to attain high performance demonstrated by commercial light-emitting diodes (LEDs) based on organic emitters. Active studies have overcome the limitations of the external quantum efficiencies (EQEs) of green and red MHP LEDs (PeLEDs); therefore, the EQEs of PeLEDs (red: 21.3% at 649 nm; green: 23.4% at 530 nm) have nearly reached the theoretical limit for the light outcoupling of single-structured planar LEDs. However, the EQEs of blue PeLEDs (12.1% at 488 nm and 1.12% at 445 nm) are still lower than approximately half of those of green and red PeLEDs. To commercialize PeLEDs for future full-color displays, the EQEs of blue MHP emitters should be improved by approximately 2 times for sky-blue and more than 20 times for deep-blue MHP emitters to attain values comparable to the EQEs of red and green PeLEDs. Therefore, based on the reported effective approaches for the preparation of blue PeLEDs, a synergistic strategy for boosting the EQE of blue PeLEDs can be devised for commercialization in future full-color displays. This review covers efficient strategies for improving blue PeLEDs using fundamental approaches of material engineering, including compositional or dimensional engineering, thereby providing inspiration for researchers.
Collapse
|
21
|
Kurilovich AA, Mantsevich VN, Mardoukhi Y, Stevenson KJ, Chechkin AV, Palyulin VV. Non-Markovian diffusion of excitons in layered perovskites and transition metal dichalcogenides. Phys Chem Chem Phys 2022; 24:13941-13950. [PMID: 35621272 DOI: 10.1039/d2cp00557c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diffusion of excitons in perovskites and transition metal dichalcogenides shows clear anomalous, subdiffusive behaviour in experiments. In this paper we develop a non-Markovian mobile-immobile model which provides an explanation of this behaviour through paired theoretical and simulation approaches. The simulation model is based on a random walk on a 2D lattice with randomly distributed deep traps such that the trapping time distribution involves slowly decaying power-law asymptotics. The theoretical model uses coupled diffusion and rate equations for free and trapped excitons, respectively, with an integral term responsible for trapping. The model provides a good fitting of the experimental data, thus, showing a way for quantifying the exciton diffusion dynamics.
Collapse
Affiliation(s)
- Aleksandr A Kurilovich
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | - Vladimir N Mantsevich
- Chair of Semiconductors and Cryoelectronics & Quantum Technology Center, Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yousof Mardoukhi
- Institute for Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Keith J Stevenson
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | - Aleksei V Chechkin
- Institute for Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany.,Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland.,Akhiezer Institute for Theoretical Physics National Science Center "Kharkov Institute of Physics and Technology", 61108, Kharkov, Ukraine
| | - Vladimir V Palyulin
- RAIC Center, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia.
| |
Collapse
|
22
|
Zhou A, Xie Y, Wang F, Liang R, Ou Q, Zhang S. High-Efficiency Fast-Radiative Blue-Emitting Perovskite Nanoplatelets and Their Formation Mechanisms. J Phys Chem Lett 2022; 13:4634-4641. [PMID: 35588373 DOI: 10.1021/acs.jpclett.2c01041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-efficiency blue perovskite emitters with fast fluorescence radiation are not only crucial to achieving high-quality displays but also highly desired for optical wireless communications and quantum information technologies. Here, we demonstrate the preparation of blue-emitting Eu3+-, Sb3+-, and Ba2+-induced CsPbBr3 nanoplatelets with narrow spectral widths. Among them, Sb3+-doped CsPbBr3 NPLs can reach a photoluminescence quantum yield of 95%, with a very short fluorescence lifetime of 1.48 ns and greatly reduced ligand dosage. Through nuclear magnetic resonance analysis and density functional theory calculations, we find that the dopant-ligand interaction and dopant-induced growth energy barrier decide the growth kinetics of doped nanoplatelets. These mechanisms offer a fresh route to controlling the dimension of nanoscale perovskite emitters and benefit the development of fast-radiative perovskite emitters.
Collapse
Affiliation(s)
- Anqi Zhou
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, People's Republic of China
| | - Yujun Xie
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, People's Republic of China
| | - Feilong Wang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, People's Republic of China
| | - Rongqing Liang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, People's Republic of China
| | - Qiongrong Ou
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, People's Republic of China
| | - Shuyu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
23
|
Anwar H, Johnston A, Mahesh S, Singh K, Wang Z, Kuntz DA, Tamblyn I, Voznyy O, Privé GG, Sargent EH. High-Throughput Evaluation of Emission and Structure in Reduced-Dimensional Perovskites. ACS CENTRAL SCIENCE 2022; 8:571-580. [PMID: 35647281 PMCID: PMC9136976 DOI: 10.1021/acscentsci.2c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 06/15/2023]
Abstract
High-throughput experimentation (HTE) seeks to accelerate the exploration of materials space by uniting robotics, combinatorial methods, and parallel processing. HTE is particularly relevant to metal halide perovskites (MHPs), a diverse class of optoelectronic materials with a large chemical space. Here we develop an HTE workflow to synthesize and characterize light-emitting MHP single crystals, allowing us to generate the first reported data set of experimentally derived photoluminescence spectra for low-dimensional MHPs. We leverage the accelerated workflow to optimize the synthesis and emission of a new MHP, methoxy-phenethylammonium lead iodide ((4-MeO-PEAI)2-PbI2). We then synthesize 16 000 MHP single crystals and measure their photoluminescence to study the effects of synthesis parameters and compositional engineering on the emission intensity of 54 distinct MHPs: we achieve an acceleration factor of more than 100 times over previously reported HTE MHP synthesis and characterization methods. Using insights derived from this analysis, we screen an existing database for new, potentially emissive MHPs. On the basis of the Tanimoto similarity of the bright available emitters, we present our top candidates for future exploration. As a proof of concept, we use one of these (3,4-difluorophenylmethanamine) to synthesize an MHP which we find has a photoluminescence quantum yield of 10%.
Collapse
Affiliation(s)
- Husna Anwar
- The
Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G4
| | - Andrew Johnston
- The
Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G4
| | - Suhas Mahesh
- The
Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G4
| | - Kamalpreet Singh
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada M1C 1A4
| | - Zhibo Wang
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada M1C 1A4
| | - Douglas A. Kuntz
- Princess
Margaret Cancer Centre, University Health
Network, Toronto, Ontario, Canada M5G 1L7
| | - Isaac Tamblyn
- Department
of Physics, University of Ottawa, Vector
Institute for Artificial Intelligence, Ottawa, Ontario, Canada K1N 6N5
| | - Oleksandr Voznyy
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada M1C 1A4
| | - Gilbert G. Privé
- Princess
Margaret Cancer Centre, University Health
Network, Toronto, Ontario, Canada M5G 1L7
- Department
of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7
- Department
of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Edward H. Sargent
- The
Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G4
| |
Collapse
|
24
|
Fu Y, Poddar S, Ren B, Xie Y, Zhang Q, Zhang D, Cao B, Tang Y, Ding Y, Qiu X, Shu L, Liao JF, Kuang DB, Fan Z. Strongly Quantum-Confined Perovskite Nanowire Arrays for Color-Tunable Blue-Light-Emitting Diodes. ACS NANO 2022; 16:8388-8398. [PMID: 35522604 DOI: 10.1021/acsnano.2c02795] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Color tunability of perovskite light-emitting diodes (PeLEDs) by mixed halide compositional engineering is one of the primary intriguing characteristics of PeLEDs. However, mixed halide PeLEDs are often susceptible to color red-shifting caused by halide ion segregation. In this work, strongly quantum-confined perovskite nanowires (QPNWs) made of CsPbBr3 are grown in nanoporous anodic alumina templates using a closed space sublimation process. By tuning the pore size with atomic layer deposition, QPNWs with a diameter of 6.6 to 2.8 nm have been successfully obtained, with continuous tunable photoluminescence emission color from green (512 nm) to pure blue (467 nm). To better understand the photophysics of QPNWs, carrier dynamics and the benefit of alumina passivation are studied and discussed in detail. Eventually, PeLEDs using various diameters of CsPbBr3 QPNWs are successfully fabricated with cyan color (492 nm) PeLEDs, achieving a record high 7.1% external quantum efficiency (EQE) for all CsPbBr3-based cyan color PeLEDs. Sky blue (481 nm) and pure blue (467 nm) PeLEDs have also been successfully demonstrated, respectively. The work here demonstrates a different approach to achieve quantum-confined one-dimensional perovskite structures and color-tunable PeLEDs, particularly blue PeLEDs.
