1
|
París Ogáyar M, López-Méndez R, Figueruelo-Campanero I, Muñoz-Ortiz T, Wilhelm C, Jaque D, Espinosa A, Serrano A. Finite element modeling of plasmonic resonances in photothermal gold nanoparticles embedded in cells. NANOSCALE ADVANCES 2024; 6:4635-4646. [PMID: 39263395 PMCID: PMC11386126 DOI: 10.1039/d4na00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/30/2024] [Indexed: 09/13/2024]
Abstract
The use of plasmonic nanoparticles in performing photothermal treatments in cancer cells requires a full knowledge about their optical properties. The surface plasmon resonance is easily foreseen and measurable in colloidal suspensions, however it can be strongly modified when located inside cells. Assessing the optical behavior of plasmonic nanoparticles in cells is essential for an efficient and controlled treatment. This requires the combination of experimental data and computational models to understand the mechanisms that cause the change in their optical response. In this work, we investigate the plasmonic response of Au nanospheres (AuNSs) internalized into cancer cells (MCF-7). Experimental data are compared to the simulations provided by a 3D model based on a finite element method. We demonstrate the impact of physical parameters such as the type of NS assembly, the surrounding medium and the interparticle gap, in the photothermal efficiency of AuNSs. Results open the avenue to predict, by numerical calculations, the optical properties of plasmonic nanoparticles inside cells to minimize treatment costs and times in photothermal therapies.
Collapse
Affiliation(s)
- Marina París Ogáyar
- Instituto de Cerámica y Vidrio (ICV-CSIC) C/Kelsen, 5 Madrid 28049 Spain
- IMDEA Nanociencia C/Faraday, 9 Madrid 28049 Spain
- Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales-Facultad de Ciencias, Universidad Autónoma de Madrid C/ Francisco Tomás y Valiente, 7 Madrid 28049 Spain
| | | | - Ignacio Figueruelo-Campanero
- Instituto de Cerámica y Vidrio (ICV-CSIC) C/Kelsen, 5 Madrid 28049 Spain
- IMDEA Nanociencia C/Faraday, 9 Madrid 28049 Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid Plaza Ciencias, 1 Madrid 28040 Spain
| | - Tamara Muñoz-Ortiz
- Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales-Facultad de Ciencias, Universidad Autónoma de Madrid C/ Francisco Tomás y Valiente, 7 Madrid 28049 Spain
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid C/ Francisco Tomás y Valiente, 7 Madrid 28049 Spain
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University Paris 75005 France
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales-Facultad de Ciencias, Universidad Autónoma de Madrid C/ Francisco Tomás y Valiente, 7 Madrid 28049 Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid C/Francisco Tomás y Valiente, 7 Madrid 28049 Spain
| | - Ana Espinosa
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) C/ Sor Juana Inés de la Cruz, 3 Madrid 28049 Spain
- IMDEA Nanociencia C/Faraday, 9 Madrid 28049 Spain
| | - Aida Serrano
- Instituto de Cerámica y Vidrio (ICV-CSIC) C/Kelsen, 5 Madrid 28049 Spain
| |
Collapse
|
2
|
Wang SM, Chiu YC, Wu YH, Chen BY, Chang IL, Chang CW. Standardization and quantification of backscattered electron imaging in scanning electron microscopy. Ultramicroscopy 2024; 262:113982. [PMID: 38692140 DOI: 10.1016/j.ultramic.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Backscattered electron (BSE) imaging based on scanning electron microscopy (SEM) has been widely used in scientific and industrial disciplines. However, achieving consistent standards and precise quantification in BSE images has proven to be a long-standing challenge. Previous methods incorporating dedicated calibration processes and Monte Carlo simulations have still posed practical limitations for widespread adoption. Here we introduce a bolometer platform that directly measures the absorbed thermal energy of the sample and demonstrates that it can help to analyze the atomic number (Z) of the investigated samples. The technique, named Atomic Number Electron Microscopy (ZEM), employs the conservation of energy as the foundation of standardization and can serve as a nearly ideal BSE detector. Our approach combines the strengths of both BSE and ZEM detectors, simplifying quantitative analysis for samples of various shapes and sizes. The complementary relation between the ZEM and BSE signals also makes the detection of light elements or compounds more accessible than existing microanalysis techniques.
