1
|
Shi Y, Zhang K, Chen J, Zhang B, Guan X, Wang X, Zhang T, Song H, Zou L, Duan X, Gao H, Lin Z. Long-Term Autotrophic Growth and Solar-to-Chemical Conversion in Shewanella Oneidensis MR-1 through Light-Driven Electron Transfer. Angew Chem Int Ed Engl 2024:e202412072. [PMID: 39198969 DOI: 10.1002/anie.202412072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
Members of the genus Shewanella are known for their versatile electron accepting routes, which allow them to couple decomposition of organic matter to reduction of various terminal electron acceptors for heterotrophic growth in diverse environments. Here, we report autotrophic growth of Shewanella oneidensis MR-1 with photoelectrons provided by illuminated biogenic CdS nanoparticles. This hybrid system enables photosynthetic oscillatory acetate production from CO2 for over five months, far exceeding other inorganic-biological hybrid system that can only sustain for hours or days. Biochemical, electrochemical and transcriptomic analyses reveal that the efficient electron uptake of S. oneidensis MR-1 from illuminated CdS nanoparticles supplies sufficient energy to stimulate the previously overlooked reductive glycine pathway for CO2 fixation. The continuous solar-to-chemical conversion is achieved by photon induced electric recycling in sulfur species. Overall, our findings demonstrate that this mineral-assisted photosynthesis, as a widely existing and unique model of light energy conversion, could support the sustained photoautotrophic growth of non-photosynthetic microorganisms in nutrient-lean environments and mediate the reversal of coupled carbon and sulfur cycling, consequently resulting in previously unknown environmental effects. In addition, the hybrid system provides a sustainable and flexible platform to develop a variety of solar products for carbon neutrality.
Collapse
Affiliation(s)
- Yan Shi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Kejing Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Jianxin Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Bingtian Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xin Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China
| | - Han Song
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Long Zou
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| |
Collapse
|
2
|
Guo Y, Zhang R, Wang J, Qin R, Feng J, Chen K, Wang X. Engineering yeasts to Co-utilize methanol or formate coupled with CO 2 fixation. Metab Eng 2024; 84:1-12. [PMID: 38759777 DOI: 10.1016/j.ymben.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/02/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
The development of synthetic microorganisms that could use one-carbon compounds, such as carbon dioxide, methanol, or formate, has received considerable interest. In this study, we engineered Pichia pastoris and Saccharomyces cerevisiae to both synthetic methylotrophy and formatotrophy, enabling them to co-utilize methanol or formate with CO2 fixation through a synthetic C1-compound assimilation pathway (MFORG pathway). This pathway consisted of a methanol-formate oxidation module and the reductive glycine pathway. We first assembled the MFORG pathway in P. pastoris using endogenous enzymes, followed by blocking the native methanol assimilation pathway, modularly engineering genes of MFORG pathway, and compartmentalizing the methanol oxidation module. These modifications successfully enabled the methylotrophic yeast P. pastoris to utilize both methanol and formate. We then introduced the MFORG pathway from P. pastoris into the model yeast S. cerevisiae, establishing the synthetic methylotrophy and formatotrophy in this organism. The resulting strain could also successfully utilize both methanol and formate with consumption rates of 20 mg/L/h and 36.5 mg/L/h, respectively. The ability of the engineered P. pastoris and S. cerevisiae to co-assimilate CO2 with methanol or formate through the MFORG pathway was also confirmed by 13C-tracer analysis. Finally, production of 5-aminolevulinic acid and lactic acid by co-assimilating methanol and CO2 was demonstrated in the engineered P. pastoris and S. cerevisiae. This work indicates the potential of the MFORG pathway in developing different hosts to use various one-carbon compounds for chemical production.
