1
|
Pan H, Wu X, Han R, He S, Li N, Yan H, Chen X, Zhu Z, Du Z, Wang H, Xu X. Nanoparticle-protein interactions: Spectroscopic probing of the adsorption of serum albumin to graphene oxide‑gold nanocomplexes surfaces. Int J Biol Macromol 2025; 284:138126. [PMID: 39608527 DOI: 10.1016/j.ijbiomac.2024.138126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Graphene oxide‑gold nanocomposites (GO-AuNCPs) are promising candidates in nanomedicine. They will inevitably bind with biomolecules such as serum albumin (SA) in the body while they enter the organism. The interaction between GO-AuNCPs and human serum albumin (HSA)/bovine serum albumin (BSA) were investigated by using multispectroscopic methods, elucidating the binding principles through molecular simulations. The results of ultraviolet-visible (UV-vis) absorption spectroscopy and steady-state fluorescence spectroscopy indicated that GO-AuNCPs interacted with HSA/BSA with different degrees of interaction. The binding of GO-AuNCPs and HSA/BSA was a spontaneous endothermic reaction, and the quenching mechanism is static quenching. The binding constant (Ka) value of BSA binding to GO-AuNCPs at the same temperature was greater than that for HSA, indicating a stronger affinity of BSA for GO-AuNCPs. Molecular simulation revealed that the binding sites of GO-AuNCPs on HSA/BSA were located within the slits of the subdomains IB and IIIA, rather than within any known binding regions. This significant finding was validated by using of site markers phenylbutazone (PB) and flufenamic acid (FA). Synchronous fluorescence spectroscopy, three-dimensional fluorescence spectroscopy, and circular dichroism (CD) spectroscopy showed that the conformation of HSA/BSA was altered upon the addition of GO-AuNCPs, resulting in slight structural changes of tryptophan and tyrosine residues. Although the secondary structure of HSA/BSA was changed, the α-helix remained dominant. The results provide a theoretical and experimental foundation for developing of safe and effective nanomaterials, which is of great theoretical significance.
Collapse
Affiliation(s)
- Hongshuo Pan
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Xinjie Wu
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Ruyue Han
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Shuhao He
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Nianhe Li
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Hui Yan
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, Shandong Province, China
| | - Xinyun Chen
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Ziyu Zhu
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Zhongyu Du
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Hao Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, Shandong Province, China.
| | - Xiangyu Xu
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China.
| |
Collapse
|
2
|
Kumari S, Chowdhry J, Sharma P, Agarwal S, Chandra Garg M. Integrating artificial neural networks and response surface methodology for predictive modeling and mechanistic insights into the detoxification of hazardous MB and CV dyes using Saccharum officinarum L. biomass. CHEMOSPHERE 2023; 344:140262. [PMID: 37793550 DOI: 10.1016/j.chemosphere.2023.140262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
The presence of dye pollutants in industrial wastewater poses significant environmental and health risks, necessitating effective treatment methods. The optimal adsorption treatment of methylene blue (MB) and crystal violet (CV) dye-simulated wastewater utilising Saccharum officinarum L presents a key challenge in the selection of appropriate modelling approaches. While RSM and ANN models are frequently used, there is a noticeable knowledge gap when it comes to evaluating their relative strengths and weaknesses in this context. The study compared the predictive abilities of response surface methodology (RSM) and artificial neural network (ANN) for the adsorption treatment of MB and CV dye-simulated wastewater using Saccharum officinarum L. The process experimental variables were modelled and predicted using a three-layer artificial neural network trained using the Levenberg-Marquard backpropagation algorithm and 30 central composite designs (CCD). The adsorption study used a specific mechanism, which led to noteworthy maximum removals of 98.3% and 98.2% for dyes (MB and CV), respectively. The RSM model achieved an impressive R2 of 0.9417, while the ANN model achieved 0.9236 in MB. Adsorption is commonly used to remove colour from many different materials. Saccharum officinarum L., a byproduct of sugarcane processing, has shown potential as an efficient and ecological adsorbent in this environment. The purpose of this study is to evaluate sugarcane bagasse's potential as an adsorbent for the removal of dyes MB and CV from industrial wastewater, providing a long-term strategy for reducing dye pollution. Due to its beneficial economic and environmental characteristics, the Saccharum officinarum L. adsorbent has prompted research into sustainable resources with low pollutant indices.