Collapse
Affiliation(s)
- Yu Fu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Swapnadeep Poddar
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Beitao Ren
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying Xie
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China
| | - Qianpeng Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Daquan Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Bryan Cao
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Yunqi Tang
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Yucheng Ding
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xiao Qiu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Lei Shu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jin-Feng Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510217, Guangdong, China
| | - Dai-Bin Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510217, Guangdong, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
25
|
Kumar S, Marcato T, Krumeich F, Li YT, Chiu YC, Shih CJ. Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes. Nat Commun 2022; 13:2106. [PMID: 35440650 PMCID: PMC9018755 DOI: 10.1038/s41467-022-29812-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 12/17/2022] Open
Abstract
Quantum dot (QD) light-emitting diodes (LEDs) are emerging as one of the most promising candidates for next-generation displays. However, their intrinsic light outcoupling efficiency remains considerably lower than the organic counterpart, because it is not yet possible to control the transition-dipole-moment (TDM) orientation in QD solids at device level. Here, using the colloidal lead halide perovskite anisotropic nanocrystals (ANCs) as a model system, we report a directed self-assembly approach to form the anisotropic nanocrystal superlattices (ANSLs). Emission polarization in individual ANCs rescales the radiation from horizontal and vertical transition dipoles, effectively resulting in preferentially horizontal TDM orientation. Based on the emissive thin films comprised of ANSLs, we demonstrate an enhanced ratio of horizontal dipole up to 0.75, enhancing the theoretical light outcoupling efficiency of greater than 30%. Our optimized single-junction QD LEDs showed peak external quantum efficiency of up to 24.96%, comparable to state-of-the-art organic LEDs. Controlling the transition-dipole-moment orientation in quantum dot solids at device level has not been achieved before. Here, the authors demonstrated intrinsic light out-coupling enhancement approach to boost the external quantum efficiency up to 25% by using the colloidal lead halide perovskite anisotropic nanocrystals.
Collapse
Affiliation(s)
- Sudhir Kumar
- Institute for Chemical and Bioengineering, ETH Zürich, 8093, Zürich, Switzerland
| | - Tommaso Marcato
- Institute for Chemical and Bioengineering, ETH Zürich, 8093, Zürich, Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Yen-Ting Li
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, ROC.,National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Yu-Cheng Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, ROC
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
26
|
Solari SF, Poon LN, Wörle M, Krumeich F, Li YT, Chiu YC, Shih CJ. Stabilization of Lead-Reduced Metal Halide Perovskite Nanocrystals by High-Entropy Alloying. J Am Chem Soc 2022; 144:5864-5870. [PMID: 35319205 PMCID: PMC8991010 DOI: 10.1021/jacs.1c12294] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Colloidal metal halide perovskite (MHP) nanocrystals (NCs) are an emerging class of fluorescent quantum dots (QDs) for next-generation optoelectronics. A great hurdle hindering practical applications, however, is their high lead content, where most attempts addressing the challenge in the literature compromised the material's optical performance or colloidal stability. Here, we present a postsynthetic approach that stabilizes the lead-reduced MHP NCs through high-entropy alloying. Upon doping the NCs with multiple elements in considerably high concentrations, the resulting high-entropy perovskite (HEP) NCs remain to possess excellent colloidal stability and narrowband emission, with even higher photoluminescence (PL) quantum yields, ηPL, and shorter fluorescence lifetimes, τPL. The formation of multiple phases containing mixed interstitial and doping phases is suggested by X-ray crystallography. Importantly, the crystalline phases with higher degrees of lattice expansion and lattice contraction can be stabilized upon high-entropy alloying. We show that the lead content can be approximately reduced by up to 55% upon high-entropy alloying. The findings reported here make one big step closer to the commercialization of perovskite NCs.
Collapse
Affiliation(s)
- Simon F Solari
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Lok-Nga Poon
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Michael Wörle
- Laboratory of Inorganic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Yen-Ting Li
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.,National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yu-Cheng Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.,Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
27
|
Chen Z, Shi Z, Zhang W, Li Z, Zhou ZK. High efficiency and large optical anisotropy in the high-order nonlinear processes of 2D perovskite nanosheets. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1379-1387. [PMID: 39634615 PMCID: PMC11501272 DOI: 10.1515/nanoph-2021-0789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/18/2022] [Indexed: 12/07/2024]
Abstract
Nonlinear nanophotonic devices have brought about great advances in the fields of nano-optics, quantum science, biomedical engineering, etc. However, in order to push these nanophotonic devices out of laboratory, it is still highly necessary to improve their efficiency. Since obtaining novel nanomaterials with large nonlinearity is of crucial importance for improving the efficiency of nonlinear nanodevices, we propose the two-dimensional (2D) perovskites. Different from most previous studies which focused on the 2D perovskites in large scale (such as the bulk materials or the thick flakes), herein we studied the 2D perovskites nanosheets with thickness of ∼50 nm. The high-order nonlinear processes including multi-photon photoluminescence and third-harmonic generation (THG) have been systematically investigated, and it is found the THG process can have a high conversion efficiency up to ∼8 × 10-6. Also, it is observed that the nonlinear responses of 2D perovskites have large optical anisotropy, i.e., the polarization ratio for the incident polarization dependence of nonlinear response can be as high as ∼0.99, which is an impressive record in the perovskite systems. Our findings reveal the properties of high efficiency and huge optical anisotropy in the nonlinear processes of 2D perovskite nanosheets, shedding light on the design of advanced integrated nonlinear nanodevices in future.