Collapse
Affiliation(s)
- Yuanke Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Rui Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Jing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Ruirui Qin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Jiao Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| |
Collapse
|
3
|
Li K, Zhang X, Li C, Liang YC, Zhao XQ, Liu CG, Sinskey AJ, Bai FW. Systems metabolic engineering of Corynebacterium glutamicum to assimilate formic acid for biomass accumulation and succinic acid production. BIORESOURCE TECHNOLOGY 2024; 402:130774. [PMID: 38701983 DOI: 10.1016/j.biortech.2024.130774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Formate as an ideal mediator between the physicochemical and biological realms can be obtained from electrochemical reduction of CO2 and used to produce bio-chemicals. Yet, limitations arise when employing natural formate-utilizing microorganisms due to restricted product range and low biomass yield. This study presents a breakthrough: engineered Corynebacterium glutamicum strains (L2-L4) through modular engineering. L2 incorporates the formate-tetrahydrofolate cycle and reverse glycine cleavage pathway, L3 enhances NAD(P)H regeneration, and L4 reinforces metabolic flux. Metabolic modeling elucidates C1 assimilation, guiding strain optimization for co-fermentation of formate and glucose. Strain L4 achieves an OD600 of 0.5 and produces 0.6 g/L succinic acid. 13C-labeled formate confirms C1 assimilation, and further laboratory evolution yields 1.3 g/L succinic acid. This study showcases a successful model for biologically assimilating formate in C. glutamicum that could be applied in C1-based biotechnological production, ultimately forming a formate-based bioeconomy.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Yu-Cheng Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Chen Q, Chen Y, Hou Z, Ma Y, Huang J, Zhang Z, Chen Y, Yang X, Zhang Y, Zhao G. Unlocking the formate utilization of wild-type Yarrowia lipolytica through adaptive laboratory evolution. Biotechnol J 2024; 19:e2400290. [PMID: 38900053 DOI: 10.1002/biot.202400290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Synthetic biology is contributing to the advancement of the global net-negative carbon economy, with emphasis on formate as a member of the one-carbon substrate garnering substantial attention. In this study, we employed base editing tools to facilitate adaptive evolution, achieving a formate tolerance of Yarrowia lipolytica to 1 M within 2 months. This effort resulted in two mutant strains, designated as M25-70 and M25-14, both exhibiting significantly enhanced formate utilization capabilities. Transcriptomic analysis revealed the upregulation of nine endogenous genes encoding formate dehydrogenases when cultivated utilizing formate as the sole carbon source. Furthermore, we uncovered the pivotal role of the glyoxylate and threonine-based serine pathway in enhancing glycine supply to promote formate assimilation. The full potential of Y. lipolytica to tolerate and utilize formate establishing the foundation for pyruvate carboxylase-based carbon sequestration pathways. Importantly, this study highlights the existence of a natural formate metabolic pathway in Y. lipolytica.
Collapse
Affiliation(s)
- Qian Chen
- Tianjin University of Science & Technology, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Haihe Laboratory of Synthetic Biology, Tianjin, China
| | - Yunhong Chen
- Tianjin University of Science & Technology, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Haihe Laboratory of Synthetic Biology, Tianjin, China
| | - Zeming Hou
- Tianjin University of Science & Technology, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Haihe Laboratory of Synthetic Biology, Tianjin, China
| | - Yuyue Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Jianfeng Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zhidan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yefu Chen
- Tianjin University of Science & Technology, Tianjin, China
| | - Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Guoping Zhao
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Chen PR, Xia PF. Carbon recycling with synthetic CO 2 fixation pathways. Curr Opin Biotechnol 2024; 85:103023. [PMID: 38007984 DOI: 10.1016/j.copbio.2023.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023]
Abstract
Carbon dioxide (CO2) is the node of alleviating global climate change and supporting living organisms on Earth. Currently, the warming climate and the growing population demand enhanced CO2 fixation for a sustainable future, which stimulates innovations in biotechnology to tackle these challenges. To this endeavor, synthetic biology and metabolic engineering are enabling a promising approach to engineer synthetic carbon fixation in heterotrophic organisms combining the advantages of both autotrophs and heterotrophs. Here, we review the current advances in constructing synthetic CO2 fixation pathways and discuss the underlying design principles with confronting challenges. Moreover, we highlight the application scenarios of these designs at different concentrations of CO2, and how sustainable bioproduction can be improved. We also foresee the future of engineering synthetic carbon fixation pathways for carbon recycling.
Collapse
Affiliation(s)
- Pei-Ru Chen
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
Bysani VR, Alam AS, Bar-Even A, Machens F. Engineering and evolution of the complete Reductive Glycine Pathway in Saccharomyces cerevisiae for formate and CO 2 assimilation. Metab Eng 2024; 81:167-181. [PMID: 38040111 DOI: 10.1016/j.ymben.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/08/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Using captured CO2 and C1-feedstocks like formate and methanol derived from electrochemical activation of CO2 are key solutions for transforming industrial processes towards a circular carbon economy. Engineering formate and CO2-based growth in the biotechnologically relevant yeast Saccharomyces cerevisiae could boost the emergence of a formate-mediated circular bio-economy. This study adopts a growth-coupled selection scheme for modular implementation of the Reductive Glycine Pathway (RGP) and subsequent Adaptive Laboratory Evolution (ALE) to enable formate and CO2 assimilation for biomass formation in yeast. We first constructed a serine biosensor strain and then implemented the serine synthesis module of the RGP into yeast, establishing glycine and serine synthesis from formate and CO2. ALE improved the RGP-dependent growth by 8-fold. 13C-labeling experiments reveal glycine, serine, and pyruvate synthesis via the RGP, demonstrating the complete pathway activity. Further, we re-established formate and CO2-dependent growth in non-evolved biosensor strains via reverse-engineering a mutation in GDH1 identified from ALE. This mutation led to significantly more 13C-formate assimilation than in WT without any selection or overexpression of the RGP. Overall, we demonstrated the activity of the complete RGP, showing evidence for carbon transfer from formate to pyruvate coupled with CO2 assimilation.