Collapse
Affiliation(s)
- Sheetal Kumari
- Amity Institute of Environmental Science (AIES), Amity University Uttar Pradesh, Sector-125, Noida, 201313, Gautam Budh Nagar, India
| | | | - Pinki Sharma
- Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Smriti Agarwal
- Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Manoj Chandra Garg
- Amity Institute of Environmental Science (AIES), Amity University Uttar Pradesh, Sector-125, Noida, 201313, Gautam Budh Nagar, India.
| |
Collapse
|
3
|
Priya AK, Muruganandam M, Imran M, Gill R, Vasudeva Reddy MR, Shkir M, Sayed MA, AlAbdulaal TH, Algarni H, Arif M, Jha NK, Sehgal SS. A study on managing plastic waste to tackle the worldwide plastic contamination and environmental remediation. CHEMOSPHERE 2023; 341:139979. [PMID: 37659517 DOI: 10.1016/j.chemosphere.2023.139979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Over the past 50 years, the emergence of plastic waste as one of the most urgent environmental problems in the world has given rise to several proposals to address the rising levels of contaminants associated with plastic debris. Worldwide plastic production has increased significantly over the last 70 years, reaching a record high of 359 million tonnes in 2020. China is currently the world's largest plastic producer, with a share of 17.5%. Of the total marine waste, microplastics account for 75%, while land-based pollution accounts for responsible for 80-90%, and ocean-based pollution 10-20% only in overall pollution problems. Even at small dosages (10 μg/mL), microplastics have been found to cause toxic effects on human and animal health. This review examines the sources of microplastic contamination, the prevalent reaches of microplastics, their impacts, and the remediation methods for microplastic contamination. This review explains the relationship between the community composition and the presence of microplastic particulate matter in aquatic ecosystems. The interaction between microplastics and emerging pollutants, including heavy metals, has been linked to enhanced toxicity. The review article provided a comprehensive overview of microplastic, including its fate, environmental toxicity, and possible remediation strategies. The results of our study are of great value as they illustrate a current perspective and provide an in-depth analysis of the current status of microplastics in development, their test requirements, and remediation technologies suitable for various environments.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamilnadu, India; Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India.
| | - M Muruganandam
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India
| | - Muhammad Imran
- Saudi Basic Industries Corporation (SABIC) Technology and Innovation Center, Riyadh 11551, Saudi Arabia
| | - Rana Gill
- University Centre for Research & Development, Electronics & Communication Department Chandigarh University Gharuan, Mohali, Punjab, India
| | | | - Mohd Shkir
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - M A Sayed
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - T H AlAbdulaal
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - H Algarni
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohd Arif
- Applied Science and Humanities Section, University Polytechnic, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi-110025, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India.
| | - Satbir S Sehgal
- Division of Research Innovation, Uttaranchal University, Dehradun, India
| |
Collapse
|
4
|
Tara N, Abomuti MA, Alshareef FM, Abdullah O, Allehyani ES, Chaudhry SA, Oh S. Nigella sativa-Manganese Ferrite-Reduced Graphene Oxide-Based Nanomaterial: A Novel Adsorbent for Water Treatment. Molecules 2023; 28:5007. [PMID: 37446669 PMCID: PMC10343191 DOI: 10.3390/molecules28135007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, a novel nanohybrid composite was fabricated via the incorporation of manganese ferrite (MnFe2O4) nanoparticles into the integrated surface of reduced graphene oxide (rGO) and black cumin seeds (BC). The nanohybrid composite was prepared by a simple co-precipitation method and characterized by several spectroscopic and microscopic techniques. The characterization analysis revealed that the rGO-BC surface was decorated with the MnFe2O4. The strong chemical interaction (via electrostatic and H-bonding) between the integrated surface of rGO-BC and MnFe2O4 nanoparticles has been reported. The prepared composite was highly porous with a heterogeneous surface. The average size of the prepared composite was reported in the ranges of 2.6-7.0 nm. The specific surface area of the prepared composite was calculated to be 50.3 m2/g with a pore volume of 0.061 cc/g and a half pore width of 8.4 Å. As well, many functional sites on the nanohybrid composite surface were also found. This results in the excellent adsorption properties of nanohybrid composite and the effectual elimination of methylene blue dye from water. The nanohybrid was tested for various linear isotherms, such as Langmuir and Freundlich, for the adsorption of methylene blue dye. The Freundlich isotherm was the well-fitted model, proving the adsorption is multilayer. The maximum Langmuir adsorption capacity of nanohybrid composite for methylene blue was reported to be 74.627 mg/g at 27 °C. The adsorption kinetics followed the pseudo-second-order recommended surface interaction between the dye and nanohybrid composite. The interaction between methylene blue and the nanohybrid composite was also confirmed from the FTIR spectrum of the methylene blue-loaded adsorbent. The rate-determining step for the present study was intraparticle diffusion. Temperature-dependent studies of methylene blue adsorption were also carried out to estimate adsorption's free energy, enthalpy, and entropy. The methylene blue adsorption was feasible, spontaneous, and endothermic. A comparison study revealed that the present materials could be successfully prepared and used for wastewater treatment.