Collapse
Affiliation(s)
- Zehong Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou510275, China
| | - Zhonghong Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou510275, China
| | - Wenbo Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou510275, China
| | - Zixian Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou510275, China
| | - Zhang-Kai Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou510275, China
| |
Collapse
|
28
|
Otero-Martínez C, Ye J, Sung J, Pastoriza-Santos I, Pérez-Juste J, Xia Z, Rao A, Hoye RLZ, Polavarapu L. Colloidal Metal-Halide Perovskite Nanoplatelets: Thickness-Controlled Synthesis, Properties, and Application in Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107105. [PMID: 34775643 DOI: 10.1002/adma.202107105] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Colloidal metal-halide perovskite nanocrystals (MHP NCs) are gaining significant attention for a wide range of optoelectronics applications owing to their exciting properties, such as defect tolerance, near-unity photoluminescence quantum yield, and tunable emission across the entire visible wavelength range. Although the optical properties of MHP NCs are easily tunable through their halide composition, they suffer from light-induced halide phase segregation that limits their use in devices. However, MHPs can be synthesized in the form of colloidal nanoplatelets (NPls) with monolayer (ML)-level thickness control, exhibiting strong quantum confinement effects, and thus enabling tunable emission across the entire visible wavelength range by controlling the thickness of bromide or iodide-based lead-halide perovskite NPls. In addition, the NPls exhibit narrow emission peaks, have high exciton binding energies, and a higher fraction of radiative recombination compared to their bulk counterparts, making them ideal candidates for applications in light-emitting diodes (LEDs). This review discusses the state-of-the-art in colloidal MHP NPls: synthetic routes, thickness-controlled synthesis of both organic-inorganic hybrid and all-inorganic MHP NPls, their linear and nonlinear optical properties (including charge-carrier dynamics), and their performance in LEDs. Furthermore, the challenges associated with their thickness-controlled synthesis, environmental and thermal stability, and their application in making efficient LEDs are discussed.
Collapse
Affiliation(s)
- Clara Otero-Martínez
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Jooyoung Sung
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Republic of Korea
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Zhiguo Xia
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Robert L Z Hoye
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
| |
Collapse
|
29
|
Jin G, Liu T, Li Y, Zhou J, Zhang D, Pang P, Ye Z, Xing Z, Xing G, Chen J, Ma D. Low-dimensional phase suppression and defect passivation of quasi-2D perovskites for efficient electroluminescence and low-threshold amplified spontaneous emission. NANOSCALE 2022; 14:919-929. [PMID: 34988562 DOI: 10.1039/d1nr06549a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quasi-2D metal halide perovskites are promising candidates for light-emitting applications owing to their large exciton binding energy and strong quantum confinement effect. Usually, quasi-2D perovskites are composed of multiple phases with various numbers of layers (n) of metal halide octahedron sheets, enabling light emission from the lowest-bandgap phase by cascade energy transfer. However, the energy transfer processes are extremely sensitive to the phase distribution and trap density in the quasi-2D perovskite films, and the insufficient energy transfer between different-n phases and the defect-induced traps would result in nonradiative losses. Here, significantly reduced nonradiative losses in the quasi-2D perovskite films are achieved by tailoring the low-dimensional phase components and lowering the density of trap states. Butylammonium bromide (BABr) and potassium thiocyanate (KSCN) are employed to synergistically decrease the nonradiative recombination in the quasi-2D perovskite films of PEABr : CsPbBr3. The incorporation of BABr is found to suppress the formation of the n = 1 phase, while adding KSCN can further reduce the low-n phases, passivate the notorious defects and improve the alignment of the high-n phases. By incorporating appropriate contents of BABr and KSCN, the resultant quasi-2D perovskite films show high photoluminescence quantum yield (PLQY) and highly ordered crystal orientation, which enable not only the green light-emitting diodes (LEDs) with a high external quantum efficiency (EQE) of 16.3%, but also the amplified spontaneous emission (ASE) with a low threshold of 2.6 μJ cm-2. These findings provide a simple and effective strategy to develop high-quality quasi-2D perovskites for LED and laser applications.
Collapse
Affiliation(s)
- Guangrong Jin
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong 510640, China.
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Tanghao Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, China.
| | - Yuanzhao Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong 510640, China.
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jiadong Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Dengliang Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Peiyuan Pang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong 510640, China.
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, China.
| | - Ziqing Ye
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Zhaohui Xing
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Guichuang Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, China.
| | - Jiangshan Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong 510640, China.
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
30
|
Cevallos‐Toledo RB, Rosa‐Pardo I, Arenal R, Oestreicher V, Fickert M, Abellán G, Galian RE, Pérez‐Prieto J. Ruddlesden–Popper Hybrid Lead Bromide Perovskite Nanosheets of Phase Pure
n
=2: Stabilized Colloids Stored in the Solid State. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rita B. Cevallos‐Toledo
- Institute of Molecular Science University of Valencia c/ Catedrático José Beltrán 2 Paterna Spain
| | - Ignacio Rosa‐Pardo
- Institute of Molecular Science University of Valencia c/ Catedrático José Beltrán 2 Paterna Spain
| | - Raul Arenal
- Laboratorio de Microscopias Avanzadas (LMA) U. Zaragoza Mariano Esquillor s/n 50018 Zaragoza Spain
- Instituto de Nanociencia y Materiales de Aragon (INMA) CSIC-U. de Zaragoza Calle Pedro Cerbuna 12 50009 Zaragoza Spain
- ARAID Foundation 50018 Zaragoza Spain
| | - Víctor Oestreicher
- Institute of Molecular Science University of Valencia c/ Catedrático José Beltrán 2 Paterna Spain
| | - Michael Fickert
- Department of Chemistry and Pharmacy, Chair of Organic Chemistry II and Joint Institute of Advanced Materials and Processes (ZMP) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Nikolaus-Fiebiger Strasse 10 90762 Erlangen Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Dr.-Mack Strasse 81 90762 Fürth Germany
| | - Gonzalo Abellán
- Institute of Molecular Science University of Valencia c/ Catedrático José Beltrán 2 Paterna Spain
| | - Raquel E. Galian
- Institute of Molecular Science University of Valencia c/ Catedrático José Beltrán 2 Paterna Spain
| | - Julia Pérez‐Prieto
- Institute of Molecular Science University of Valencia c/ Catedrático José Beltrán 2 Paterna Spain
| |
Collapse
|
31
|
Sun C, Zhong QQ, Zhang X, Xiao PC, Cheng Y, Gao YJ, Liu GD, Lei XW. A Zero-Dimensional Hybrid Cadmium Perovskite with Highly Efficient Orange-Red Light Emission. Inorg Chem 2021; 60:18879-18888. [PMID: 34872252 DOI: 10.1021/acs.inorgchem.1c02661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Low-dimensional organic-inorganic hybrid metal halide materials have been extensively studied due to their excellent optoelectronic performances. Herein, by using the facile wet-chemistry method, we designed one new hybrid cadmium bromide of (H3AEP)2CdBr6·2Br based on discrete octahedral [CdBr6]4- units. Remarkably, the bulk crystal of (H3AEP)2CdBr6·2Br exhibits strong broadband orange-red light emission from the radiative recombination of self-trapped excitons (STEs) with a high photoluminescence quantum yield (PLQY) of 9%. Benefiting from the highly efficient luminescent performance, this 0D cadmium perovskite can be utilized as an excellent down-conversion red phosphor to assemble a white light-emitting diode, and a high color rendering index (CRI) of 93 is realized. As far as we know, this is the first orange-red light-emitting hybrid cadmium perovskite which promotes the full-color display in this system.
