1
|
Lotter C, Kuzucu EÜ, Casper J, Alter CL, Puligilla RD, Detampel P, Lopez JS, Ham AS, Huwyler J. Comparison of ionizable lipids for lipid nanoparticle mediated DNA delivery. Eur J Pharm Sci 2024; 203:106898. [PMID: 39260517 DOI: 10.1016/j.ejps.2024.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024]
Abstract
Lipid nanoparticles (LNPs) are successfully used for RNA-based gene delivery. In the context of gene replacement therapies, however, delivery of DNA expression plasmids using LNPs as a non-viral vector could be a promising strategy for the induction of longer-lasting effects. Therefore, DNA expression plasmids (3 to 4 kbp) coding for fluorescent markers or luciferase were combined with LNPs. Different clinically used ionizable lipids (DLin-MC3-DMA, SM-102, and ALC-0315) were tested to compare their influence on DNA plasmid delivery. DNA-LNPs were characterized with respect to their colloidal properties (size, polydispersity, ζ-potential, morphology), in vitro performance (cellular uptake, DNA delivery, and gene expression), and in vivo characteristics (biodistribution and luciferase gene expression). At an optimized N/P ratio of 6, spherical, small and monodisperse particles with anionic ζ-potential were obtained. Efficient transgene expression was achieved with a minimum amount of 1 pg DNA per initially plated cells. Zebrafish studies allowed selection of DNA-LNPs, which demonstrated prolonged blood circulation, avoidance of macrophage clearance, and vascular extravasation. Our comparative study demonstrates a high impact of the ionizable lipid type on DNA-LNP performance. Superior transfection efficiency of DNA-LNPs containing the ionizable lipid ALC-0315 was confirmed in wildtype mice.
Collapse
Affiliation(s)
- Claudia Lotter
- Pharmazentrum, Division of Pharmaceutical Technology, University of Basel, CH-4056 Basel, Switzerland
| | - Evrim Ümit Kuzucu
- Pharmazentrum, Division of Pharmaceutical Technology, University of Basel, CH-4056 Basel, Switzerland
| | - Jens Casper
- Pharmazentrum, Division of Pharmaceutical Technology, University of Basel, CH-4056 Basel, Switzerland
| | - Claudio Luca Alter
- Pharmazentrum, Division of Pharmaceutical Technology, University of Basel, CH-4056 Basel, Switzerland; Swiss Nanoscience Institute, University of Basel, CH-4056 Basel, Switzerland
| | - Ramya Deepthi Puligilla
- Pharmazentrum, Division of Pharmaceutical Technology, University of Basel, CH-4056 Basel, Switzerland
| | - Pascal Detampel
- Pharmazentrum, Division of Pharmaceutical Technology, University of Basel, CH-4056 Basel, Switzerland
| | - Juana Serrano Lopez
- Instituto Investigación Sanitaria Fundación Jiménez Díaz, ES-28015 Madrid, Spain
| | | | - Jörg Huwyler
- Pharmazentrum, Division of Pharmaceutical Technology, University of Basel, CH-4056 Basel, Switzerland.
| |
Collapse
|
2
|
Sharma M, Kumar C, Arya SK, Puri S, Khatri M. Neurological effects of carbon quantum dots on zebrafish: A review. Neuroscience 2024; 560:334-346. [PMID: 39384061 DOI: 10.1016/j.neuroscience.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024]
Abstract
Fluorescent carbon dots have emerged as promising nanomaterials for various applications, including bioimaging, food safety detection and drug delivery. However, their potential impact on neurological systems, especially in-vivo models, remains a critical area of investigation. This review focuses on the neurological effects of carbon dots and carbon quantum dots on zebrafish, an established vertebrate model with a conserved central nervous system. Recent studies have demonstrated the efficient uptake and distribution of carbon dots in zebrafish tissues, with a particular affinity for neural tissues. The intricate neural architecture of zebrafish allows for the precise examination of behavioral changes and neurodevelopmental alterations induced by fluorescent carbon dots. Neurotoxicity assessments reveal both short-term and long-term effects, ranging from immediate behavioral alterations to subtle changes in neuronal morphology. The review discusses potential mechanisms underlying these effects highlights the need for standardized methodologies in assessing neurological outcomes and emphasizes the importance of ethical considerations in nanomaterial research. As the field of nanotechnology continues to advance, a comprehensive understanding of the impact of fluorescent carbon dots on neurological function in zebrafish is crucial for informing safe and sustainable applications in medicine and beyond.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Biotechnology, University Institute of Engineering and Technology Panjab University Sector-25, Chandigarh 160014, India
| | - Chaitanya Kumar
- Department of Biotechnology, University Institute of Engineering and Technology Panjab University Sector-25, Chandigarh 160014, India; Centre for Nanoscience &, Nanotechnology, University Institute for Emerging Areas in Science and Technology (UIEAST), Panjab University, Chandigarh 160014, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology Panjab University Sector-25, Chandigarh 160014, India
| | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering and Technology Panjab University Sector-25, Chandigarh 160014, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology Panjab University Sector-25, Chandigarh 160014, India.
| |
Collapse
|
3
|
Bi D, Wilhelmy C, Unthan D, Keil IS, Zhao B, Kolb B, Koning RI, Graewert MA, Wouters B, Zwier R, Bussmann J, Hankemeier T, Diken M, Haas H, Langguth P, Barz M, Zhang H. On the Influence of Fabrication Methods and Materials for mRNA-LNP Production: From Size and Morphology to Internal Structure and mRNA Delivery Performance In Vitro and In Vivo. Adv Healthc Mater 2024; 13:e2401252. [PMID: 38889433 DOI: 10.1002/adhm.202401252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Lipid nanoparticle (LNP) remains the most advanced platform for messenger RNA (mRNA) delivery. To date, mRNA LNPs synthesis is mostly performed by mixing lipids and mRNA with microfluidics. In this study, a cost-effective microfluidic setup for synthesizing mRNA LNPs is developed. It allows to fine-tune the LNPs characteristics without compromising LNP properties. It is compared with a commercial device (NanoAssemblr) and ethanol injection and the influence of manufacturing conditions on the performance of mRNA LNPs is investigated. LNPs prepared by ethanol injection exhibit broader size distributions and more inhomogeneous internal structure (e.g., bleb-like substructures), while other LNPs show uniform structure with dense cores. Small angel X-ray scattering (SAXS) data indicate a tighter interaction between mRNA and lipids within LNPs synthesized by custom device, compared to LNPs produced by NanoAssemblr. Interestingly, the better transfection efficiency of polysarcosine (pSar)-modified LNPs correlates with a higher surface roughness than that of PEGylated ones. The manufacturing approach, however, shows modest influence on mRNA expression in vivo. In summary, the home-developed cost-effective microfluidic device can synthesize LNPs and represents a potent alternative to NanoAssemblr. The preparation methods show notable effect on LNPs' structure but a minor influence on mRNA delivery in vitro and in vivo.
Collapse
Affiliation(s)
- Dongdong Bi
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Christoph Wilhelmy
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Dennis Unthan
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Isabell Sofia Keil
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University GmbH, 55131, Mainz, Germany
| | - Bonan Zhao
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Bastian Kolb
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Roman I Koning
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Melissa A Graewert
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation c/o DESY, 22607, Hamburg, Germany
| | - Bert Wouters
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Raphaël Zwier
- Leiden Institute of Physics Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Jeroen Bussmann
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Mustafa Diken
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University GmbH, 55131, Mainz, Germany
| | - Heinrich Haas
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Peter Langguth
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Heyang Zhang
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| |
Collapse
|
4
|
Palviainen M, Puutio J, Østergaard RH, Eble JA, Maaninka K, Butt U, Ndika J, Kari OK, Kamali‐Moghaddam M, Kjaer‐Sorensen K, Oxvig C, Aransay AM, Falcon‐Perez JM, Federico A, Greco D, Laitinen S, Hayashi Y, Siljander PR. Beyond basic characterization and omics: Immunomodulatory roles of platelet-derived extracellular vesicles unveiled by functional testing. J Extracell Vesicles 2024; 13:e12513. [PMID: 39330919 PMCID: PMC11428872 DOI: 10.1002/jev2.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Renowned for their role in haemostasis and thrombosis, platelets are also increasingly recognized for their contribution in innate immunity, immunothrombosis and inflammatory diseases. Platelets express a wide range of receptors, which allows them to reach a variety of activation endpoints and grants them immunomodulatory functions. Activated platelets release extracellular vesicles (PEVs), whose formation and molecular cargo has been shown to depend on receptor-mediated activation and environmental cues. This study compared the immunomodulatory profiles of PEVs generated via activation of platelets by different receptors, glycoprotein VI, C-type lectin-like receptor 2 and combining all thrombin-collagen receptors. Functional assays in vivo in zebrafish and in vitro in human macrophages highlighted distinct homing and secretory responses triggered by the PEVs. In contrast, omics analyses of protein and miRNA cargo combined with physicochemical particle characterization found only subtle differences between the activated PEV types, which were insufficient to predict their different immunomodulatory functions. In contrast, constitutively released PEVs, formed in the absence of an exogenous activator, displayed a distinct immunomodulatory profile from the receptor-induced PEVs. Our findings underscore that PEVs are tunable through receptor-mediated activation. To truly comprehend their role(s) in mediating platelet functions among immune cells, conducting functional assays is imperative.
Collapse
Affiliation(s)
- Mari Palviainen
- EV Group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
- EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Johanna Puutio
- EV Group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
| | | | - Johannes A. Eble
- Institute of Physiological Chemistry and PathobiochemistryUniversity of MünsterMünsterGermany
| | - Katariina Maaninka
- EV Group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
| | - Umar Butt
- EV Group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
| | - Joseph Ndika
- Drug Research Program, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
| | - Otto K. Kari
- Drug Research Program, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
| | - Masood Kamali‐Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | | | - Claus Oxvig
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Ana M. Aransay
- Genome Analysis Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology Alliance (BRTA)MendaroSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd)MadridSpain
| | - Juan M. Falcon‐Perez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd)MadridSpain
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Antonio Federico
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE); Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE); Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
| | - Saara Laitinen
- Research and DevelopmentFinnish Red Cross Blood Service (FRCBS)HelsinkiFinland
| | - Yuya Hayashi
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
| | - Pia R.‐M. Siljander
- EV Group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
- EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
5
|
Papadopoulou P, Arias-Alpizar G, Weeda P, Poppe T, van Klaveren N, Slíva T, Aschmann D, van Os W, Zhang Y, Moradi MA, Sommerdijk N, Campbell F, Kros A. Structure-function relationship of phase-separated liposomes containing diacylglycerol analogues. Biomater Sci 2024; 12:5023-5035. [PMID: 39177657 DOI: 10.1039/d4bm00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The composition and morphology of lipid-based nanoparticles can influence their overall in vivo behavior. Previously, we demonstrated that phase separation in liposomes composed of DSPC and a diacylglycerol lipid analogue (DOaG) drives the in vivo biodistribution towards a specific subset of endothelial cells in zebrafish embryos. In the absence of traditional targeting functionalities (e.g., antibodies, ligands), this selectivity is mediated solely by the unique liposome morphology and composition, characterized by a DOaG-rich lipid droplet within the DSPC-rich phospholipid bilayer. The phase separation is induced due to the geometry of DOaG lipid and its ability to create non-bilayer phases in lipid membranes. To investigate the underlying principles of phase separation and to optimize the liposome colloidal stability, we performed a structure-function relationship study by synthesizing a library of DOaG analogues with varying molecular properties, such as the number, length and sn-position of the acyl chains, as well as the degree of saturation or carbonyl substituents. We assessed the ability of these lipid analogues to assemble into phase-separated liposomes and studied their morphology, colloidal stability, and in vivo biodistribution in zebrafish embryos. We found that analogues containing unsaturated, medium length (C16-C18) fatty acids were required to obtain colloidally stable, phase-separated liposomes with cell-specific biodistribution patterns. Moreover, we observed that using the pure DOaG isomer, with acyl chains at the sn-1,3 positions, leads to more colloidally stable liposomes than when a mixture of sn-1,2 and sn-1,3 isomers is used. Similarly, we observed that incorporating a DOaG analogue with fatty tails shorter than DSPC, as well as PEGylation, endows liposomes with long term stability while retaining cell-selective biodistribution. Diacylglycerols are known to promote fusion, lipid polymorphism, signaling and protein recruitment on lipid membranes. In this study, we showed that diacylglycerol derivatives can induce phase separation in liposomes, unlocking the potential for cell-specific targeting in vivo. We believe that these findings can be the foundation for future use of diacylglycerols in lipid-based nanomedicines and could lead to the development of novel targeted delivery strategies.
