1
|
Mielewczyk L, Galle L, Niese N, Grothe J, Kaskel S. Precursor-Derived Sensing Interdigitated Electrode Microstructures Based on Platinum and Nano Porous Carbon. ChemistryOpen 2024:e202400179. [PMID: 39158463 DOI: 10.1002/open.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
Interdigital electrodes were prepared using nanoimprint lithography and piezoelectric inkjet printing. These processes are simpler and more cost-effective than the industrially used electron beam lithography because of their purely mechanical process step. For the investigation of material dependence, platinum as well as carbon electrodes were fabricated. Afterwards electrodes with various line widths and spacings were tested for the application as a chemiresistive sensor for ferrocenyl-methanol and the influence of the gap-width and conductor cross-section on the sensitivity was investigated. The general suitability of the systems for the production of such structures could be confirmed. Structures with a limit of detection (LOD) down to 1.2 μM and 35.9 μM could be produced for carbon and platinum, respectively, as well as a response time of 3.6 s was achieved.
Collapse
Affiliation(s)
- Lukas Mielewczyk
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069, Dresden
| | - Lydia Galle
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069, Dresden
| | - Nick Niese
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069, Dresden
| | - Julia Grothe
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069, Dresden
| | - Stefan Kaskel
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069, Dresden
| |
Collapse
|
2
|
Han X, Wu X, Zhao L, Li M, Jia C, Li Z, Xie J, Luo G, Yang P, Boukherroub R, Türker Y, Özkaynak MU, Dönmez KB. Facile assembly of flexible, stretchable and attachable symmetric microsupercapacitors with wide working voltage windows and favorable durability. MICROSYSTEMS & NANOENGINEERING 2024; 10:107. [PMID: 39101004 PMCID: PMC11294472 DOI: 10.1038/s41378-024-00742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/06/2024]
Abstract
With the increasing development of intelligent robots and wearable electronics, the demand for high-performance flexible energy storage devices is drastically increasing. In this study, flexible symmetric microsupercapacitors (MSCs) that could operate in a wide working voltage window were developed by combining laser-direct-writing graphene (LG) electrodes with a phosphoric acid-nonionic surfactant liquid crystal (PA-NI LC) gel electrolyte. To increase the flexibility and enhance the conformal ability of the MSC devices to anisotropic surfaces, after the interdigitated LG formed on the polyimide (PI) film surface, the devices were further transferred onto a flexible, stretchable and transparent polydimethylsiloxane (PDMS) substrate; this substrate displayed favorable flexibility and mechanical characteristics in the bending test. Furthermore, the electrochemical performances of the symmetric MSCs with various electrode widths (300, 400, 500 and 600 μm) were evaluated. The findings revealed that symmetric MSC devices could operate in a large voltage range (0-1.5 V); additionally, the device with a 300 μm electrode width (MSC-300) exhibited the largest areal capacitance of 2.3 mF cm-2 at 0.07 mA cm-2 and an areal (volumetric) energy density of 0.72 μWh cm- 2 (0.36 mWh cm- 3) at 55.07 μW cm-2 (27.54 mW cm-3), along with favorable mechanical and cycling stability. After charging for ~20 s, two MSC-300 devices connected in series could supply energy to a calculator to operate for ~130 s, showing its practical application potential as an energy storage device. Moreover, the device displayed favorable reversibility, stability and durability. After 12 months of aging in air at room temperature, its electrochemical performance was not altered, and after charging-discharging measurements for 5000 cycles at 0.07 mA cm-2, ~93.6% of the areal capacitance was still retained; these results demonstrated its practical long-term application potential as an energy storage device.
Collapse
Affiliation(s)
- Xiangguang Han
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264000 China
| | - Xiaoyu Wu
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264000 China
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Sensing, Chongqing Academician Workstation, Chongqing 2011 Collaborative Innovation Center of Micro/Nano Sensing and Intelligent Ecological Internet of Things, Chongqing Technology and Business University, Nan’an District, Chongqing, 400067 China
| | - Min Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264000 China
| | - Chen Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264000 China
| | - Jiaqi Xie
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 China
| | - Guoxi Luo
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264000 China
| | - Ping Yang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 China
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Yurdanur Türker
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Mert Umut Özkaynak
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
- Department of Materials Science and Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Koray Bahadır Dönmez
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| |
Collapse
|
3
|
Seo S, Oh IH, Chang ST. On-Chip Micro-Supercapacitor with High Areal Energy Density Based on Dielectrophoretic Assembly of Nanoporous Metal Microwire Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311726. [PMID: 38497508 DOI: 10.1002/smll.202311726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Advances in the Internet of Things (IoT) technology have driven the demand for miniaturized electronic devices, prompting research on small-scale energy-storage systems. Micro-supercapacitors (MSCs) stand out in this regard because of their compact size, high power density, high charge-discharge rate, and extended cycle life. However, their limited energy density impedes commercialization. To resolve this issue, a simple and innovative approach is reported herein for fabricating highly efficient on-chip MSCs integrated with nanoporous metal microwires formed by dielectrophoresis (DEP)-driven gold nanoparticle (AuNP) assembly. Placing a water-based AuNP suspension onto interdigitated electrodes and applying an alternating voltage induces in-plane porous microwire formation in the electrode gap. The DEP-induced AuNP assembly and the gold microwire (AuMW) growth rate can be adjusted by controlling the applied alternating voltage and frequency. The microwire-integrated MSC (AuMW-MSC) electrically outperforms its unmodified counterpart and exhibits a 30% larger electrode area, along with 72% and 78% higher specific and areal capacitances, respectively, than a microwire-free MSC. Additionally, AuMW-MSC achieves maximum energy and power densities of 3.33 µWh cm-2 and 2629 µW cm-2, respectively, with a gel electrolyte. These findings can help upgrade MSCs to function as potent energy-storage devices for small electronics.
Collapse
Affiliation(s)
- Seungdeok Seo
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - In Hyeok Oh
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Suk Tai Chang
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
4
|
Wang Z, Liu X, Ji J, Guo Y, Zhu Y, Zhang G, Tong B, Jiao Y, Liu K. Suppressed Droplet Splashing on Positively Skewed Surfaces for High-Efficiency Evaporation Cooling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307759. [PMID: 38269473 DOI: 10.1002/smll.202307759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Two types of functional surfaces with the same roughness but completely different surface topographies are prepared, namely positively skewed surfaces filled with micropillar arrays (Sa ≈4.4 µm, Ssk >0) and negatively skewed surfaces filled with microcavity arrays (Sa ≈4.4 µm, Ssk <0), demonstrating promoting droplet splashing. Remarkably, the critical Weber number for generating satellite droplets on the negatively skewed surfaces is significantly lower than that on the positively skewed surfaces, indicating that the negatively skewed surface with microcavity arrays is more likely to promote droplet splashing. It is mainly attributed to the fact that air on the negatively skewed surface can make the liquid film take on a Cassie-Baxter state on the surface so that the stabilizing capillary force of the liquid film exceeds the destabilizing stress of the air film. Moreover, the surface topography promoting droplet spreading and the mechanical properties of three-phase moving contact lines are analyzed from the perspective of microscopic interface mechanics. Finally, it is demonstrated the designed positively skewed surfaces can be employed for large-area heat dissipation by means of high-efficiency evaporation.
Collapse
Affiliation(s)
- Zhaochang Wang
- Institute of Tribology, Hefei University of Technology, Hefei, 230009, China
- School of Mechanical Engineering, Anhui University of Technology, Maanshan, 243032, China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
| | - Xiaojun Liu
- Institute of Tribology, Hefei University of Technology, Hefei, 230009, China
| | - Jiawei Ji
- Institute of Tribology, Hefei University of Technology, Hefei, 230009, China
| | - Yuhang Guo
- Institute of Tribology, Hefei University of Technology, Hefei, 230009, China
| | - Yongqing Zhu
- Institute of Tribology, Hefei University of Technology, Hefei, 230009, China
| | - Guotao Zhang
- School of Mechanical Engineering, Anhui University of Technology, Maanshan, 243032, China
| | - Baohong Tong
- School of Mechanical Engineering, Anhui University of Technology, Maanshan, 243032, China
| | - Yunlong Jiao
- Institute of Tribology, Hefei University of Technology, Hefei, 230009, China
| | - Kun Liu
- Institute of Tribology, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
5
|
Chen S, Li Z, Huang P, Ruiz V, Su Y, Fu Y, Alesanco Y, Malm BG, Niklaus F, Li J. Ultrafast Metal-Free Microsupercapacitor Arrays Directly Store Instantaneous High-Voltage Electricity from Mechanical Energy Harvesters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400697. [PMID: 38502870 PMCID: PMC11165484 DOI: 10.1002/advs.202400697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Indexed: 03/21/2024]
Abstract
Harvesting renewable mechanical energy is envisioned as a promising and sustainable way for power generation. Many recent mechanical energy harvesters are able to produce instantaneous (pulsed) electricity with a high peak voltage of over 100 V. However, directly storing such irregular high-voltage pulse electricity remains a great challenge. The use of extra power management components can boost storage efficiency but increase system complexity. Here utilizing the conducting polymer PEDOT:PSS, high-rate metal-free micro-supercapacitor (MSC) arrays are successfully fabricated for direct high-efficiency storage of high-voltage pulse electricity. Within an area of 2.4 × 3.4 cm2 on various paper substrates, large-scale MSC arrays (comprising up to 100 cells) can be printed to deliver a working voltage window of 160 V at an ultrahigh scan rate up to 30 V s-1. The ultrahigh rate capability enables the MSC arrays to quickly capture and efficiently store the high-voltage (≈150 V) pulse electricity produced by a droplet-based electricity generator at a high efficiency of 62%, significantly higher than that (<2%) of the batteries or capacitors demonstrated in the literature. Moreover, the compact and metal-free features make these MSC arrays excellent candidates for sustainable high-performance energy storage in self-charging power systems.
Collapse
Affiliation(s)
- Shiqian Chen
- KTH Royal Institute of TechnologySchool of Electrical Engineering and Computer ScienceDivision of Electronics and Embedded SystemsElectrum 229Kista16440Sweden
| | - Zheng Li
- KTH Royal Institute of TechnologySchool of Electrical Engineering and Computer ScienceDivision of Electronics and Embedded SystemsElectrum 229Kista16440Sweden
| | - Po‐Han Huang
- KTH Royal Institute of TechnologySchool of Electrical Engineering and Computer ScienceDivision of Micro and NanosystemsStockholmSE‐100 44Sweden
| | - Virginia Ruiz
- CIDETECBasque Research and Technology Alliance (BRTA)Po. Miramón 196Donostia‐San Sebastián20014Spain
- Present address:
International Research Center in Critical Raw Materials‐ICCRAMUniversidad de BurgosPlaza Misael Bañuelos s/nBurgosE‐09001Spain
| | - Yingchun Su
- KTH Royal Institute of TechnologySchool of Electrical Engineering and Computer ScienceDivision of Electronics and Embedded SystemsElectrum 229Kista16440Sweden
| | - Yujie Fu
- KTH Royal Institute of TechnologySchool of Electrical Engineering and Computer ScienceDivision of Electronics and Embedded SystemsElectrum 229Kista16440Sweden
| | - Yolanda Alesanco
- CIDETECBasque Research and Technology Alliance (BRTA)Po. Miramón 196Donostia‐San Sebastián20014Spain
| | - B. Gunnar Malm
- KTH Royal Institute of TechnologySchool of Electrical Engineering and Computer ScienceDivision of Electronics and Embedded SystemsElectrum 229Kista16440Sweden
| | - Frank Niklaus
- KTH Royal Institute of TechnologySchool of Electrical Engineering and Computer ScienceDivision of Micro and NanosystemsStockholmSE‐100 44Sweden
| | - Jiantong Li
- KTH Royal Institute of TechnologySchool of Electrical Engineering and Computer ScienceDivision of Electronics and Embedded SystemsElectrum 229Kista16440Sweden
| |
Collapse
|
6
|
Kumar N, Lee SY, Park SJ. Recent Progress and Challenges in Paper-Based Microsupercapacitors for Flexible Electronics: A Comprehensive Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21367-21382. [PMID: 38631339 DOI: 10.1021/acsami.4c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Recent advances in paper-based microsupercapacitors (p-MSCs) have attracted significant attention due to their potential as substrates for flexible electronics. This review summarizes progress in the field of p-MSCs, discussing their challenges and prospects. It covers various aspects, including the fundamental characteristics of paper, the modification of paper with functional materials, and different methods for device fabrication. The review critically analyzes recent advancements, materials, and fabrication techniques for p-MSCs, exploring their potential applications and benefits, such as flexibility, cost-effectiveness, and sustainability. Additionally, this review highlights gaps in current research, guiding future investigations and innovations in the field. It provides an overview of the current state of p-MSCs and offers valuable insights for researchers and professionals in the field. The critical analysis and discussion presented herein offer a roadmap for the future development of p-MSCs and their potential impact on the domain of flexible electronics.