Collapse
Affiliation(s)
- Chen Sun
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China.,Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai 200092, P. R. China
| | - Qian-Qian Zhong
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xin Zhang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Pan-Chao Xiao
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yu Cheng
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yu-Jia Gao
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Guo-Dong Liu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| |
Collapse
|
32
|
Roy M, Vikram, Bhawna, Alam A, Aslam M. Photoinduced quasi-2D to 3D phase transformation in hybrid halide perovskite nanoplatelets. Phys Chem Chem Phys 2021; 23:27355-27364. [PMID: 34854855 DOI: 10.1039/d1cp03529k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a photo-induced quasi-2D to 3D phase transition of MAPbBr3 (MA = CH3NH3) perovskite nanoplatelets (NPLs). To begin with, we synthesized quasi-2D MAPbBr3 NPLs (two octahedral layers thick, n = 2). A systematic increase in the thickness of the perovskite platelets is observed as a result of continuous photon irradiation leading to a 78 nm red shift in the emission spectra through different stages. Moreover, the bandgap of the compound decreases from 2.72 eV to 2.2 eV as we move from a quasi-2D to 3D phase. The excitonic Bohr radius of the MAPbBr3 NPLs is found to be 1.8 nm, whereas the thickness of a single layer of PbBr64- octahedra is 5.9 Å. As the layer thickness increases (>4-6 layers), MAPbBr3 NPLs move out of the quantum confinement regime, governed by the red shift in the emission spectra. To complement the experimental results, density functional theory calculations were performed on MAPbBr3 of various layer thicknesses. The van der Waals interaction and a more accurate Heyd-Scuseria-Ernzerhof functional were used to calculate the optical bandgap for MAPbBr3 platelets of different layer thicknesses, which matches exceptionally well with the experimental results. Our findings disclose an interesting and meaningful phenomenon in the emerging hybrid perovskite NPLs and are beneficial for any future development of perovskite-based devices.
Collapse
Affiliation(s)
- Mrinmoy Roy
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Vikram
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Bhawna
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Aftab Alam
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - M Aslam
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
33
|
Zhao R, Sabatini RP, Zhu T, Wang S, Morteza Najjarian A, Johnston A, Lough AJ, Hoogland S, Sargent EH, Seferos DS. Rigid Conjugated Diamine Templates for Stable Dion-Jacobson-Type Two-Dimensional Perovskites. J Am Chem Soc 2021; 143:19901-19908. [PMID: 34788034 DOI: 10.1021/jacs.1c09515] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hybrid organic-inorganic perovskites (HOIPs) have garnered widespread interest, yet stability remains a critical issue that limits their further application. Compared to their three-dimensional (3D) counterparts, two-dimensional (2D)-HOIPs exhibit improved stability. 2D-HOIPs are also appealing because their structural and optical properties can be tuned according to the choice of organic ligand, with monovalent or divalent ligands forming Ruddlesden-Popper (RP) or Dion-Jacobson (DJ)-type 2D perovskites, respectively. Unlike RP-type 2D perovskites, DJ-type 2D perovskites do not contain a van der Waals gap between the 2D layers, leading to improved stability. However, bifunctional organic ligands currently used to develop DJ-type 2D perovskites are limited to commercially available aliphatic and single-ring aromatic ammonium cations. Large conjugated organic ligands are in demand for their semiconducting properties and their potential to improve materials stability further. In this manuscript, we report the design and synthesis of a new set of larger conjugated diamine ligands and their incorporation into DJ-type 2D perovskites. Compared with analogous RP-type 2D perovskites, DJ 2D perovskites reported here show blue-shifted, narrower emissions and significantly improved stability. By changing the structure of rings (benzene vs thiophene) and substituents, we develop structure-property relationships, finding that fluorine substitution enhances crystallinity. Single-crystal structure analysis and density functional theory calculations indicate that these changes are due to strong electrostatic interactions between the organic templates and inorganic layers as well as the rigid backbone and strong π-π interaction between the organic ligands themselves. These results illustrate that targeted engineering of the diamine ligands can enhance the stability of DJ-type 2D perovskites.
Collapse
Affiliation(s)
- Ruyan Zhao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Randy P Sabatini
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Tong Zhu
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Sasa Wang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Amin Morteza Najjarian
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Andrew Johnston
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Alan J Lough
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sjoerd Hoogland
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
34
|
Liu D, Liu X, Sun G, Meng F, Liu Z, Shen C, Li M, Su SJ. Efficient Zn-Alloyed Low-Toxicity Quasi-Two-Dimensional Pure-Red Perovskite Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55412-55419. [PMID: 34756020 DOI: 10.1021/acsami.1c16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal halide perovskites have attracted extensive attention in next-generation solid-state lighting and displays due to their fascinating optoelectronic properties. However, the toxicity of lead (Pb) impedes their practical application. Herein, we report an efficient Zn-alloyed quasi-two-dimensional (quasi-2D) pure-red perovskite light-emitting device (PeLED) by introducing zinc ions (Zn2+) into the perovskite lattice and partially substituting Pb2+. The substitution of Zn2+ is confirmed by X-ray diffraction, X-ray photoelectron spectroscopy, grazing-incidence wide-angle X-ray scattering, and transmission electron microscopy measurements. In addition, the vacancy defect density of Pb and the halogen is reduced by the introduction of Zn2+ in the PEA2(Cs0.3MA0.7)2(ZnxPb1-x)3I10 perovskite system, which leads to a more ordered crystal orientation, compact morphology, and increased photoluminescence quantum efficiency. Benefiting from the improved photoelectric properties, a maximum EQE of 9.5% and a luminescence of 453 cd m-2 are achieved for the Zn-alloyed PeLEDs, with a maximum emission peak of 658 nm and stable electroluminescence spectra under various applied biases.
Collapse
Affiliation(s)
- Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Xinyan Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Guanwei Sun
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Fanyuan Meng
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Zhe Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Chenyang Shen
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Mengke Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| |
Collapse
|
35
|
Cevallos-Toledo RB, Rosa-Pardo I, Arenal R, Oestreicher V, Fickert M, Abellán G, Galian RE, Pérez-Prieto J. Ruddlesden-Popper Hybrid Lead Bromide Perovskite Nanosheets of Phase Pure n=2: Stabilized Colloids Stored in the Solid State. Angew Chem Int Ed Engl 2021; 60:27312-27317. [PMID: 34672406 PMCID: PMC9298809 DOI: 10.1002/anie.202113451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 11/08/2022]
Abstract
Ruddlesden‐Popper lead halide perovskite (RP‐LHP) nano‐nanostructures can be regarded as self‐assembled quantum wells or superlattices of 3D perovskites with an intrinsic quantum well thickness of a single or a few (n=2‐4) lead halide layers; the quantum wells are separated by organic layers. They can be scaled down to a single quantum well dimension. Here, the preparation of highly (photo)chemical and colloidal stable hybrid LHP nanosheets (NSs) of ca. 7.4 μm lateral size and 2.5 nm quantum well height (thereby presenting a deep blue emission at ca. 440 nm), is reported for the first time. The NSs are close‐lying and they even interconnect when deposited on a substrate. Their synthesis is based on the use of the p‐toluenesulfonic acid/dodecylamine (pTS/DDA) ligand pair and their (photo)chemical stability and photoluminescence is enhanced by adding EuBr2 nanodots (EuNDs). Strikingly, they can be preserved as a solid and stored for at least one year. The blue emissive colloid can be recovered from the solid as needed by simply dispersing the powder in toluene and then using it to prepare solid films, making them very promising candidates for manufacturing devices.