Collapse
Affiliation(s)
- Panagiota Papadopoulou
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Gabriela Arias-Alpizar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Pim Weeda
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Thijs Poppe
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Niels van Klaveren
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Tomas Slíva
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Dennis Aschmann
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Winant van Os
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Yun Zhang
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Mohammad-Amin Moradi
- Materials and Interface Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Nico Sommerdijk
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
6
|
Oguma T, Kanazawa T, Kaneko YK, Sato R, Serizawa M, Ooka A, Yamaguchi M, Ishikawa T, Kondo H. Effects of phospholipid type and particle size on lipid nanoparticle distribution in vivo and in pancreatic islets. J Control Release 2024; 373:917-928. [PMID: 39079658 DOI: 10.1016/j.jconrel.2024.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 09/11/2024]
Abstract
Lipid nanoparticles (LNPs) have recently been used as nanocarriers in drug delivery systems for nucleic acid drugs. Their practical applications are currently primarily limited to the liver and specific organs. However, altering the type and composition ratio of phospholipids improves their distribution in organs other than the liver, such as the spleen and lungs. This study aimed to elucidate the effects of LNP components and particle size on in vivo distribution through systemic circulation to pancreatic islets to achieve better targeting of islets, which are a fundamental therapeutic target for diabetes. Fluorescence-labeled LNPs were prepared using three phospholipids: 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), with particle sizes of 30-160 nm (diameter) using a microfluidic device. Baffled-structured iLiNP devices with adjusted flow-rate ratios and total flow rates were used. After the intravenous administration of LNPs to C57BL/6 J mice, the distribution of each LNP type to the major organs, including the pancreas and pancreatic islets, was compared using ex vivo fluorescence imaging and observation of pancreatic tissue sections. DSPC-LNPs- and DOPE-LNPs showed the highest distribution in the spleen and liver, respectively. In contrast, the DOPC-LNPs showed the highest distribution in the pancreas and the lowest distribution in the liver and spleen. In addition, smaller particles showed better distribution throughout the pancreas. The most significant LNP distribution in the islets was observed for DOPC-LNPs with a particle size of 160 nm. Furthermore, larger LNPs tended to be distributed in the islets, whereas smaller LNPs tended to be distributed in the exocrine glands. DOPC-LNPs were distributed in the islets at all cholesterol concentrations, with a high distribution observed at >40% cholesterol and > 3% PEG and the distribution was higher at 24 h than at 4 h. Thus, LNP composition and particle size significantly affected islet distribution characteristics, indicating that DOPC-LNPs may be a drug delivery system for effectively targeting the pancreas and islets.
Collapse
Affiliation(s)
- Takayuki Oguma
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; Center for Clinical Research, Hamamatsu University School of Medicine, 1-20-1, Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takanori Kanazawa
- Department of Pharmaceutical Engineering and Drug Delivery Sciences, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; Department of Clinical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1, Shoumachi, Tokushima 770-8505, Japan; Innovative Research Center for Drug Delivery System, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1, Shoumachi, Tokushima 770-8505, Japan.
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Ren Sato
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Miku Serizawa
- Department of Pharmaceutical Engineering and Drug Delivery Sciences, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Akira Ooka
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Momoka Yamaguchi
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiromu Kondo
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; Department of Pharmaceutical Engineering and Drug Delivery Sciences, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
7
|
Laha A, Nasra S, Bhatia D, Kumar A. Advancements in rheumatoid arthritis therapy: a journey from conventional therapy to precision medicine via nanoparticles targeting immune cells. NANOSCALE 2024; 16:14975-14993. [PMID: 39056352 DOI: 10.1039/d4nr02182g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease that mainly affects the inner lining of the synovial joints and leads to chronic inflammation. While RA is not known as lethal, recent research indicates that it may be a silent killer because of its strong association with an increased risk of chronic lung and heart diseases. Patients develop these systemic consequences due to the regular uptake of heavy drugs such as disease-modifying antirheumatic medications (DMARDs), glucocorticoids (GCs), nonsteroidal anti-inflammatory medicines (NSAIDs), etc. Nevertheless, a number of these medications have off-target effects, which might cause adverse toxicity, and have started to become resistant in patients as well. Therefore, alternative and promising therapeutic techniques must be explored and adopted, such as post-translational modification inhibitors (like protein arginine deiminase inhibitors), RNA interference by siRNA, epigenetic drugs, peptide therapy, etc., specifically in macrophages, neutrophils, Treg cells and dendritic cells (DCs). As the target cells are specific, ensuring targeted delivery is also equally important, which can be achieved with the advent of nanotechnology. Furthermore, these nanocarriers have fewer off-site side effects, enable drug combinations, and allow for lower drug dosages. Among the nanoparticles that can be used for targeting, there are both inorganic and organic nanomaterials such as solid-lipid nanoparticles, liposomes, hydrogels, dendrimers, and biomimetics that have been discussed. This review highlights contemporary therapy options targeting macrophages, neutrophils, Treg cells, and DCs and explores the application of diverse nanotechnological techniques to enhance precision RA therapies.
Collapse
Affiliation(s)
- Anwesha Laha
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Dhiraj Bhatia
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar - 382055, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
8
|
Bi D, Van Hal A, Aschmann D, Shen M, Zhang H, Su L, Arias-Alpizar G, Kros A, Barz M, Bussmann J. Deconvolving Passive and Active Targeting of Liposomes Bearing LDL Receptor Binding Peptides Using the Zebrafish Embryo Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310781. [PMID: 38488770 DOI: 10.1002/smll.202310781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Indexed: 08/09/2024]
Abstract
Improving target versus off-target ratio in nanomedicine remains a major challenge for increasing drug bioavailability and reducing toxicity. Active targeting using ligands on nanoparticle surfaces is a key approach but has limited clinical success. A potential issue is the integration of targeting ligands also changes the physicochemical properties of nanoparticles (passive targeting). Direct studies to understand the mechanisms of active targeting and off-targeting in vivo are limited by the lack of suitable tools. Here, the biodistribution of a representative active targeting liposome is analyzed, modified with an apolipoprotein E (ApoE) peptide that binds to the low-density lipoprotein receptor (LDLR), using zebrafish embryos. The ApoE liposomes demonstrated the expected liver targeting effect but also accumulated in the kidney glomerulus. The ldlra-/- zebrafish is developed to explore the LDLR-specificity of ApoE liposomes. Interestingly, liver targeting depends on the LDLR-specific interaction, while glomerular accumulation is independent of LDLR and peptide sequence. It is found that cationic charges of peptides and the size of liposomes govern glomerular targeting. Increasing the size of ApoE liposomes can avoid this off-targeting. Taken together, the study shows the potential of the zebrafish embryo model for understanding active and passive targeting mechanisms, that can be used to optimize the design of nanoparticles.
Collapse
Affiliation(s)
- Dongdong Bi
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Anneke Van Hal
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Dennis Aschmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333, The Netherlands
| | - Mengjie Shen
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333, The Netherlands
| | - Heyang Zhang
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Lu Su
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Gabriela Arias-Alpizar
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333, The Netherlands
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Jeroen Bussmann
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| |
Collapse
|
9
|
Mashayekhi K, Khazaie K, Faubion WA, Kim GB. Biomaterial-enhanced treg cell immunotherapy: A promising approach for transplant medicine and autoimmune disease treatment. Bioact Mater 2024; 37:269-298. [PMID: 38694761 PMCID: PMC11061617 DOI: 10.1016/j.bioactmat.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial for preserving tolerance in the body, rendering Treg immunotherapy a promising treatment option for both organ transplants and autoimmune diseases. Presently, organ transplant recipients must undergo lifelong immunosuppression to prevent allograft rejection, while autoimmune disorders lack definitive cures. In the last years, there has been notable advancement in comprehending the biology of both antigen-specific and polyclonal Tregs. Clinical trials involving Tregs have demonstrated their safety and effectiveness. To maximize the efficacy of Treg immunotherapy, it is essential for these cells to migrate to specific target tissues, maintain stability within local organs, bolster their suppressive capabilities, and ensure their intended function's longevity. In pursuit of these goals, the utilization of biomaterials emerges as an attractive supportive strategy for Treg immunotherapy in addressing these challenges. As a result, the prospect of employing biomaterial-enhanced Treg immunotherapy holds tremendous promise as a treatment option for organ transplant recipients and individuals grappling with autoimmune diseases in the near future. This paper introduces strategies based on biomaterial-assisted Treg immunotherapy to enhance transplant medicine and autoimmune treatments.
Collapse
Affiliation(s)
- Kazem Mashayekhi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - William A. Faubion
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gloria B. Kim
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
10
|
van Os WL, Wielaert L, Alter C, Davidović D, Šachl R, Kock T, González UU, Arias-Alpizar G, Vigario FL, Knol RA, Kuster R, Romeijn S, Mora NL, Detampel P, Hof M, Huwyler J, Kros A. Lipid conjugate dissociation analysis improves the in vivo understanding of lipid-based nanomedicine. J Control Release 2024; 371:85-100. [PMID: 38782063 DOI: 10.1016/j.jconrel.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Lipid conjugates have advanced the field of lipid-based nanomedicine by promoting active-targeting (ligand, peptide, antibody), stability (PEGylation), controlled release (lipoid prodrug), and probe-based tracking (fluorophore). Recent findings indicate lipid conjugates dissociating from nanomedicine upon encountering a biological environment. Yet, implications for (pre)clinical outcomes remain unclear. In this study, using the zebrafish model (Danio rerio), we investigated the fate of liposome-incorporated lipid fluorophore conjugates (LFCs) after intravenous (IV) administration. LFCs having a bilayer mismatch and relatively polar fluorophore revealed counter-predictive outcomes for Caelyx/Doxil (clearance vs. circulating) and AmBisome-like liposomes (scavenger endothelial cell vs. macrophage uptake). Findings on LFC (mis)match for Caelyx/Doxil-like liposomes were supported by translational intravital imaging studies in mice. Importantly, contradicting observations suggest to originate from LFC dissociation in vivo, which was investigated by Asymmetric Flow Field-Flow Fractionation (AF4) upon liposome-serum incubation in situ. Our data suggests that LFCs matching with the liposome bilayer composition - that did not dissociate upon serum incubation - revealed improved predictive outcomes for liposome biodistribution profiles. Altogether, this study highlights the critical importance of fatty acid tail length and headgroup moiety when selecting lipid conjugates for lipid-based nanomedicine.