Collapse
Affiliation(s)
- Niraj Kumar
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
7
|
Zhang L, Qin J, Das P, Wang S, Bai T, Zhou F, Wu M, Wu ZS. Electrochemically Exfoliated Graphene Additive-Free Inks for 3D Printing Customizable Monolithic Integrated Micro-Supercapacitors on a Large Scale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313930. [PMID: 38325888 DOI: 10.1002/adma.202313930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Three-dimensional (3D) printing technology with enhanced fidelity can achieve multiple functionalities and boost electrochemical performance of customizable planar micro-supercapacitors (MSCs), however, precise structural control of additive-free graphene-based macro-assembly electrode for monolithic integrated MSCs (MIMSCs) remains challenging. Here, the large-scale 3D printing fabrication of customizable planar MIMSCs is reported utilizing additive-free, high-quality electrochemically exfoliated graphene inks, which is not required the conventional cryogenic assistance during the printing process and any post-processing reduction. The resulting MSCs reveal an extremely small engineering footprint of 0.025 cm2, exceptionally high areal capacitance of 4900 mF cm-2, volumetric capacitance of 195.6 F cm-3, areal energy density of 2.1 mWh cm-2, and unprecedented volumetric energy density of 23 mWh cm-3 for a single cell, surpassing most previously reported 3D printed MSCs. The 3D printed MIMSC pack is further demonstrated, with the maximum areal cell count density of 16 cell cm-2, the highest output voltage of 192.5 V and the largest output voltage per unit area of 56 V cm-2 up to date are achieved. This work presents an innovative solution for processing high-performance additive-free graphene ink and realizing the large-scale production of 3D printed MIMSCs for planar energy storage.
Collapse
Affiliation(s)
- Longlong Zhang
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Jieqiong Qin
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, 450002, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Sen Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Tiesheng Bai
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Feng Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
- College of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
8
|
Chao Y, Han Y, Chen Z, Chu D, Xu Q, Wallace G, Wang C. Multiscale Structural Design of 2D Nanomaterials-based Flexible Electrodes for Wearable Energy Storage Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305558. [PMID: 38115755 PMCID: PMC10916616 DOI: 10.1002/advs.202305558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/22/2023] [Indexed: 12/21/2023]
Abstract
2D nanomaterials play a critical role in realizing high-performance flexible electrodes for wearable energy storge devices, owing to their merits of large surface area, high conductivity and high strength. The electrode is a complex system and the performance is determined by multiple and interrelated factors including the intrinsic properties of materials and the structures at different scales from macroscale to atomic scale. Multiscale design strategies have been developed to engineer the structures to exploit full potential and mitigate drawbacks of 2D materials. Analyzing the design strategies and understanding the working mechanisms are essential to facilitate the integration and harvest the synergistic effects. This review summarizes the multiscale design strategies from macroscale down to micro/nano-scale structures and atomic-scale structures for developing 2D nanomaterials-based flexible electrodes. It starts with brief introduction of 2D nanomaterials, followed by analysis of structural design strategies at different scales focusing on the elucidation of structure-property relationship, and ends with the presentation of challenges and future prospects. This review highlights the importance of integrating multiscale design strategies. Finding from this review may deepen the understanding of electrode performance and provide valuable guidelines for designing 2D nanomaterials-based flexible electrodes.
Collapse
Affiliation(s)
- Yunfeng Chao
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450052China
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Yan Han
- Energy & Materials Engineering CentreCollege of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Zhiqi Chen
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Dewei Chu
- School of Materials Science and EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Qun Xu
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450052China
| | - Gordon Wallace
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Caiyun Wang
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| |
Collapse
|
9
|
Komal Zafar H, Zainab S, Masood M, Sohail M, Shoaib Ahmad Shah S, Karim MR, O'Mullane A, Ostrikov KK, Will G, Wahab MA. Recent Advances on Nitrogen-Doped Porous Carbons Towards Electrochemical Supercapacitor Applications. CHEM REC 2024; 24:e202300161. [PMID: 37582638 DOI: 10.1002/tcr.202300161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Due to ever-increasing global energy demands and dwindling resources, there is a growing need to develop materials that can fulfil the World's pressing energy requirements. Electrochemical energy storage devices have gained significant interest due to their exceptional storage properties, where the electrode material is a crucial determinant of device performance. Hence, it is essential to develop 3-D hierarchical materials at low cost with precisely controlled porosity and composition to achieve high energy storage capabilities. After presenting the brief updates on porous carbons (PCs), then this review will focus on the nitrogen (N) doped porous carbon materials (NPC) for electrochemical supercapacitors as the NPCs play a vital role in supercapacitor applications in the field of energy storage. Therefore, this review highlights recent advances in NPCs, including developments in the synthesis of NPCs that have created new methods for controlling their morphology, composition, and pore structure, which can significantly enhance their electrochemical performance. The investigated N-doped materials a wide range of specific surface areas, ranging from 181.5 to 3709 m2 g-1 , signifies a substantial increase in the available electrochemically active surface area, which is crucial for efficient energy storage. Moreover, these materials display notable specific capacitance values, ranging from 58.7 to 754.4 F g-1 , highlighting their remarkable capability to effectively store electrical energy. The outstanding electrochemical performance of these materials is attributed to the synergy between heteroatoms, particularly N, and the carbon framework in N-doped porous carbons. This synergy brings about several beneficial effects including, enhanced pseudo-capacitance, improved electrical conductivity, and increased electrochemically active surface area. As a result, these materials emerge as promising candidates for high-performance supercapacitor electrodes. The challenges and outlook in NPCs for supercapacitor applications are also presented. Overall, this review will provide valuable insights for researchers in electrochemical energy storage and offers a basis for fabricating highly effective and feasible supercapacitor electrodes.
Collapse
Affiliation(s)
- Hafiza Komal Zafar
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Sara Zainab
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Maria Masood
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Mohammad R Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), College of Engineering, King Saud University, P. O. Box 800, Riyadh, 11421, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Anthony O'Mullane
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Geoffrey Will
- Energy and Process Engineering Laboratory, School of Mechanical, Medical and Process Engineering, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Md A Wahab
- Energy and Process Engineering Laboratory, School of Mechanical, Medical and Process Engineering, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
10
|
Belal MA, Yousry R, Taulo G, AbdelHamid AA, Rashed AE, El-Moneim AA. Layer-by-Layer Inkjet-Printed Manganese Oxide Nanosheets on Graphene for High-Performance Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53632-53643. [PMID: 37957019 DOI: 10.1021/acsami.3c07339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The widespread adoption of wearable, movable, and implantable smart devices has sparked the evolution of flexible, miniaturized power supplies. High-resolution inkjet printing of flexible microsupercapacitor (μSC) electrodes is a fast, inexpensive, and waste-free alternative manufacturing technology. In this work, a 2D birnessite-type manganese dioxide (δ-MnO2) water-based ink is used to print 10-25 layers of δ-MnO2 symmetrically on a preprinted interdigitated cell consisting of 10 layers of electrochemically exfoliated graphene (EEG). The cell with 10 printed layers of δ-MnO2 achieved the highest specific capacitance, energy density, and power density of 0.44 mF cm-2, 0.045 μW h cm-2, and 0.0012 mW cm-2, respectively. Since inkjet-printing technology supports μSC manufacturing with parallel/series connectivity, four cells were used to study and improve the potential window and capacitance that can be used to construct μSC arrays as power banks. This work provides the first approach for designing an inkjet-printed interdigitated hybrid cell based on δ-MnO2@EEG that could be a versatile candidate for the large-scale production of flexible and printable electronic devices for energy storage.
Collapse
Affiliation(s)
- Mohamed Ahmed Belal
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
| | - Reham Yousry
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
| | - Gracian Taulo
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
| | - Ayman A AbdelHamid
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
- Applied Chemistry Group, Department of Chemistry, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah 000, United Arab Emirates
| | - Ahmed Elsayed Rashed
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Ahmed Abd El-Moneim
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
- School of Basic and Applied Science, Egypt-Japan University of Science and Technology, New Borg El Arab City, Alexandria 21934, Egypt
- Physical Chemistry Department, National Research Centre, El-Dokki, Cairo 12622, Egypt
| |
Collapse
|
11
|
Yang D, Nam HK, Le TSD, Yeo J, Lee Y, Kim YR, Kim SW, Choi HJ, Shim HC, Ryu S, Kwon S, Kim YJ. Multimodal E-Textile Enabled by One-Step Maskless Patterning of Femtosecond-Laser-Induced Graphene on Nonwoven, Knit, and Woven Textiles. ACS NANO 2023; 17:18893-18904. [PMID: 37643475 DOI: 10.1021/acsnano.3c04120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Personal wearable devices are considered important in advanced healthcare, military, and sports applications. Among them, e-textiles are the best candidates because of their intrinsic conformability without any additional device installation. However, e-textile manufacturing to date has a high process complexity and low design flexibility. Here, we report the direct laser writing of e-textiles by converting raw Kevlar textiles to electrically conductive laser-induced graphene (LIG) via femtosecond laser pulses in ambient air. The resulting LIG has high electrical conductivity and chemical reliability with a low sheet resistance of 2.86 Ω/□. Wearable multimodal e-textile sensors and supercapacitors are realized on different types of Kevlar textiles, including nonwoven, knit, and woven structures, by considering their structural textile characteristics. The nonwoven textile exhibits high mechanical stability, making it suitable for applications in temperature sensors and micro-supercapacitors. On the other hand, the knit textile possesses inherent spring-like stretchability, enabling its use in the fabrication of strain sensors for human motion detection. Additionally, the woven textile offers special sensitive pressure-sensing networks between the warp and weft parts, making it suitable for the fabrication of bending sensors used in detecting human voices. This direct laser synthesis of arbitrarily patterned LIGs from various textile structures could result in the facile realization of wearable electronic sensors and energy storage.