Collapse
Affiliation(s)
- Nusrat Tara
- Environmental Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India;
| | - May Abdullah Abomuti
- Department of Chemistry, Faculty of Science and Humanities, Shaqra University, Dawadmi 17472, Saudi Arabia;
| | - F. M. Alshareef
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Omeima Abdullah
- Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Esam S. Allehyani
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Saif Ali Chaudhry
- Environmental Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India;
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Gyeonggi-do, Yongin-si 17104, Republic of Korea
| |
Collapse
|
5
|
Meenakshi MM, Annasamy G, Sankaranarayanan M. Highly sensitive technique for detection of adulterants in centella herbal samples using surface enhanced Raman spectroscopy (SERS). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122878. [PMID: 37209480 DOI: 10.1016/j.saa.2023.122878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/12/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
The trace level detection of adulterants in food, nutritional supplements and medicinal herbs is highly challenging in the field of food processing and herbal industries. In addition, laborious sample processing procedures and well trained personnel are required to analyse the samples using conventional analytical equipments. In this study, a highly sensitive technique with minimal sampling processes and human intervention is proposed for the trace amount detection of pesticidal residues in centella powder. Herein, graphene oxide gold (GO-Au) nanocomposite coated parafilm is developed as substrate by simple dropcasting technique to facilitate dual surface enhanced Raman signal. The dual SERS enhancement involving chemical enhancement from graphene and electromagnetic signal enhancement from gold nanoparticles is utilized for detection of chlorpyrifos in the ppm level concentration. The flexible polymeric surfaces could be the better choice for SERS substrates due to their inherent properties such as flexibility, transparency, roughness and hydrophobicity. Among the various types of flexible substrates explored, GO-Au nanocomposites coated parafilm substrates showed better Raman signal enhancement. Parafilm coated with GO-Au nanocomposites is successful in achieving detection limits down to 0.1 ppm of chlorpyrifos in centella herbal powder sample. Thus, the fabricated parafilm based GO-Au SERS substrates could be used as a screening tool at quality control of herbal product manufacturing sectors for trace level detection of adulterants in herbal samples from their unique chemical and structural information.
Collapse
Affiliation(s)
- M Muthu Meenakshi
- Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi 600062, India
| | | | - Mugesh Sankaranarayanan
- Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi 600062, India
| |
Collapse
|
6
|
Maity A, Mondal A, Kundu S, Shome G, Misra R, Singh A, Pal U, Mandal AK, Bera K, Maiti NC. Naringenin-Functionalized Gold Nanoparticles and Their Role in α-Synuclein Stabilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7231-7248. [PMID: 37094111 DOI: 10.1021/acs.langmuir.2c03259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Misfolding and self-assembly of several intrinsically disordered proteins into ordered β-sheet-rich amyloid aggregates emerged as hallmarks of several neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Here we show how the naringenin-embedded nanostructure effectively retards aggregation and fibril formation of α-synuclein, which is strongly associated with the pathology of Parkinson's-like diseases. Naringenin is a polyphenolic compound from a plant source, and in our current investigation, we reported the one-pot synthesis of naringenin-coated spherical and monophasic gold nanoparticles (NAR-AuNPs) under optimized conditions. The average hydrodynamic diameter of the produced nanoparticle was ∼24 nm and showed a distinct absorption band at 533 nm. The zeta potential of the nanocomposite was ∼-22 mV and indicated the presence of naringenin on the surface of nanoparticles. Core-level XPS spectrum analysis showed prominent peaks at 84.02 and 87.68 eV, suggesting the zero oxidation state of metal in the nanostructure. Additionally, the peaks at 86.14 and 89.76 eV were due to the Au-O bond, induced by the hydroxyl groups of the naringenin molecule. The FT-IR analysis further confirmed strong interactions of the molecule with the gold nanosurface via the phenolic oxygen group. The composite surface was found to interact with monomeric α-synuclein and caused a red shift in the nanoparticle absorption band by ∼5 nm. The binding affinity of the composite nanostructure toward α-synuclein was in the micromolar range (Ka∼ 5.02 × 106 M-1) and may produce a protein corona over the gold nanosurface. A circular dichroism study showed that the nanocomposite can arrest the conformational fluctuation of the protein and hindered its transformation into a compact cross-β-sheet conformation, a prerequisite for amyloid fibril formation. Furthermore, it was found that naringenin and its nanocomplex did not perturb the viability of neuronal cells. It thus appeared that engineering of the nanosurface with naringenin could be an alternative strategy in developing treatment approaches for Parkinson's and other diseases linked to protein conformation.