Collapse
Affiliation(s)
- Winant L van Os
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Laura Wielaert
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Claudio Alter
- Division of Pharmaceutical Technology, Department of Pharmaceutical Science, University of Basel, Switzerland
| | - David Davidović
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Thomas Kock
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Urimare Ugueto González
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Gabriela Arias-Alpizar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Fernando Lozano Vigario
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Renzo A Knol
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Rick Kuster
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Stefan Romeijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Nestor Lopez Mora
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pascal Detampel
- Division of Pharmaceutical Technology, Department of Pharmaceutical Science, University of Basel, Switzerland
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Science, University of Basel, Switzerland
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
11
|
Wang L, Zhou J, Wang J, Wang X, Dong H, Zhao L, Wu J, Peng J. Hepatic Stellate Cell-Targeting Micelle Nanomedicine for Early Diagnosis and Treatment of Liver Fibrosis. Adv Healthc Mater 2024; 13:e2303710. [PMID: 38293743 DOI: 10.1002/adhm.202303710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Diagnosing and treating liver fibrosis is a challenging yet crucial endeavor due to its complex pathogenesis and risk of deteriorating into cirrhosis, liver failure, and even hepatic cancer. Herein, a silica cross-linked micelles (SCLMs) based nano-system is developed for both diagnosing and treating liver fibrosis. The SCLMs are first modified with peptide CTCE9908 (CT-SCLMs) and can actively target CXCR4, which is overexpressed in activated hepatic stellate cells (HSCs). To enable diagnosis, an ONOO--responded near-infrared fluorescent probe NOF2 is loaded into the CT-SCLMs. This nano-system can target the aHSCs and diagnose the liver fibrosis particularly in CCl4-induced liver damage, by monitoring the reactive nitrogen species. Furthermore, a step is taken toward treatment by co-encapsulating two anti-fibrosis drugs, silibinin and sorafenib, within the CT-SCLMs. This combined approach results in a significant alleviation of liver injury. Symptoms associated with liver fibrosis, such as deposition of collagen, expression of hydroxyproline, and raised serological indicators show notable improvement. In summary, the CXCR4-targeted nano-system can serve as a promising theragnostic system of early warning and diagnosis for liver fibrosis, offering hope against progression of this serious liver condition.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jieying Zhou
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Jian Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiaotang Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Junchen Wu
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| |
Collapse
|
12
|
Creamer A, Fiego AL, Agliano A, Prados-Martin L, Høgset H, Najer A, Richards DA, Wojciechowski JP, Foote JEJ, Kim N, Monahan A, Tang J, Shamsabadi A, Rochet LNC, Thanasi IA, de la Ballina LR, Rapley CL, Turnock S, Love EA, Bugeon L, Dallman MJ, Heeney M, Kramer-Marek G, Chudasama V, Fenaroli F, Stevens MM. Modular Synthesis of Semiconducting Graft Copolymers to Achieve "Clickable" Fluorescent Nanoparticles with Long Circulation and Specific Cancer Targeting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300413. [PMID: 36905683 DOI: 10.1002/adma.202300413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Semiconducting polymer nanoparticles (SPNs) are explored for applications in cancer theranostics because of their high absorption coefficients, photostability, and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, a method for achieving colloidally stable and low-fouling SPNs is described by grafting poly(ethylene glycol) (PEG) onto the backbone of the fluorescent semiconducting polymer, poly(9,9'-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole), in a simple one-step substitution reaction, postpolymerization. Further, by utilizing azide-functionalized PEG, anti-human epidermal growth factor receptor 2 (HER2) antibodies, antibody fragments, or affibodies are site-specifically "clicked" onto the SPN surface, which allows the functionalized SPNs to specifically target HER2-positive cancer cells. In vivo, the PEGylated SPNs are found to have excellent circulation efficiencies in zebrafish embryos for up to seven days postinjection. SPNs functionalized with affibodies are then shown to be able to target HER2 expressing cancer cells in a zebrafish xenograft model. The covalent PEGylated SPN system described herein shows great potential for cancer theranostics.
Collapse
Affiliation(s)
- Adam Creamer
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alessandra Lo Fiego
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alice Agliano
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Lino Prados-Martin
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Håkon Høgset
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Adrian Najer
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Daniel A Richards
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan P Wojciechowski
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - James E J Foote
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Nayoung Kim
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Amy Monahan
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jiaqing Tang
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - André Shamsabadi
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Léa N C Rochet
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Ioanna A Thanasi
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Laura R de la Ballina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, 0372, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
| | | | - Stephen Turnock
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Elizabeth A Love
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Laurence Bugeon
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Margaret J Dallman
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin Heeney
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Gabriela Kramer-Marek
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Vijay Chudasama
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Federico Fenaroli
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, 4021, Norway
- Department of Biosciences, University of Oslo, Blindernveien 31, Oslo, 0371, Norway
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
13
|
Hu M, Li X, You Z, Cai R, Chen C. Physiological Barriers and Strategies of Lipid-Based Nanoparticles for Nucleic Acid Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303266. [PMID: 37792475 DOI: 10.1002/adma.202303266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Lipid-based nanoparticles (LBNPs) are currently the most promising vehicles for nucleic acid drug (NAD) delivery. Although their clinical applications have achieved success, the NAD delivery efficiency and safety are still unsatisfactory, which are, to a large extent, due to the existence of multi-level physiological barriers in vivo. It is important to elucidate the interactions between these barriers and LBNPs, which will guide more rational design of efficient NAD vehicles with low adverse effects and facilitate broader applications of nucleic acid therapeutics. This review describes the obstacles and challenges of biological barriers to NAD delivery at systemic, organ, sub-organ, cellular, and subcellular levels. The strategies to overcome these barriers are comprehensively reviewed, mainly including physically/chemically engineering LBNPs and directly modifying physiological barriers by auxiliary treatments. Then the potentials and challenges for successful translation of these preclinical studies into the clinic are discussed. In the end, a forward look at the strategies on manipulating protein corona (PC) is addressed, which may pull off the trick of overcoming those physiological barriers and significantly improve the efficacy and safety of LBNP-based NADs delivery.
Collapse
Affiliation(s)
- Mingdi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish Center for Education and Research, Beijing, 100049, China
| | - Xiaoyan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhen You
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish Center for Education and Research, Beijing, 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, China
| |
Collapse
|
14
|
Custódio B, Carneiro P, Marques J, Leiro V, Valentim AM, Sousa M, Santos SD, Bessa J, Pêgo AP. Biological Response Following the Systemic Injection of PEG-PAMAM-Rhodamine Conjugates in Zebrafish. Pharmaceutics 2024; 16:608. [PMID: 38794270 PMCID: PMC11125904 DOI: 10.3390/pharmaceutics16050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Numerous therapeutic and diagnostic approaches used within a clinical setting depend on the administration of compounds via systemic delivery. Biomaterials at the nanometer scale, as dendrimers, act as delivery systems by improving cargo bioavailability, circulation time, and the targeting of specific tissues. Although evaluating the efficacy of pharmacological agents based on nanobiomaterials is crucial, conducting toxicological assessments of biomaterials is essential for advancing clinical translation. Here, a zebrafish larvae model was explored to assess the biocompatibility of poly(amido amine) (PAMAM), one of the most exploited dendrimers for drug delivery. We report the impact of a systemic injection of polyethylene glycol (PEG)-modified G4 PAMAM conjugated with rhodamine (Rho) as a mimetic drug (PEG-PAMAM-Rho) on survival, animal development, inflammation, and neurotoxicity. A concentration- and time-dependent effect was observed on mortality, developmental morphology, and innate immune system activation (macrophages). Significant effects in toxicological indicators were reported in the highest tested concentration (50 mg/mL PEG-PAMAM-Rho) as early as 48 h post-injection. Additionally, a lower concentration of PEG-PAMAM-Rho (5 mg/mL) was found to be safe and subsequently tested for neurotoxicity through behavioral assays. In accordance, no significative signs of toxicity were detected. In conclusion, the dose response of the animal was assessed, and the safe dosage for future use in theragnostics was defined. Additionally, new methodologies were established that can be adapted to further studies in toxicology using other nanosystems for systemic delivery.
Collapse
Affiliation(s)
- Beatriz Custódio
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Patrícia Carneiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Joana Marques
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana M. Valentim
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Mafalda Sousa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
| | - Sofia D. Santos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - José Bessa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P. Pêgo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
15
|
Ying K, Xin W, Xu Y, Lv D, Zhu H, Li Y, Xu W, Yan C, Li Y, Cheng H, Chen E, Ma G, Zhang X, Ke Y. NanoSHP099-Targeted SHP2 Inhibition Boosts Ly6C low Monocytes/Macrophages Differentiation to Accelerate Thrombolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308166. [PMID: 38247197 PMCID: PMC10987109 DOI: 10.1002/advs.202308166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/06/2024] [Indexed: 01/23/2024]
Abstract
Tumor-associated thrombus (TAT) accounts for a high proportion of venous thromboembolism. Traditional thrombolysis and anticoagulation methods are not effective due to various complications and contraindications, which can easily lead to patients dying from TAT rather than the tumor itself. These clinical issues demonstrate the need to research diverse pathways for adjuvant thrombolysis in antitumor therapy. Previously, the phenotypic and functional transformation of monocytes/macrophages is widely reported to be involved in intratribal collagen regulation. This study finds that myeloid deficiency of the oncogene SHP2 sensitizes Ly6Clow monocyte/macrophage differentiation and can alleviate thrombus organization by increasing thrombolytic Matrix metalloproteinase (MMP) 2/9 activities. Moreover, pharmacologic inhibition by SHP099, examined in mouse lung metastatic tumor models, reduces tumor and thrombi burden in tumor metastatic lung tissues. Furthermore, SHP099 increases intrathrombus Ly6Clow monocyte/macrophage infiltration and exhibits thrombolytic function at high concentrations. To improve the thrombolytic effect of SHP099, NanoSHP099 is constructed to achieve the specific delivery of SHP099. NanoSHP099 is identified to be simultaneously enriched in tumor and thrombus foci, exerting dual tumor-suppression and thrombolysis effects. NanoSHP099 presents a superior thrombus dissolution effect than that of the same dosage of SHP099 because of the higher Ly6Clow monocyte/macrophage proportion and MMP2/MMP9 collagenolytic activities in organized thrombi.
Collapse
Affiliation(s)
- Kejing Ying
- Department of Pulmonary and Critical Care MedicineRegional Medical Center for National Institute of Respiratory DiseasesSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Wanghao Xin
- Department of Pulmonary and Critical Care MedicineRegional Medical Center for National Institute of Respiratory DiseasesSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Yiming Xu
- Department of Pulmonary and Critical Care MedicineRegional Medical Center for National Institute of Respiratory DiseasesSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Dandan Lv
- Department of Pulmonary and Critical Care MedicineRegional Medical Center for National Institute of Respiratory DiseasesSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Huiqi Zhu
- Department of Pulmonary and Critical Care MedicineRegional Medical Center for National Institute of Respiratory DiseasesSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Yeping Li
- Department of Pulmonary and Critical Care MedicineRegional Medical Center for National Institute of Respiratory DiseasesSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Wangting Xu
- Department of RespiratoryFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Department of Pathology and Pathophysiologyand Department of Respiratory Medicine at Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Chao Yan
- Department of Pulmonary and Critical Care MedicineRegional Medical Center for National Institute of Respiratory DiseasesSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Yiqing Li
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Hongqiang Cheng
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Enguo Chen
- Department of Pulmonary and Critical Care MedicineRegional Medical Center for National Institute of Respiratory DiseasesSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Guofeng Ma
- Department of Pulmonary and Critical Care MedicineRegional Medical Center for National Institute of Respiratory DiseasesSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Xue Zhang
- Department of Pathology and Pathophysiologyand Department of Respiratory Medicine at Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Yuehai Ke
- Department of Pathology and Pathophysiologyand Department of Respiratory Medicine at Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| |
Collapse
|
16
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
17
|
Wang L, Quine S, Frickenstein AN, Lee M, Yang W, Sheth VM, Bourlon MD, He Y, Lyu S, Garcia-Contreras L, Zhao YD, Wilhelm S. Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2308446. [PMID: 38828467 PMCID: PMC11142462 DOI: 10.1002/adfm.202308446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 06/05/2024]
Abstract
Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.
Collapse
Affiliation(s)
- Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Skyler Quine
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Michael Lee
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Vinit M. Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Margaret D. Bourlon
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Shanxin Lyu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lucila Garcia-Contreras
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yan D. Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73012, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma, 73019, USA
| |
Collapse
|
18
|
Papadopoulou P, van der Pol R, van Hilten N, van Os WL, Pattipeiluhu R, Arias-Alpizar G, Knol RA, Noteborn W, Moradi MA, Ferraz MJ, Aerts JMFG, Sommerdijk N, Campbell F, Risselada HJ, Sevink GJA, Kros A. Phase-Separated Lipid-Based Nanoparticles: Selective Behavior at the Nano-Bio Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310872. [PMID: 37988682 DOI: 10.1002/adma.202310872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 11/23/2023]
Abstract
The membrane-protein interface on lipid-based nanoparticles influences their in vivo behavior. Better understanding may evolve current drug delivery methods toward effective targeted nanomedicine. Previously, the cell-selective accumulation of a liposome formulation in vivo is demonstrated, through the recognition of lipid phase-separation by triglyceride lipases. This exemplified how liposome morphology and composition can determine nanoparticle-protein interactions. Here, the lipase-induced compositional and morphological changes of phase-separated liposomes-which bear a lipid droplet in their bilayer- are investigated, and the mechanism upon which lipases recognize and bind to the particles is unravelled. The selective lipolytic degradation of the phase-separated lipid droplet is observed, while nanoparticle integrity remains intact. Next, the Tryptophan-rich loop of the lipase is identified as the region with which the enzymes bind to the particles. This preferential binding is due to lipid packing defects induced on the liposome surface by phase separation. In parallel, the existing knowledge that phase separation leads to in vivo selectivity, is utilized to generate phase-separated mRNA-LNPs that target cell-subsets in zebrafish embryos, with subsequent mRNA delivery and protein expression. Together, these findings can expand the current knowledge on selective nanoparticle-protein communications and in vivo behavior, aspects that will assist to gain control of lipid-based nanoparticles.