Collapse
Affiliation(s)
- Dongwook Yang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Han Ku Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Truong-Son Dinh Le
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Jinwook Yeo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Younggeun Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Young-Ryeul Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Seung-Woo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Hak-Jong Choi
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery & Materials, 156, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, South Korea
| | - Hyung Cheoul Shim
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery & Materials, 156, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, South Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Soongeun Kwon
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery & Materials, 156, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, South Korea
| | - Young-Jin Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| |
Collapse
|
12
|
Islam MR, Afroj S, Karim N. Scalable Production of 2D Material Heterostructure Textiles for High-Performance Wearable Supercapacitors. ACS NANO 2023; 17:18481-18493. [PMID: 37695696 PMCID: PMC10540263 DOI: 10.1021/acsnano.3c06181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Wearable electronic textiles (e-textiles) have emerged as a promising platform for seamless integration of electronic devices into everyday life, enabling nonintrusive monitoring of human health. However, the development of efficient, flexible, and scalable energy storage solutions remains a significant challenge for powering such devices. Here, we address this challenge by leveraging the distinct properties of two-dimensional (2D) material based heterostructures to enhance the performance of wearable textile supercapacitors. We report a highly scalable and controllable synthesis method for graphene and molybdenum disulfide (MoS2) through a microfluidization technique. Subsequently, we employ an ultrafast and industry-scale hierarchical deposition approach using a pad-dry method to fabricate 2D heterostructure based textiles with various configurations suitable for wearable e-textiles applications. Comparative analyses reveal the superior performance of wearable textile supercapacitors based on 2D material heterostructures, demonstrating excellent areal capacitance (∼105.08 mF cm-2), high power density (∼1604.274 μW cm-2) and energy density (∼58.377 μWh cm-2), and outstanding capacitive retention (∼100% after 1000 cycles). Our findings highlight the pivotal role of 2D material based heterostructures in addressing the challenges of performance and scalability in wearable energy storage devices, facilitating large-scale production of high-performance wearable supercapacitors.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre
for Print Research (CFPR), University of
the West of England (UWE), Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Shaila Afroj
- Centre
for Print Research (CFPR), University of
the West of England (UWE), Frenchay Campus, Bristol BS16 1QY, U.K.
- National
Graphene Institute (NGI), University of
Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Nazmul Karim
- Centre
for Print Research (CFPR), University of
the West of England (UWE), Frenchay Campus, Bristol BS16 1QY, U.K.
- National
Graphene Institute (NGI), University of
Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Advanced
Textiles Research Group, Nottingham Trent
University, Shakespeare Street, Nottingham NG1 4GG, U.K.
| |
Collapse
|
13
|
Guan S, Li J, Wang Y, Yang Y, Zhu X, Ye D, Chen R, Liao Q. Multifunctional MOF-Derived Au, Co-Doped Porous Carbon Electrode for a Wearable Sweat Energy Harvesting-Storage Hybrid System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304465. [PMID: 37318943 DOI: 10.1002/adma.202304465] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Indexed: 06/17/2023]
Abstract
As an efficient alternative for harnessing the energy from human's biofluid, a wearable energy harvesting-storage hybrid supercapacitor-biofuel cell (SC-BFC) microfluidic system is established with one multifunctional electrode. The electrode integrates metal-organic framework (MOF) derived carbon nanoarrays with embedded Au, Co nanoparticles on a flexible substrate, and is used for the symmetric supercapacitor as well as the enzyme nanocarriers of the biofuel cell. The electrochemical performance of the proposed electrode is evaluated, and the corresponding working mechanism is studied in depth according to the cyclic voltammetry and density functional theory calculation. The multiplexed microfluidic system is designed to pump and store natural sweat to maintain the continuous biofuel supply in the hybrid SC-BFC system. The biofuel cell module harvests electricity from lactate in sweat, and the symmetric supercapacitor module accommodates the bioelectricity for subsequent utilization. A numerical model is developed to validate the normal operation in poor and rich sweat under variable situations for the microfluidic system. One single SC-BFC unit can be self-charged to ≈0.8 V with superior mechanical durability in on-body testing, as well as energy and power values of 7.2 mJ and 80.3 µW, respectively. It illustrates the promising scenery of energy harvesting-storage hybrid microfluidic system.
Collapse
Affiliation(s)
- Shoujie Guan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Jiaxuan Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Yuyang Wang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Yang Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Dingding Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Rong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
14
|
Zhang CJ, Schneider R, Jafarpour M, Nüesch F, Abdolhosseinzadeh S, Heier J. Micro-Cup Architecture for Printing and Coating Asymmetric 2d-Material-Based Solid-State Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300357. [PMID: 37078837 DOI: 10.1002/smll.202300357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
High energy density micro-supercapacitors (MSCs) are in high demand for miniaturized electronics and microsystems. Research efforts today focus on materials development, applied in the planar interdigitated, symmetric electrode architecture. A novel "cup & core" device architecture that allows for printing of asymmetric devices without the need of accurately positioning the second finger electrode here have been introduced. The bottom electrode is either produced by laser ablation of a blade-coated graphene layer or directly screen-printed with graphene inks to create grids with high aspect ratio walls forming an array of "micro-cups". A quasi-solid-state ionic liquid electrolyte is spray-deposited on the walls; the top electrode material -MXene inks- is then spray-coated to fill the cup structure. The architecture combines the advantages of interdigitated electrodes for facilitated ion-diffusion, which is critical for 2D-material-based energy storage systems by providing vertical interfaces with the layer-by-layer processing of the sandwich geometry. Compared to flat reference devices, volumetric capacitance of printed "micro-cups" MSC increased considerably, while the time constant decreased (by 58%). Importantly, the high energy density (3.99 µWh cm-2 ) of the "micro-cups" MSC is also superior to other reported MXene and graphene-based MSCs.
Collapse
Affiliation(s)
- Chuanfang John Zhang
- College of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| | - René Schneider
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| | - Mohammad Jafarpour
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
- Institute of Materials Science and Engineering, Ecole Polytechnique Fedérale de Lausanne (EPFL), Station 12, Lausanne, CH-1015, Switzerland
| | - Frank Nüesch
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
- Institute of Materials Science and Engineering, Ecole Polytechnique Fedérale de Lausanne (EPFL), Station 12, Lausanne, CH-1015, Switzerland
| | - Sina Abdolhosseinzadeh
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
- Institute of Materials Science and Engineering, Ecole Polytechnique Fedérale de Lausanne (EPFL), Station 12, Lausanne, CH-1015, Switzerland
| | - Jakob Heier
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| |
Collapse
|
15
|
de la Torre-Gamarra C, García-Suelto M, del Rio Santos D, Levenfeld B, Varez A. 3D-printing of easily recyclable all-ceramic thick LiCoO2 electrodes with enhanced areal capacity for Li-ion batteries using a highly filled thermoplastic filament. J Colloid Interface Sci 2023; 642:351-363. [PMID: 37011453 DOI: 10.1016/j.jcis.2023.03.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
In this work, the production of thick ceramic LiCoO2 (LCO) electrodes using a conventional desktop 3D-printing was developed as an alternative to conventional electrode manufacturing for Li-ion batteries. Firstly, the filament formulation, based on LCO powders and a sacrificial polymers blend, is optimized to achieve suitable features (viscosity, flexibility and mechanical consistency) to be used in the 3-D printing. Printing parameters were optimized to produce defect-free bodies with coin geometry (12 mm diameter and 230-850 µm thickness). Thermal debinding and sintering were studied in order to obtain all ceramic LCO electrodes with adequate porosity. The additive-free sintered electrodes (850 µm thickness) have enhanced areal and volumetric capacities (up to 28 mA·h·cm-2 and 354 mA·h·cm-3) due to their extremely high mass loading (up to 285 mg·cm-2). Thus, the Li//LCO half-cell delivered an energy density of 1310 W·h·L-1. The ceramic nature of the electrode permits the use of a thin film of paint gold as current collector, reducing considerably the polarization of thick electrodes. Thus, the whole manufacturing process developed in this work is a complete solvent-free method to produce tuneable shape electrodes with enhanced energy density, opening the door for the manufacturing of high-density batteries with complex geometries and good recyclable.
Collapse
|
16
|
Wu Z, Liu S, Hao Z, Liu X. MXene Contact Engineering for Printed Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207174. [PMID: 37096843 PMCID: PMC10323642 DOI: 10.1002/advs.202207174] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Indexed: 05/03/2023]
Abstract
MXenes emerging as an amazing class of 2D layered materials, have drawn great attention in the past decade. Recent progress suggest that MXene-based materials have been widely explored as conductive electrodes for printed electronics, including electronic and optoelectronic devices, sensors, and energy storage systems. Here, the critical factors impacting device performance are comprehensively interpreted from the viewpoint of contact engineering, thereby giving a deep understanding of surface microstructures, contact defects, and energy level matching as well as their interaction principles. This review also summarizes the existing challenges of MXene inks and the related printing techniques, aiming at inspiring researchers to develop novel large-area and high-resolution printing integration methods. Moreover, to effectually tune the states of contact interface and meet the urgent demands of printed electronics, the significance of MXene contact engineering in reducing defects, matching energy levels, and regulating performance is highlighted. Finally, the printed electronics constructed by the collaborative combination of the printing process and contact engineering are discussed.
Collapse
Affiliation(s)
- Zhiyun Wu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| | - Shuiren Liu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| | - Zijuan Hao
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
- Henan Innovation Center for Functional Polymer Membrane MaterialsXinxiang453000P. R. China
| | - Xuying Liu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
17
|
Sedlovets DM. N-Doped Graphene-like Film/Silicon Structures as Micro-Capacitor Electrodes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114007. [PMID: 37297139 DOI: 10.3390/ma16114007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Currently, the miniaturization of portable and autonomous devices is challenging for modern electronics. Graphene-based materials have recently emerged as one of the ideal candidates for supercapacitor electrodes, while Si is a common platform for direct component-on-chip integration. We have proposed the direct liquid-based CVD of N-doped graphene-like films (N-GLFs) on Si as a promising way to achieve solid-state on-chip micro-capacitor performance. Synthesis temperatures in the range from 800 °C to 1000 °C are investigated. Capacitances and electrochemical stability of the films are evaluated using cyclic voltammetry, as well as galvanostatic measurements and electrochemical impedance spectroscopy in 0.5 M Na2SO4. We have shown that N-doping is an efficient way to improve the N-GLF capacitance. 900 °C is the optimal temperature for the N-GLF synthesis with the best electrochemical properties. The capacitance rises with increasing film thickness which also has an optimum (about 50 nm). The transfer-free acetonitrile-based CVD on Si yields a perfect material for microcapacitor electrodes. Our best value of the area-normalized capacitance (960 mF/cm2) exceeds the world's achievements among thin graphene-based films. The main advantages of the proposed approach are the direct on-chip performance of the energy storage component and high cyclic stability.
Collapse
Affiliation(s)
- Daria M Sedlovets
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Science (IMT RAS), Moscow District, 6 Academician Ossipyan Str., 142432 Chernogolovka, Russia
| |
Collapse
|
18
|
Qureshi A, Niazi JH. Graphene-interfaced flexible and stretchable micro-nano electrodes: from fabrication to sweat glucose detection. MATERIALS HORIZONS 2023; 10:1580-1607. [PMID: 36880340 DOI: 10.1039/d2mh01517j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Flexible and stretchable wearable electronic devices have received tremendous attention for their non-invasive and personal health monitoring applications. These devices have been fabricated by integrating flexible substrates and graphene nanostructures for non-invasive detection of physiological risk biomarkers from human bodily fluids, such as sweat, and monitoring of human physical motion tracking parameters. The extraordinary properties of graphene nanostructures in fully integrated wearable devices have enabled improved sensitivity, electronic readouts, signal conditioning and communication, energy harvesting from power sources through electrode design and patterning, and graphene surface modification or treatment. This review explores advances made toward the fabrication of graphene-interfaced wearable sensors, flexible and stretchable conductive graphene electrodes, as well as their potential applications in electrochemical sensors and field-effect-transistors (FETs) with special emphasis on monitoring sweat biomarkers, mainly in glucose-sensing applications. The review emphasizes flexible wearable sweat sensors and provides various approaches thus far employed for the fabrication of graphene-enabled conductive and stretchable micro-nano electrodes, such as photolithography, electron-beam evaporation, laser-induced graphene designing, ink printing, chemical-synthesis and graphene surface modification. It further explores existing graphene-interfaced flexible wearable electronic devices utilized for sweat glucose sensing, and their technological potential for non-invasive health monitoring applications.