Collapse
Affiliation(s)
- Anupam Maity
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Animesh Mondal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Shubham Kundu
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Gourav Shome
- Division of Molecular Medicine, Bose Institute, Kolkata 700091, India
| | - Rajdip Misra
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Aakriti Singh
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Uttam Pal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata 700091, India
| | - Kaushik Bera
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Department of Chemistry, The Heritage School, 994 Chowbaga Road, Anandapur, East Kolkata Twp, Kolkata 700107, India
| | - Nakul C Maiti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
7
|
Osman AI, Hosny M, Eltaweil AS, Omar S, Elgarahy AM, Farghali M, Yap PS, Wu YS, Nagandran S, Batumalaie K, Gopinath SCB, John OD, Sekar M, Saikia T, Karunanithi P, Hatta MHM, Akinyede KA. Microplastic sources, formation, toxicity and remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1-41. [PMID: 37362012 PMCID: PMC10072287 DOI: 10.1007/s10311-023-01593-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/10/2023]
Abstract
Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with land-based sources responsible for 80-90% of pollution, while ocean-based sources account for only 10-20%. Microplastics induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and genotoxicity, even at minimal dosages of 10 μg/mL. Ingestion of microplastics by marine animals results in alterations in gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly reduced plastic consumption to 8-85% in various countries worldwide. The microplastic minimisation approach follows an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with disposal as the least preferable option.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, BT9 5AG Northern Ireland, UK
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511 Egypt
| | | | - Sara Omar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M. Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - Mohamed Farghali
- Department of Agricultural Engineering and Socio-Economics, Kobe University, Kobe, 657-8501 Japan
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, 215123 China
| | - Yuan-Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Saraswathi Nagandran
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor Bahru, Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence, Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis Malaysia
| | - Oliver Dean John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450 Ipoh, Perak Malaysia
| | - Trideep Saikia
- Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati Assam, India
| | - Puvanan Karunanithi
- Department of Anatomy, Faculty of Medicine, Manipal University College Malaysia (MUCM), Melaka, Malaysia
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Hayrie Mohd Hatta
- Centre for Research and Development, Asia Metropolitan University, 81750 Johor Bahru, Johor Malaysia
| | - Kolajo Adedamola Akinyede
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, 7530 South Africa
- Biochemistry Unit, Department of Science Technology, The Federal Polytechnic, P.M.B.5351, Ado Ekiti, 360231 Ekiti State Nigeria
| |
Collapse
|
8
|
El-Maghrabi N, Fawzy M, Mahmoud AED. Efficient Removal of Phosphate from Wastewater by a Novel Phyto-Graphene Composite Derived from Palm Byproducts. ACS OMEGA 2022; 7:45386-45402. [PMID: 36530337 PMCID: PMC9753538 DOI: 10.1021/acsomega.2c05985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 05/17/2023]
Abstract
The increased demand for clean water especially in overpopulated countries is of great concern; thus, the development of eco-friendly and cost-effective techniques and materials that can remediate polluted water for possible reuse in agricultural purposes can offer a life-saving solution to improve human welfare, especially in view of climate change impacts. In the current study, the agricultural byproducts of palm trees have been used for the first time as a carbon source to produce graphene functionalized with ferrocene in a composite form to enhance its water treatment potential. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), ultraviolet-visible, Fourier transform infrared spectroscopy, zeta potential, thermogravimetric analysis, and Raman techniques have been used to characterize the produced materials. SEM investigations confirmed the formation of multiple sheets of the graphene composite. Data collected from the zeta potential revealed that graphene was supported with a negative surface charge that maintains its stability while XRD elucidated that graphene characteristic peaks were evident at 2θ = 22.4 and 22.08° using palm leaves and fibers, respectively. Batch adsorption experiments were conducted to find out the most suitable conditions to remove PO4 3- from wastewater by applying different parameters, including pH, adsorbent dose, initial concentration, and time. Their effect on the adsorption process was also investigated. Results demonstrated that the best adsorption capacity was 58.93 mg/g (removal percentage: 78.57%) using graphene derived from palm fibers at 15 mg L-1 initial concentration, pH = 3, dose = 10 mg, and 60 min contact time. Both linear and non-linear forms of kinetic and isotherm models were investigated. The adsorption process obeyed the pseudo-second-order kinetic model and was well fitted to the Langmuir isotherm.