Collapse
Affiliation(s)
- Viswanada R Bysani
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Ayesha S Alam
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Fabian Machens
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
7
|
Yang X, Zhang Y, Zhao G. Artificial carbon assimilation: From unnatural reactions and pathways to synthetic autotrophic systems. Biotechnol Adv 2024; 70:108294. [PMID: 38013126 DOI: 10.1016/j.biotechadv.2023.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Synthetic biology is being increasingly used to establish novel carbon assimilation pathways and artificial autotrophic strains that can be used in low-carbon biomanufacturing. Currently, artificial pathway design has made significant progress from advocacy to practice within a relatively short span of just over ten years. However, there is still huge scope for exploration of pathway diversity, operational efficiency, and host suitability. The accelerated research process will bring greater opportunities and challenges. In this paper, we provide a comprehensive summary and interpretation of representative one-carbon assimilation pathway designs and artificial autotrophic strain construction work. In addition, we propose some feasible design solutions based on existing research results and patterns to promote the development and application of artificial autotrophy.
Collapse
Affiliation(s)
- Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| | - Guoping Zhao
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
8
|
Vásquez Castro E, Memari G, Ata Ö, Mattanovich D. Carbon efficient production of chemicals with yeasts. Yeast 2023; 40:583-593. [PMID: 37997485 PMCID: PMC10946752 DOI: 10.1002/yea.3909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/16/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023] Open
Abstract
Microbial metabolism offers a wide variety of opportunities to produce chemicals from renewable resources. Employing such processes of industrial biotechnology provides valuable means to fight climate change by replacing fossil feedstocks by renewable substrate to reduce or even revert carbon emission. Several yeast species are well suited chassis organisms for this purpose, illustrated by the fact that the still largest microbial production of a chemical, namely bioethanol is based on yeast. Although production of ethanol and some other chemicals is highly efficient, this is not the case for many desired bulk chemicals. One reason for low efficiency is carbon loss, which decreases the product yield and increases the share of total production costs that is taken by substrate costs. Here we discuss the causes for carbon loss in metabolic processes, approaches to avoid carbon loss, as well as opportunities to incorporate carbon from CO2 , based on the electron balance of pathways. These aspects of carbon efficiency are illustrated for the production of succinic acid from a diversity of substrates using different pathways.
Collapse
Affiliation(s)
- Evelyn Vásquez Castro
- Austrian Centre of Industrial Biotechnology (ACIB)ViennaAustria
- University of Natural Resources and Life Sciences, Department of BiotechnologyInstitute of Microbiology and Microbial BiotechnologyViennaAustria
| | - Golnaz Memari
- Austrian Centre of Industrial Biotechnology (ACIB)ViennaAustria
- University of Natural Resources and Life Sciences, Department of BiotechnologyInstitute of Microbiology and Microbial BiotechnologyViennaAustria
| | - Özge Ata
- Austrian Centre of Industrial Biotechnology (ACIB)ViennaAustria
- University of Natural Resources and Life Sciences, Department of BiotechnologyInstitute of Microbiology and Microbial BiotechnologyViennaAustria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB)ViennaAustria
- University of Natural Resources and Life Sciences, Department of BiotechnologyInstitute of Microbiology and Microbial BiotechnologyViennaAustria
| |
Collapse
|
9
|
Kang DK, Kim SH, Sohn JH, Sung BH. Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO 2. J Microbiol Biotechnol 2023; 33:1403-1411. [PMID: 37482811 DOI: 10.4014/jmb.2306.06005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Carbon dioxide (CO2) is the most abundant component of greenhouse gases (GHGs) and directly creates environmental issues such as global warming and climate change. Carbon capture and storage have been proposed mainly to solve the problem of increasing CO2 concentration in the atmosphere; however, more emphasis has recently been placed on its use. Among the many methods of using CO2, one of the key environmentally friendly technologies involves biologically converting CO2 into other organic substances such as biofuels, chemicals, and biomass via various metabolic pathways. Although an efficient biocatalyst for industrial applications has not yet been developed, biological CO2 conversion is the needed direction. To this end, this review briefly summarizes seven known natural CO2 fixation pathways according to carbon number and describes recent studies in which natural CO2 assimilation systems have been applied to heterogeneous in vivo and in vitro systems. In addition, studies on the production of methanol through the reduction of CO2 are introduced. The importance of redox cofactors, which are often overlooked in the CO2 assimilation reaction by enzymes, is presented; methods for their recycling are proposed. Although more research is needed, biological CO2 conversion will play an important role in reducing GHG emissions and producing useful substances in terms of resource cycling.