Collapse
Affiliation(s)
- Anjum Qureshi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey.
| | - Javed H Niazi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey.
| |
Collapse
|
19
|
Song J, Yin B, Tan M. Simultaneous detection of ultraviolet irradiation and vitamin C using an all-carbon-based integrated wearable system powering by a micro-supercapacitor. Talanta 2023; 256:124306. [PMID: 36724691 DOI: 10.1016/j.talanta.2023.124306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
Ultraviolet (UV) radiation is a harmful exogenous factor for human skin. Wearable UV photodetectors can monitor UV exposure in the surroundings, and wearable vitamin C (VC) sensors tracking the levels in the human body present the potential ability to defend the UV radiation. Herein, we reported on the fabrication of an all-in-one wearable system with a UV photodetector and VC sensor powered by a micro-supercapacitor. Based on direct laser writing carbonization of polyimide sheets, the patterned electrodes and interconnects of the circuit were fabricated by a facile one-step operation, obtaining an all-carbon-based integrated system. Such a system exhibited outstanding energy storage ability (56.2 μWh cm-2 at 4.17 mW cm-2), high areal capacitance (1.06 mF cm-2 at 5 mV s-1), satisfying capacitive stability, and good mechanical flexibility. The UV photodetector and the VC sensor were powered to obtain a linear range of UV intensity from 11 to 44 μW cm-2 (equivalent to Ultraviolet Index 4.4 to 17.6), and VC levels of 1.0-200 μM with a low limit of detection of 0.83 μM. Furthermore, the integrated system was successfully applied to the determination of VC in commercial beverage and human sweat samples. This work provided a simple and promising method to fabricate integrated wearable systems for on-site providing information on the UV intensity of the external environment and the VC level of the human body simultaneously.
Collapse
Affiliation(s)
- Jie Song
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Bing Yin
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, Liaoning, PR China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China.
| |
Collapse
|
20
|
Zhong J, Fang Z, Luo D, Ning H, Qiu T, Li M, Yang Y, Fu X, Yao R, Peng J. Effect of Surface Treatment on Performance and Internal Stacking Mode of Electrohydrodynamic Printed Graphene and Its Microsupercapacitor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3621-3632. [PMID: 36598168 DOI: 10.1021/acsami.2c18367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microelectronic devices are developing rapidly in portability, wearability, and implantability. This puts forward an urgent requirement for the delicate deposition process of materials. Electrohydrodynamic printing has attracted academic and industrial attention in preparing ultrahigh-density microelectronic devices as a new noncontact, direct graphic, and low-loss thin film deposition process. In this work, a printed graphene with narrow line width is realized by combining the electrohydrodynamic printing and surface treatment. The line width of printed graphene on the hydrophobic treatment surface reduced from 80 to 28 μm. The resistivity decreased from 0.949 to 0.263 Ω·mm. Unexpectedly, hydrophobic treatment can effectively induce random stacking of electrohydrodynamic printed graphene, which avoids parallel stacking and agglomeration of graphene sheets. The performance of printed graphene is thus effectively improved. After optimization, a graphene planar supercapacitor with a printed line width of 28 μm is successfully obtained. Its capacitance can reach 5.39 mF/cm2 at 50 mV/s, which is twice higher than that of the untreated devices. The device maintains 84.7% capacitance after 5000 cycles. This work provides a reference for preparing microelectronic devices by ultrahigh precision printing and a new direction for optimizing two-dimensional material properties through stacking adjustment.
Collapse
Affiliation(s)
- Jinyao Zhong
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhiqiang Fang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongxiang Luo
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Huangpu Hydrogen Innovation Center, Guangzhou University, Guangzhou 510006, China
| | - Honglong Ning
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Tian Qiu
- Department of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
| | - Muyun Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yuexin Yang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiao Fu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Rihui Yao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Junbiao Peng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
21
|
Aghayar Z, Malaki M, Zhang Y. MXene-Based Ink Design for Printed Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234346. [PMID: 36500969 PMCID: PMC9736873 DOI: 10.3390/nano12234346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 05/16/2023]
Abstract
MXenes are a class of two-dimensional nanomaterials with a rich chemistry, hydrophilic surface and mechano-ceramic nature, and have been employed in a wide variety of applications ranging from medical and sensing devises to electronics, supercapacitors, electromagnetic shielding, and environmental applications, to name a few. To date, the main focus has mostly been paid to studying the chemical and physical properties of MXenes and MXene-based hybrids, while relatively less attention has been paid to the optimal application forms of these materials. It has been frequently observed that MXenes show great potential as inks when dispersed in solution. The present paper aims to comprehensively review the recent knowledge about the properties, applications and future horizon of inks based on 2D MXene sheets. In terms of the layout of the current paper, 2D MXenes have briefly been presented and followed by introducing the formulation of MXene inks, the process of turning MAX to MXene, and ink compositions and preparations. The chemical, tribological and rheological properties have been deeply discussed with an eye to the recent developments of the MXene inks in energy, health and sensing applications. The review ends with a summary of research pitfalls, challenges, and future directions in this area.
Collapse
Affiliation(s)
- Zahra Aghayar
- Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-11314, Iran
| | - Massoud Malaki
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Correspondence: (M.M.); (Y.Z.)
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
- Correspondence: (M.M.); (Y.Z.)
| |
Collapse
|
22
|
Liu S, Wang J, Shao J, Ouyang D, Zhang W, Liu S, Li Y, Zhai T. Nanopatterning Technologies of 2D Materials for Integrated Electronic and Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200734. [PMID: 35501143 DOI: 10.1002/adma.202200734] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
With the reduction of feature size and increase of integration density, traditional 3D semiconductors are unable to meet the future requirements of chip integration. The current semiconductor fabrication technologies are approaching their physical limits based on Moore's law. 2D materials such as graphene, transitional metal dichalcogenides, etc., are of great promise for future memory, logic, and photonic devices due to their unique and excellent properties. To prompt 2D materials and devices from the laboratory research stage to the industrial integrated circuit-level, it is necessary to develop advanced nanopatterning methods to obtain high-quality, wafer-scale, and patterned 2D products. Herein, the recent development of nanopatterning technologies, particularly toward realizing large-scale practical application of 2D materials is reviewed. Based on the technological progress, the unique requirement and advances of the 2D integration process for logic, memory, and optoelectronic devices are further summarized. Finally, the opportunities and challenges of nanopatterning technologies of 2D materials for future integrated chip devices are prospected.
Collapse
Affiliation(s)
- Shenghong Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jing Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiefan Shao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wenjing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shiyuan Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
23
|
Li M, Jia C, Zhang D, Luo Y, Wang L, Yang P, Luo G, Zhao L, Boukherroub R, Jiang Z. Facile Assembly of Hybrid Micro-Supercapacitors for a Sunlight-Powered Energy Storage System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47595-47604. [PMID: 36240319 DOI: 10.1021/acsami.2c11890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, hybrid micro-supercapacitors (MSCs), consisting of positive CoNi layer double hydroxides (LDHs) decorated on carbon nanotubes (CoNi LDHs@CNTs) and negative CNT electrodes, were assembled by facile drop-coated and electrodeposition methods. The as-fabricated MSCs were optimized in view of electrochemical performance, and the CoNi LDHs-2@CNTs//CNT MSC exhibited a favorable performance and was thus chosen to be the candidate for MSC device package. The packaged CoNi LDHs-2@CNTs//CNT MSC demonstrated a large areal capacitance of 11.0 mF·cm-2 at a current density of 0.08 mA·cm-2, a good rate performance (56% areal capacitance retained at a higher current density of 0.4 mA·cm-2), and a favorable cycling stability and reversibility (92% of the original areal capacitance was retained after 5000 cycles). Furthermore, the MSC device recorded an energy density of 1.5 μWh·cm-2 at a power density of 42.5 μW·cm-2 and was successfully applied for the storage of energy supplied by solar cells to operate a red light-emitting diode. All these findings demonstrated the promising practical energy storage application of the as-fabricated hybrid MSC devices in the construction of sunlight-powered energy storage systems.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai265503, China
| | - Chen Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Danyu Zhang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Yunyun Luo
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Lu Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai265503, China
| | - Ping Yang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai265503, China
| | - Guoxi Luo
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai265503, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai265503, China
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000Lille, France
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai265503, China
| |
Collapse
|
24
|
Jiang X, Gao R, Liu G, Luo H, Zhao X, Jiang L. Construction of Graphene-Based "In-Paper" 3D Interdigital Microelectrodes for High Performance Metal-Free Flexible Supercapacitors. SMALL METHODS 2022; 6:e2101454. [PMID: 35253399 DOI: 10.1002/smtd.202101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Flexible micro-supercapacitors (MSCs) are promising power sources of portable/wearable electronic devices. Electrodes are the key components determining performance of the MSCs, but it still remains a big challenge in either materials or fabrication methods to achieve both high charge storage capability and robust mechanical flexibility. Herein, a novel water-cooling assisted selective laser ablation (WASLA) technique is demonstrated for scale-fabrication of "embedded-in-paper" 3D graphene-cellulose composite interdigital electrodes (3D GCCIEs) in a mask-free and chemical-free manner. The obtained electrodes are endowed with 3D charge storage geometry, high electrical conduction, freely designed patterns, and the inherent advantages of paper substrate. Therefore, the 3D GCCIEs-based MSC exhibits excellent overall performance including large specific capacitances, high rate performance, impressive cyclic stability, and remarkable mechanical flexibility. Moreover, metal-free 3D GCCIE-MSC integrated arrays with diverse shapes composed of linear/curved interdigital electrodes are also fabricated, and a letter-shaped MSC array successfully lit a light emitting diode light in both flat and folded status demonstrating excellent device flexibility. The as-fabricated 3D GCCIE-MSCs have shown great application potential as power sources of flexible electronic devices, and the WASLA method proves to be an effective strategy for scale-manufacturing high performance paper-based charge storage devices not limited to supercapacitors.
Collapse
Affiliation(s)
- Xuening Jiang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams Dalian University of Technology, Ministry of Education, School of Physics, Dalian, 116024, P. R. China
| | - Rixia Gao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams Dalian University of Technology, Ministry of Education, School of Physics, Dalian, 116024, P. R. China
| | - Gang Liu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams Dalian University of Technology, Ministry of Education, School of Physics, Dalian, 116024, P. R. China
| | - Hao Luo
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams Dalian University of Technology, Ministry of Education, School of Physics, Dalian, 116024, P. R. China
| | - Xueping Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams Dalian University of Technology, Ministry of Education, School of Physics, Dalian, 116024, P. R. China
| | - Lei Jiang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
25
|
SLM-processed MoS 2/Mo 2S 3 nanocomposite for energy conversion/storage applications. Sci Rep 2022; 12:5030. [PMID: 35322135 PMCID: PMC8943036 DOI: 10.1038/s41598-022-08921-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
MoS2-based nanocomposites have been widely processed by a variety of conventional and 3D printing techniques. In this study, selective laser melting (SLM) has for the first time successfully been employed to tune the crystallographic structure of bulk MoS2 to a 2H/1T phase and to distribute Mo2S3 nanoparticles in-situ in MoS2/Mo2S3 nanocomposites used in electrochemical energy conversion/storage systems (EECSS). The remarkable results promote further research on and elucidate the applicability of laser-based powder bed processing of 2D nanomaterials for a wide range of functional structures within, e.g., EECSS, aerospace, and possibly high-temperature solid-state EECSS even in space.