Collapse
Affiliation(s)
- Shih-Ming Wang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan; Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Cheng Chiu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan; Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Hsin Wu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan; Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Bo-Yi Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - I-Ling Chang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Wei Chang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan; Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
3
|
Liu R, Geng M, Ai J, Fan X, Liu Z, Lu YW, Kuang Y, Liu JF, Guo L, Wu L. Deterministic positioning and alignment of a single-molecule exciton in plasmonic nanodimer for strong coupling. Nat Commun 2024; 15:4103. [PMID: 38755130 PMCID: PMC11099047 DOI: 10.1038/s41467-024-46831-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/12/2024] [Indexed: 05/18/2024] Open
Abstract
Experimental realization of strong coupling between a single exciton and plasmons remains challenging as it requires deterministic positioning of the single exciton and alignment of its dipole moment with the plasmonic fields. This study aims to combine the host-guest chemistry approach with the cucurbit[7]uril-mediated active self-assembly to precisely integrate a single methylene blue molecule in an Au nanodimer at the deterministic position (gap center of the nanodimer) with the maximum electric field (EFmax) and perfectly align its transition dipole moment with the EFmax, yielding a large spectral Rabi splitting of 116 meV for a single-molecule exciton-matching the analytical model and numerical simulations. Statistical analysis of vibrational spectroscopy and dark-field scattering spectra confirm the realization of the single exciton strong coupling at room temperature. Our work may suggest an approach for achieving the strong coupling between a deterministic single exciton and plasmons, contributing to the development of room-temperature single-qubit quantum devices.
Collapse
Affiliation(s)
- Renming Liu
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng, 475004, China.
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China.
| | - Ming Geng
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng, 475004, China
| | - Jindong Ai
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng, 475004, China
| | - Xinyi Fan
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng, 475004, China
| | - Zhixiang Liu
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng, 475004, China
| | - Yu-Wei Lu
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen, 518045, China
| | - Yanmin Kuang
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng, 475004, China
| | - Jing-Feng Liu
- College of Electronic Engineering, South China Agricultural University, Guangzhou, 510642, China.
| | - Lijun Guo
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng, 475004, China.
| | - Lin Wu
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Republic of Singapore.
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, No. 16-16 Connexis, Singapore, 138632, Republic of Singapore.
| |
Collapse
|
4
|
Lee H, Im S, Lee C, Lee H, Chu SW, Ho AHP, Kim D. Probing Temperature-Induced Plasmonic Nonlinearity: Unveiling Opto-Thermal Effects on Light Absorption and Near-Field Enhancement. NANO LETTERS 2024; 24:3598-3605. [PMID: 38407029 DOI: 10.1021/acs.nanolett.3c04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Precise measurement and control of local heating in plasmonic nanostructures are vital for diverse nanophotonic devices. Despite significant efforts, challenges in understanding temperature-induced plasmonic nonlinearity persist, particularly in light absorption and near-field enhancement due to the absence of suitable measurement techniques. This study presents an approach allowing simultaneous measurements of light absorption and near-field enhancement through angle-resolved near-field scanning optical microscopy with iterative opto-thermal analysis. We revealed gold thin films exhibit sublinear nonlinearity in near-field enhancement due to nonlinear opto-thermal effects, while light absorption shows both sublinear and superlinear behaviors at varying thicknesses. These observations align with predictions from a simple harmonic oscillation model, in which changes in damping parameters affect light absorption and field enhancement differently. The sensitivity of our method was experimentally examined by measuring the opto-thermal responses of three-dimensional nanostructure arrays. Our findings have direct implications for advancing plasmonic applications, including photocatalysis, photovoltaics, photothermal effects, and surface-enhanced Raman spectroscopy.