Collapse
Affiliation(s)
- Panagiota Papadopoulou
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Rianne van der Pol
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Niek van Hilten
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Winant L van Os
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Roy Pattipeiluhu
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Gabriela Arias-Alpizar
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Renzo Aron Knol
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Willem Noteborn
- NeCEN, Leiden University, Einsteinweg 55, Leiden, 2333 AL, The Netherlands
| | - Mohammad-Amin Moradi
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Maria Joao Ferraz
- Department of Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | | | - Nico Sommerdijk
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Department of Medical BioSciences and Radboud Technology Center - Electron Microscopy, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Herre Jelger Risselada
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
- Department of Physics, Technical University Dortmund, 44221, Dortmund, Germany
| | - Geert Jan Agur Sevink
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| |
Collapse
|
19
|
Chou WC, Lin Z. Impact of protein coronas on nanoparticle interactions with tissues and targeted delivery. Curr Opin Biotechnol 2024; 85:103046. [PMID: 38103519 PMCID: PMC11000521 DOI: 10.1016/j.copbio.2023.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/08/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
A major challenge in advancing nanoparticle (NP)-based delivery systems stems from the intricate interactions between NPs and biological systems. These interactions are largely determined by the formation of the NP-protein corona (PC), in which proteins spontaneously adsorb to the surface of NPs. The PC endows the NPs with a new biological identity, capable of altering the interactions of NPs with targeting organs and subsequent biological fate. This review discusses the mechanisms behind PC-mediated effects on tissue distribution of NPs, aiming to provide insights into the role of PC and its potential applications in NP-based drug delivery.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608, USA
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
20
|
Escalona-Rayo O, Papadopoulou P, Slütter B, Kros A. Biological recognition and cellular trafficking of targeted RNA-lipid nanoparticles. Curr Opin Biotechnol 2024; 85:103041. [PMID: 38154322 DOI: 10.1016/j.copbio.2023.103041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
Lipid nanoparticles (LNPs) have unlocked the potential of ribonucleic acid (RNA) therapeutics and vaccines. Production and large-scale manufacturing methods for RNA-LNPs have been established and rapidly accelerate. Despite this, basic research on LNPs is still required, due to their high assembly complexity and fairly new development, including research on lipid organization, transfection optimization, and in vivo behavior. Understanding fundamental aspects of LNPs that is, how lipid composition and physicochemical properties affect their biodistribution, cell recognition, and transfection, could propel their clinical development and facilitate overcoming current challenges. Herein, we review recent developments in the field of LNP technology and summarize the main findings focusing on nano-bio interactions.
Collapse
Affiliation(s)
- Oscar Escalona-Rayo
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Panagiota Papadopoulou
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Bram Slütter
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
21
|
Oliveira Silva R, Counil H, Rabanel JM, Haddad M, Zaouter C, Ben Khedher MR, Patten SA, Ramassamy C. Donepezil-Loaded Nanocarriers for the Treatment of Alzheimer's Disease: Superior Efficacy of Extracellular Vesicles Over Polymeric Nanoparticles. Int J Nanomedicine 2024; 19:1077-1096. [PMID: 38317848 PMCID: PMC10843980 DOI: 10.2147/ijn.s449227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Drug delivery across the blood-brain barrier (BBB) is challenging and therefore severely restricts neurodegenerative diseases therapy such as Alzheimer's disease (AD). Donepezil (DNZ) is an acetylcholinesterase (AChE) inhibitor largely prescribed to AD patients, but its use is limited due to peripheral adverse events. Nanodelivery strategies with the polymer Poly (lactic acid)-poly(ethylene glycol)-based nanoparticles (NPs-PLA-PEG) and the extracellular vesicles (EVs) were developed with the aim to improve the ability of DNZ to cross the BBB, its brain targeting and efficacy. Methods EVs were isolated from human plasma and PLA-PEG NPs were synthesized by nanoprecipitation. The toxicity, brain targeting capacity and cholinergic activities of the formulations were evaluated both in vitro and in vivo. Results EVs and NPs-PLA-PEG were designed to be similar in size and charge, efficiently encapsulated DNZ and allowed sustained drug release. In vitro study showed that both formulations EVs-DNZ and NPs-PLA-PEG-DNZ were highly internalized by the endothelial cells bEnd.3. These cells cultured on the Transwell® model were used to analyze the transcytosis of both formulations after validation of the presence of tight junctions, the transendothelial electrical resistance (TEER) values and the permeability of the Dextran-FITC. In vivo study showed that both formulations were not toxic to zebrafish larvae (Danio rerio). However, hyperactivity was evidenced in the NPs-PLA-PEG-DNZ and free DNZ groups but not the EVs-DNZ formulations. Biodistribution analysis in zebrafish larvae showed that EVs were present in the brain parenchyma, while NPs-PLA-PEG remained mainly in the bloodstream. Conclusion The EVs-DNZ formulation was more efficient to inhibit the AChE enzyme activity in the zebrafish larvae head. Thus, the bioinspired delivery system (EVs) is a promising alternative strategy for brain-targeted delivery by substantially improving the activity of DNZ for the treatment of AD.
Collapse
Affiliation(s)
- Rummenigge Oliveira Silva
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Hermine Counil
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | | | - Mohamed Haddad
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Charlotte Zaouter
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Mohamed Raâfet Ben Khedher
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
- Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Shunmoogum A Patten
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Charles Ramassamy
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| |
Collapse
|
22
|
Jia Y, Wang X, Li L, Li F, Zhang J, Liang XJ. Lipid Nanoparticles Optimized for Targeting and Release of Nucleic Acid. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305300. [PMID: 37547955 DOI: 10.1002/adma.202305300] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Lipid nanoparticles (LNPs) are currently the most promising clinical nucleic acids drug delivery vehicles. LNPs prevent the degradation of cargo nucleic acids during blood circulation. Upon entry into the cell, specific components of the lipid nanoparticles can promote the endosomal escape of nucleic acids. These are the basic properties of lipid nanoparticles as nucleic acid carriers. As LNPs exhibit hepatic aggregation characteristics, enhancing targeting out of the liver is a crucial way to improve LNPs administrated in vivo. Meanwhile, endosomal escape of nucleic acids loaded in LNPs is often considered inadequate, and therefore, much effort is devoted to enhancing the intracellular release efficiency of nucleic acids. Here, different strategies to efficiently deliver nucleic acid delivery from LNPs are concluded and their mechanisms are investigated. In addition, based on the information on LNPs that are in clinical trials or have completed clinical trials, the issues that are necessary to be approached in the clinical translation of LNPs are discussed, which it is hoped will shed light on the development of LNP nucleic acid drugs.
Collapse
Affiliation(s)
- Yaru Jia
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Xiuguang Wang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
| | - Luwei Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Jinchao Zhang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
| | - Xing-Jie Liang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Hincapie R, Bhattacharya S, Baksh MM, Sanhueza CA, Echeverri ES, Kim H, Paunovska K, Podilapu AR, Xu M, Dahlman JE, Finn MG. Multivalent Targeting of the Asialoglycoprotein Receptor by Virus-Like Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304263. [PMID: 37649182 PMCID: PMC10840735 DOI: 10.1002/smll.202304263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/16/2023] [Indexed: 09/01/2023]
Abstract
The asialoglycoprotein receptor (ASGPR) is expressed in high density on hepatocytes. Multivalent variants of galactosyl carbohydrates bind ASGPR with high affinity, enabling hepatic delivery of ligand-bound cargo. Virus-like particle (VLP) conjugates of a relatively high-affinity ligand were efficiently endocytosed by ASGPR-expressing cells in a manner strongly dependent on the nature and density of ligand display, with the best formulation using a nanomolar-, but not a picomolar-level, binder. Optimized particles were taken up by HepG2 cells with greater efficiency than competing small molecules or the natural multigalactosylated ligand, asialoorosomucoid. Upon systemic injection in mice, these VLPs were rapidly cleared to the liver and were found in association with sinusoidal endothelial cells, Kupffer cells, hepatocytes, dendritic cells, and other immune cells. Both ASGPR-targeted and nontargeted particles were distributed similarly to endothelial and Kupffer cells, but targeted particles were distributed to a greater number and fraction of hepatocytes. Thus, selective cellular trafficking in the liver is difficult to achieve: even with the most potent ASGPR targeting available, barrier cells take up much of the injected particles and hepatocytes are accessed only approximately twice as efficiently in the best case.
Collapse
Affiliation(s)
- Robert Hincapie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Sonia Bhattacharya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Michael M Baksh
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Carlos A Sanhueza
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ananda R Podilapu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Minghao Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
24
|
James CC, de Bruin B, Reek JNH. Transition Metal Catalysis in Living Cells: Progress, Challenges, and Novel Supramolecular Solutions. Angew Chem Int Ed Engl 2023; 62:e202306645. [PMID: 37339103 DOI: 10.1002/anie.202306645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
The importance of transition metal catalysis is exemplified by its wide range of applications, for example in the synthesis of chemicals, natural products, and pharmaceuticals. However, one relatively new application is for carrying out new-to-nature reactions inside living cells. The complex environment of a living cell is not welcoming to transition metal catalysts, as a diverse range of biological components have the potential to inhibit or deactivate the catalyst. Here we review the current progress in the field of transition metal catalysis, and evaluation of catalysis efficiency in living cells and under biological (relevant) conditions. Catalyst poisoning is a ubiquitous problem in this field, and we propose that future research into the development of physical and kinetic protection strategies may provide a route to improve the reactivity of catalysts in cells.
Collapse
Affiliation(s)
- Catriona C James
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joost N H Reek
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Escalona-Rayo O, Zeng Y, Knol RA, Kock TJF, Aschmann D, Slütter B, Kros A. In vitro and in vivo evaluation of clinically-approved ionizable cationic lipids shows divergent results between mRNA transfection and vaccine efficacy. Biomed Pharmacother 2023; 165:115065. [PMID: 37406506 DOI: 10.1016/j.biopha.2023.115065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/11/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Ionizable cationic lipids (ICLs) play an essential role in the effectiveness of lipid nanoparticles (LNPs) for delivery of mRNA therapeutics and vaccines; therefore, critical evaluations of their biological performance would extend the existing knowledge in the field. In the present study, we examined the effects of the three clinically-approved ICLs, Dlin-MC3-DMA, ALC-0315 and SM-102, as well as DODAP, on the in vitro and in vivo performance of LNPs for mRNA delivery and vaccine efficacy. mRNA-LNPs containing these lipids were successfully prepared, which were all found to be very similar in their physicochemical properties and mRNA encapsulation efficiencies. Furthermore, the results of the in vitro studies indicated that these mRNA-LNPs were efficiently taken up by immortalized and primary immune cells with comparable efficiency; however, SM-102-based LNPs were superior in inducing protein expression and antigen-specific T cell proliferation. In contrast, in vivo studies revealed that LNPs containing ALC-0315 and SM-102 yielded almost identical protein expression levels in zebrafish embryos, which were significantly higher than Dlin-MC3-DMA-based LNPs. Additionally, a mouse immunization study demonstrated that a single-dose subcutaneous administration of the mRNA-LNPs resulted in a high production of intracellular cytokines by antigen-specific T cells, but no significant differences among the three clinically-approved ICLs were observed, suggesting a weak correlation between in vitro and in vivo outcomes. This study provides strong evidence that ICLs modulate the performance of mRNA-LNPs and that in vitro data does not adequately predict their behavior in vivo.