Collapse
Affiliation(s)
- Rita B Cevallos-Toledo
- Institute of Molecular Science, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Spain
| | - Ignacio Rosa-Pardo
- Institute of Molecular Science, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Spain
| | - Raul Arenal
- Laboratorio de Microscopias Avanzadas (LMA), U. Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain.,Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-U. de Zaragoza, Calle Pedro Cerbuna 12, 50009, Zaragoza, Spain.,ARAID Foundation, 50018, Zaragoza, Spain
| | - Víctor Oestreicher
- Institute of Molecular Science, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Spain
| | - Michael Fickert
- Department of Chemistry and Pharmacy, Chair of Organic Chemistry II and Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger Strasse 10, 90762, Erlangen, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Dr.-Mack Strasse 81, 90762, Fürth, Germany
| | - Gonzalo Abellán
- Institute of Molecular Science, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Spain
| | - Raquel E Galian
- Institute of Molecular Science, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Spain
| | - Julia Pérez-Prieto
- Institute of Molecular Science, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Spain
| |
Collapse
|
36
|
Cui J, Liu Y, Deng Y, Lin C, Fang Z, Xiang C, Bai P, Du K, Zuo X, Wen K, Gong S, He H, Ye Z, Gao Y, Tian H, Zhao B, Wang J, Jin Y. Efficient light-emitting diodes based on oriented perovskite nanoplatelets. SCIENCE ADVANCES 2021; 7:eabg8458. [PMID: 34623917 PMCID: PMC8500509 DOI: 10.1126/sciadv.abg8458] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Solution-processed planar perovskite light-emitting diodes (LEDs) promise high-performance and cost-effective electroluminescent devices ideal for large-area display and lighting applications. Exploiting emission layers with high ratios of horizontal transition dipole moments (TDMs) is expected to boost the photon outcoupling of planar LEDs. However, LEDs based on anisotropic perovskite nanoemitters remain to be inefficient (external quantum efficiency, EQE <5%) due to the difficulties of simultaneously controlling the orientations of TDMs, achieving high photoluminescence quantum yields (PLQYs) and realizing charge balance in the films of assembled nanostructures. Here, we demonstrate efficient electroluminescence from an in situ grown perovskite film composed of a monolayer of face-on oriented nanoplatelets. The ratio of horizontal TDMs of the perovskite nanoplatelet film is ~84%, which leads to a light-outcoupling efficiency of ~31%, substantially higher than that of isotropic emitters (~23%). In consequence, LEDs with a peak EQE of 23.6% are achieved, representing highly efficient planar perovskite LEDs.
Collapse
Affiliation(s)
- Jieyuan Cui
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yang Liu
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yunzhou Deng
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chen Lin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhishan Fang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chensheng Xiang
- Centre of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peng Bai
- China State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Kai Du
- Centre of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaobing Zuo
- X-Ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Kaichuan Wen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Shaolong Gong
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| | - Haiping He
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-WZ Novel Materials Science & Technology Innovation Center, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
- Corresponding author. (Z.Y.); (Y.J.)
| | - Yunan Gao
- China State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - He Tian
- Centre of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Baodan Zhao
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yizheng Jin
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Corresponding author. (Z.Y.); (Y.J.)
| |
Collapse
|
37
|
Lin H, Wei Q, Ng KW, Dong JY, Li JL, Liu WW, Yan SS, Chen S, Xing GC, Tang XS, Tang ZK, Wang SP. Stable and Efficient Blue-Emitting CsPbBr 3 Nanoplatelets with Potassium Bromide Surface Passivation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101359. [PMID: 34121319 DOI: 10.1002/smll.202101359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/08/2021] [Indexed: 05/14/2023]
Abstract
Colloidal all-inorganic perovskites nanocrystals (NCs) have emerged as a promising material for display and lighting due to their excellent optical properties. However, blue emissive NCs usually suffer from low photoluminescence quantum yields (PLQYs) and poor stability, rendering them the bottleneck for full-color all-perovskite optoelectronic applications. Herein, a facile approach is reported to enhance the emission efficiency and stability of blue emissive perovskite nano-structures via surface passivation with potassium bromide. By adding potassium oleate and excess PbBr2 to the perovskite precursor solutions, potassium bromide-passivated (KBr-passivated) blue-emitting (≈450 nm) CsPbBr3 nanoplatelets (NPLs) is successfully synthesized with a respectably high PLQY of 87%. In sharp contrast to most reported perovskite NPLs, no shifting in emission wavelength is observed in these passivated NPLs even after prolonged exposures to intense irradiations and elevated temperature, clearly revealing their excellent photo- and thermal-stabilities. The enhancements are attributed to the formation of K-Br bonding on the surface which suppresses ion migration and formation of Br-vacancies, thus improving both the PL emission and stability of CsPbBr3 NPLs. Furthermore, all-perovskite white light-emitting diodes (WLEDs) are successfully constructed, suggesting that the proposed KBr-passivated strategy can promote the development of the perovskite family for a wider range of optoelectronic applications.
Collapse
Affiliation(s)
- Hao Lin
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
- Key Laboratory of Optoelectronic Technology & Systems, (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Qi Wei
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Kar Wei Ng
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Jia-Yi Dong
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Jie-Lei Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Wei-Wei Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Shan-Shan Yan
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Shi Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Gui-Chuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xiao-Sheng Tang
- Key Laboratory of Optoelectronic Technology & Systems, (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Zi-Kang Tang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Shuang-Peng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| |
Collapse
|
38
|
Wang Y, Song Q, Hu W, Wang D, Peng L, Shi T, Liu X, Zhu Y, Lin J. Temperature-driven phase transition and transition dipole moment of two-dimensional (BA) 2CsPb 2Br 7 perovskite. Phys Chem Chem Phys 2021; 23:16341-16348. [PMID: 34318827 DOI: 10.1039/d1cp01941d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structures of hybrid two-dimensional (2D) Ruddlesden-Popper (RP) phase-layered halide perovskite (BA)2CsPb2Br7 in the temperature range of 100 to 450 K were constructed and systematically investigated by first-principles calculations. The results showed that the perovskite materials were thermodynamically stable and exhibited the properties of direct band gap semiconductors in the temperature range of 100 to 400 K. However, a first-order phase transition occurred when the temperature was raised to 450 K, causing transformation of the orthorhombic to tetragonal space group. The absorption spectra and transition dipole moments of (BA)2CsPb2Br7 were discussed at the temperature range of 300 to 450 K. A large dipole transition matrix element P2 is observed at 300 K, which implies that the emissive property of the 2D RP phase-layered perovskite (BA)2CsPb2Br7 is less affected by thermal quenching at room temperature. This highlights the potential of 2D layered halide perovskites for large-area and low-cost light-emitting diodes.