Collapse
Affiliation(s)
- Hongki Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea 03722
| | - Seongmin Im
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea 03722
| | - Changhun Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea 03722
| | - Hyunwoong Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea 03722
| | - Shi-Wei Chu
- Department of Physics National, Taiwan University, Taipei, Taiwan 10617
- Brain Research Center National, Tsing Hua University, Hsinchu, Taiwan 30013
| | - Aaron Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea 03722
| |
Collapse
|
5
|
Wamsley M, Zou S, Zhang D. Advancing Evidence-Based Data Interpretation in UV-Vis and Fluorescence Analysis for Nanomaterials: An Analytical Chemistry Perspective. Anal Chem 2023; 95:17426-17437. [PMID: 37972233 DOI: 10.1021/acs.analchem.3c03490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
UV-vis spectrophotometry and spectrofluorometry are indispensable tools in education, research, and industrial process controls with widespread applications in nanoscience encompassing diverse nanomaterials and fields. Nevertheless, the prevailing spectroscopic interpretations and analyses often exhibit ambiguity and errors, particularly evident in the nanoscience literature. This analytical chemistry Perspective focuses on fostering evidence-based data interpretation in experimental studies of materials' UV-vis absorption, scattering, and fluorescence properties. We begin by outlining common issues observed in UV-vis and fluorescence analysis. Subsequently, we provide a summary of recent advances in commercial UV-vis spectrophotometric and spectrofluorometric instruments, emphasizing their potential to enhance scientific rigor in UV-vis and fluorescence analysis. Furthermore, we propose potential avenues for future developments in spectroscopic instrumentation and measurement strategies, aiming to further augment the utility of optical spectroscopy in nano research for samples where optical complexity surpasses existing tools. Through a targeted focus on the critical issues related to UV-vis and fluorescence properties of nanomaterials, this Perspective can serve as a valuable resource for researchers, educators, and practitioners.
Collapse
Affiliation(s)
- Max Wamsley
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Shengli Zou
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Dongmao Zhang
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| |
Collapse
|
6
|
Wamsley M, Wathudura P, Hu J, Zhang D. Integrating-Sphere-Assisted Resonance Synchronous Spectroscopy for the Quantification of Material Double-Beam UV-Vis Absorption and Scattering Extinction. Anal Chem 2022; 94:11610-11618. [PMID: 35960824 DOI: 10.1021/acs.analchem.2c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Integrating spheres (IS) have been used extensively for the characterization of light absorption in turbid samples. However, converting the IS-based sample absorption coefficient to the UV-vis absorbance quantified with a double-beam UV-vis spectrophotometer is challenging. Herein, we report an integrating-sphere-assisted resonance synchronous (ISARS) spectroscopy method performed with conventional spectrofluorometers equipped with an integrating-sphere accessory. Mathematical models and experimental procedures for quantifying the sample, solvent, and instrument-baseline ISARS intensity spectra were provided. A three-parameter analytical model has been developed for correlating the ISARS-based UV-vis absorbance and the absorbance measured with double-beam instruments. This ISARS method enables the quantitative separation of light absorption and scattering contribution to the sample UV-vis extinction spectrum measured with double-beam UV-vis spectrophotometers. Example applications of this ISARS technique are demonstrated with a series of representative samples differing significantly in their optical complexities, from approximately pure absorbers, pure scatterers, to simultaneous light absorbers, scatterers, and emitters under resonance excitation and detection conditions.
Collapse
Affiliation(s)
- Max Wamsley
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Pathum Wathudura
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Juan Hu
- Department of Mathematical Sciences, DePaul University, Chicago, Illinois 60604, United States
| | - Dongmao Zhang
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
7
|
Buet X, Zerrad M, Lequime M, Soriano G, Godeme JJ, Fadili J, Amra C. Immediate and one-point roughness measurements using spectrally shaped light. OPTICS EXPRESS 2022; 30:16078-16093. [PMID: 36221460 DOI: 10.1364/oe.450790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/11/2022] [Indexed: 06/16/2023]
Abstract
Capitalizing on a previous theoretical paper, we propose a novel approach, to our knowledge, that is different from the usual scattering measurements, one that is free of any mechanical movement or scanning. Scattering is measured along a single direction. Wide-band illumination with a properly chosen wavelength spectrum makes the signal proportional to the sample roughness, or to the higher-order roughness moments. Spectral shaping is carried out with gratings and a spatial light modulator. We validate the technique by cross-checking with a classical angle-resolved scattering set-up. Though the bandwidth is reduced, this white light technique may be of key interest for on-line measurements, large components that cannot be displaced, or other parts that do not allow mechanical movement around them.