Collapse
Affiliation(s)
- Nourhan El-Maghrabi
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria21511, Egypt
- Green
Technology Group, Faculty of Science, Alexandria
University, Alexandria21511, Egypt
- ,
| | - Manal Fawzy
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria21511, Egypt
- Green
Technology Group, Faculty of Science, Alexandria
University, Alexandria21511, Egypt
- National
Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo11694, Egypt
| | - Alaa El Din Mahmoud
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria21511, Egypt
- Green
Technology Group, Faculty of Science, Alexandria
University, Alexandria21511, Egypt
| |
Collapse
|
9
|
Abdelfatah AM, El-Maghrabi N, Mahmoud AED, Fawzy M. Synergetic effect of green synthesized reduced graphene oxide and nano-zero valent iron composite for the removal of doxycycline antibiotic from water. Sci Rep 2022; 12:19372. [PMID: 36371519 PMCID: PMC9652592 DOI: 10.1038/s41598-022-23684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
In this work, the synthesis of an rGO/nZVI composite was achieved for the first time using a simple and green procedure via Atriplex halimus leaves extract as a reducing and stabilizing agent to uphold the green chemistry principles such as less hazardous chemical synthesis. Several tools have been used to confirm the successful synthesis of the composite such as SEM, EDX, XPS, XRD, FTIR, and zeta potential which indicated the successful fabrication of the composite. The novel composite was compared with pristine nZVI for the removal aptitude of a doxycycline antibiotic with different initial concentrations to study the synergistic effect between rGO and nZVI. The adsorptive removal of bare nZVI was 90% using the removal conditions of 25 mg L-1, 25 °C, and 0.05 g, whereas the adsorptive removal of doxycycline by the rGO/nZVI composite reached 94.6% confirming the synergistic effect between nZVI and rGO. The adsorption process followed the pseudo-second order and was well-fitted to Freundlich models with a maximum adsorption capacity of 31.61 mg g-1 at 25 °C and pH 7. A plausible mechanism for the removal of DC was suggested. Besides, the reusability of the rGO/nZVI composite was confirmed by having an efficacy of 60% after six successive cycles of regeneration.
Collapse
Affiliation(s)
- Ahmed M Abdelfatah
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Nourhan El-Maghrabi
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Manal Fawzy
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
| |
Collapse
|
10
|
Efficient removal of noxious methylene blue and crystal violet dyes at neutral conditions by reusable montmorillonite/NiFe2O4@amine-functionalized chitosan composite. Sci Rep 2022; 12:15499. [PMID: 36109538 PMCID: PMC9478098 DOI: 10.1038/s41598-022-19570-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
The jeopardy of the synthetic dyes effluents on human health and the environment has swiftly aggravated, threatening human survival. Hence, sustained studies have figured out the most acceptable way to eliminate this poisonous contaminant. Thereby, our investigation aimed to fabricate montmorillonite/magnetic NiFe2O4@amine-functionalized chitosan (MMT-mAmCs) composite as a promising green adsorbent to remove the cationic methylene blue (MB) and crystal violet (CV) dyes from the wastewater in neutral conditions. Interestingly, MMT-mAmCs composite carries high negative charges at a wide pH range from 4 to 11 as clarified from zeta potential measurements, asserting its suitability to adsorb the cationic contaminants. In addition, the experimental study confirmed that the optimum pH to adsorb both MB and CV was pH 7, inferring the ability of MMT-mAmCs to adsorb both cationic dyes in simple process conditions. Furthermore, the ferromagnetic behavior of the MMT-mAmCs composite is additional merit to our adsorbent that provides facile, fast, and flawless separation. Notably, the as-fabricated composite revealed an auspicious adsorbability towards the adsorptive removal of MB and CV, since the maximum adsorption capacity of MB and CV were 137 and 118 mg/g, respectively. Moreover, the isotherm and kinetic investigatins depicted that the adsorption of both cationic dyes fitted Langmuir and Pseudo 2nd order models, respectively. Besides, the advanced adsorbent preserved satisfactory adsorption characteristics with maximal removal efficacy exceeding 87% after reuse for ten consecutive cycles. More importantly, MMT-mAmCs efficiently adsorbed MB and CV from real agricultural water, Nile river water and wastewater samples at the neutral pH medium, reflecting its potentiality to be a superb reusable candidate for adsorptive removal cationic pollutants from their aquatic media.