Collapse
|
26
|
Xue H, Liu H, Mishukova V, Xu B, Li J. Ocean wave energy generator based on graphene/TiO 2 nanoparticle composite films. NANOSCALE ADVANCES 2022; 4:1533-1537. [PMID: 36134363 PMCID: PMC9418561 DOI: 10.1039/d1na00658d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/16/2022] [Indexed: 06/16/2023]
Abstract
Harvesting ocean wave energy through carbon-based materials, particularly graphene, is receiving increasing attention. However, the complicated fabrication process and the low output power of the present monolayer graphene-based wave energy generators limit their further application. Here, we demonstrate the facile fabrication of a new type of wave energy generator based on graphene/TiO2 nanoparticle composite films using the doctor-blading method. The developed wave energy harvesting device exhibits a high open-circuit voltage of up to 75 millivolts and a high output power up to 1.8 microwatts. A systematic study was conducted to explore the optimal conditions for the energy harvesting performance.
Collapse
Affiliation(s)
- Han Xue
- KTH Royal Institute of Technology, School of Electrical Engineering and Computer Science Electrum 229 16440 Kista Sweden
| | - Haomin Liu
- KTH Royal Institute of Technology, School of Electrical Engineering and Computer Science Electrum 229 16440 Kista Sweden
| | - Viktoriia Mishukova
- KTH Royal Institute of Technology, School of Electrical Engineering and Computer Science Electrum 229 16440 Kista Sweden
| | - Bo Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Jiantong Li
- KTH Royal Institute of Technology, School of Electrical Engineering and Computer Science Electrum 229 16440 Kista Sweden
| |
Collapse
|
27
|
Yang H, Zhao Y, Chen Z, Huang S, Lu C, Ke C, Zhai G, Zhu J, Zhuang X. A Narrow Bandgap, Isocyanide‐based Coordination Polymer Framework for Micro‐Supercapacitors with AC Line‐Filtering Performance. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hang Yang
- School of Materials Science and Engineering Changzhou University Changzhou 213164 China
- The meso‐Entropy Matter Lab State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Yazhen Zhao
- The meso‐Entropy Matter Lab State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhenying Chen
- The meso‐Entropy Matter Lab State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| | - Senhe Huang
- The meso‐Entropy Matter Lab State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Chenbao Lu
- The meso‐Entropy Matter Lab State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Changchun Ke
- School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Guangqun Zhai
- School of Materials Science and Engineering Changzhou University Changzhou 213164 China
| | - Jinhui Zhu
- The meso‐Entropy Matter Lab State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiaodong Zhuang
- The meso‐Entropy Matter Lab State Key Laboratory of Metal Matrix Composites School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
28
|
Sun X, Chen K, Liang F, Zhi C, Xue D. Perspective on Micro-Supercapacitors. Front Chem 2022; 9:807500. [PMID: 35087793 PMCID: PMC8787070 DOI: 10.3389/fchem.2021.807500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
The rapid development of portable, wearable, and implantable electronic devices greatly stimulated the urgent demand for modern society for multifunctional and miniaturized electrochemical energy storage devices and their integrated microsystems. This article reviews material design and manufacturing technology in different micro-supercapacitors (MSCs) along with devices integrate to achieve the targets of their various applications in recent years. Finally, We also critically prospect the future development directions and challenges of MSCs.
Collapse
Affiliation(s)
- Xiangfei Sun
- Institute of Novel Semiconductors, State Key laboratory of Crystal Material, Jinan, China
| | - Kunfeng Chen
- Institute of Novel Semiconductors, State Key laboratory of Crystal Material, Jinan, China
- *Correspondence: Kunfeng Chen, ; Feng Liang, ; Dongfeng Xue,
| | - Feng Liang
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Application, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Kunfeng Chen, ; Feng Liang, ; Dongfeng Xue,
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, China
| | - Dongfeng Xue
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Kunfeng Chen, ; Feng Liang, ; Dongfeng Xue,
| |
Collapse
|
29
|
Jun HY, Kim SJ, Choi CH. Ink Formulation and Printing Parameters for Inkjet Printing of Two Dimensional Materials: A Mini Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3441. [PMID: 34947790 PMCID: PMC8706674 DOI: 10.3390/nano11123441] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/02/2023]
Abstract
Inkjet printing of two-dimensional (2D) material has been a center of interest for wearable electronics and has become a promising platform for next-generation technologies. Despite the enormous progress made in printed 2D materials, there are still challenges in finding the optimal printing conditions involving the ink formulation and printing parameters. Adequate ink formulation and printing parameters for target 2D materials rely on empirical studies and repeated trials. Therefore, it is essential to compile promising strategies for ink formulation and printing parameters. In this context, this review discusses the optimal ink formulations to prepare stable ink and steady ink jetting and then explores the critical printing parameters for fabricating printed 2D materials of a high quality. The summary and future prospects for inkjet-printed 2D materials are also addressed.
Collapse
Affiliation(s)
- Ho-Young Jun
- Department of Chemical Engineering, Gyeongsang National University, Jinju 52828, Korea;
| | - Se-Jung Kim
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea;
| | - Chang-Ho Choi
- Department of Chemical Engineering, Gyeongsang National University, Jinju 52828, Korea;
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
30
|
Kumar S, Misra A. Three-dimensional carbon foam-metal oxide-based asymmetric electrodes for high-performance solid-state micro-supercapacitors. NANOSCALE 2021; 13:19453-19465. [PMID: 34790988 DOI: 10.1039/d1nr02833b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A three-dimensional carbon foam (CF)-based asymmetric planar micro-supercapacitor is fabricated by the direct spray patterning of active materials on an array of interdigital electrodes. The solid-state asymmetric micro-supercapacitor comprises the CF network with pseudocapacitive metal oxides (manganese oxide (MnO), iron oxide (Fe2O3)), where CF-MnO composite as a positive electrode, and CF-Fe2O3 as negative electrode for superior electrochemical performance. The micro-supercapacitor, CF-MnO//CF-Fe2O3, attains an ultrahigh supercapacitance of 18.4 mF cm-2 (2326.8 mF cm-3) at a scan rate of 5 mV s-1. A wider potential window of 1.4 V is achieved with a high energy density of 5 μW h cm-2. The excellent cyclic stability is confirmed by 86.1% capacitance retention after 10 000 electrochemical cycles.
Collapse
Affiliation(s)
- Sumana Kumar
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Abha Misra
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
31
|
Lu B, Jin X, Han Q, Qu L. Planar Graphene-Based Microsupercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006827. [PMID: 33667025 DOI: 10.1002/smll.202006827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/17/2021] [Indexed: 05/21/2023]
Abstract
With the development of wearable, portable, and implantable electronic devices, flexible and on-chip microsupercapacitors (MSCs) are urgently needed for miniaturized energy storage. Planar MSCs have high power density, fast charge/discharge rate, and long operating lifetime, and can adapt to future flexible, integrated, and miniaturized electronic systems for wide application foreground. Due to the high specific surface area, outstanding electrical conductivity, and excellent electron mobility, graphene shows promising advantages in planar MSCs devices, thus stimulates wide-ranging research in the last few years. Herein, the recent progress of planar graphene-based MSCs, including the intrinsic structure regulation of graphene-based electrode materials, the specific fabrication techniques, the multifunctional integration, and various applications of MSCs as flexible and on-chip energy storage is systematically summarized. The key challenges and prospects of future planar graphene-based MSCs are also discussed targeting to realize their practical applications.
Collapse
Affiliation(s)
- Bing Lu
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science, Ministry of Education of China; School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xuting Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qing Han
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science, Ministry of Education of China; School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liangti Qu
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science, Ministry of Education of China; School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
32
|
Romaní Vázquez A, Neumann C, Borrelli M, Shi H, Kluge M, Abdel-Haq W, Lohe MR, Gröber C, Röpert A, Turchanin A, Yang S, Shaygan Nia A, Feng X. Scalable one-step production of electrochemically exfoliated graphene decorated with transition metal oxides for high-performance supercapacitors. NANOSCALE 2021; 13:15859-15868. [PMID: 34519325 DOI: 10.1039/d1nr03960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene and related materials have been widely studied due to their superior properties in a wide range of applications. However, large-scale production remains a critical challenge to enable commercial acceptance. Here, we present a facile, scalable, one-step electrochemical method for producing hybrid transition metal oxide (V, Fe, Ti, or Mn)/graphene materials (TMO-EGs) as active materials for supercapacitors. Therein, we have designed and developed a continuous flow reactor with a high production rate (>4 g h-1) of TMO-EGs, where the TMO accounts for 36 weight%. TMO-EG flakes demonstrate a moderate lateral size of up to 5 μm and a specific surface area of 64 m2 g-1. Notably, TMO-EGs present a capacitance of up to 188 F g-1 as single electrodes in 4 M LiCl. The most promising material, MnOx-EG, has been used for the large-scale production of thin-film supercapacitor devices (40 × 40 × 0.25 mm) in a commercial pilot line. Using 1 M Na2SO4 as the electrolyte, the as-fabricated devices deliver a capacitance of 52 mF cm-2, with 83% capacitance retention after 6000 charge-discharge cycles, comparable to recent reports of similar devices. The simplicity, scalability, and versatility of our method are highly promising to promote the commercial applications of graphene-based materials and can be further developed for the upscalable production of other 2D materials, such as transition metal dichalcogenides and MXenes.
Collapse
Affiliation(s)
- Adrián Romaní Vázquez
- Center for Advancing Electronics Dresden (CFAED) & Chair of Molecular Functional Materials, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Helmholtzstraße 10, 01069, Dresden, Germany.
| | - Christof Neumann
- Institute of Physical Chemistry, Abbe Center of Photonics, Center for Energy and Environmental Chemistry (CEEC) at Friedrich Schiller University, Lessingstr. 10, Jena, 07743, Germany
| | - Mino Borrelli
- Center for Advancing Electronics Dresden (CFAED) & Chair of Molecular Functional Materials, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Helmholtzstraße 10, 01069, Dresden, Germany.
| | - Huanhuan Shi
- Center for Advancing Electronics Dresden (CFAED) & Chair of Molecular Functional Materials, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Helmholtzstraße 10, 01069, Dresden, Germany.
| | - Matthias Kluge
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Helmholtzstraße 10, 01069, Dresden, Germany
| | - Wajdi Abdel-Haq
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Martin R Lohe
- Center for Advancing Electronics Dresden (CFAED) & Chair of Molecular Functional Materials, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Helmholtzstraße 10, 01069, Dresden, Germany.
- Sixonia Tech GmbH, Maria-Reiche-Str. 3, D-01109 Dresden, Germany
| | - Carsten Gröber
- Interactive Wear AG, Petersbrunner Str. 3, D-82319 Starnberg, Germany
| | - Andreas Röpert
- Interactive Wear AG, Petersbrunner Str. 3, D-82319 Starnberg, Germany
| | - Andrey Turchanin
- Institute of Physical Chemistry, Abbe Center of Photonics, Center for Energy and Environmental Chemistry (CEEC) at Friedrich Schiller University, Lessingstr. 10, Jena, 07743, Germany
| | - Sheng Yang
- Center for Advancing Electronics Dresden (CFAED) & Chair of Molecular Functional Materials, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Helmholtzstraße 10, 01069, Dresden, Germany.
| | - Ali Shaygan Nia
- Center for Advancing Electronics Dresden (CFAED) & Chair of Molecular Functional Materials, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Helmholtzstraße 10, 01069, Dresden, Germany.