Collapse
Affiliation(s)
- Du-Kyeong Kang
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Seung-Hwa Kim
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jung-Hoon Sohn
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
10
|
Tian J, Deng W, Zhang Z, Xu J, Yang G, Zhao G, Yang S, Jiang W, Gu Y. Discovery and remodeling of Vibrio natriegens as a microbial platform for efficient formic acid biorefinery. Nat Commun 2023; 14:7758. [PMID: 38012202 PMCID: PMC10682008 DOI: 10.1038/s41467-023-43631-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Formic acid (FA) has emerged as a promising one-carbon feedstock for biorefinery. However, developing efficient microbial hosts for economically competitive FA utilization remains a grand challenge. Here, we discover that the bacterium Vibrio natriegens has exceptional FA tolerance and metabolic capacity natively. This bacterium is remodeled by rewiring the serine cycle and the TCA cycle, resulting in a non-native closed loop (S-TCA) which as a powerful metabolic sink, in combination with laboratory evolution, enables rapid emergence of synthetic strains with significantly improved FA-utilizing ability. Further introduction of a foreign indigoidine-forming pathway into the synthetic V. natriegens strain leads to the production of 29.0 g · L-1 indigoidine and consumption of 165.3 g · L-1 formate within 72 h, achieving a formate consumption rate of 2.3 g · L-1 · h-1. This work provides an important microbial chassis as well as design rules to develop industrially viable microorganisms for FA biorefinery.
Collapse
Affiliation(s)
- Jinzhong Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- Xianghu Laboratory, Hangzhou, 311231, China.
| | - Wangshuying Deng
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziwen Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Xu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | | | - Guoping Zhao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sheng Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
11
|
Kurt E, Qin J, Williams A, Zhao Y, Xie D. Perspectives for Using CO 2 as a Feedstock for Biomanufacturing of Fuels and Chemicals. Bioengineering (Basel) 2023; 10:1357. [PMID: 38135948 PMCID: PMC10740661 DOI: 10.3390/bioengineering10121357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial cell factories offer an eco-friendly alternative for transforming raw materials into commercially valuable products because of their reduced carbon impact compared to conventional industrial procedures. These systems often depend on lignocellulosic feedstocks, mainly pentose and hexose sugars. One major hurdle when utilizing these sugars, especially glucose, is balancing carbon allocation to satisfy energy, cofactor, and other essential component needs for cellular proliferation while maintaining a robust yield. Nearly half or more of this carbon is inevitably lost as CO2 during the biosynthesis of regular metabolic necessities. This loss lowers the production yield and compromises the benefit of reducing greenhouse gas emissions-a fundamental advantage of biomanufacturing. This review paper posits the perspectives of using CO2 from the atmosphere, industrial wastes, or the exhausted gases generated in microbial fermentation as a feedstock for biomanufacturing. Achieving the carbon-neutral or -negative goals is addressed under two main strategies. The one-step strategy uses novel metabolic pathway design and engineering approaches to directly fix the CO2 toward the synthesis of the desired products. Due to the limitation of the yield and efficiency in one-step fixation, the two-step strategy aims to integrate firstly the electrochemical conversion of the exhausted CO2 into C1/C2 products such as formate, methanol, acetate, and ethanol, and a second fermentation process to utilize the CO2-derived C1/C2 chemicals or co-utilize C5/C6 sugars and C1/C2 chemicals for product formation. The potential and challenges of using CO2 as a feedstock for future biomanufacturing of fuels and chemicals are also discussed.
Collapse
Affiliation(s)
- Elif Kurt
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Alexandria Williams
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Youbo Zhao
- Physical Sciences Inc., 20 New England Business Ctr., Andover, MA 01810, USA;
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| |
Collapse
|
12
|
Zhong W, Li H, Wang Y. Design and Construction of Artificial Biological Systems for One-Carbon Utilization. BIODESIGN RESEARCH 2023; 5:0021. [PMID: 37915992 PMCID: PMC10616972 DOI: 10.34133/bdr.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
The third-generation (3G) biorefinery aims to use microbial cell factories or enzymatic systems to synthesize value-added chemicals from one-carbon (C1) sources, such as CO2, formate, and methanol, fueled by renewable energies like light and electricity. This promising technology represents an important step toward sustainable development, which can help address some of the most pressing environmental challenges faced by modern society. However, to establish processes competitive with the petroleum industry, it is crucial to determine the most viable pathways for C1 utilization and productivity and yield of the target products. In this review, we discuss the progresses that have been made in constructing artificial biological systems for 3G biorefineries in the last 10 years. Specifically, we highlight the representative works on the engineering of artificial autotrophic microorganisms, tandem enzymatic systems, and chemo-bio hybrid systems for C1 utilization. We also prospect the revolutionary impact of these developments on biotechnology. By harnessing the power of 3G biorefinery, scientists are establishing a new frontier that could potentially revolutionize our approach to industrial production and pave the way for a more sustainable future.