Collapse
Affiliation(s)
- Oscar Escalona-Rayo
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Ye Zeng
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Renzo A Knol
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Thomas J F Kock
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Dennis Aschmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Bram Slütter
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
26
|
Wang N, Zhang G, Zhang P, Zhao K, Tian Y, Cui J. Vaccination of TLR7/8 Agonist-Conjugated Antigen Nanoparticles for Cancer Immunotherapy. Adv Healthc Mater 2023; 12:e2300249. [PMID: 37016572 DOI: 10.1002/adhm.202300249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Nanovaccine-based immunotherapy can initiate strong immune responses and establish a long-term immune memory to prevent tumor invasion and recurrence. Herein, the assembly of redox-responsive antigen nanoparticles (NPs) conjugated with imidazoquinoline-based TLR7/8 agonists for lymph node-targeted immune activation is reported, which can potentiate tumor therapy and prevention. Antigen NPs are assembled via the templating of zeolitic imidazolate framework-8 NPs to cross-link ovalbumin with disulfide bonds, which enables the NPs with redox-responsiveness for improved antigen cross-presentation and dendritic cell activation. The formulated nanovaccines promote the lymphatic co-delivery of antigens and agonists, which can trigger immune responses of cytotoxic T lymphocytes and strong immunological memory. Notably, nanovaccines demonstrate their superiority for tumor prevention owing to the elicited robust antitumor immunity. The reported strategy provides a rational design of nanovaccines for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Guiqiang Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, P. R. China
| |
Collapse
|
27
|
Han G, Noh D, Lee H, Lee S, Kim S, Yoon HY, Lee SH. Advances in mRNA therapeutics for cancer immunotherapy: From modification to delivery. Adv Drug Deliv Rev 2023; 199:114973. [PMID: 37369262 PMCID: PMC10290897 DOI: 10.1016/j.addr.2023.114973] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
RNA vaccines have demonstrated their ability to solve the issues posed by the COVID-19 pandemic. This success has led to the renaissance of research into mRNA and their nanoformulations as potential therapeutic modalities for various diseases. The potential of mRNA as a template for synthesizing proteins and protein fragments for cancer immunotherapy is now being explored. Despite the promise, the use of mRNA in cancer immunotherapy is limited by challenges, such as low stability against extracellular RNases, poor delivery efficiency to the target organs and cells, short circulatory half-life, variable expression levels and duration. This review highlights recent advances in chemical modification and advanced delivery systems that are helping to address these challenges and unlock the biological and pharmacological potential of mRNA therapeutics in cancer immunotherapy. The review concludes by discussing future perspectives for mRNA-based cancer immunotherapy, which holds great promise as a next-generation therapeutic modality.
Collapse
Affiliation(s)
- Geonhee Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Dahye Noh
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 02792; Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hokyung Lee
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sangmin Lee
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sehoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 02792.
| | - Soo Hyeon Lee
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
28
|
Yadav S. Advanced therapeutics avenues in hepatocellular carcinoma: a novel paradigm. Med Oncol 2023; 40:239. [PMID: 37442842 DOI: 10.1007/s12032-023-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, and it poses a significant risk to patients health and longevity due to its high morbidity and fatality rates. Surgical ablation, radiotherapy, chemotherapy, and, most recently, immunotherapy have all been investigated for HCC, but none have yielded the desired outcomes. Several unique nanocarrier drug delivery techniques have been studied for their potential therapeutic implications in the treatment of HCC. Nanoparticle-based imaging could be effective for more accurate HCC diagnosis. Since its inception, nanomedicine has significantly transformed the approach to both the treatment and diagnostics of liver cancer. Nanoparticles (NPs) are being studied as a potential treatment for liver cancer because of their ability to carry small substances, such as treatment with chemotherapy, microRNA, and therapeutic genes. The primary focus of this study is on the most current discoveries and practical uses of nanomedicine-based diagnostic and therapeutic techniques for liver cancer. In this section, we had gone over what we know about metabolic dysfunction in HCC and the treatment options that attempt to fix it by targeting metabolic pathways. Furthermore, we propose a multi-target metabolic strategy as a viable HCC treatment option. Based on the findings given here, the scientists believe that smart nanomaterials have great promise for improving cancer theranostics and opening up new avenues for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No.2, Sector 17-A, Yamuna Expressway, Gautam Buddhnagar, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|
29
|
Ko HJ, Kim YJ. Antigen Delivery Systems: Past, Present, and Future. Biomol Ther (Seoul) 2023; 31:370-387. [PMID: 37072288 PMCID: PMC10315343 DOI: 10.4062/biomolther.2023.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 04/20/2023] Open
Abstract
The COVID-19 pandemic has increased demand for safe and effective vaccines. Research to develop vaccines against diseases including Middle East respiratory syndrome, Ebolavirus, human immunodeficiency virus, and various cancers would also contribute to global well-being. For successful vaccine development, the advancement of technologies such as antigen (Ag) screening, Ag delivery systems and adjuvants, and manufacturing processes is essential. Ag delivery systems are required not only to deliver a sufficient amount of Ag for vaccination, but also to enhance immune response. In addition, Ag types and their delivery systems determine the manufacturing processes of the vaccine product. Here, we analyze the characteristics of various Ag delivery systems: plasmids, viral vectors, bacterial vectors, nanoparticles, self-assembled particles, natural and artificial cells, and extracellular vesicles. This review provides insight into the current vaccine landscape and highlights promising avenues of research for the development and improvement of Ag delivery systems.
Collapse
Affiliation(s)
- Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yeon-Jeong Kim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Inje University, Gimhae 50834, Republic of Korea
- Inje Institute of Pharmaceutical Science and Research, Inje University, Gimhae 50834, Republic of Korea
- Smart Marine Therapeutic Center, Inje University, Gimhae 50834, Republic of Korea
| |
Collapse
|
30
|
Hagedorn EJ, Perlin JR, Freeman RJ, Wattrus SJ, Han T, Mao C, Kim JW, Fernández-Maestre I, Daily ML, D'Amato C, Fairchild MJ, Riquelme R, Li B, Ragoonanan DAVE, Enkhbayar K, Henault EL, Wang HG, Redfield SE, Collins SH, Lichtig A, Yang S, Zhou Y, Kunar B, Gomez-Salinero JM, Dinh TT, Pan J, Holler K, Feldman HA, Butcher EC, van Oudenaarden A, Rafii S, Junker JP, Zon LI. Transcription factor induction of vascular blood stem cell niches in vivo. Dev Cell 2023; 58:1037-1051.e4. [PMID: 37119815 PMCID: PMC10330626 DOI: 10.1016/j.devcel.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/08/2023] [Accepted: 04/07/2023] [Indexed: 05/01/2023]
Abstract
The hematopoietic niche is a supportive microenvironment composed of distinct cell types, including specialized vascular endothelial cells that directly interact with hematopoietic stem and progenitor cells (HSPCs). The molecular factors that specify niche endothelial cells and orchestrate HSPC homeostasis remain largely unknown. Using multi-dimensional gene expression and chromatin accessibility analyses in zebrafish, we define a conserved gene expression signature and cis-regulatory landscape that are unique to sinusoidal endothelial cells in the HSPC niche. Using enhancer mutagenesis and transcription factor overexpression, we elucidate a transcriptional code that involves members of the Ets, Sox, and nuclear hormone receptor families and is sufficient to induce ectopic niche endothelial cells that associate with mesenchymal stromal cells and support the recruitment, maintenance, and division of HSPCs in vivo. These studies set forth an approach for generating synthetic HSPC niches, in vitro or in vivo, and for effective therapies to modulate the endogenous niche.
Collapse
Affiliation(s)
- Elliott J Hagedorn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA; Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Julie R Perlin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Rebecca J Freeman
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Samuel J Wattrus
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Tianxiao Han
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Clara Mao
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Ji Wook Kim
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Inés Fernández-Maestre
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Madeleine L Daily
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Christopher D'Amato
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Michael J Fairchild
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Raquel Riquelme
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Brian Li
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Dana A V E Ragoonanan
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Khaliun Enkhbayar
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Emily L Henault
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Helen G Wang
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Shelby E Redfield
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Samantha H Collins
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Asher Lichtig
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Balvir Kunar
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jesus Maria Gomez-Salinero
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Thanh T Dinh
- Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research and the Department of Pathology, Stanford University, Stanford, CA, USA
| | - Junliang Pan
- Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research and the Department of Pathology, Stanford University, Stanford, CA, USA
| | - Karoline Holler
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Henry A Feldman
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - Eugene C Butcher
- Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research and the Department of Pathology, Stanford University, Stanford, CA, USA
| | - Alexander van Oudenaarden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Shahin Rafii
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - J Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA.
| |
Collapse
|
31
|
Wang Y, Yin Z, Gao L, Ma B, Shi J, Chen H. Lipid Nanoparticles-Based Therapy in Liver Metastasis Management: From Tumor Cell-Directed Strategy to Liver Microenvironment-Directed Strategy. Int J Nanomedicine 2023; 18:2939-2954. [PMID: 37288351 PMCID: PMC10243353 DOI: 10.2147/ijn.s402821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Abstract
Metastasis to the liver, as one of the most frequent metastatic patterns, was associated with poor prognosis. Major drawbacks of conventional therapies in liver metastasis were the lack of metastatic-targeting ability, predominant systemic toxicities and incapability of tumor microenvironment modulations. Lipid nanoparticles-based strategies like galactosylated, lyso-thermosensitive or active-targeting chemotherapeutics liposomes have been explored in liver metastasis management. This review aimed to summarize the state-of-art lipid nanoparticles-based therapies in liver metastasis management. Clinical and translational studies on the lipid nanoparticles in treating liver metastasis were searched up to April, 2023 from online databases. This review focused not only on the updates in drug-encapsulated lipid nanoparticles directly targeting metastatic cancer cells in treating liver metastasis, but more importantly on research frontiers in drug-loading lipid nanoparticles targeting nonparenchymal liver tumor microenvironment components in treating liver metastasis, which showed promise for future clinical oncological practice.
Collapse
Affiliation(s)
- Yuhan Wang
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Zhenyu Yin
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Lei Gao
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Bin Ma
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Jianming Shi
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Hao Chen
- Department of Surgical Oncology, Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, People’s Republic of China
| |
Collapse
|
32
|
Wickline SA, Hou KK, Pan H. Peptide-Based Nanoparticles for Systemic Extrahepatic Delivery of Therapeutic Nucleotides. Int J Mol Sci 2023; 24:ijms24119455. [PMID: 37298407 DOI: 10.3390/ijms24119455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Peptide-based nanoparticles (PBN) for nucleotide complexation and targeting of extrahepatic diseases are gaining recognition as potent pharmaceutical vehicles for fine-tuned control of protein production (up- and/or down-regulation) and for gene delivery. Herein, we review the principles and mechanisms underpinning self-assembled formation of PBN, cellular uptake, endosomal release, and delivery to extrahepatic disease sites after systemic administration. Selected examples of PBN that have demonstrated recent proof of concept in disease models in vivo are summarized to offer the reader a comparative view of the field and the possibilities for clinical application.
Collapse
Affiliation(s)
- Samuel A Wickline
- Division of Cardiology, Department of Medical Engineering, University of South Florida, Tampa, FL 33602, USA
| | - Kirk K Hou
- Department of Ophthalmology, Stein and Doheny Eye Institutes, University of California, Los Angeles, CA 90095, USA
| | - Hua Pan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
33
|
Won S, An J, Song H, Im S, You G, Lee S, Koo KI, Hwang CH. Transnasal targeted delivery of therapeutics in central nervous system diseases: a narrative review. Front Neurosci 2023; 17:1137096. [PMID: 37292158 PMCID: PMC10246499 DOI: 10.3389/fnins.2023.1137096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 06/10/2023] Open
Abstract
Currently, neurointervention, surgery, medication, and central nervous system (CNS) stimulation are the main treatments used in CNS diseases. These approaches are used to overcome the blood brain barrier (BBB), but they have limitations that necessitate the development of targeted delivery methods. Thus, recent research has focused on spatiotemporally direct and indirect targeted delivery methods because they decrease the effect on nontarget cells, thus minimizing side effects and increasing the patient's quality of life. Methods that enable therapeutics to be directly passed through the BBB to facilitate delivery to target cells include the use of nanomedicine (nanoparticles and extracellular vesicles), and magnetic field-mediated delivery. Nanoparticles are divided into organic, inorganic types depending on their outer shell composition. Extracellular vesicles consist of apoptotic bodies, microvesicles, and exosomes. Magnetic field-mediated delivery methods include magnetic field-mediated passive/actively-assisted navigation, magnetotactic bacteria, magnetic resonance navigation, and magnetic nanobots-in developmental chronological order of when they were developed. Indirect methods increase the BBB permeability, allowing therapeutics to reach the CNS, and include chemical delivery and mechanical delivery (focused ultrasound and LASER therapy). Chemical methods (chemical permeation enhancers) include mannitol, a prevalent BBB permeabilizer, and other chemicals-bradykinin and 1-O-pentylglycerol-to resolve the limitations of mannitol. Focused ultrasound is in either high intensity or low intensity. LASER therapies includes three types: laser interstitial therapy, photodynamic therapy, and photobiomodulation therapy. The combination of direct and indirect methods is not as common as their individual use but represents an area for further research in the field. This review aims to analyze the advantages and disadvantages of these methods, describe the combined use of direct and indirect deliveries, and provide the future prospects of each targeted delivery method. We conclude that the most promising method is the nose-to-CNS delivery of hybrid nanomedicine, multiple combination of organic, inorganic nanoparticles and exosomes, via magnetic resonance navigation following preconditioning treatment with photobiomodulation therapy or focused ultrasound in low intensity as a strategy for differentiating this review from others on targeted CNS delivery; however, additional studies are needed to demonstrate the application of this approach in more complex in vivo pathways.