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (CFAED) & Chair of Molecular Functional Materials, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Helmholtzstraße 10, 01069, Dresden, Germany.
| |
Collapse
|
33
|
Surfactant-assisted water-based graphene conductive inks for flexible electronic applications. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Cheng Z, Cao R, Wei K, Yao Y, Liu X, Kang J, Dong J, Shi Z, Zhang H, Zhang X. 2D Materials Enabled Next-Generation Integrated Optoelectronics: from Fabrication to Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003834. [PMID: 34105275 PMCID: PMC8188205 DOI: 10.1002/advs.202003834] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/04/2021] [Indexed: 05/06/2023]
Abstract
2D materials, such as graphene, black phosphorous and transition metal dichalcogenides, have gained persistent attention in the past few years thanks to their unique properties for optoelectronics. More importantly, introducing 2D materials into silicon photonic devices will greatly promote the performance of optoelectronic devices, including improvement of response speed, reduction of energy consumption, and simplification of fabrication process. Moreover, 2D materials meet the requirements of complementary metal-oxide-semiconductor compatible silicon photonic manufacturing. A comprehensive overview and evaluation of state-of-the-art 2D photonic integrated devices for telecommunication applications is provided, including light sources, optical modulators, and photodetectors. Optimized by unique structures such as photonic crystal waveguide, slot waveguide, and microring resonator, these 2D material-based photonic devices can be further improved in light-matter interactions, providing a powerful design for silicon photonic integrated circuits.
Collapse
Affiliation(s)
- Zhao Cheng
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Rui Cao
- Institute of Microscale OptoelectronicsCollaborative Innovation Centre for Optoelectronic Science & TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Kangkang Wei
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Yuhan Yao
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xinyu Liu
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Jianlong Kang
- Institute of Microscale OptoelectronicsCollaborative Innovation Centre for Optoelectronic Science & TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Jianji Dong
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Zhe Shi
- Institute of Microscale OptoelectronicsCollaborative Innovation Centre for Optoelectronic Science & TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Han Zhang
- Institute of Microscale OptoelectronicsCollaborative Innovation Centre for Optoelectronic Science & TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Xinliang Zhang
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| |
Collapse
|
35
|
Amjadipour M, Bradford J, Zebardastan N, Motta N, Iacopi F. MoS 2/Epitaxial graphene layered electrodes for solid-state supercapacitors. NANOTECHNOLOGY 2021; 32:195401. [PMID: 33524969 DOI: 10.1088/1361-6528/abe1f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The potential of transition metal dichalcogenides such as MoS2 for energy storage has been significantly limited so far by the lack of conductivity and structural stability. Employing highly conductive, graphitic materials in combination with transition metal dichalcogenides can address this gap. Here, we explore the use of a layered electrode structure for solid-state supercapacitors, made of MoS2 and epitaxial graphene (EG) on cubic silicon carbide for on-silicon energy storage. We show that the energy storage of the solid-state supercapacitors can be significantly increased by creating layered MoS2/graphene electrodes, yielding a substantial improvement as compared to electrodes using either EG or MoS2 alone. We conclude that the conductivity of EG and the growth morphology of MoS2 on graphene play an enabling role in the successful use of transition metal dichalcogenides for on-chip energy storage.
Collapse
Affiliation(s)
- Mojtaba Amjadipour
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, Australia
| | - Jonathan Bradford
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, QLD, Australia
- School of Physics & Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Negar Zebardastan
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, QLD, Australia
- Centre for Materials Science, Queensland University of Technology, QLD, Australia
| | - Nunzio Motta
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, QLD, Australia
- Centre for Materials Science, Queensland University of Technology, QLD, Australia
| | - Francesca Iacopi
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, Australia
- Centre for Clean Energy Technology, University of Technology Sydney, NSW, Australia
| |
Collapse
|
36
|
Wang Y, Shi Y, Gu Y, Xue P, Xu X. Self-Healing and Highly Stretchable Hydrogel for Interfacial Compatible Flexible Paper-Based Micro-Supercapacitor. MATERIALS 2021; 14:ma14081852. [PMID: 33918031 PMCID: PMC8070428 DOI: 10.3390/ma14081852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 11/29/2022]
Abstract
Most reported wearable electronic devices lack self-healing chemistry and flexible function to maintain stable energy output while irreversible damages and complex deformations. In this work, we report a dual-dynamic network electrolyte synthesized by micellar elastomers introduced into strong hydrogel matrix. The gel electrolyte is fabricated by physically cross-linking the borax-polyvinyl alcohol (B-PVA) network as tough matrix and poly (ethylene oxide) (PEO)-poly (propylene oxide) (PPO)-poly (ethylene oxide) (Pluronic) to frame elastic network, followed by immersion in potassium chloride solution. Under the action of dynamic borate ester bond and multi-network hydrogen bond, the as-prepared electrolyte exhibits high stretchability (1535%) and good self-healing efficiency. Based on the electrolyte, we assemble the interfacial compatible micro-supercapacitor (MSC) by multi-walled carbon nanotubes (MWCNT) interdigital electrode printed on cellulosic paper by direct ink writing (DIW) technique. Thanks to the large specific area and compressive deformation resistance of cellulosic paper, the MSC with tightly interfacial contact achieves high volumetric capacitance of 801.9 mF cm−3 at the current density of 20 μA cm−2. In the absence of stimulation of the external environment, the self-healing MSC demonstrates an ideal capacity retention (90.43%) after five physical damaged/healing cycles. Our research provides a clean and effective strategy to construct wearable MSC.
Collapse
Affiliation(s)
- Yutian Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.W.); (Y.S.); (Y.G.); (P.X.)
| | - Yunhui Shi
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.W.); (Y.S.); (Y.G.); (P.X.)
| | - Yifan Gu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.W.); (Y.S.); (Y.G.); (P.X.)
| | - Pan Xue
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.W.); (Y.S.); (Y.G.); (P.X.)
| | - Xinhua Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.W.); (Y.S.); (Y.G.); (P.X.)
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
- Correspondence: ; Tel.: +86-22-2740-6127
| |
Collapse
|
37
|
Han Z, Xia T, Xu S, Li G, Zhang L, Hu N, Yu J, Li B, Yang Z, Zhang Y. A Study of All-solid-state Planar Micro-supercapacitors Using Printable MoS 2 Inks. CHEM LETT 2021. [DOI: 10.1246/cl.200736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhao Han
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Tong Xia
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Shiwei Xu
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Gang Li
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Liying Zhang
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Jian Yu
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Bin Li
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Yafei Zhang
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| |
Collapse
|
38
|
Zhang H, Yang D, Lau A, Ma T, Lin H, Jia B. Hybridized Graphene for Supercapacitors: Beyond the Limitation of Pure Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007311. [PMID: 33634597 DOI: 10.1002/smll.202007311] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Graphene-based supercapacitors have been attracting growing attention due to the predicted intrinsic high surface area, high electron mobility, and many other excellent properties of pristine graphene. However, experimentally, the state-of-the-art graphene electrodes face limitations such as low surface area, low electrical conductivity, and low capacitance, which greatly limit their electrochemical performances for supercapacitor applications. To tackle these issues, hybridizing graphene with other species (e.g., atom, cluster, nanostructure, etc.) to enlarge the surface area, enhance the electrical conductivity, and improve capacitance behaviors are strongly desired. In this review, different hybridization principles (spacers hybridization, conductors hybridization, heteroatoms doping, and pseudocapacitance hybridization) are discussed to provide fundamental guidance for hybridization approaches to solve these challenges. Recent progress in hybridized graphene for supercapacitors guided by the above principles are thereafter summarized, pushing the performance of hybridized graphene electrodes beyond the limitation of pure graphene materials. In addition, the current challenges of energy storage using hybridized graphene and their future directions are discussed.
Collapse
Affiliation(s)
- Huihui Zhang
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Dan Yang
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Alan Lau
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Han Lin
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
39
|
Xia Z, Mishukova V, Sollami Delekta S, Sun J, Sanchez JS, Li J, Palermo V. Selective deposition of metal oxide nanoflakes on graphene electrodes to obtain high-performance asymmetric micro-supercapacitors. NANOSCALE 2021; 13:3285-3294. [PMID: 33533790 DOI: 10.1039/d0nr07076a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To meet the charging market demands of portable microelectronics, there has been a growing interest in high performance and low-cost microscale energy storage devices with excellent flexibility and cycling durability. Herein, interdigitated all-solid-state flexible asymmetric micro-supercapacitors (A-MSCs) were fabricated by a facile pulse current deposition (PCD) approach. Mesoporous Fe2O3 and MnO2 nanoflakes were functionally coated by electrodeposition on inkjet-printed graphene patterns as negative and positive electrodes, respectively. Our PCD approach shows significantly improved adhesion of nanostructured metal oxide with crack-free and homogeneous features, as compared with other reported electrodeposition approaches. The as-fabricated Fe2O3/MnO2 A-MSCs deliver a high volumetric capacitance of 110.6 F cm-3 at 5 μA cm-2 with a broad operation potential range of 1.6 V in neutral LiCl/PVA solid electrolyte. Furthermore, our A-MSC devices show a long cycle life with a high capacitance retention of 95.7% after 10 000 cycles at 100 μA cm-2. Considering its low cost and potential scalability to industrial levels, our PCD technique could be an efficient approach for the fabrication of high-performance MSC devices in the future.
Collapse
Affiliation(s)
- Zhenyuan Xia
- Department of Industrial and Materials Science, Chalmers University of Technology, Hörsalsvägen 7B, 41258 Göteborg, Sweden. and Istituto per la Sintesi Organica e la Fotoreattività, CNR, via Gobetti 101, 40129 Bologna, Italy
| | - Viktoriia Mishukova
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Electrum 229, 16440 Kista, Sweden.
| | - Szymon Sollami Delekta
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Electrum 229, 16440 Kista, Sweden.
| | - Jinhua Sun
- Department of Industrial and Materials Science, Chalmers University of Technology, Hörsalsvägen 7B, 41258 Göteborg, Sweden.
| | - Jaime S Sanchez
- Department of Industrial and Materials Science, Chalmers University of Technology, Hörsalsvägen 7B, 41258 Göteborg, Sweden.
| | - Jiantong Li
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Electrum 229, 16440 Kista, Sweden.
| | - Vincenzo Palermo
- Department of Industrial and Materials Science, Chalmers University of Technology, Hörsalsvägen 7B, 41258 Göteborg, Sweden. and Istituto per la Sintesi Organica e la Fotoreattività, CNR, via Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
40
|
Lochmann S, Kintzel S, Bräuniger Y, Otto T, Zhang E, Grothe J, Kaskel S. Green Precursors and Soft Templating for Printing Porous Carbon-Based Micro-supercapacitors. Chemistry 2021; 27:1356-1363. [PMID: 32881100 PMCID: PMC7898350 DOI: 10.1002/chem.202003124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/31/2020] [Indexed: 11/07/2022]
Abstract
A combination of soft lithographic printing and soft templating has been used to fabricate high-resolution interdigitated micro-supercapacitors (MSC). Surfactant-assisted self-assembly produces high surface area ordered mesoporous carbons (490 m2 g-1 ). For the first time, such precursors have been printed by nano-imprint lithography as microdevices with a line width of only 250 nm and a spacing of only 1 μm. The devices are crack-free with low specific resistance (1.2×10-5 Ωm) and show good device capacitance up to 0.21 F cm-3 .