Collapse
Affiliation(s)
- Wei Zhong
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
| | - Hailong Li
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
- School of Materials Science and Engineering,
Zhejiang University, Zhejiang Province, Hangzhou 310000, PR China
| | - Yajie Wang
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
| |
Collapse
|
13
|
Orsi E, Nikel PI, Nielsen LK, Donati S. Synergistic investigation of natural and synthetic C1-trophic microorganisms to foster a circular carbon economy. Nat Commun 2023; 14:6673. [PMID: 37865689 PMCID: PMC10590403 DOI: 10.1038/s41467-023-42166-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023] Open
Abstract
A true circular carbon economy must upgrade waste greenhouse gases. C1-based biomanufacturing is an attractive solution, in which one carbon (C1) molecules (e.g. CO2, formate, methanol, etc.) are converted by microbial cell factories into value-added goods (i.e. food, feed, and chemicals). To render C1-based biomanufacturing cost-competitive, we must adapt microbial metabolism to perform chemical conversions at high rates and yields. To this end, the biotechnology community has undertaken two (seemingly opposing) paths: optimizing natural C1-trophic microorganisms versus engineering synthetic C1-assimilation de novo in model microorganisms. Here, we pose how these approaches can instead create synergies for strengthening the competitiveness of C1-based biomanufacturing as a whole.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Lars Keld Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072, Brisbane, QLD, Australia
| | - Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
14
|
Dahlin LR, Meyers AW, Stefani SW, Webb EG, Wachter B, Subramanian V, Guarnieri MT. Heterologous expression of formate dehydrogenase enables photoformatotrophy in the emerging model microalga, Picochlorum renovo. Front Bioeng Biotechnol 2023; 11:1162745. [PMID: 37706077 PMCID: PMC10497104 DOI: 10.3389/fbioe.2023.1162745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023] Open
Abstract
Rising global greenhouse gas emissions and the impacts of resultant climate change necessitate development and deployment of carbon capture and conversion technologies. Amongst the myriad of bio-based conversion approaches under evaluation, a formate bio-economy has recently been proposed, wherein CO2-derived formate serves as a substrate for concurrent carbon and energy delivery to microbial systems. To date, this approach has been explored in chemolithotrophic and heterotrophic organisms via native or engineered formatotrophy. However, utilization of this concept in phototrophic organisms has yet to be reported. Herein, we have taken the first steps to establish formate utilization in Picochlorum renovo, a recently characterized eukaryotic microalga with facile genetic tools and promising applied biotechnology traits. Plastidial heterologous expression of a formate dehydrogenase (FDH) enabled P. renovo growth on formate as a carbon and energy source. Further, FDH expression enhanced cultivation capacity on ambient CO2, underscoring the potential for bypass of conventional CO2 capture and concentration limitations. This work establishes a photoformatotrophic cultivation regime that leverages light energy-driven formate utilization. The resultant photosynthetic formate platform has widespread implications for applied phototrophic cultivation systems and the bio-economy at large.
Collapse
Affiliation(s)
- Lukas R. Dahlin
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Alex W. Meyers
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Skylar W. Stefani
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Ellsbeth G. Webb
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Benton Wachter
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | | | - Michael T. Guarnieri
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, United States
| |
Collapse
|
15
|
Guo F, Qiao Y, Xin F, Zhang W, Jiang M. Bioconversion of C1 feedstocks for chemical production using Pichia pastoris. Trends Biotechnol 2023; 41:1066-1079. [PMID: 36967258 DOI: 10.1016/j.tibtech.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
Abstract
Bioconversion of C1 feedstocks for chemical production offers a promising solution to global challenges such as the energy and food crises and climate change. The methylotroph Pichia pastoris is an attractive host system for the production of both recombinant proteins and chemicals from methanol. Recent studies have also demonstrated its potential for utilizing CO2 through metabolic engineering or coupling with electrocatalysis. This review focuses on the bioconversion of C1 feedstocks for chemical production using P. pastoris. Herein the challenges and feasible strategies for chemical production in P. pastoris are discussed. The potential of P. pastoris to utilize other C1 feedstocks - including CO2 and formate - is highlighted, and new insights from the perspectives of synthetic biology and material science are proposed.