Collapse
|
8
|
Tavakoli N, Spalding R, Lambertz A, Koppejan P, Gkantzounis G, Wan C, Röhrich R, Kontoleta E, Koenderink AF, Sapienza R, Florescu M, Alarcon-Llado E. Over 65% Sunlight Absorption in a 1 μm Si Slab with Hyperuniform Texture. ACS PHOTONICS 2022; 9:1206-1217. [PMID: 35480493 PMCID: PMC9026274 DOI: 10.1021/acsphotonics.1c01668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Thin, flexible, and invisible solar cells will be a ubiquitous technology in the near future. Ultrathin crystalline silicon (c-Si) cells capitalize on the success of bulk silicon cells while being lightweight and mechanically flexible, but suffer from poor absorption and efficiency. Here we present a new family of surface texturing, based on correlated disordered hyperuniform patterns, capable of efficiently coupling the incident spectrum into the silicon slab optical modes. We experimentally demonstrate 66.5% solar light absorption in free-standing 1 μm c-Si layers by hyperuniform nanostructuring for the spectral range of 400 to 1050 nm. The absorption equivalent photocurrent derived from our measurements is 26.3 mA/cm2, which is far above the highest found in literature for Si of similar thickness. Considering state-of-the-art Si PV technologies, we estimate that the enhanced light trapping can result in a cell efficiency above 15%. The light absorption can potentially be increased up to 33.8 mA/cm2 by incorporating a back-reflector and improved antireflection, for which we estimate a photovoltaic efficiency above 21% for 1 μm thick Si cells.
Collapse
Affiliation(s)
- Nasim Tavakoli
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
| | - Richard Spalding
- Department
of Physics, Advanced Technology Institute, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - Alexander Lambertz
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
| | - Pepijn Koppejan
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
| | - Georgios Gkantzounis
- Department
of Physics, Advanced Technology Institute, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - Chenglong Wan
- Department
of Physics, Advanced Technology Institute, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - Ruslan Röhrich
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
- Advanced
Research Center for Nanolithography, Science Park 106, 1098XG Amsterdam, The Netherlands
| | - Evgenia Kontoleta
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
| | - A. Femius Koenderink
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
| | - Riccardo Sapienza
- The
Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2BW, United Kingdom
| | - Marian Florescu
- Department
of Physics, Advanced Technology Institute, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - Esther Alarcon-Llado
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
| |
Collapse
|
9
|
Dieleman C, van der Burgt J, Thakur N, Garnett EC, Ehrler B. Direct Patterning of CsPbBr 3 Nanocrystals via Electron-Beam Lithography. ACS APPLIED ENERGY MATERIALS 2022; 5:1672-1680. [PMID: 35252773 PMCID: PMC8889902 DOI: 10.1021/acsaem.1c03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Lead-halide perovskite (LHP) nanocrystals have proven themselves as an interesting material platform due to their easy synthesis and compositional versatility, allowing for a tunable band gap, strong absorption, and high photoluminescence quantum yield (PLQY). This tunability and performance make LHP nanocrystals interesting for optoelectronic applications. Patterning active materials like these is a useful way to expand their tunability and applicability as it may allow more intricate designs that can improve efficiencies or increase functionality. Based on a technique for II-VI quantum dots, here we pattern colloidal LHP nanocrystals using electron-beam lithography (EBL). We create patterns of LHP nanocrystals on the order of 100s of nanometers to several microns and use these patterns to form intricate designs. The patterning mechanism is induced by ligand cross-linking, which binds adjacent nanocrystals together. We find that the luminescent properties are somewhat diminished after exposure, but that the structures are nonetheless still emissive. We believe that this is an interesting step toward patterning LHP nanocrystals at the nanoscale for device fabrication.