Collapse
Affiliation(s)
- Seoyeon Won
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeongyeon An
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hwayoung Song
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Subin Im
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Geunho You
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seungho Lee
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyo-in Koo
- Major of Biomedical Engineering, Department of Electrical, Electronic, and Computer Engineering, University of Ulsan, Ulsan, Republic of Korea
| | - Chang Ho Hwang
- Department of Physical and Rehabilitation Medicine, Chungnam National University Hospital, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
34
|
Wen P, Ke W, Dirisala A, Toh K, Tanaka M, Li J. Stealth and pseudo-stealth nanocarriers. Adv Drug Deliv Rev 2023; 198:114895. [PMID: 37211278 DOI: 10.1016/j.addr.2023.114895] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The stealth effect plays a central role on capacitating nanomaterials for drug delivery applications through improving the pharmacokinetics such as blood circulation, biodistribution, and tissue targeting. Here based on a practical analysis of stealth efficiency and a theoretical discussion of relevant factors, we provide an integrated material and biological perspective in terms of engineering stealth nanomaterials. The analysis surprisingly shows that more than 85% of the reported stealth nanomaterials encounter a rapid drop of blood concentration to half of the administered dose within 1 h post administration although a relatively long β-phase is observed. A term, pseudo-stealth effect, is used to delineate this common pharmacokinetics behavior of nanomaterials, that is, dose-dependent nonlinear pharmacokinetics because of saturating or depressing bio-clearance of RES. We further propose structural holism can be a watershed to improve the stealth effect; that is, the whole surface structure and geometry play important roles, rather than solely relying on a single factor such as maximizing repulsion force through polymer-based steric stabilization (e.g., PEGylation) or inhibiting immune attack through a bio-inspired component. Consequently, engineering delicate structural hierarchies to minimize attractive binding sites, that is, minimal charges/dipole and hydrophobic domain, becomes crucial. In parallel, the pragmatic implementation of the pseudo-stealth effect and dynamic modulation of the stealth effect are discussed for future development.
Collapse
Affiliation(s)
- Panyue Wen
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Wendong Ke
- Chemical Macromolecule Division, Asymchem Life Science (Tianjin) Co., Ltd. No. 71, Seventh Avenue, TEDA Tianjin 300457, P.R. China
| | - Anjaneyulu Dirisala
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazuko Toh
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Junjie Li
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
35
|
Alter CL, Detampel P, Schefer RB, Lotter C, Hauswirth P, Puligilla RD, Weibel VJ, Schenk SH, Heusermann W, Schürz M, Meisner-Kober N, Palivan C, Einfalt T, Huwyler J. High efficiency preparation of monodisperse plasma membrane derived extracellular vesicles for therapeutic applications. Commun Biol 2023; 6:478. [PMID: 37137966 PMCID: PMC10156699 DOI: 10.1038/s42003-023-04859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
Extracellular vesicles (EVs) are highly interesting for the design of next-generation therapeutics. However, their preparation methods face challenges in standardization, yield, and reproducibility. Here, we describe a highly efficient and reproducible EV preparation method for monodisperse nano plasma membrane vesicles (nPMVs), which yields 10 to 100 times more particles per cell and hour than conventional EV preparation methods. nPMVs are produced by homogenizing giant plasma membrane vesicles following cell membrane blebbing and apoptotic body secretion induced by chemical stressors. nPMVs showed no significant differences compared to native EVs from the same cell line in cryo-TEM analysis, in vitro cellular interactions, and in vivo biodistribution studies in zebrafish larvae. Proteomics and lipidomics, on the other hand, suggested substantial differences consistent with the divergent origin of these two EV types and indicated that nPMVs primarily derive from apoptotic extracellular vesicles. nPMVs may provide an attractive source for developing EV-based pharmaceutical therapeutics.
Collapse
Affiliation(s)
- Claudio L Alter
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland
| | - Pascal Detampel
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Roman B Schefer
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Claudia Lotter
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Patrick Hauswirth
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Ramya D Puligilla
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Vera J Weibel
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Susanne H Schenk
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Wolf Heusermann
- Imaging Core Facility, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Melanie Schürz
- Department of Biosciences & Medical Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Nicole Meisner-Kober
- Department of Biosciences & Medical Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Cornelia Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland
| | - Tomaž Einfalt
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
36
|
Ray L, Ray S. Enhanced anticancer activity of siRNA and drug codelivered by anionic biopolymer: overcoming electrostatic repulsion. Nanomedicine (Lond) 2023; 18:855-874. [PMID: 37503814 DOI: 10.2217/nnm-2022-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Aim: To codeliver an anticancer drug (doxorubicin) and siRNA in the form of nanoparticles into CD44-overexpressing colon cancer cells (HT-29) using an anionic, amphiphilic biopolymer comprising modified hyaluronic acid (6-O-[3-hexadecyloxy-2-hydroxypropyl]-hyaluronic acid). Materials & methods: Characterization of nanoparticles was performed using dynamic light scattering, scanning electron microscopy, transmission electron microscopy, molecular docking, in vitro drug release and gel mobility assays. Detailed in vitro experiments, including a gene silencing study and western blot, were also performed. Results: A 69% knockdown of the target gene was observed, and western blot showed 5.7-fold downregulation of the target protein. The repulsive forces between siRNA and 6-O-(3-hexadecyloxy-2-hydroxypropyl)-hyaluronic acid were overcome by hydrogen bonding and hydrophobic interactions. Conclusion: The authors successfully codelivered a drug and siRNA by anionic vector.
Collapse
Affiliation(s)
- Lipika Ray
- Pharmaceutics & Pharmacokinetics Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Sutapa Ray
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
37
|
Zhao X, Amevor FK, Xue X, Wang C, Cui Z, Dai S, Peng C, Li Y. Remodeling the hepatic fibrotic microenvironment with emerging nanotherapeutics: a comprehensive review. J Nanobiotechnology 2023; 21:121. [PMID: 37029392 PMCID: PMC10081370 DOI: 10.1186/s12951-023-01876-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Liver fibrosis could be the last hope for treating liver cancer and remodeling of the hepatic microenvironment has emerged as a strategy to promote the ablation of liver fibrosis. In recent years, especially with the rapid development of nanomedicine, hepatic microenvironment therapy has been widely researched in studies concerning liver cancer and fibrosis. In this comprehensive review, we summarized recent advances in nano therapy-based remodeling of the hepatic microenvironment. Firstly, we discussed novel strategies for regulatory immune suppression caused by capillarization of liver sinusoidal endothelial cells (LSECs) and macrophage polarization. Furthermore, metabolic reprogramming and extracellular matrix (ECM) deposition are caused by the activation of hepatic stellate cells (HSCs). In addition, recent advances in ROS, hypoxia, and impaired vascular remodeling in the hepatic fibrotic microenvironment due to ECM deposition have also been summarized. Finally, emerging nanotherapeutic approaches based on correlated signals were discussed in this review. We have proposed novel strategies such as engineered nanotherapeutics targeting antigen-presenting cells (APCs) or direct targeting T cells in liver fibrotic immunotherapy to be used in preventing liver fibrosis. In summary, this comprehensive review illustrated the opportunities in drug targeting and nanomedicine, and the current challenges to be addressed.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- , No. 1166, Liu Tai Avenue, Wenjiang district, Chengdu, Sichuan, China.
| |
Collapse
|
38
|
Arias‐Alpizar G, Papadopoulou P, Rios X, Pulagam KR, Moradi M, Pattipeiluhu R, Bussmann J, Sommerdijk N, Llop J, Kros A, Campbell F. Phase-Separated Liposomes Hijack Endogenous Lipoprotein Transport and Metabolism Pathways to Target Subsets of Endothelial Cells In Vivo. Adv Healthc Mater 2023; 12:e2202709. [PMID: 36565694 PMCID: PMC11469146 DOI: 10.1002/adhm.202202709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Indexed: 12/25/2022]
Abstract
Plasma lipid transport and metabolism are essential to ensure correct cellular function throughout the body. Dynamically regulated in time and space, the well-characterized mechanisms underpinning plasma lipid transport and metabolism offers an enticing, but as yet underexplored, rationale to design synthetic lipid nanoparticles with inherent cell/tissue selectivity. Herein, a systemically administered liposome formulation, composed of just two lipids, that is capable of hijacking a triglyceride lipase-mediated lipid transport pathway resulting in liposome recognition and uptake within specific endothelial cell subsets is described. In the absence of targeting ligands, liposome-lipase interactions are mediated by a unique, phase-separated ("parachute") liposome morphology. Within the embryonic zebrafish, selective liposome accumulation is observed at the developing blood-brain barrier. In mice, extensive liposome accumulation within the liver and spleen - which is reduced, but not eliminated, following small molecule lipase inhibition - supports a role for endothelial lipase but highlights these liposomes are also subject to significant "off-target" by reticuloendothelial system organs. Overall, these compositionally simplistic liposomes offer new insights into the discovery and design of lipid-based nanoparticles that can exploit endogenous lipid transport and metabolism pathways to achieve cell selective targeting in vivo.
Collapse
Affiliation(s)
- Gabriela Arias‐Alpizar
- Supramolecular and Biomaterials ChemistryLeiden Institute of ChemistryLeiden UniversityP.O. Box 9502Leiden2300The Netherlands
- Division of BioTherapeuticsLeiden Academic Centre for Drug ResearchLeiden UniversityP.O. Box 9502Leiden2300The Netherlands
| | - Panagiota Papadopoulou
- Supramolecular and Biomaterials ChemistryLeiden Institute of ChemistryLeiden UniversityP.O. Box 9502Leiden2300The Netherlands
| | - Xabier Rios
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)San Sebastián20014Spain
| | | | - Mohammad‐Amin Moradi
- Materials and Interface ChemistryDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600The Netherlands
| | - Roy Pattipeiluhu
- Supramolecular and Biomaterials ChemistryLeiden Institute of ChemistryLeiden UniversityP.O. Box 9502Leiden2300The Netherlands
| | - Jeroen Bussmann
- Supramolecular and Biomaterials ChemistryLeiden Institute of ChemistryLeiden UniversityP.O. Box 9502Leiden2300The Netherlands
- Division of BioTherapeuticsLeiden Academic Centre for Drug ResearchLeiden UniversityP.O. Box 9502Leiden2300The Netherlands
| | - Nico Sommerdijk
- Department of BiochemistryRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegen6525The Netherlands
- Electron Microscopy CentreRadboudumc Technology Center MicroscopyRadboud University Medical CenterGeert Grooteplein Zuid 28Nijmegen6525The Netherlands
| | - Jordi Llop
- Materials and Interface ChemistryDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600The Netherlands
| | - Alexander Kros
- Supramolecular and Biomaterials ChemistryLeiden Institute of ChemistryLeiden UniversityP.O. Box 9502Leiden2300The Netherlands
| | - Frederick Campbell
- Supramolecular and Biomaterials ChemistryLeiden Institute of ChemistryLeiden UniversityP.O. Box 9502Leiden2300The Netherlands
- Present address:
NanoVation Therapeutics2405 Wesbrook Mall 4th floorVancouverBCV6T 1Z3Canada
| |
Collapse
|
39
|
Chan WCW. Principles of Nanoparticle Delivery to Solid Tumors. BME FRONTIERS 2023; 4:0016. [PMID: 37849661 PMCID: PMC10085247 DOI: 10.34133/bmef.0016] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/08/2023] [Indexed: 10/19/2023] Open
Abstract
The effective treatment of patients with cancer hinges on the delivery of therapeutics to a tumor site. Nanoparticles provide an essential transport system. We present 5 principles to consider when designing nanoparticles for cancer targeting: (a) Nanoparticles acquire biological identity in vivo, (b) organs compete for nanoparticles in circulation, (c) nanoparticles must enter solid tumors to target tumor components, (d) nanoparticles must navigate the tumor microenvironment for cellular or organelle targeting, and (e) size, shape, surface chemistry, and other physicochemical properties of nanoparticles influence their transport process to the target. This review article describes these principles and their application for engineering nanoparticle delivery systems to carry therapeutics to tumors or other disease targets.