Collapse
Affiliation(s)
- Feng Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Yangyi Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, P.R. China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, P.R. China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, P.R. China
| |
Collapse
|
16
|
Xu S, Qiao W, Wang Z, Fu X, Liu Z, Shi S. Exploiting a heterologous construction of the 3-hydroxypropionic acid carbon fixation pathway with mesaconate as an indicator in Saccharomyces cerevisiae. BIORESOUR BIOPROCESS 2023; 10:33. [PMID: 38647598 PMCID: PMC10991142 DOI: 10.1186/s40643-023-00652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/14/2023] [Indexed: 04/25/2024] Open
Abstract
The 3-Hydroxypropionic acid (3-HP) pathway is one of the six known natural carbon fixation pathways, in which the carbon species used is bicarbonate. It has been considered to be the most suitable pathway for aerobic CO2 fixation among the six natural carbon fixation pathways. Mesaconate is a high value-added derivative in the 3-HP pathway and can be used as a co-monomer to produce fire-retardant materials and hydrogels. In this study, we use mesaconate as a reporting compound to evaluate the construction and optimization of the sub-part of the 3-HP pathway in Saccharomyces cerevisiae. Combined with fine-tuning of the malonyl-CoA reductase (MCR-C and MCR-N) expression level and optimization of 3-Hydroxypropionyl-CoA synthase, the 3-HP sub-pathway was optimized using glucose or ethanol as the substrate, with the productions of mesaconate reaching 90.78 and 61.2 mg/L, respectively.
Collapse
Affiliation(s)
- Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weibo Qiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zuanwen Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoying Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
17
|
Wu R, Li F, Cui X, Li Z, Ma C, Jiang H, Zhang L, Zhang YHPJ, Zhao T, Zhang Y, Li Y, Chen H, Zhu Z. Enzymatic Electrosynthesis of Glycine from CO 2 and NH 3. Angew Chem Int Ed Engl 2023; 62:e202218387. [PMID: 36759346 DOI: 10.1002/anie.202218387] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Enzymatic electrosynthesis has gained more and more interest as an emerging green synthesis platform, particularly for the fixation of CO2 . However, the simultaneous utilization of CO2 and a nitrogenous molecule for the enzymatic electrosynthesis of value-added products has never been reported. In this study, we constructed an in vitro multienzymatic cascade based on the reductive glycine pathway and demonstrated an enzymatic electrocatalytic system that allowed the simultaneous conversion of CO2 and NH3 as the sole carbon and nitrogen sources to synthesize glycine. Through effective coupling and the optimization of electrochemical cofactor regeneration and the multienzymatic cascade reaction, 0.81 mM glycine was yielded with a highest reaction rate of 8.69 mg L-1 h-1 and faradaic efficiency of 96.8 %. These results imply a promising alternative for enzymatic CO2 electroreduction and expand its products to nitrogenous chemicals.
Collapse
Affiliation(s)
- Ranran Wu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Fei Li
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Xinyu Cui
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Zehua Li
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Chunling Ma
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Lingling Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Yi-Heng P Job Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Tongxin Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, P. R. China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, P. R. China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, P. R. China
| | - Hui Chen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, P. R. China
| | - Zhiguang Zhu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| |
Collapse
|
18
|
Bruinsma L, Wenk S, Claassens NJ, Martins Dos Santos VAP. Paving the way for synthetic C1 - Metabolism in Pseudomonas putida through the reductive glycine pathway. Metab Eng 2023; 76:215-224. [PMID: 36804222 DOI: 10.1016/j.ymben.2023.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
One-carbon (C1) compounds such as methanol, formate, and CO2 are alternative, sustainable microbial feedstocks for the biobased production of chemicals and fuels. In this study, we engineered the carbon metabolism of the industrially important bacterium Pseudomonas putida to modularly assimilate these three substrates through the reductive glycine pathway. First, we demonstrated the functionality of the C1-assimilation module by coupling the growth of auxotrophic strains to formate assimilation. Next, we extended the module in the auxotrophic strains from formate to methanol-dependent growth using both NAD and PQQ-dependent methanol dehydrogenases. Finally, we demonstrated, for the first time, engineered CO2-dependent formation of part of the biomass through CO2 reduction to formate by the native formate dehydrogenase, which required short-term evolution to rebalance the cellular NADH/NAD + ratio. This research paves the way to further engineer P. putida towards full growth on formate, methanol, and CO2 as sole feedstocks, thereby substantially expanding its potential as a sustainable and versatile cell factory.