Collapse
Affiliation(s)
- Yajing Wang
- Department of Physics, Shanghai University of Electric Power, Shanghai 201300, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang Y, Yan D, Wang L, Wang D, Tang BZ. Aggregation-Induced Emission Luminogens Sensitized Quasi-2D Hybrid Perovskites with Unique Photoluminescence and High Stability for Fabricating White Light-Emitting Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100811. [PMID: 34050723 PMCID: PMC8336619 DOI: 10.1002/advs.202100811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/31/2021] [Indexed: 06/09/2023]
Abstract
In order to endow quasi-2D organic-inorganic hybrid metal halide perovskites (quasi-2D-PVK) with superior performance, an aromatic organic ligand with aggregation-induced emission (AIE) features is rationally designed and utilized for constructing distinctive quasi-2D-PVK materials. This AIE-active ligand, TTPy-NH2 , well fits into the lattices of quasi-2D-PVK and leaves hydrophobic tails surrounding PVK layers, making the presented TTPy-NH2 /PVK film extraordinary in terms of both luminescence and stability. Benefiting from the prominent sensitization function and AIE tendency of TTPy-NH2 , the presented TTPy-NH2 /PVK film exhibits a high quantum yield of 62.2%, unique blue-red dual-emission property of both blue and red, high stability with the remnant of more than 94% fluorescence intensity remnant after 21 days. As a result, TTPy-NH2 /PVK film is capable of constituting high-performance white light-emitting diodes, with its color gamut reaching 138% of the National Television System Committee (NTSC) standard and the maximum efficiency is 105 lm W-1 at 20 mA. Evidently, a win-win effect is achieved by the integration of AIE-active ligands and quasi-2D-PVK, which are two of the most reputable solid-state luminogens. This developed protocol thus opens up a new avenue for exploring the next generation of luminescent devices.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, KowloonHong Kong999077P. R. China
| | - Dingyuan Yan
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, KowloonHong Kong999077P. R. China
| | - Lei Wang
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Dong Wang
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, KowloonHong Kong999077P. R. China
| |
Collapse
|
40
|
Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, Kshirsagar AS, Wang Z, Yin J, Wang Y, Quan LN, Yan F, Gao M, Li X, Shamsi J, Debnath T, Cao M, Scheel MA, Kumar S, Steele JA, Gerhard M, Chouhan L, Xu K, Wu XG, Li Y, Zhang Y, Dutta A, Han C, Vincon I, Rogach AL, Nag A, Samanta A, Korgel BA, Shih CJ, Gamelin DR, Son DH, Zeng H, Zhong H, Sun H, Demir HV, Scheblykin IG, Mora-Seró I, Stolarczyk JK, Zhang JZ, Feldmann J, Hofkens J, Luther JM, Pérez-Prieto J, Li L, Manna L, Bodnarchuk MI, Kovalenko MV, Roeffaers MBJ, Pradhan N, Mohammed OF, Bakr OM, Yang P, Müller-Buschbaum P, Kamat PV, Bao Q, Zhang Q, Krahne R, Galian RE, Stranks SD, Bals S, Biju V, Tisdale WA, Yan Y, Hoye RLZ, Polavarapu L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS NANO 2021; 15:10775-10981. [PMID: 34137264 PMCID: PMC8482768 DOI: 10.1021/acsnano.0c08903] [Citation(s) in RCA: 441] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 05/10/2023]
Abstract
Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Collapse
Grants
- from U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division
- Ministry of Education, Culture, Sports, Science and Technology
- European Research Council under the European Unionâ??s Horizon 2020 research and innovation programme (HYPERION)
- Ministry of Education - Singapore
- FLAG-ERA JTC2019 project PeroGas.
- Deutsche Forschungsgemeinschaft
- Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy
- EPSRC
- iBOF funding
- Agencia Estatal de Investigaci�ón, Ministerio de Ciencia, Innovaci�ón y Universidades
- National Research Foundation Singapore
- National Natural Science Foundation of China
- Croucher Foundation
- US NSF
- Fonds Wetenschappelijk Onderzoek
- National Science Foundation
- Royal Society and Tata Group
- Department of Science and Technology, Ministry of Science and Technology
- Swiss National Science Foundation
- Natural Science Foundation of Shandong Province, China
- Research 12210 Foundation?Flanders
- Japan International Cooperation Agency
- Ministry of Science and Innovation of Spain under Project STABLE
- Generalitat Valenciana via Prometeo Grant Q-Devices
- VetenskapsrÃÂ¥det
- Natural Science Foundation of Jiangsu Province
- KU Leuven
- Knut och Alice Wallenbergs Stiftelse
- Generalitat Valenciana
- Agency for Science, Technology and Research
- Ministerio de EconomÃÂa y Competitividad
- Royal Academy of Engineering
- Hercules Foundation
- China Association for Science and Technology
- U.S. Department of Energy
- Alexander von Humboldt-Stiftung
- Wenner-Gren Foundation
- Welch Foundation
- Vlaamse regering
- European Commission
- Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Collapse
Affiliation(s)
- Amrita Dey
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Junzhi Ye
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Apurba De
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Elke Debroye
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Seung Kyun Ha
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eva Bladt
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Anuraj S. Kshirsagar
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Ziyu Wang
- School
of
Science and Technology for Optoelectronic Information ,Yantai University, Yantai, Shandong Province 264005, China
| | - Jun Yin
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Li Na Quan
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Fei Yan
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Mengyu Gao
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Xiaoming Li
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Javad Shamsi
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tushar Debnath
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Muhan Cao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Manuel A. Scheel
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Sudhir Kumar
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Julian A. Steele
- MACS Department
of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Marina Gerhard
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Lata Chouhan
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ke Xu
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
- Multiscale
Crystal Materials Research Center, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-gang Wu
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Yanxiu Li
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Yangning Zhang
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Anirban Dutta
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Chuang Han
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Ilka Vincon
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Angshuman Nag
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Anunay Samanta
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Brian A. Korgel
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Chih-Jen Shih
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Daniel R. Gamelin
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dong Hee Son
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Haibo Zeng
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Haizheng Zhong
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Handong Sun
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371
- Centre
for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore 637371
| | - Hilmi Volkan Demir
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 639798
- Department
of Electrical and Electronics Engineering, Department of Physics,
UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ivan G. Scheblykin
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Iván Mora-Seró
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12071 Castelló, Spain
| | - Jacek K. Stolarczyk
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Jin Z. Zhang
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Jochen Feldmann
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán 2, Paterna, Valencia 46980, Spain
| | - Liang Li
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | | | - Narayan Pradhan
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis
Center, King Abdullah University of Science
and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Osman M. Bakr
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peidong Yang
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz
Zentrum (MLZ), Technische Universität
München, Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Prashant V. Kamat
- Notre Dame
Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Qiaoliang Bao
- Department
of Materials Science and Engineering and ARC Centre of Excellence
in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Qiao Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raquel E. Galian
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Sara Bals
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vasudevanpillai Biju
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Yan
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Robert L. Z. Hoye
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lakshminarayana Polavarapu
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| |
Collapse
|
41
|
Yu H, Wang H, Zhang T, Yi C, Zheng G, Yin C, Karlsson M, Qin J, Wang J, Liu XK, Gao F. Color-Stable Blue Light-Emitting Diodes Enabled by Effective Passivation of Mixed Halide Perovskites. J Phys Chem Lett 2021; 12:6041-6047. [PMID: 34165316 PMCID: PMC8273884 DOI: 10.1021/acs.jpclett.1c01547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/21/2021] [Indexed: 05/19/2023]
Abstract
Bandgap tuning through mixing halide anions is one of the most attractive features for metal halide perovskites. However, mixed halide perovskites usually suffer from phase segregation under electrical biases. Herein, we obtain high-performance and color-stable blue perovskite LEDs (PeLEDs) based on mixed bromide/chloride three-dimensional (3D) structures. We demonstrate that the color instability of CsPb(Br1-xClx)3 PeLEDs results from surface defects at perovskite grain boundaries. By effective defect passivation, we achieve color-stable blue electroluminescence from CsPb(Br1-xClx)3 PeLEDs, with maximum external quantum efficiencies of up to 4.5% and high luminance of up to 5351 cd m-2 in the sky-blue region (489 nm). Our work provides new insights into the color instability issue of mixed halide perovskites and can spur new development of high-performance and color-stable blue PeLEDs.