Collapse
Affiliation(s)
- Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Terrence Donnelly Center for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
40
|
Bhandari M, Soria-Carrera H, Wohlmann J, Dal NJK, de la Fuente JM, Martín-Rapún R, Griffiths G, Fenaroli F. Subcellular localization and therapeutic efficacy of polymeric micellar nanoparticles encapsulating bedaquiline for tuberculosis treatment in zebrafish. Biomater Sci 2023; 11:2103-2114. [PMID: 36723226 DOI: 10.1039/d2bm01835g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The combination drug regimens that have long been used to treat tuberculosis (TB), caused by Mycobacterium tuberculosis, are fraught with problems such as frequent administration, long duration of treatment, and harsh adverse effects, leading to the emergence of multidrug resistance. Moreover, there is no effective preventive vaccine against TB infection. In this context, nanoparticles (NPs) have emerged as a potential alternative method for drug delivery. Encapsulating antibiotics in biodegradable NPs has been shown to provide effective therapy and reduced toxicity against M. tuberculosis in different mammalian models, when compared to conventional free drug administration. Here, we evaluate the localization, therapeutic efficacy and toxic effects of polymeric micellar NPs encapsulating a promising but highly hydrophobic and toxic antitubercular drug bedaquiline (BQ) in zebrafish embryos infected with Mycobacterium marinum. Our study shows that the NP formulation of BQ improves survival and reduces bacterial burden in the infected embryos after treatment when compared to its free form. The intravenously injected BQ NPs have short circulation times due to their rapid and efficient uptake into the endothelial cells, as observed by correlative light and electron microscopy (CLEM).
Collapse
Affiliation(s)
- Madhavi Bhandari
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Héctor Soria-Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain.,Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | | | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Martín-Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain.,Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Federico Fenaroli
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway.
| |
Collapse
|
41
|
Bi D, Unthan DM, Hu L, Bussmann J, Remaut K, Barz M, Zhang H. Polysarcosine-based lipid formulations for intracranial delivery of mRNA. J Control Release 2023; 356:1-13. [PMID: 36803765 DOI: 10.1016/j.jconrel.2023.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023]
Abstract
Messenger RNA (mRNA) is revolutionizing the future of therapeutics in a variety of diseases, including neurological disorders. Lipid formulations have shown to be an effective platform technology for mRNA delivery and are the basis for the approved mRNA vaccines. In many of these lipid formulations, polyethylene glycol (PEG)-functionalized lipid provides steric stabilization and thus plays a key role in improving the stability both ex vivo and in vivo. However, immune responses towards PEGylated lipids may compromise the use of those lipids in some applications (e.g., induction of antigen specific tolerance), or within sensitive tissues (e.g., central nervous system (CNS)). With respect to this issue, polysarcosine (pSar)-based lipopolymers were investigated as an alternative to PEG-lipid in mRNA lipoplexes for controlled intracerebral protein expression in this study. Four polysarcosine-lipids with defined sarcosine average molecular weight (Mn = 2 k, 5 k) and anchor diacyl chain length (m = 14, 18) were synthesized, and incorporated into cationic liposomes. We found that the content, pSar chain length and carbon tail lengths of pSar-lipids govern the transfection efficiency and biodistribution. Increasing carbon diacyl chain length of pSar-lipid led up to 4- and 6-fold lower protein expression in vitro. When the length of either pSar chain or lipid carbon tail increased, the transfection efficiency decreased while the circulation time was prolonged. mRNA lipoplexes containing 2.5% C14-pSar2k resulted in the highest mRNA translation in the brain of zebrafish embryos through intraventricular injection, while C18-pSar2k-liposomes showed a comparable circulation with DSPE-PEG2k-liposomes after systemic administration. To conclude, pSar-lipid enable efficient mRNA delivery, and can substitute PEG-lipids in lipid formulations for controlled protein expression within the CNS.
Collapse
Affiliation(s)
- Dongdong Bi
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands
| | - Dennis Mark Unthan
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands
| | - Lili Hu
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands
| | - Jeroen Bussmann
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands; Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Heyang Zhang
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands.
| |
Collapse
|
42
|
Nakajima H, Ishikawa H, Yamamoto T, Chiba A, Fukui H, Sako K, Fukumoto M, Mattonet K, Kwon HB, Hui SP, Dobreva GD, Kikuchi K, Helker CSM, Stainier DYR, Mochizuki N. Endoderm-derived islet1-expressing cells differentiate into endothelial cells to function as the vascular HSPC niche in zebrafish. Dev Cell 2023; 58:224-238.e7. [PMID: 36693371 DOI: 10.1016/j.devcel.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 10/26/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023]
Abstract
Endothelial cells (ECs) line blood vessels and serve as a niche for hematopoietic stem and progenitor cells (HSPCs). Recent data point to tissue-specific EC specialization as well as heterogeneity; however, it remains unclear how ECs acquire these properties. Here, by combining live-imaging-based lineage-tracing and single-cell transcriptomics in zebrafish embryos, we identify an unexpected origin for part of the vascular HSPC niche. We find that islet1 (isl1)-expressing cells are the progenitors of the venous ECs that constitute the majority of the HSPC niche. These isl1-expressing cells surprisingly originate from the endoderm and differentiate into ECs in a process dependent on Bmp-Smad signaling and subsequently requiring npas4l (cloche) function. Single-cell RNA sequencing analyses show that isl1-derived ECs express a set of genes that reflect their distinct origin. This study demonstrates that endothelial specialization in the HSPC niche is determined at least in part by the origin of the ECs.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan.
| | - Hiroyuki Ishikawa
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; AMED-CREST, AMED, Tokyo 100-0004, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Keisuke Sako
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Moe Fukumoto
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Hyouk-Bum Kwon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Subhra P Hui
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata 700019, India
| | - Gergana D Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Kazu Kikuchi
- Department of Cardiac Regeneration Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Christian S M Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany; Philipps-University Marburg, Faculty of Biology, Cell Signaling and Dynamics, Marburg 35043, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany.
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan.
| |
Collapse
|
43
|
Hyaluronic Acid-Modified Cisplatin-Encapsulated Poly(Lactic-co-Glycolic Acid) Magnetic Nanoparticles for Dual-Targeted NIR-Responsive Chemo-Photothermal Combination Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010290. [PMID: 36678917 PMCID: PMC9862698 DOI: 10.3390/pharmaceutics15010290] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Combination chemo-photothermal therapy with nanomaterials can reduce the dose of chemotherapeutic drugs required for effective cancer treatment by minimizing toxic side effects while improving survival times. Toward this end, we prepare hyaluronic acid (HA)-modified poly(lactic-co-glycolic acid) (PLGA) magnetic nanoparticles (MNP) for the CD44 receptor-mediated and magnetic field-guided dual-targeted delivery of cisplatin (CDDP). By co-encapsulating the CDDP and oleic acid-coated iron oxide MNP (IOMNP) in PLGA, the PMNPc was first prepared in a single emulsification/solvent evaporation step and successively surface modified with chitosan and HA to prepare the HA/PMNPc. Spherical HA/PMNPc nanoparticles of ~300 nm diameter can be prepared with 18 and 10% (w/w) loading content of CDDP and IOMNP and a pH-sensitive drug release to facilitate the endosomal release of the CDDP after intracellular uptake. This leads to the higher cytotoxicity of the HA/PMNPc toward the U87 glioblastoma cells than free CDDP with reduced IC50, a higher cell apoptosis rate, and the enhanced expression of cell apoptosis marker proteins. Furthermore, the nanoparticles show the hyperthermia effect toward U87 after short-term near-infrared (NIR) light exposure, which can further elevate the cell apoptosis/necrosis rate and upregulate the HSP70 protein expression due to the photothermal effects. The combined cancer therapeutic efficacy was studied in vivo using subcutaneously implanted U87 cells in nude mice. By using dual-targeted chemo-photothermal combination cancer therapy, the intravenously injected HA/PMNPc under magnetic field guidance and followed by NIR laser irradiation was demonstrated to be the most effective treatment modality by inhibiting the tumor growth and prolonging the survival time of the tumor-bearing nude mice.
Collapse
|
44
|
Rui Y, Eppler HB, Yanes AA, Jewell CM. Tissue-Targeted Drug Delivery Strategies to Promote Antigen-Specific Immune Tolerance. Adv Healthc Mater 2023; 12:e2202238. [PMID: 36417578 PMCID: PMC9992113 DOI: 10.1002/adhm.202202238] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/15/2022] [Indexed: 11/27/2022]
Abstract
During autoimmunity or organ transplant rejection, the immune system attacks host or transplanted tissue, causing debilitating inflammation for millions of patients. There is no cure for most of these diseases. Further, available therapies modulate inflammation through nonspecific pathways, reducing symptoms but also compromising patients' ability to mount healthy immune responses. Recent preclinical advances to regulate immune dysfunction with vaccine-like antigen specificity reveal exciting opportunities to address the root cause of autoimmune diseases and transplant rejection. Several of these therapies are currently undergoing clinical trials, underscoring the promise of antigen-specific tolerance. Achieving antigen-specific tolerance requires precision and often combinatorial delivery of antigen, cytokines, small molecule drugs, and other immunomodulators. This can be facilitated by biomaterial technologies, which can be engineered to orient and display immunological cues, protect against degradation, and selectively deliver signals to specific tissues or cell populations. In this review, some key immune cell populations involved in autoimmunity and healthy immune tolerance are described. Opportunities for drug delivery to immunological organs are discussed, where specialized tissue-resident immune cells can be programmed to respond in unique ways toward antigens. Finally, cell- and biomaterial-based therapies to induce antigen-specific immune tolerance that are currently undergoing clinical trials are highlighted.
Collapse
Affiliation(s)
- Yuan Rui
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Haleigh B. Eppler
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- Biological Sciences Training ProgramUniversity of MarylandCollege ParkMD20742USA
| | - Alexis A. Yanes
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Christopher M. Jewell
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- Biological Sciences Training ProgramUniversity of MarylandCollege ParkMD20742USA
- US Department of Veterans AffairsVA Maryland Health Care SystemBaltimoreMD21201USA
- Robert E. Fischell Institute for Biomedical DevicesCollege ParkMD20742USA
- Department of Microbiology and ImmunologyUniversity of Maryland Medical SchoolBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Cancer CenterBaltimoreMD21201USA
| |
Collapse
|
45
|
Manta CP, Leibing T, Friedrich M, Nolte H, Adrian M, Schledzewski K, Krzistetzko J, Kirkamm C, David Schmid C, Xi Y, Stojanovic A, Tonack S, de la Torre C, Hammad S, Offermanns S, Krüger M, Cerwenka A, Platten M, Goerdt S, Géraud C. Targeting of Scavenger Receptors Stabilin-1 and Stabilin-2 Ameliorates Atherosclerosis by a Plasma Proteome Switch Mediating Monocyte/Macrophage Suppression. Circulation 2022; 146:1783-1799. [PMID: 36325910 DOI: 10.1161/circulationaha.121.058615] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Scavenger receptors Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are preferentially expressed by liver sinusoidal endothelial cells. They mediate the clearance of circulating plasma molecules controlling distant organ homeostasis. Studies suggest that Stab1 and Stab2 may affect atherosclerosis. Although subsets of tissue macrophages also express Stab1, hematopoietic Stab1 deficiency does not modulate atherogenesis. Here, we comprehensively studied how targeting Stab1 and Stab2 affects atherosclerosis. METHODS ApoE-KO mice were interbred with Stab1-KO and Stab2-KO mice and fed a Western diet. For antibody targeting, Ldlr-KO mice were also used. Unbiased plasma proteomics were performed and independently confirmed. Ligand binding studies comprised glutathione-S-transferase-pulldown and endocytosis assays. Plasma proteome effects on monocytes were studied by single-cell RNA sequencing in vivo, and by gene expression analyses of Stabilin ligand-stimulated and plasma-stimulated bone marrow-derived monocytes/macrophages in vitro. RESULTS Spontaneous and Western diet-associated atherogenesis was significantly reduced in ApoE-Stab1-KO and ApoE-Stab2-KO mice. Similarly, inhibition of Stab1 or Stab2 by monoclonal antibodies significantly reduced Western diet-associated atherosclerosis in ApoE-KO and Ldlr-KO mice. Although neither plasma lipid levels nor circulating immune cell numbers were decisively altered, plasma proteomics revealed a switch in the plasma proteome, consisting of 231 dysregulated proteins comparing wildtype with Stab1/2-single and Stab1/2-double KO, and of 41 proteins comparing ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO. Among this broad spectrum of common, but also disparate scavenger receptor ligand candidates, periostin, reelin, and TGFBi (transforming growth factor, β-induced), known to modulate atherosclerosis, were independently confirmed as novel circulating ligands of Stab1/2. Single-cell RNA sequencing of circulating myeloid cells of ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO mice showed transcriptomic alterations in patrolling (Ccr2-/Cx3cr1++/Ly6Clo) and inflammatory (Ccr2+/Cx3cr1+/Ly6Chi) monocytes, including downregulation of proatherogenic transcription factor Egr1. In wildtype bone marrow-derived monocytes/macrophages, ligand exposure alone did not alter Egr1 expression in vitro. However, exposure to plasma from ApoE-Stab1-KO and ApoE-Stab2-KO mice showed a reverted proatherogenic macrophage activation compared with ApoE-KO plasma, including downregulation of Egr1 in vitro. CONCLUSIONS Inhibition of Stab1/Stab2 mediates an anti-inflammatory switch in the plasma proteome, including direct Stabilin ligands. The altered plasma proteome suppresses both patrolling and inflammatory monocytes and, thus, systemically protects against atherogenesis. Altogether, anti-Stab1- and anti-Stab2-targeted therapies provide a novel approach for the future treatment of atherosclerosis.