Collapse
Affiliation(s)
- Christian
D. Dieleman
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
- Advanced
Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Julia van der Burgt
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Neha Thakur
- Advanced
Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Erik C. Garnett
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Bruno Ehrler
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
10
|
Mori A, Yamashita K, Tabata Y, Seto K, Tokunaga E. Absorbance spectroscopy of light scattering samples placed inside an integrating sphere for wide dynamic range absorbance measurement. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:123103. [PMID: 34972399 DOI: 10.1063/5.0066412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/06/2021] [Indexed: 06/14/2023]
Abstract
In the absorbance measurement of a sample that scatters light significantly, it is necessary to consider the effect of the attenuation of incident light due to scattering on the measured absorbance. Since the usual absorbance measurement with an integrating sphere (IS) cannot remove the influence of backscattering, we performed the absorbance measurement considering the light scattered to almost all solid angles by placing the sample inside the IS. Ni(NO3)2 and Co(NO3)2 aqueous solutions were used as non-scattering samples, and Ni(NO3)2 solutions mixed with submicrometer polystyrene spheres as scatterers were used as scattering samples. The sample-concentration dependence of the measured absorbance was investigated for the cell containing the sample placed at the entrance of or inside the IS. It was found that even inside the IS, the measured absorbance does not match the true absorbance because light is partially multiply transmitted through the sample or detected without being transmitted through the sample. Due to the latter reason, the saturated absorbance inside the IS was lower than that at the entrance. We derived the formula with three fitting parameters relating the measured and true absorbance taking these factors into account, which quantitatively reproduced the concentration dependence of the absorbance in the non-scattering sample. When the scattering samples were placed at the entrance and inside of the IS, the measured absorbance increased and decreased, respectively, compared to those without scatterers. This decrease in absorbance for the scattering samples inside the IS was also explained by the proposed formula slightly modified.
Collapse
Affiliation(s)
- Ayaka Mori
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kyohei Yamashita
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yunosuke Tabata
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Keisuke Seto
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Eiji Tokunaga
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
11
|
van der Burgt J, Dieleman CD, Johlin E, Geuchies JJ, Houtepen AJ, Ehrler B, Garnett EC. Integrating Sphere Fourier Microscopy of Highly Directional Emission. ACS PHOTONICS 2021; 8:1143-1151. [PMID: 34056035 PMCID: PMC8155557 DOI: 10.1021/acsphotonics.1c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Accurately controlling light emission using nano- and microstructured lenses and antennas is an active field of research. Dielectrics are especially attractive lens materials due to their low optical losses over a broad bandwidth. In this work we measure highly directional light emission from patterned quantum dots (QDs) aligned underneath all-dielectric nanostructured microlenses. The lenses are designed with an evolutionary algorithm and have a theoretical directivity of 160. The fabricated structures demonstrate an experimental full directivity of 61 ± 3, three times higher than what has been estimated before, with a beaming half-angle of 2.6°. This high value compared to previous works is achieved via three mechanisms. First, direct electron beam patterning of QD emitters and alignment markers allowed for more localized emission and better emitter-lens alignment. Second, the lens fabrication was refined to minimize distortions between the designed shape and the final structure. Finally, a new measurement technique was developed that combines integrating sphere microscopy with Fourier microscopy. This enables complete directivity measurements, contrary to other reported values, which are typically only partial directivities or estimates of the full directivity that rely partly on simulations. The experimentally measured values of the complete directivity were higher than predicted by combining simulations with partial directivity measurements. High directivity was obtained from three different materials (cadmium-selenide-based QDs and two lead halide perovskite materials), emitting at 520, 620, and 700 nm, by scaling the lens size according to the emission wavelength.