Collapse
Affiliation(s)
- Hongling Yu
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Heyong Wang
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Tiankai Zhang
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Chang Yi
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech
University, 30 South Puzhu Road, Nanjing 211816, China
| | - Guanhaojie Zheng
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Chunyang Yin
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Max Karlsson
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Jiajun Qin
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Jianpu Wang
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech
University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiao-Ke Liu
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Feng Gao
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| |
Collapse
|
42
|
Dai SW, Lai YL, Yang L, Chuang YT, Tan GH, Shen SW, Huang YS, Lo YC, Yeh TH, Wu CI, Chen LJ, Lu MY, Wong KT, Liu SW, Lin HW. Organic Lead Halide Nanocrystals Providing an Ultra-Wide Color Gamut with Almost-Unity Photoluminescence Quantum Yield. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25202-25213. [PMID: 34010569 DOI: 10.1021/acsami.1c05961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The most attractive aspect of perovskite nanocrystals (NCs) for optoelectronic applications is their widely tunable emission wavelength, but it has been quite challenging to tune it without sacrificing the photoluminescence quantum yield (PLQY). In this work, we report a facile ligand-optimized ion-exchange (LOIE) method to convert room-temperature spray-synthesized, perovskite parent NCs that emit a saturated green color to NCs capable of emitting colors across the entire visible spectrum. These NCs exhibited exceptionally stable and high PLQYs, particularly for the pure blue (96%) and red (93%) primary colors that are indispensable for display applications. Surprisingly, the blue- and red-emissive NCs obtained using the LOIE method preserved the cubic shape and cubic phase structure that they inherited from their parent NCs, while exhibiting high crystallinity and high color-purity. Together with the parent green-emissive NCs, the obtained blue- and red-emissive NCs provided a very wide color gamut, corresponding to a Digital Cinema Initiatives-P3 of 140% or an International Telecommunication Union Recommendation BT.2020 of 102%. With the superior optical merits of these LOIE-manipulated NCs, a corresponding color conversion luminescence device provided a high external quantum efficiency (10.5%) and extremely high brightness (970 000 cd/m2). This study provides a valid route toward highly stable, extremely emissive, and panchromatic perovskite NCs with potential use in a variety of future optoelectronic applications.
Collapse
Affiliation(s)
- Shu-Wen Dai
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ying-Lin Lai
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Lin Yang
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Yung-Tang Chuang
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Guang-Hsun Tan
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Shin-Wei Shen
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yu-Sheng Huang
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Yuan-Chih Lo
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Tzu-Hung Yeh
- Organic Electronics Research Center, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan Dist., New Taipei City 24301, Taiwan
| | - Chih-I Wu
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Lih-Juann Chen
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ken-Tsung Wong
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shun-Wei Liu
- Organic Electronics Research Center, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan Dist., New Taipei City 24301, Taiwan
| | - Hao-Wu Lin
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
43
|
Wang K, Jin L, Gao Y, Liang A, Finkenauer BP, Zhao W, Wei Z, Zhu C, Guo TF, Huang L, Dou L. Lead-Free Organic-Perovskite Hybrid Quantum Wells for Highly Stable Light-Emitting Diodes. ACS NANO 2021; 15:6316-6325. [PMID: 33709710 DOI: 10.1021/acsnano.1c00872] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional perovskites that could be regarded as natural organic-inorganic hybrid quantum wells (HQWs) are promising for light-emitting diode (LED) applications. High photoluminescence quantum efficiencies (approaching 80%) and extremely narrow emission bandwidth (less than 20 nm) have been demonstrated in their single crystals; however, a reliable electrically driven LED device has not been realized owing to inefficient charge injection and extremely poor stability. Furthermore, the use of toxic lead raises concerns. Here, we report Sn(II)-based organic-perovskite HQWs employing molecularly tailored organic semiconducting barrier layers for efficient and stable LEDs. Utilizing femtosecond transient absorption spectroscopy, we demonstrate the energy transfer from organic barrier to inorganic perovskite emitter occurs faster than the intramolecular charge transfer in the organic layer. Consequently, this process allows efficient conversion of lower-energy emission associated with the organic layer into higher-energy emission from the perovskite layer. This greatly broadened the candidate pool for the organic layer. Incorporating a bulky small bandgap organic barrier in the HQW, charge transport is enhanced and ion migration is greatly suppressed. We demonstrate a HQW-LED device with pure red emission, a maximum luminance of 3466 cd m-2, a peak external quantum efficiency up to 3.33%, and an operational stability of over 150 h, which are significantly better than previously reported lead-free perovskite LEDs.
Collapse
Affiliation(s)
- Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Linrui Jin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yao Gao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aihui Liang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Blake P Finkenauer
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wenchao Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zitang Wei
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tzung-Fang Guo
- Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Letian Dou
- Davidson School of Chemical Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
44
|
Solari SF, Kumar S, Jagielski J, Kubo NM, Krumeich F, Shih CJ. Ligand-assisted solid phase synthesis of mixed-halide perovskite nanocrystals for color-pure and efficient electroluminescence. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:5771-5778. [PMID: 33996098 PMCID: PMC8101407 DOI: 10.1039/d0tc04667a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Colloidal nanocrystals (NCs) of lead halide perovskites have generated considerable interest in the fabrication of optoelectronic devices, such as light emitting-diodes (LEDs), because of their tunable optical bandgap, narrow spectral width, and high defect tolerance. However, the inhomogeneous halide distribution within individual NCs remains a critical challenge in order to obtain color-stable electroluminescence in mixed-halide systems. Here, we demonstrate a new post-synthetic approach, ligand-assisted solid phase synthesis (LASPS), for the preparation of electroluminescent colloidal NCs of methylammonium (MA) lead halide perovskites, at room temperature. The slow reaction kinetics preserves the morphology, size, and shape in the resulting NCs whose emission covers the entire visible spectral region with photoluminescence (PL) quantum yields (QYs) of up to >90% and colloidal stability up to several months. The LEDs fabricated using the prepared mixed-halide NCs display narrowband electroluminescence (EL) ranging from 476 to 720 nm. The optimized red LEDs exhibit an external quantum efficiency, η ext, of up to 2.65%, with the CIE 1931 color coordinates of (0.705, 0.290), nearly identical to those of the red primary in the recommendation (rec.) 2020 standard (0.708, 0.292).