Collapse
Affiliation(s)
- Calin-Petru Manta
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Thomas Leibing
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Mirco Friedrich
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Neurology, MCTN (M.F., M.P.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany (M.F., M.P.)
| | - Hendrik Nolte
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Institute for Genetics and CECAD, University of Cologne, Germany (H.N., M.K.).,Max Planck Institute for Biology of Ageing, Cologne, Germany (H.N.)
| | - Monica Adrian
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Jessica Krzistetzko
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Christof Kirkamm
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Christian David Schmid
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Yannick Xi
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Ana Stojanovic
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience, MI3 (A.S., A.C.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Sarah Tonack
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany (S.T., S.O., M.K.)
| | - Carolina de la Torre
- Centre for Medical Research (ZMF) (C.d.l.T.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Seddik Hammad
- Department of Medicine II (S.H.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany (S.T., S.O., M.K.)
| | - Marcus Krüger
- Institute for Genetics and CECAD, University of Cologne, Germany (H.N., M.K.).,Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany (S.T., S.O., M.K.)
| | - Adelheid Cerwenka
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience, MI3 (A.S., A.C.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Michael Platten
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Neurology, MCTN (M.F., M.P.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany (M.F., M.P.)
| | - Sergij Goerdt
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
46
|
Nguyen TL, Choi Y, Im J, Shin H, Phan NM, Kim MK, Choi SW, Kim J. Immunosuppressive biomaterial-based therapeutic vaccine to treat multiple sclerosis via re-establishing immune tolerance. Nat Commun 2022; 13:7449. [PMID: 36460677 PMCID: PMC9718828 DOI: 10.1038/s41467-022-35263-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Current therapies for autoimmune diseases, such as multiple sclerosis (MS), induce broad suppression of the immune system, potentially promoting opportunistic infections. Here, we report an immunosuppressive biomaterial-based therapeutic vaccine carrying self-antigen and tolerance-inducing inorganic nanoparticles to treat experimental autoimmune encephalomyelitis (EAE), a mouse model mimicking human MS. Immunization with self-antigen-loaded mesoporous nanoparticles generates Foxp3+ regulatory T-cells in spleen and systemic immune tolerance in EAE mice, reducing central nervous system-infiltrating antigen-presenting cells (APCs) and autoreactive CD4+ T-cells. Introducing reactive oxygen species (ROS)-scavenging cerium oxide nanoparticles (CeNP) to self-antigen-loaded nanovaccine additionally suppresses activation of APCs and enhances antigen-specific immune tolerance, inducing recovery in mice from complete paralysis at the late, chronic stage of EAE, which shows similarity to chronic human MS. This study clearly shows that the ROS-scavenging capability of catalytic inorganic nanoparticles could be utilized to enhance tolerogenic features in APCs, leading to antigen-specific immune tolerance, which could be exploited in treating MS.
Collapse
Affiliation(s)
- Thanh Loc Nguyen
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Youngjin Choi
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea ,grid.35541.360000000121053345Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Jihye Im
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Hyunsu Shin
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Ngoc Man Phan
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Min Kyung Kim
- grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul, 06355 Republic of Korea
| | - Seung Woo Choi
- grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul, 06355 Republic of Korea ,grid.412480.b0000 0004 0647 3378Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620 Republic of Korea
| | - Jaeyun Kim
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul, 06355 Republic of Korea ,grid.264381.a0000 0001 2181 989XBiomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XInstitute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| |
Collapse
|
47
|
Mishra AK, Pandey M, Dewangan HK, Sl N, Sahoo PK. A Comprehensive Review on Liver Targeting: Emphasis on Nanotechnology- based Molecular Targets and Receptors Mediated Approaches. Curr Drug Targets 2022; 23:1381-1405. [PMID: 36065923 DOI: 10.2174/1389450123666220906091432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The pathogenesis of hepatic diseases involves several cells, which complicates the delivery of pharmaceutical agents. Many severe liver diseases affecting the worldwide population cannot be effectively treated. Major hindrances or challenges are natural physiological barriers and non-specific targeting of drugs administered, leading to inefficient treatment. Hence, there is an earnest need to look for novel therapeutic strategies to overcome these hindrances. A kind of literature has reported that drug safety and efficacy are incredibly raised when a drug is incorporated inside or attached to a polymeric material of either hydrophilic or lipophilic nature. This has driven the dynamic investigation for developing novel biodegradable materials, drug delivery carriers, target-specific drug delivery systems, and many other novel approaches. OBJECTIVE Present review is devoted to summarizing receptor-based liver cell targeting using different modified novel synthetic drug delivery carriers. It also highlights recent progress in drug targeting to diseased liver mediated by various receptors, including asialoglycoprotein, mannose and galactose receptor, Fc receptor, low-density lipoprotein, glycyrrhetinic, and bile acid receptor. The essential consideration is given to treating liver cancer targeting using nanoparticulate systems, proteins, viral and non-viral vectors, homing peptides and gene delivery. CONCLUSION Receptors based targeting approach is one such approach that was explored by researchers to develop novel formulations which can ensure site-specific drug delivery. Several receptors are on the surfaces of liver cells, which are highly overexpressed in various disease conditions. They all are helpful for the treatment of liver cancer.
Collapse
Affiliation(s)
- Ashwini Kumar Mishra
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| | - Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-05, Chandigarh Ludhiana Highway, Mohali Punjab, Pin: 160101, India
| | - Neha Sl
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| | - Pravat Kumar Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| |
Collapse
|
48
|
Zhou Q, Li J, Xiang J, Shao S, Zhou Z, Tang J, Shen Y. Transcytosis-enabled active extravasation of tumor nanomedicine. Adv Drug Deliv Rev 2022; 189:114480. [PMID: 35952830 DOI: 10.1016/j.addr.2022.114480] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 01/24/2023]
Abstract
Extravasation is the first step for nanomedicines in circulation to reach targeted solid tumors. Traditional nanomedicines have been designed to extravasate into tumor interstitium through the interendothelial gaps previously assumed rich in tumor blood vessels, i.e., the enhanced permeability and retention (EPR) effect. While the EPR effect has been validated in animal xenograft tumor models, accumulating evidence implies that the EPR effect is very limited and highly heterogeneous in human tumors, leading to highly unpredictable and inefficient extravasation and thus limited therapeutic efficacy of nanomedicines, including those approved in clinics. Enabling EPR-independent extravasation is the key to develop new generation of nanomedicine with enhanced efficacy. Transcytosis of tumor endothelial cells can confer nanomedicines to actively extravasate into solid tumors without relying on the EPR effect. Here, we review and prospectthe development of transcytosis-inducing nanomedicines, in hope of providing instructive insights for design of nanomedicines that can undergo selective transcellular transport across tumor endothelial cells, and thus inspiring the development of next-generation nanomedicines for clinical translation.
Collapse
Affiliation(s)
- Quan Zhou
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junjun Li
- Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Shiqun Shao
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Zhuxian Zhou
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianbin Tang
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China.
| | - Youqing Shen
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
49
|
Tao J, Wei Z, Cheng Y, Xu M, Li Q, Lee SMY, Ge W, Luo KQ, Wang X, Zheng Y. Apoptosis-Sensing Xenograft Zebrafish Tumor Model for Anticancer Evaluation of Redox-Responsive Cross-Linked Pluronic Micelles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39775-39786. [PMID: 36006680 DOI: 10.1021/acsami.2c09005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A suitable animal model for preclinical screening and evaluation in vivo could vastly increase the efficiency and success rate of nanomedicine development. Compared with rodents, the transparency of the zebrafish model offers unique advantages of real-time and high-resolution imaging of the whole body and cellular levels in vivo. In this research, we established an apoptosis-sensing xenograft zebrafish tumor model to evaluate the anti-cancer effects of redox-responsive cross-linked Pluronic polymeric micelles (CPPMs) visually and accurately. First, doxorubicin (Dox)-loaded CPPMs were fabricated and characterized with glutathione (GSH)-responsive drug release. Then, the B16F10 xenograft zebrafish tumor model was established to mimic the tumor microenvironment with angiogenesis and high GSH generation for redox-responsive tumor-targeting evaluation in vivo. The high GSH generation was first verified in the xenograft zebrafish tumor model. Compared with ordinary Pluronic polymeric micelles, Dox CPPMs had a much higher accumulation in zebrafish tumor sites. Finally, the apoptosis-sensing B16F10-C3 xenograft zebrafish tumor model was established for visual, rapid, effective, and noninvasive assessment of anti-cancer effects at the cellular level in vivo. The Dox CPPMs significantly inhibited the proliferation of cancer cells and induced apoptosis in the B16F10-C3 xenograft zebrafish tumor model. Therefore, the redox-responsive cross-linked Pluronic micelles showed effective anti-cancer therapy in the xenograft zebrafish tumor model. This xenograft zebrafish tumor model is available for rapid screening and assessment of anti-cancer effects in preclinical studies.
Collapse
Affiliation(s)
- Jinsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, China
| | - Zhengjie Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yaxin Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Meng Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Qiuxia Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Wei Ge
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau 999078, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau 999078, China
| |
Collapse
|
50
|
Hou L, Zhang M, Liu L, Zhong Q, Xie M, Zhao G. Therapeutic Applications of Nanomedicine in Metabolic Diseases by Targeting the Endothelium. QJM 2022:6692319. [PMID: 36063067 DOI: 10.1093/qjmed/hcac210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2022] Open
Abstract
The endothelial cells not only constitute the barrier between the blood and interstitial space, but also actively regulate vascular tone, blood flow, and the function of adjacent parenchymal cells. The close anatomical relationship between endothelial cells and highly vascularized metabolic organs suggests that the crosstalk between these units is vital for systemic metabolic homeostasis. Here, we review recent studies about the pivotal role of endothelial cells in metabolic diseases. Specifically, we discuss how the dysfunction of endothelial cells directly contributes to the development of insulin resistance (IR), type 2 diabetes mellitus (T2DM), atherosclerosis, and non-alcoholic fatty liver disease (NAFLD) via communication with parenchymal cells. Furthermore, although many biological macromolecules have been shown to ameliorate the progression of metabolic diseases by improving endothelial function, the low solubility, poor bioavailability, or lack of specificity of these molecules limit their clinical application. Given the advantages in drug delivery of nanomedicine, we focus on summarizing the reports that improving endothelial dysfunction through nanomedicine-based therapies provides an opportunity for preventing metabolic diseases.
Collapse
Affiliation(s)
- Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Ming Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Lili Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Qiong Zhong
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Meiying Xie
- Guangdong Eco-Engineering Polytechnic, 297 Guangshan First Road, Tianhe District, Guangzhou, Guangdong, 510520, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, 511518, Guangdong, China
| |
Collapse
|