Collapse
Affiliation(s)
- Stefanie Lochmann
- Chemistry and Food ChemistryInorganic Chemistry IBergstraße 6601159DresdenGermany
| | - Susann Kintzel
- Chemistry and Food ChemistryInorganic Chemistry IBergstraße 6601159DresdenGermany
| | - Yannik Bräuniger
- Chemistry and Food ChemistryInorganic Chemistry IBergstraße 6601159DresdenGermany
| | - Thomas Otto
- Chemistry and Food ChemistryInorganic Chemistry IBergstraße 6601159DresdenGermany
| | - En Zhang
- Chemistry and Food ChemistryInorganic Chemistry IBergstraße 6601159DresdenGermany
| | - Julia Grothe
- Chemistry and Food ChemistryInorganic Chemistry IBergstraße 6601159DresdenGermany
| | - Stefan Kaskel
- Chemistry and Food ChemistryInorganic Chemistry IBergstraße 6601159DresdenGermany
| |
Collapse
|
41
|
Chen H, Chen S, Zhang Y, Ren H, Hu X, Bai Y. Sand-Milling Fabrication of Screen-Printable Graphene Composite Inks for High-Performance Planar Micro-Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56319-56329. [PMID: 33280375 DOI: 10.1021/acsami.0c16976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rational engineering and simplified production of printable graphene inks are essential for building high-energy and flexible graphene micro-supercapacitors (MSCs). However, few graphene-based MSCs show impressive areal capacitance and energy density, especially based on additive-manufacturing, cost-effective, and printable inks. Herein, a new-style and solution-processable graphene composite ink is ingeniously formulated for scalable screen printing MSCs. More importantly, the as-formulated inks consist of interwoven two-dimensional graphene and activated carbon nanofillers, which are delaminated by one-step sand-milling turbulent flow exfoliation. Notably, embedding the activated carbon nanoplatelets into graphene layers drastically boosts the electrochemical performance of screen-printed micro-supercapacitors (denoted as Gr/AC-MSCs), such as an outstanding areal capacitance of 12.5 mF cm-2 (about 20 times than pure graphene). The maximum energy density, maximum power density, and exceptional cyclability are 1.07 μW h cm-2, 0.004 mW cm-2, and 88.1% after 5000 cycles, respectively. As such, the as-printed MSCs on paper display high resolution and pronounced energy-storage performance. Furthermore, the packaged and optimized Gr/AC-MSCs showcase remarkable mechanical flexibility even under highly folded and excellent water resistance, maintaining 91.8% capacitance retention after being washed for 90 min. The versatile methodology highlights the promise of graphene and analogous 2D nanosheet functional inks for scalable fabrication of flexible energy-storage devices.
Collapse
Affiliation(s)
- Huqiang Chen
- Graphene Institute of Lanzhou University-Fangda Carbon, MOE Key Laboratory for Magnetism and Magnetic Materials, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Songbo Chen
- Graphene Institute of Lanzhou University-Fangda Carbon, MOE Key Laboratory for Magnetism and Magnetic Materials, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Yujin Zhang
- Graphene Institute of Lanzhou University-Fangda Carbon, MOE Key Laboratory for Magnetism and Magnetic Materials, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Hao Ren
- Graphene Institute of Lanzhou University-Fangda Carbon, MOE Key Laboratory for Magnetism and Magnetic Materials, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Xinjun Hu
- Graphene Institute of Lanzhou University-Fangda Carbon, MOE Key Laboratory for Magnetism and Magnetic Materials, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Yongxiao Bai
- Graphene Institute of Lanzhou University-Fangda Carbon, MOE Key Laboratory for Magnetism and Magnetic Materials, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
42
|
Maddipatla D, Narakathu BB, Atashbar M. Recent Progress in Manufacturing Techniques of Printed and Flexible Sensors: A Review. BIOSENSORS 2020; 10:E199. [PMID: 33287324 PMCID: PMC7761663 DOI: 10.3390/bios10120199] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
This review provides an outlook on some of the significant research work done on printed and flexible sensors. Printed sensors fabricated on flexible platforms such as paper, plastic and textiles have been implemented for wearable applications in the biomedical, defense, food, and environmental industries. This review discusses the materials, characterization methods, and fabrication methods implemented for the development of the printed and flexible sensors. The applications, challenges faced and future opportunities for the printed and flexible sensors are also presented in this review.
Collapse
Affiliation(s)
- Dinesh Maddipatla
- Electrical and Computer Engineering Department, Western Michigan University, Kalamazoo, MI 49006, USA; (B.B.N.); (M.A.)
| | | | | |
Collapse
|
43
|
Chakraborty PK, Azadmanjiri J, Pavithra CLP, Wang X, Masood SH, Dey SR, Wang J. Advancements in Therapeutics via 3D Printed Multifunctional Architectures from Dispersed 2D Nanomaterial Inks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004900. [PMID: 33185035 DOI: 10.1002/smll.202004900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/01/2020] [Indexed: 06/11/2023]
Abstract
2D nanomaterials (2DNMs) possess fascinating properties and are found in multifarious devices and applications including energy storage devices, new generation of battery technologies, sensor devices, and more recently in biomedical applications. Their use in biomedical applications such as tissue engineering, photothermal therapy, neural regeneration, and drug delivery has opened new horizons in treatment of age-old ailments. It is also a rapidly developing area of advanced research. A new approach of integrating 3D printing (3DP), a layer-by-layer deposition technique for building structures, along with 2DNM multifunctional inks, has gained considerable attention in recent times, especially in biomedical applications. With the ever-growing demand in healthcare industry for novel, efficient, and rapid technologies for therapeutic treatment methods, 3DP structures of 2DNMs provide vast scope for evolution of a new generation of biomedical devices. Recent advances in 3DP structures of dispersed 2DNM inks with established high-performance biomedical properties are focused on. The advantages of their 3D structures, the sustainable formulation methods of such inks, and their feasible printing methods are also covered. Subsequently, it deals with the therapeutic applications of some already researched 3DP structures of 2DNMs and concludes with highlighting the challenges as well as the future directions of research in this area.
Collapse
Affiliation(s)
- Pritam K Chakraborty
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
- School of Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, Hawthorn, 3122, Australia
| | - Jalal Azadmanjiri
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, Prague, 166 28, Czech Republic
| | - Chokkakula L P Pavithra
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
| | - Xiaojian Wang
- Centre for 3D Printing Materials and Additive Manufacturing Technology, Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Syed H Masood
- School of Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, Hawthorn, 3122, Australia
| | - Suhash Ranjan Dey
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
| | - James Wang
- School of Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, Hawthorn, 3122, Australia
| |
Collapse
|
44
|
Tu D, Wu Z, Xu J, Zhou Y, Yang W, Yang Y, Zha X, Shi L. Direct Assembly of 3D-BCN Microspheres as a Microsupercapacitor Electrode for Wearable Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47416-47424. [PMID: 32972139 DOI: 10.1021/acsami.0c11982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Scalable and cost-effective fabrication of three-dimensional (3D) boron carbon nitride (BCN) microspheres was first demonstrated by hydrothermal and annealing methods. In particular, the specific surface area of 3D-BCN-4 reached 1390.12 m2 g-1 and had a high hierarchical pore structure. An all-printed solid-state flexible microsupercapacitor (MSC) based on 3D-BCN-4 microspheres as an electrode material was fabricated for the first time by a screen printing method, which also provided efficacious properties. The single MSC areal capacitance reached 41.6 mF cm-2. Furthermore, the remarkable mechanical flexibility was also achieved for the device with evidence that no obvious capacitance loss occurred even upon bending to 180°, and the device had a 93.3% capacitance retention after 1000 cycles. In addition, the maximum energy density reached 0.00832 mW h cm-2, and the highest power density was 2 mW cm-2. These results show the synthesis of 3D-BCN by a facile and effective method with excellent electrochemical performance, which should provide a promising direction to wearable energy storage devices.
Collapse
Affiliation(s)
- Dan Tu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
| | - Zhaokun Wu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
| | - Jianhua Xu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
- Chongqing Engineering Research Center of New Energy Storage Devices and Applications, Chongqing 402160, P. R. China
| | - Yujiu Zhou
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
| | - Wenyao Yang
- Chongqing Engineering Research Center of New Energy Storage Devices and Applications, Chongqing 402160, P. R. China
| | - Yajie Yang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
| | - Xiaoting Zha
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
| | - Liuwei Shi
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
| |
Collapse
|
45
|
Kumar S, Telpande S, Manikandan V, Kumar P, Misra A. Novel electrode geometry for high performance CF/Fe 2O 3 based planar solid state micro-electrochemical capacitors. NANOSCALE 2020; 12:19438-19449. [PMID: 32959860 DOI: 10.1039/d0nr04410e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel geometry of sharp-edged electrodes for planar micro-electrochemical capacitors is utilized for an enhanced performance compared to the conventionally used interdigitated electrodes. The sharp-edged electrode geometry achieves a 68% enhancement in the electric field at the sharp-edge of the electrodes as compared to interdigitated electrodes. Moreover, carbon foam with high specific surface area loaded with iron oxide nanoparticles allows a large mass loading for the pseudocapacitance in addition to electric double layer capacitance (EDLC). Thus, an enhancement of 235% was obtained in both the areal specific capacitance and energy density when the performance was compared with the interdigitated electrode based supercapacitors. Moreover, an excellent cycling stability (∼99.5%) over 10 000 charge-discharge cycles was also achieved. The high-performance architecture of sharp-edged electrodes paves a way for smart electrochemical capacitors using an efficient planar structure in combination with high-loading materials for large pseudocapacitance as well as EDLC.
Collapse
Affiliation(s)
- Sumana Kumar
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Swanand Telpande
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Veera Manikandan
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Praveen Kumar
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Abha Misra
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
46
|
Li F, Qu J, Li Y, Wang J, Zhu M, Liu L, Ge J, Duan S, Li T, Bandari VK, Huang M, Zhu F, Schmidt OG. Stamping Fabrication of Flexible Planar Micro-Supercapacitors Using Porous Graphene Inks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001561. [PMID: 33042763 PMCID: PMC7539196 DOI: 10.1002/advs.202001561] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Indexed: 05/12/2023]
Abstract
High performance, flexibility, safety, and robust integration for micro-supercapacitors (MSCs) are of immense interest for the urgent demand for miniaturized, smart energy-storage devices. However, repetitive photolithography processes in the fabrication of on-chip electronic components including various photoresists, masks, and toxic etchants are often not well-suited for industrial production. Here, a cost-effective stamping strategy is developed for scalable and rapid preparation of graphene-based planar MSCs. Combining stamps with desired shapes and highly conductive graphene inks, flexible MSCs with controlled structures are prepared on arbitrary substrates without any metal current collectors, additives, and polymer binders. The interdigitated MSC exhibits high areal capacitance up to 21.7 mF cm-2 at a current of 0.5 mA and a high power density of 6 mW cm-2 at an energy density of 5 µWh cm-2. Moreover, the MSCs show outstanding cycling performance and remarkable flexibility over 10 000 charge-discharge cycles and 300 bending cycles. In addition, the capacitance and output voltage of the MSCs are easily adjustable through interconnection with well-defined arrangements. The efficient, rapid manufacturing of the graphene-based interdigital MSCs with outstanding flexibility, shape diversity, and high areal capacitance shows great potential in wearable and portable electronics.