Collapse
|
11
|
Hosny M, Fawzy M, Eltaweil AS. Phytofabrication of bimetallic silver-copper/biochar nanocomposite for environmental and medical applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115238. [PMID: 35576706 DOI: 10.1016/j.jenvman.2022.115238] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 05/28/2023]
Abstract
In the current study, a novel, green, low-cost, and sustainable path for the phyto-fabrication of Ag-Cu biochar nanocomposite (Ag-Cu/biochar) by Atriplex halimus biomass and aqueous extract is described. Surface plasmon resonance peaks were detected at 450 nm and 580 nm signifying the formation of both silver and copper nanoparticles, respectively on the biochar surface. XRD analysis confirmed the crystal structure of the phytosynthesized Ag-Cu/biochar whereas FT-IR, SEM, EDX, and XPS analyses confirmed the successful phytofabrication of the composite. Ag and Cu nanoparticles loaded on the biochar surface were almost spherically-shaped with a particle size ranging from 25 nm to 45 nm. Zeta potential of -25.5 mV showed the stability of Ag-Cu/biochar. The potential of this novel nanocomposite in the removal of doxycycline (DOX) was evident under different conditions as it reached nearly 100% under the optimum reaction conditions (DOX concentration; 50 ppm, pH; 9, a dose of Ag-Cu/biochar; 0.01 g, temperature; 25 °C, and H2O2 concentration; 100 mM). The promising regeneration of Ag-Cu/biochar was evident as the removal efficiency was 81% after 6 consecutive cycles. Ag-Cu/biochar was also shown an excellent antimicrobial activity against gram-negative bacteria as well a promising antioxidant activity.
Collapse
Affiliation(s)
- Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511, Alexandria, Egypt.
| | - Manal Fawzy
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511, Alexandria, Egypt; National Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Egypt.
| | - Abdelazeem S Eltaweil
- Department of Chemistry, Faculty of Science, Alexandria University, 21321, Alexandria, Egypt.
| |
Collapse
|
12
|
Hosny M, Fawzy M, Eltaweil AS. Green synthesis of bimetallic Ag/ZnO@Biohar nanocomposite for photocatalytic degradation of tetracycline, antibacterial and antioxidant activities. Sci Rep 2022; 12:7316. [PMID: 35513449 PMCID: PMC9072416 DOI: 10.1038/s41598-022-11014-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
In this work, a simple and green synthesis procedure for phytofabrication Zinc oxide-silver supported biochar nanocomposite (Ag/ZnO@BC) via Persicaria salicifolia biomass is investigated for the first time to uphold numerous green chemistry such as less hazardous chemical syntheses. XRD technique showed the crystal structure of the phytosynthesized Ag/ZnO@BC, whereas UV-visible spectroscopy, FT-IR, SEM, EDX, TEM, and XPS analyses indicated the successful biosynthesis of the nanocomposite. Testing the photocatalytic potential of this novel nanocomposite in the removal of TC under different conditions unraveled its powerful photodegradation efficiency that reached 70.3% under the optimum reaction conditions: TC concentration; 50 ppm, pH; 6, a dose of Ag/ZnO@BC; 0.01 g, temperature; 25 °C, and H2O2 concentration; 100 mM. The reusability of Ag/ZnO@BC was evident as it reached 53% after six cycles of regeneration. Ag/ZnO@BC was also shown to be a potent antimicrobial agent against Klebsiella pneumonia as well as a promising antioxidant material. Therefore, the current work presented a novel nanocomposite that could be efficiently employed in various environmental and medical applications.
Collapse
Affiliation(s)
- Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Manal Fawzy
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt. .,National Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Cairo, Egypt.