Collapse
Affiliation(s)
- Lyon Bruinsma
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708, WE, the Netherlands
| | - Sebastian Wenk
- Systems and Synthetic Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, 6708, WE, the Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708, WE, the Netherlands; LifeGlimmer GmbH, Berlin, 12163, Germany; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708, WE, the Netherlands.
| |
Collapse
|
19
|
Xu J, Wang J, Ma C, Wei Z, Zhai Y, Tian N, Zhu Z, Xue M, Li D. Embracing a low-carbon future by the production and marketing of C1 gas protein. Biotechnol Adv 2023; 63:108096. [PMID: 36621726 DOI: 10.1016/j.biotechadv.2023.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Food scarcity and environmental deterioration are two major problems that human populations currently face. Fortunately, the disruptive innovation of raw food materials has been stimulated by the rapid evolution of biomanufacturing. Therefore, it is expected that the new trends in technology will not only alter the natural resource-dependent food production systems and the traditional way of life but also reduce and assimilate the greenhouse gases released into the atmosphere. This review article summarizes the metabolic pathways associated with C1 gas conversion and the production of single-cell protein for animal feed. Moreover, the protein function, worldwide authorization, market access, and methods to overcome challenges in C1 gas assimilation microbial cell factory construction are also provided. With widespread attention and increasing policy support, the production of C1 gas protein will bring more opportunities and make tremendous contributions to our sustainable future.
Collapse
Affiliation(s)
- Jian Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Jie Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunling Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Haihe Laboratory of Synthetic Biology, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zuoxi Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Yida Zhai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Na Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China.
| | - Min Xue
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Demao Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China.
| |
Collapse
|
20
|
Zhao R, Dong W, Yang C, Jiang W, Tian J, Gu Y. Formate as a supplementary substrate facilitates sugar metabolism and solvent production by Clostridium beijerinckii NCIMB 8052. Synth Syst Biotechnol 2023; 8:196-205. [PMID: 36824491 PMCID: PMC9941364 DOI: 10.1016/j.synbio.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Microbial utilization and conversion of organic one-carbon compounds, such as formate and methanol that can be easily produced from CO2, has emerged as an attractive approach for biorefinery. In this study, we discovered Clostridium beijerinckii NCIMB 8052, a typical solventogenic Clostridium strain, to be a native formate-utilizing bacterium. 13C isotope analysis showed that formate could be metabolized via both assimilation and dissimilation pathways in C. beijerinckii NCIMB 8052. Notably, the use of formate as the supplementary substrate by this strain could significantly enhance its glucose consumption and ABE (acetone-butanol-ethanol) production, largely due to the up-regulation of genes responsible for glycolysis and glucose transport under formate stress. Based on these findings, we further improved formate tolerance of C. beijerinckii NCIMB 8052 by adaptive laboratory evolution, generating an evolved strain Cbei-FA01. The Cbei-FA01 strain could produce 23.0 g/L of ABE solvents using glucose and formate as dual substrates, ∼50% higher than that of the wild-type strain under the same condition. Moreover, such a promotion effect of formate on ABE production by Cbei-FA01 was also observed in fermenting a glucose-xylose mixture. This work reveals a previously unreported role of formate in biological ABE production, providing a new approach to utilize this one-carbon source.
Collapse
Affiliation(s)
- Ran Zhao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyue Dong
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jinzhong Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China,Corresponding author. 300 Fenglin Road, Shanghai, 200032, China.
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China,Corresponding author.
| |
Collapse
|
21
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
22
|
Singh HB, Kang MK, Kwon M, Kim SW. Developing methylotrophic microbial platforms for a methanol-based bioindustry. Front Bioeng Biotechnol 2022; 10:1050740. [PMID: 36507257 PMCID: PMC9727194 DOI: 10.3389/fbioe.2022.1050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Methanol, a relatively cheap and renewable single-carbon feedstock, has gained considerable attention as a substrate for the bio-production of commodity chemicals. Conventionally produced from syngas, along with emerging possibilities of generation from methane and CO2, this C1 substrate can serve as a pool for sequestering greenhouse gases while supporting a sustainable bio-economy. Methylotrophic organisms, with the inherent ability to use methanol as the sole carbon and energy source, are competent candidates as platform organisms. Accordingly, methanol bioconversion pathways have been an attractive target for biotechnological and bioengineering interventions in developing microbial cell factories. This review summarizes the recent advances in methanol-based production of various bulk and value-added chemicals exploiting the native and synthetic methylotrophic organisms. Finally, the current challenges and prospects of streamlining these methylotrophic platforms are discussed.