Collapse
Affiliation(s)
| | - Christian D. Dieleman
- AMOLF
Institute, 1098XG, Amsterdam, The Netherlands
- Advanced
Reseach Center for Nanolithography, 1098XG, Amsterdam, The Netherlands
| | - Eric Johlin
- Nanophotonic
Energy Materials, Western Engineering, Western
University, SEB 3094, London, Canada
| | - Jaco J. Geuchies
- Optoelectronic
Materials, Faculty of Applied Sciences, Delft University of Technology, 2629HZ, Delft, The Netherlands
| | - Arjan J. Houtepen
- Optoelectronic
Materials, Faculty of Applied Sciences, Delft University of Technology, 2629HZ, Delft, The Netherlands
| | - Bruno Ehrler
- AMOLF
Institute, 1098XG, Amsterdam, The Netherlands
| | | |
Collapse
|
12
|
Marino E, Sciortino A, Berkhout A, MacArthur KE, Heggen M, Gregorkiewicz T, Kodger TE, Capretti A, Murray CB, Koenderink AF, Messina F, Schall P. Simultaneous Photonic and Excitonic Coupling in Spherical Quantum Dot Supercrystals. ACS NANO 2020; 14:13806-13815. [PMID: 32924433 PMCID: PMC7596773 DOI: 10.1021/acsnano.0c06188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Semiconductor nanocrystals, or quantum dots (QDs), simultaneously benefit from inexpensive low-temperature solution processing and exciting photophysics, making them the ideal candidates for next-generation solar cells and photodetectors. While the working principles of these devices rely on light absorption, QDs intrinsically belong to the Rayleigh regime and display optical behavior limited to electric dipole resonances, resulting in low absorption efficiencies. Increasing the absorption efficiency of QDs, together with their electronic and excitonic coupling to enhance charge carrier mobility, is therefore of critical importance to enable practical applications. Here, we demonstrate a general and scalable approach to increase both light absorption and excitonic coupling of QDs by fabricating hierarchical metamaterials. We assemble QDs into crystalline supraparticles using an emulsion template and demonstrate that these colloidal supercrystals (SCs) exhibit extended resonant optical behavior resulting in an enhancement in absorption efficiency in the visible range of more than 2 orders of magnitude with respect to the case of dispersed QDs. This successful light trapping strategy is complemented by the enhanced excitonic coupling observed in ligand-exchanged SCs, experimentally demonstrated through ultrafast transient absorption spectroscopy and leading to the formation of a free biexciton system on sub-picosecond time scales. These results introduce a colloidal metamaterial designed by self-assembly from the bottom up, simultaneously featuring a combination of nanoscale and mesoscale properties leading to simultaneous photonic and excitonic coupling, therefore presenting the nanocrystal analogue of supramolecular structures.
Collapse
Affiliation(s)
- Emanuele Marino
- Van
der Waals−Zeeman Institute, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Department
of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Alice Sciortino
- Dipartimento
di Fisica e Chimica−Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Annemarie Berkhout
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
| | - Katherine E. MacArthur
- Ernst
Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter
Grünberg Institute, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| | - Marc Heggen
- Ernst
Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter
Grünberg Institute, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| | - Tom Gregorkiewicz
- Van
der Waals−Zeeman Institute, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Thomas E. Kodger
- Van
der Waals−Zeeman Institute, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Antonio Capretti
- Van
der Waals−Zeeman Institute, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Christopher B. Murray
- Department
of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
- Department
of Materials Science and Engineering, University
of Pennsylvania, 220
S 33rd St., Philadelphia, Pennsylvania 19104, United States
| | - A. Femius Koenderink
- Van
der Waals−Zeeman Institute, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
| | - Fabrizio Messina
- Dipartimento
di Fisica e Chimica−Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Peter Schall
- Van
der Waals−Zeeman Institute, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
13
|
Pedrosa TL, Estupiñán-López C, de Araujo RE. Temperature evaluation of colloidal nanoparticles by the thermal lens technique. OPTICS EXPRESS 2020; 28:31457-31467. [PMID: 33115118 DOI: 10.1364/oe.405172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The use of highly sensitive thermometric methods is essential for the evaluation of nanoplatforms for photothermal therapy. In this study, the thermal lens technique was introduced to assess the optically induced temperature changes in colloidal samples of gold nanoparticles. Thermal lens measurements also allowed the acquisition of the nanoparticle absorption cross-section value, regardless of knowing the nanostructure scattering properties. The developed thermometric system exhibited 0.2 °C-1 sensitivity and was capable of measuring temperature variations of metallic colloidal samples with a resolution of 0.01 °C. Measuring colloidal temperature changes allows for the estimation of the localized temperature variation reached by each nanoheater, before thermalization of the excitation volume. Our results establish a practical and effective method to evaluate optically induced temperature changes on metallic colloids.