| | - Abdelazeem S Eltaweil
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| |
Collapse
|
13
|
Abd El-Monaem EM, Eltaweil AS, Elshishini HM, Hosny M, Abou Alsoaud MM, Attia NF, El-Subruiti GM, Omer AM. Sustainable adsorptive removal of antibiotic residues by chitosan composites: An insight into current developments and future recommendations. ARAB J CHEM 2022; 15:103743. [PMID: 35126797 PMCID: PMC8800501 DOI: 10.1016/j.arabjc.2022.103743] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 01/25/2023] Open
Abstract
During COVID-19 crisis, water pollution caused by pharmaceutical residuals have enormously aggravated since millions of patients worldwide are consuming tons of drugs daily. Antibiotics are the preponderance pharmaceutical pollutants in water bodies that surely cause a real threat to human life and ecosystems. The excellent characteristics of chitosan such as nontoxicity, easy functionality, biodegradability, availability in nature and the abundant hydroxyl and amine groups onto its backbone make it a promising adsorbent. Herein, we aimed to provide a comprehensive overview of recent published research papers regarding the removal of antibiotics by chitosan composite-based adsorbents. The structure, ionic form, optimum removal pH and λmax of the most common antibiotics including Tetracycline, Ciprofloxacin, Amoxicillin, Levofloxacin, Ceftriaxone, Erythromycin, Norfloxacin, Ofloxacin, Doxycycline, Cefotaxime and Sulfamethoxazole were summarized. The development of chitosan composite-based adsorbents in order to enhance their adsorption capacity, reusability and validity were presented. Moreover, the adsorption mechanisms of these antibiotics were explored to provide more information about adsorbate-adsorbent interactions. Besides the dominant factors on the adsorption process including pH, dosage, coexisting ions, etc. were discussed. Moreover, conclusions and future recommendations are provided to inspire for further researches.
Collapse
Affiliation(s)
- Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Hala M Elshishini
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163, Horrya Avenue, Alexandria, Egypt
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Mohamed M Abou Alsoaud
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Nour F Attia
- Fire Protection Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| |
Collapse
|
14
|
Eltaweil AS, Abdelfatah AM, Hosny M, Fawzy M. Novel Biogenic Synthesis of a Ag@Biochar Nanocomposite as an Antimicrobial Agent and Photocatalyst for Methylene Blue Degradation. ACS OMEGA 2022; 7:8046-8059. [PMID: 35284719 PMCID: PMC8908515 DOI: 10.1021/acsomega.1c07209] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 05/08/2023]
Abstract
The conventional synthesis of nanomaterials employing physical and chemical methods usually requires high cost and toxic chemicals. Thus, a facile, ecofriendly, cost-effective, novel, and sustainable route for the synthesis of a silver-loaded biochar nanocomposite (Ag@biochar) using Chenopodium ambrosioides leaf extract and biomass is reported for the first time in this study to advocate many of the principles of green chemistry such as safer solvents and auxiliaries. UV spectroscopic analysis at 420 nm indicated the formation of silver nanoparticles (AgNPs). The band gap energy of Ag@biochar was 1.9 eV, confirming its potential use as a photocatalyst. Ag@biochar was found to be photoluminescent at 425 nm. AgNPs on the surface of biochar were predominantly spherical with a size range of 25-35 nm and a surface area of 47.61 m2/g. A zeta potential of -5.87 mV designated the stability of Ag@biochar. Testing the photocatalytic potential of Ag@biochar to remove methylene blue from wastewater demonstrated its high removal efficiency that reached 88.4% due to its high efficiency of electron transfer confirmed via electrochemical impedance spectroscopy analysis and retained 70.65% after six cycles of reuse. Ag@biochar was shown to be a powerful broad-spectrum antimicrobial agent as it completely prevented the growth of Escherichia coli and also inhibited the growth of Pseudomonas aeruginosa, Klebsiella pneumoniae, Bacillus subtilis, and Candida albicans with the inhibition zones of 19, 18, 22, and 16 mm, respectively.