Collapse
Affiliation(s)
- Simon F Solari
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1 CH-8093 Zürich Switzerland
| | - Sudhir Kumar
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1 CH-8093 Zürich Switzerland
| | - Jakub Jagielski
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1 CH-8093 Zürich Switzerland
| | - Nikolas M Kubo
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1 CH-8093 Zürich Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1 CH-8093 Zürich Switzerland
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1 CH-8093 Zürich Switzerland
| |
Collapse
|
45
|
Zhang L, Sun C, He T, Jiang Y, Wei J, Huang Y, Yuan M. High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. LIGHT, SCIENCE & APPLICATIONS 2021; 10:61. [PMID: 33741895 PMCID: PMC7979804 DOI: 10.1038/s41377-021-00501-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/28/2021] [Accepted: 02/24/2021] [Indexed: 05/05/2023]
Abstract
Quasi-two-dimensional (quasi-2D) perovskites have attracted extraordinary attention due to their superior semiconducting properties and have emerged as one of the most promising materials for next-generation light-emitting diodes (LEDs). The outstanding optical properties originate from their structural characteristics. In particular, the inherent quantum-well structure endows them with a large exciton binding energy due to the strong dielectric- and quantum-confinement effects; the corresponding energy transfer among different n-value species thus results in high photoluminescence quantum yields (PLQYs), particularly at low excitation intensities. The review herein presents an overview of the inherent properties of quasi-2D perovskite materials, the corresponding energy transfer and spectral tunability methodologies for thin films, as well as their application in high-performance LEDs. We then summarize the challenges and potential research directions towards developing high-performance and stable quasi-2D PeLEDs. The review thus provides a systematic and timely summary for the community to deepen the understanding of quasi-2D perovskite materials and resulting LED devices.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071, Tianjin, People's Republic of China
| | - Changjiu Sun
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071, Tianjin, People's Republic of China
| | - Tingwei He
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071, Tianjin, People's Republic of China
| | - Yuanzhi Jiang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071, Tianjin, People's Republic of China
| | - Junli Wei
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071, Tianjin, People's Republic of China
| | - Yanmin Huang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071, Tianjin, People's Republic of China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071, Tianjin, People's Republic of China.
| |
Collapse
|
46
|
Yin Z, Leng J, Wang S, Liang G, Tian W, Wu K, Jin S. Auger-Assisted Electron Transfer between Adjacent Quantum Wells in Two-Dimensional Layered Perovskites. J Am Chem Soc 2021; 143:4725-4731. [DOI: 10.1021/jacs.1c00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zixi Yin
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shiping Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
47
|
Jiang Y, Wei J, Yuan M. Energy-Funneling Process in Quasi-2D Perovskite Light-Emitting Diodes. J Phys Chem Lett 2021; 12:2593-2606. [PMID: 33689359 DOI: 10.1021/acs.jpclett.1c00072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quasi-two-dimensional (quasi-2D) perovskites, demonstrating excellent radiative efficiency and facile processability, have been considered as next-generation materials for light-emitting applications. Quasi-2D perovskites with a unique energy-funneling process offer an approach to achieve not only high photoluminescence quantum yields at low excitation but also tunable emission induced by dielectric and quantum confinement. In this Perspective, we highlight the mechanism of the energy-funneling process and discuss the salient position of it in quasi-2D perovskite materials for light-emitting applications; we then present the significance of component and molecular engineering strategies for the energy-funneling process to meet the requirements of stable emission and display technologies. Considering present achievements, we also provide promising directions for future advancements of quasi-2D perovskite materials. We hope this Perspective can provide a new viewpoint for researchers to encourage the commercial progress of quasi-2D perovskites for light-emitting applications.
Collapse
Affiliation(s)
- Yuanzhi Jiang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071 Tianjin, P.R. China
| | - Junli Wei
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071 Tianjin, P.R. China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071 Tianjin, P.R. China
| |
Collapse
|
48
|
Panuganti S, Besteiro LV, Vasileiadou ES, Hoffman JM, Govorov AO, Gray SK, Kanatzidis MG, Schaller RD. Distance Dependence of Förster Resonance Energy Transfer Rates in 2D Perovskite Quantum Wells via Control of Organic Spacer Length. J Am Chem Soc 2021; 143:4244-4252. [DOI: 10.1021/jacs.0c12441] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shobhana Panuganti
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Lucas V. Besteiro
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Montreal, Quebec H5A 1K6, Canada
| | - Eugenia S. Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexander O. Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
| | | | - Mercouri G. Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D. Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
49
|
Zhu W, Shen J, Li M, Yang K, Bu W, Sun YY, Shi J, Lian J. Kinetically Controlled Growth of Sub-Millimeter 2D Cs 2 SnI 6 Nanosheets at the Liquid-Liquid Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006279. [PMID: 33373112 DOI: 10.1002/smll.202006279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Cs2 SnI6 perovskite displays excellent air stability and a high absorption coefficient, promising for photovoltaic and optoelectronic applications. However, Cs2 SnI6 -based device performance is still low as a result of lacking optimized synthesis approaches to obtain high quality Cs2 SnI6 crystals. Here, a new simple method to synthesize single crystalline Cs2 SnI6 perovskite at a liquid-liquid interface is reported. By controlling solvent conditions and Cs2 SnI6 supersaturation at the liquid-liquid interface, Cs2 SnI6 crystals can be obtained from 3D to 2D growth with controlled geometries such as octahedron, pyramid, hexagon, and triangular nanosheets. The formation mechanisms and kinetics of complex shapes/geometries of high quality Cs2 SnI6 crystals are investigated. Freestanding single crystalline 2D nanosheets can be fabricated as thin as 25 nm, and the lateral size can be controlled up to sub-millimeter regime. Electronic property of the high quality Cs2 SnI6 2D nanosheets is also characterized, featuring a n-type conduction with a high carrier mobility of 35 cm2 V-1 s-1 . The interfacial reaction-controlled synthesis of high-quality crystals and mechanistic understanding of the crystal growth allow to realize rational design of materials, and the manipulation of crystal growth can be beneficial to achieve desired properties for potential functional applications.
Collapse
Affiliation(s)
- Weiguang Zhu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Junhua Shen
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mingxin Li
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Kun Yang
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Wei Bu
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA
| | - Yi-Yang Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
| | - Jian Shi
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jie Lian
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
50
|
Ren Z, Yu J, Qin Z, Wang J, Sun J, Chan CCS, Ding S, Wang K, Chen R, Wong KS, Lu X, Yin WJ, Choy WCH. High-Performance Blue Perovskite Light-Emitting Diodes Enabled by Efficient Energy Transfer between Coupled Quasi-2D Perovskite Layers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005570. [PMID: 33215773 DOI: 10.1002/adma.202005570] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Indexed: 05/11/2023]
Abstract
While there has been extensive investigation into modulating quasi-2D perovskite compositions in light-emitting diodes (LEDs) for promoting their electroluminescence, very few reports have studied approaches involving enhancement of the energy transfer between quasi-2D perovskite layers of the film, which plays very important role for achieving high-performance perovskite LEDs (PeLEDs). In this work, a bifunctional ligand of 4-(2-aminoethyl)benzoic acid (ABA) cation is strategically introduced into the perovskite to diminish the weak van der Waals gap between individual perovskite layers for promoting coupled quasi-2D perovskite layers. In particular, the strengthened interaction between coupled quasi-2D perovskite layers favors an efficient energy transfer in the perovskite films. The introduced ABA can also simultaneously passivate the perovskite defects by reducing metallic Pb for less nonradiative recombination loss. Benefiting from the advanced properties of ABA incorporated perovskites, highly efficient blue PeLEDs with external quantum efficiency of 10.11% and a very long operational stability of 81.3 min, among the best performing blue quasi-2D PeLEDs, are achieved. Consequently, this work contributes an effective approach for high-performance and stable blue PeLEDs toward practical applications.
Collapse
Affiliation(s)
- Zhenwei Ren
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jiahao Yu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhaotong Qin
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jing Wang
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
| | - Jiayun Sun
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Christopher C S Chan
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shihao Ding
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kai Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kam Sing Wong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wan-Jian Yin
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
| | - Wallace C H Choy
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Shenzhen, 518055, China
| |
Collapse
|