Collapse
Affiliation(s)
- Fei Li
- Material Systems for NanoelectronicsChemnitz University of TechnologyChemnitz09107Germany
- Center for MaterialsArchitectures and Integration of Nanomembranes (MAIN)Chemnitz University of TechnologyChemnitz09126Germany
- Institute for Integrative NanosciencesLeibniz IFW DresdenDresden01069Germany
| | - Jiang Qu
- Material Systems for NanoelectronicsChemnitz University of TechnologyChemnitz09107Germany
- Center for MaterialsArchitectures and Integration of Nanomembranes (MAIN)Chemnitz University of TechnologyChemnitz09126Germany
- Institute for Integrative NanosciencesLeibniz IFW DresdenDresden01069Germany
| | - Yang Li
- Material Systems for NanoelectronicsChemnitz University of TechnologyChemnitz09107Germany
- Center for MaterialsArchitectures and Integration of Nanomembranes (MAIN)Chemnitz University of TechnologyChemnitz09126Germany
- Institute for Integrative NanosciencesLeibniz IFW DresdenDresden01069Germany
| | - Jinhui Wang
- Material Systems for NanoelectronicsChemnitz University of TechnologyChemnitz09107Germany
- Center for MaterialsArchitectures and Integration of Nanomembranes (MAIN)Chemnitz University of TechnologyChemnitz09126Germany
- Institute for Integrative NanosciencesLeibniz IFW DresdenDresden01069Germany
| | - Minshen Zhu
- Institute for Integrative NanosciencesLeibniz IFW DresdenDresden01069Germany
| | - Lixiang Liu
- Material Systems for NanoelectronicsChemnitz University of TechnologyChemnitz09107Germany
- Center for MaterialsArchitectures and Integration of Nanomembranes (MAIN)Chemnitz University of TechnologyChemnitz09126Germany
- Institute for Integrative NanosciencesLeibniz IFW DresdenDresden01069Germany
| | - Jin Ge
- Institute for Integrative NanosciencesLeibniz IFW DresdenDresden01069Germany
| | - Shengkai Duan
- Material Systems for NanoelectronicsChemnitz University of TechnologyChemnitz09107Germany
- Center for MaterialsArchitectures and Integration of Nanomembranes (MAIN)Chemnitz University of TechnologyChemnitz09126Germany
- Institute for Integrative NanosciencesLeibniz IFW DresdenDresden01069Germany
| | - Tianming Li
- Material Systems for NanoelectronicsChemnitz University of TechnologyChemnitz09107Germany
- Center for MaterialsArchitectures and Integration of Nanomembranes (MAIN)Chemnitz University of TechnologyChemnitz09126Germany
- Institute for Integrative NanosciencesLeibniz IFW DresdenDresden01069Germany
| | - Vineeth Kumar Bandari
- Material Systems for NanoelectronicsChemnitz University of TechnologyChemnitz09107Germany
- Center for MaterialsArchitectures and Integration of Nanomembranes (MAIN)Chemnitz University of TechnologyChemnitz09126Germany
- Institute for Integrative NanosciencesLeibniz IFW DresdenDresden01069Germany
| | - Ming Huang
- School of Materials Science and EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Feng Zhu
- Material Systems for NanoelectronicsChemnitz University of TechnologyChemnitz09107Germany
- Center for MaterialsArchitectures and Integration of Nanomembranes (MAIN)Chemnitz University of TechnologyChemnitz09126Germany
- Institute for Integrative NanosciencesLeibniz IFW DresdenDresden01069Germany
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Oliver G. Schmidt
- Material Systems for NanoelectronicsChemnitz University of TechnologyChemnitz09107Germany
- Center for MaterialsArchitectures and Integration of Nanomembranes (MAIN)Chemnitz University of TechnologyChemnitz09126Germany
- Institute for Integrative NanosciencesLeibniz IFW DresdenDresden01069Germany
- School of ScienceDresden University of TechnologyDresden01062Germany
| |
Collapse
|
47
|
Wu Y, Zhang Y, Liu Y, Cui P, Chen S, Zhang Z, Fu J, Xie E. Boosting the Electrochemical Performance of Graphene-Based On-Chip Micro-Supercapacitors by Regulating the Functional Groups. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42933-42941. [PMID: 32876434 DOI: 10.1021/acsami.0c11085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The on-chip system-compatible power supply shows a high demand for the rapid development of miniaturization devices, such as wireless sensors, remote detecting devices, etc. Moreover, the ever-increasing trends of multifunctionalities and long-term working conditions of such devices raise a high-performance standard for the power supply. Herein, the high-performance electrochemical energy storage micro-supercapacitors (MSCs) are obtained with a metal current collector-free symmetric graphene-based planar structure, in which the functional group of graphene was regulated extensively via fully compatible microfabrication techniques of blue-violet (BV) laser exposure and air plasma treatment. BV laser exposure enhanced the electrical conductivity by reducing the substantial functional groups. Furthermore, the wettability and active sites are tuned by air plasma treatment, thus creating a slightly functional group onto the graphene surface. The resulting reduced graphene oxide (RGO) shows a very low resistance down to 27.2 Ω sq-1, ensuring its superb electron conductivity for fast electron transfer during the electrochemical reactions. The electrochemical performance measurements reveal an areal capacitance as high as 21.86 mF cm-2, which delivers a power density of 5 mW cm-2 with an energy density of 2.49 μWh cm-2. Moreover, it shows superior long-term stability with 99% retention after 10 000 cycles, which is beyond that of most of the reported graphene-based all-solid-state MSCs.
Collapse
Affiliation(s)
- Yin Wu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yaxiong Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yupeng Liu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng Cui
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Songbo Chen
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhenxing Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiecai Fu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Erqing Xie
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
48
|
Yu W, Gao M, Li BQ, Liang J, Ding S. Interdigital electrodes of air@NiO porous nanoshells for high performance microsupercapacitors by thermally-assisted 3D printing. NANOTECHNOLOGY 2020; 31:375301. [PMID: 32492672 DOI: 10.1088/1361-6528/ab991d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microsupercapacitors of air@NiO porous nanoshells are manufactured by a novel thermally-assisted 3D printing process. It entails the use of printing inks of the moderate solid content of CNT-PS@Ni-precursor-nanoparticle mixture, a real-time heating substrate to print 3D interdigital electrodes, and subsequent thermal annealing to convert PS@Ni-precursor particles into air@NiO porous nanoshells. The microstructure of 3D printed electrodes is characterized by air@NiO porous nanoshells being well dispersed in the CNT network. The CNT network provides a fast electronic migration path and meanwhile ensures the mechanical integrity of electrodes to prevent the fracture and/or collapsing of electrode structures during 3D printing manufacturing and charging/discharging cycles. The air@NiO porous nanoshells, manufactured in our labs, consist of randomly oriented nanosheets and offer superb charge storage via redox reactions. The metal layer is sputtered indiscriminately on the surface of interdigital electrodes and substrate before it is peeled off with electrolyte film and electrodes. The proposed tactic resolves problems connected with the tedious courses of traditional lithography and the delamination at the interface of active materials and collectors from mechanical stress. Experiments were conducted to study the performance of the microsupercapacitors (i.e. areal capacitances, energy and power densities) as a function of printing parameters, such as electrode heights, embedded amount of air@NiO porous nanoshells and the thickness of the metal layer on the electrochemical characteristics. The thickness of as-printed electrodes reaches up to 117 μm, which is vital in ensuring high energy density and is beyond the reach of any other technology. Moreover, the 3D printedmicrosupercapacitors of air@NiO porous nanoshells show excellent cycle stability and deliver an excellent areal capacitance of 56.7 mF cm-2, about a magnitude or two higher than that of C-based counterparts.
Collapse
Affiliation(s)
- Wei Yu
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China. Micro/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | |
Collapse
|
49
|
Li B, Liang X, Li G, Shao F, Xia T, Xu S, Hu N, Su Y, Yang Z, Zhang Y. Inkjet-Printed Ultrathin MoS 2-Based Electrodes for Flexible In-Plane Microsupercapacitors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39444-39454. [PMID: 32805816 DOI: 10.1021/acsami.0c11788] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flexible and wearable energy storage microdevice systems with high performance and safety are promising candidates for the electronics of on-chip integration. Herein, we demonstrate inkjet-printed ultrathin electrodes based on molybdenum disulfide (MoS2) nanosheets for flexible and all-solid-state in-plane microsupercapacitors (MSCs) with high capacitance. The MoS2 nanosheets were uniformly dispersed in the low-boiling point and nontoxic solvent isopropanol to form highly concentrated inks suitable for inkjet printing. The MSCs were assembled by printing the highly concentrated MoS2 inks on a polyimide substrate with appropriate surface tension using a simple and low-cost desktop inkjet printer. Because of the two-dimensional structure of MoS2 nanosheets, the as-assembled planar MSCs have high loadings of active materials per unit area, resulting in more flexibility and thinness than the capacitors with a traditional sandwich structure. These planar MSCs can not only possess any collapsible shape through the computer design but also exhibit excellent electrochemical performance (with a maximum energy density of 0.215 mW h cm-3 and a high-power energy density of 0.079 W cm-3), outstanding mechanical flexibility (almost no degradation of capacitance at different bending radii), good cycle stability (85.6% capacitance retention even after 10,000 charge-discharge cycles), and easy scale-up. Moreover, a blue light-emitting diode can be powered using five MSCs connected in series. The in-plane and low-cost MSCs with high energy densities have great application potential for integrated energy storage systems including wearable planar solar cells and other electronics.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Xu Liang
- College of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Gang Li
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Feng Shao
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Tong Xia
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Shiwei Xu
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Yanjie Su
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| | - Yafei Zhang
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China
| |
Collapse
|
50
|
Vyas A, Wang K, Li Q, Saleem AM, Bylund M, Andersson R, Desmaris V, Smith A, Lundgren P, Enoksson P. Impact of electrode geometry and thickness on planar on-chip microsupercapacitors. RSC Adv 2020; 10:31435-31441. [PMID: 35520639 PMCID: PMC9056406 DOI: 10.1039/d0ra05488g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/19/2020] [Indexed: 11/21/2022] Open
Abstract
We report an assessment of the influence of both finger geometry and vertically-oriented carbon nanofiber lengths in planar micro-supercapacitors. Increasing the finger number leads to an up-scaling in areal power densities, which increases with scan rate. Growing the nanofibers longer, however, does not lead to a proportional growth in capacitance, proposedly related to limited ion penetration of the electrode. We present an in-depth analysis of the impact of geometry and carbon nanofiber thickness on CMOS compatible microsupercapacitor performance.![]()
Collapse
Affiliation(s)
- Agin Vyas
- Micro- and Nano Systems Group, EMSL, MC2, Chalmers University of Technology Kemivagen 9 41296 Gothenburg Sweden
| | - Kejian Wang
- Micro- and Nano Systems Group, EMSL, MC2, Chalmers University of Technology Kemivagen 9 41296 Gothenburg Sweden
| | - Qi Li
- Micro- and Nano Systems Group, EMSL, MC2, Chalmers University of Technology Kemivagen 9 41296 Gothenburg Sweden
| | | | | | | | | | - Anderson Smith
- Micro- and Nano Systems Group, EMSL, MC2, Chalmers University of Technology Kemivagen 9 41296 Gothenburg Sweden
| | - Per Lundgren
- Micro- and Nano Systems Group, EMSL, MC2, Chalmers University of Technology Kemivagen 9 41296 Gothenburg Sweden
| | - Peter Enoksson
- Micro- and Nano Systems Group, EMSL, MC2, Chalmers University of Technology Kemivagen 9 41296 Gothenburg Sweden
| |
Collapse
|