Collapse
Affiliation(s)
- Abdelazeem S. Eltaweil
- Department
of Chemistry, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Ahmed M. Abdelfatah
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Mohamed Hosny
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Manal Fawzy
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- National
Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Cairo 33516, Egypt
| |
Collapse
|
15
|
Eltaweil AS, Abd El-Monaem EM, Elshishini HM, El-Aqapa HG, Hosny M, Abdelfatah AM, Ahmed MS, Hammad EN, El-Subruiti GM, Fawzy M, Omer AM. Recent developments in alginate-based adsorbents for removing phosphate ions from wastewater: a review. RSC Adv 2022; 12:8228-8248. [PMID: 35424751 PMCID: PMC8982349 DOI: 10.1039/d1ra09193j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
The huge development of the industrial sector has resulted in the release of large quantities of phosphate anions which adversely affect the environment, human health, and aquatic ecosystems. Naturally occurring biopolymers have attracted considerable attention as efficient adsorbents for phosphate anions due to their biocompatibility, biodegradability, environmentally-friendly nature, low-cost production, availability in nature, and ease of modification. Amongst them, alginate-based adsorbents are considered one of the most effective adsorbents for removing various types of pollutants from industrial wastewater. The presence of active COOH and OH- groups along the alginate backbone facilitate its physical and chemical modifications and participate in various possible adsorption mechanisms of phosphate anions. Herein, we focus our attention on presenting a comprehensive overview of recent advances in phosphate removal by alginate-based adsorbents. Modification of alginate by various materials, including clays, magnetic materials, layered double hydroxides, carbon materials, and multivalent metals, is addressed. The adsorption potentials of these modified forms for removing phosphate anions, in addition to their adsorption mechanisms are clearly discussed. It is concluded that ion exchange, complexation, precipitation, Lewis acid-base interaction and electrostatic interaction are the most common adsorption mechanisms of phosphate removal by alginate-based adsorbents. Pseudo-2nd order and Freundlich isotherms were figured out to be the major kinetic and isotherm models for the removal process of phosphate. The research findings revealed that some issues, including the high cost of production, leaching, and low efficiency of recyclability of alginate-based adsorbents still need to be resolved. Future trends that could inspire further studies to find the best solutions for removing phosphate anions from aquatic systems are also elaborated, such as the synthesis of magnetic-based alginate and various-shaped alginate nanocomposites that are capable of preventing the leaching of the active materials.
Collapse
Affiliation(s)
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Hala M Elshishini
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University 163, Horrya Avenue Alexandria Egypt
| | - Hisham G El-Aqapa
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Ahmed M Abdelfatah
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Maha S Ahmed
- Higher Institute of Science and Technology-King Mariout Egypt
| | - Eman Nasr Hammad
- Chemistry Department, Faculty of Science, Menoufia University Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Manal Fawzy
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) P. O. Box: 21934 New Borg El-Arab City Alexandria Egypt
| |
Collapse
|
16
|
Hosny M, Eltaweil AS, Mostafa M, El-Badry YA, Hussein EE, Omer AM, Fawzy M. Facile Synthesis of Gold Nanoparticles for Anticancer, Antioxidant Applications, and Photocatalytic Degradation of Toxic Organic Pollutants. ACS OMEGA 2022; 7:3121-3133. [PMID: 35097307 PMCID: PMC8793085 DOI: 10.1021/acsomega.1c06714] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/31/2021] [Indexed: 05/12/2023]
Abstract
In the current study, a facile, rapid, and ecologically safe photosynthesis of gold nanoparticles (AuNPs) that remained stable for 3 months is reported to advocate the main aspects of green chemistry, such as safer solvents and auxiliaries, and the use of renewable feedstock. Zi-AuNPs were phytosynthesized by the aqueous extract of Ziziphus spina-christi leaves, and numerous techniques were employed for their characterization. The results demonstrated the successful phytofabrication of crystalline AuNPs with brownish-black color, spherical nanoparticles with a size between 0 and 10 nm, a plasmon peak at 540 nm, and a surface charge of -25.7 mV. Zi-AuNPs showed an effective photodegradation efficiency (81.14%) against malachite green and a good recycling capacity of 69.2% after five cycles of regeneration. The cytotoxicity test by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay signified a high anticancer efficiency for both Zi-AuNPs and Z. spina-christi extract against human breast cancer cells (MCF7 cell line) with IC50's of 48 and 40.25 μg/mL, respectively. Highly efficient antioxidant capabilities were proven with 2,2-diphenyl-1-picrylhydrazyl (DPPH) removal percentages of 67.5% for Zi-AuNPs and 92.34% for Z. spina-christi extract.
Collapse
Affiliation(s)
- Mohamed Hosny
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- ,
| | - Abdelazeem S. Eltaweil
- Department
of Chemistry, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Mohamed Mostafa
- Department
of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Yaser A. El-Badry
- Chemistry
Department, Faculty of Science, Taif University, Khurma, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Enas E. Hussein
- National
Water Research Center, P.O. Box 74, Shubra El-Kheima 13411, Egypt
| | - Ahmed M. Omer
- Polymer Materials
Research Department, Advanced Technology and New Materials Research
Institute, City of Scientific Research and
Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Manal Fawzy
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- National
Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, El Sayeda Zeinab, Cairo 33516, Cairo Governorate, Egypt
| |
Collapse
|
17
|
Hosny M, Fawzy M, El-Badry YA, Hussein EE, Eltaweil AS. Plant-assisted synthesis of gold nanoparticles for photocatalytic, anticancer, and antioxidant applications. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|