Collapse
|
14
|
Kontoleta E, Tsoukala A, Askes SHC, Zoethout E, Oksenberg E, Agrawal H, Garnett EC. Using Hot Electrons and Hot Holes for Simultaneous Cocatalyst Deposition on Plasmonic Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35986-35994. [PMID: 32672034 PMCID: PMC7430944 DOI: 10.1021/acsami.0c04941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Hot electrons generated in metal nanoparticles can drive chemical reactions and selectively deposit cocatalyst materials on the plasmonic hotspots, the areas where the decay of plasmons takes place and the hot electrons are created. While hot electrons have been extensively used for nanomaterial formation, the utilization of hot holes for simultaneous cocatalyst deposition has not yet been explored. Herein, we demonstrate that hot holes can drive an oxidation reaction for the deposition of the manganese oxide (MnOx) cocatalyst on different plasmonic gold (Au) nanostructures on a thin titanium dioxide (TiO2) layer, excited at their surface plasmon resonance. An 80% correlation between the hot-hole deposition sites and the simulated plasmonic hotspot location is showed when considering the typical hot-hole diffusion length. Simultaneous deposition of more than one cocatalyst is also achieved on one of the investigated plasmonic systems (Au plasmonic nanoislands) through the hot-hole oxidation of a manganese salt and the hot-electron reduction of a platinum precursor in the same solution. These results add more flexibility to the use of hot carriers and open up the way for the design of complex photocatalytic nanostructures.
Collapse
Affiliation(s)
- Evgenia Kontoleta
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| | - Alexandra Tsoukala
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| | - Sven H. C. Askes
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| | - Erwin Zoethout
- Dutch
Institute for Fundamental Energy Research (DIFFER), De Zaale 20, 5612 AJ Eindhoven, Netherlands
| | - Eitan Oksenberg
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| | - Harshal Agrawal
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| | - Erik C. Garnett
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| |
Collapse
|
15
|
Rangacharya VP, Wu K, Larsen PE, Thamdrup LHE, Ilchenko O, Hwu ET, Rindzevicius T, Boisen A. Quantifying Optical Absorption of Single Plasmonic Nanoparticles and Nanoparticle Dimers Using Microstring Resonators. ACS Sens 2020; 5:2067-2075. [PMID: 32529825 DOI: 10.1021/acssensors.0c00591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The wide and ever-increasing applications of thermoplasmonics demand the need for sensitive and reliable tools to probe optical absorptions of individual nanoparticles. However, most of the currently available techniques focus only on measuring the surface temperature of nanostructures in a particular medium and are either invasive or suffer from low sensitivity, lengthy calibration, or the inability to probe single structures with nanogaps. Here, we present for the first time the use of micromechanical SiN string resonators for quantifying optical absorption cross sections of individual plasmonic nanostructures. Monomers and dimers of nanospheres, nanostars, shell-isolated nanoparticles, and nanocubes are probed. A reliable data treatment method is developed to obtain the absorption cross sections as a function of responsivity across a string. The presented method exhibits an excellent sensitivity of ∼89 Hz/K. This allows quantification of optical absorption cross sections of individual plasmonic structures even when their plasmon resonance wavelengths are far from the laser excitation wavelength. The experimentally obtained optical absorption cross sections agree well with the simulations. Influencing factors including polarization, surface morphology, and nanogap size are discussed. The developed method and the obtained optical absorption profiles facilitate future development and optimization of thermoplasmonic applications.
Collapse
Affiliation(s)
- Varadarajan Padmanabhan Rangacharya
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.,DNRF and Villum Fonden Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, IDUN, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kaiyu Wu
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.,DNRF and Villum Fonden Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, IDUN, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Peter Emil Larsen
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.,DNRF and Villum Fonden Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, IDUN, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lasse Højlund Eklund Thamdrup
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.,DNRF and Villum Fonden Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, IDUN, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Oleksii Ilchenko
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.,DNRF and Villum Fonden Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, IDUN, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - En-Te Hwu
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.,DNRF and Villum Fonden Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, IDUN, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tomas Rindzevicius
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.,DNRF and Villum Fonden Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, IDUN, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.,DNRF and Villum Fonden Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, IDUN, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Zhang Y, Saxena D, Aagesen M, Liu H. Toward electrically driven semiconductor nanowire lasers. NANOTECHNOLOGY 2019; 30:192002. [PMID: 30658345 DOI: 10.1088/1361-6528/ab000d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Semiconductor nanowire (NW) lasers are highly promising for making new-generation coherent light sources with the advantages of ultra-small size, high efficiency, easy integration and low cost. Over the past 15 years, this area of research has been developing rapidly, with extensive reports of optically pumped lasing in various inorganic and organic semiconductor NWs. Motivated by these developments, substantial efforts are being made to make NW lasers electrically pumped, which is necessary for their practical implementation. In this review, we first categorize NW lasers according to their lasing wavelength and wavelength tunability. Then, we summarize the methods used for achieving single-mode lasing in NWs. After that, we review reports on lasing threshold reduction and the realization of electrically pumped NW lasers. Finally, we offer our perspective on future improvements and trends.
Collapse
Affiliation(s)
- Yunyan Zhang
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | | | | | | |
Collapse
|
17
|
Pelivanov I, Petrova E, Yoon SJ, Qian Z, Guye K, O'Donnell M. Molecular fingerprinting of nanoparticles in complex media with non-contact photoacoustics: beyond the light scattering limit. Sci Rep 2018; 8:14425. [PMID: 30258194 PMCID: PMC6158233 DOI: 10.1038/s41598-018-32580-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/06/2018] [Indexed: 11/09/2022] Open
Abstract
Optical instruments can probe physical systems even to the level of individual molecules. In particular, every molecule, solution, and structure such as a living cell has a unique absorption spectrum representing a molecular fingerprint. This spectrum can help identify a particular molecule from others or quantify its concentration; however, scattering limits molecular fingerprinting within a complex compound and must be overcome. Here, we present a new, non-contact photoacoustic (PA)-based method that can almost completely remove the influence of background light scattering on absorption measurements in heterogeneous highly scattering solutions and, furthermore, separate the intrinsic absorption of nanoscale objects from their scattering. In particular, we measure pure absorption spectra for solutions of gold nanorods (GNRs) as an example of a plasmonic agent and show that these spectra differ from the extinction measured with conventional UV-VIS spectrophotometry. Finally, we show how the original GNR absorption changes when nanoparticles are internalized by cells.
Collapse
Affiliation(s)
- Ivan Pelivanov
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| | - Elena Petrova
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Soon Joon Yoon
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Zhaoxia Qian
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Kathryn Guye
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Matthew O'Donnell
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
18
|
Oener S, Khoram P, Brittman S, Mann SA, Zhang Q, Fan Z, Boettcher SW, Garnett EC. Perovskite Nanowire Extrusion. NANO LETTERS 2017; 17:6557-6563. [PMID: 28967759 PMCID: PMC5683693 DOI: 10.1021/acs.nanolett.7b02213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/19/2017] [Indexed: 05/05/2023]
Abstract
The defect tolerance of halide perovskite materials has led to efficient optoelectronic devices based on thin-film geometries with unprecedented speed. Moreover, it has motivated research on perovskite nanowires because surface recombination continues to be a major obstacle in realizing efficient nanowire devices. Recently, ordered vertical arrays of perovskite nanowires have been realized, which can benefit from nanophotonic design strategies allowing precise control over light propagation, absorption, and emission. An anodized aluminum oxide template is used to confine the crystallization process, either in the solution or in the vapor phase. This approach, however, results in an unavoidable drawback: only nanowires embedded inside the AAO are obtainable, since the AAO cannot be etched selectively. The requirement for a support matrix originates from the intrinsic difficulty of controlling precise placement, sizes, and shapes of free-standing nanostructures during crystallization, especially in solution. Here we introduce a method to fabricate free-standing solution-based vertical nanowires with arbitrary dimensions. Our scheme also utilizes AAO; however, in contrast to embedding the perovskite inside the matrix, we apply a pressure gradient to extrude the solution from the free-standing templates. The exit profile of the template is subsequently translated into the final semiconductor geometry. The free-standing nanowires are single crystalline and show a PLQY up to ∼29%. In principle, this rapid method is not limited to nanowires but can be extended to uniform and ordered high PLQY single crystalline perovskite nanostructures of different shapes and sizes by fabricating additional masking layers or using specifically shaped nanopore endings.
Collapse
Affiliation(s)
- Sebastian
Z. Oener
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United
States
| | - Parisa Khoram
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Sarah Brittman
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Sander A. Mann
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Qianpeng Zhang
- Department
of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhiyong Fan
- Department
of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Shannon W. Boettcher
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United
States
| | - Erik C. Garnett
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|