Collapse
Affiliation(s)
- Hawaibam Birla Singh
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Min-Kyoung Kang
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Moonhyuk Kwon
- Division of Life Science, ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea,*Correspondence: Moonhyuk Kwon, ; Seon-Won Kim,
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea,*Correspondence: Moonhyuk Kwon, ; Seon-Won Kim,
| |
Collapse
|
23
|
Qiao W, Xu S, Liu Z, Fu X, Zhao H, Shi S. Challenges and opportunities in C1-based biomanufacturing. BIORESOURCE TECHNOLOGY 2022; 364:128095. [PMID: 36220528 DOI: 10.1016/j.biortech.2022.128095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The intensifying impact of green-house gas (GHG) emission on environment and climate change has attracted increasing attention, and biorefinery represents one of the most effective routes for reducing GHG emissions from human activities. However, this requires a shift for microbial fermentation from the current use of sugars to the use of biomass, and even better to the primary fixation of single carbon (C1) compounds. Here how microorganisms can be engineered for fixation and conversion of C1 compounds into metabolites that can serve as fuels and platform chemicals are reviewed. Meanwhile, key factors for utilization of these different pathways are discussed, followed by challenges and barriers for the development of C1-based biorefinery.
Collapse
Affiliation(s)
- Weibo Qiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoying Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
24
|
Liu B, Li H, Zhou H, Zhang J. Enhancing xylanase expression by Komagataella phaffii by formate as carbon source and inducer. Appl Microbiol Biotechnol 2022; 106:7819-7829. [DOI: 10.1007/s00253-022-12249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2022]
|
25
|
Wegat V, Fabarius JT, Sieber V. Synthetic methylotrophic yeasts for the sustainable fuel and chemical production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:113. [PMID: 36273178 PMCID: PMC9587593 DOI: 10.1186/s13068-022-02210-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022]
Abstract
Global energy-related emissions, in particular carbon dioxide, are rapidly increasing. Without immediate and strong reductions across all sectors, limiting global warming to 1.5 °C and thus mitigating climate change is beyond reach. In addition to the expansion of renewable energies and the increase in energy efficiency, the so-called Carbon Capture and Utilization technologies represent an innovative approach for closing the carbon cycle and establishing a circular economy. One option is to combine CO2 capture with microbial C1 fermentation. C1-molecules, such as methanol or formate are considered as attractive alternative feedstock for biotechnological processes due to their sustainable production using only CO2, water and renewable energy. Native methylotrophic microorganisms can utilize these feedstock for the production of value-added compounds. Currently, constraints exist regarding the understanding of methylotrophic metabolism and the available genetic engineering tools are limited. For this reason, the development of synthetic methylotrophic cell factories based on the integration of natural or artificial methanol assimilation pathways in biotechnologically relevant microorganisms is receiving special attention. Yeasts like Saccharomyces cerevisiae and Yarrowia lipolytica are capable of producing important products from sugar-based feedstock and the switch to produce these in the future from methanol is important in order to realize a CO2-based economy that is independent from land use. Here, we review historical biotechnological applications, the metabolism and the characteristics of methylotrophic yeasts. Various studies demonstrated the production of a broad set of promising products from fine chemicals to bulk chemicals by applying methylotrophic yeasts. Regarding synthetic methylotrophy, the deep understanding of the methylotrophic metabolism serves as the basis for microbial strain engineering and paves the way towards a CO2-based circular bioeconomy. We highlight design aspects of synthetic methylotrophy and discuss the resulting chances and challenges using non-conventional yeasts as host organisms. We conclude that the road towards synthetic methylotrophic yeasts can only be achieved through a combination of methods (e.g., metabolic engineering and adaptive laboratory evolution). Furthermore, we presume that the installation of metabolic regeneration cycles such as supporting carbon re-entry towards the pentose phosphate pathway from C1-metabolism is a pivotal target for synthetic methylotrophy.
Collapse
Affiliation(s)
- Vanessa Wegat
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany ,grid.6936.a0000000123222966Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| | - Jonathan T. Fabarius
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany
| | - Volker Sieber
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany ,grid.6936.a0000000123222966Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| |
Collapse
|
26
|
Llorente B, Williams TC, Goold HD, Pretorius IS, Paulsen IT. Harnessing bioengineered microbes as a versatile platform for space nutrition. Nat Commun 2022; 13:6177. [PMID: 36261466 PMCID: PMC9582011 DOI: 10.1038/s41467-022-33974-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Human enterprises through the solar system will entail long-duration voyages and habitation creating challenges in maintaining healthy diets. We discuss consolidating multiple sensory and nutritional attributes into microorganisms to develop customizable food production systems with minimal inputs, physical footprint, and waste. We envisage that a yeast collection bioengineered for one-carbon metabolism, optimal nutrition, and diverse textures, tastes, aromas, and colors could serve as a flexible food-production platform. Beyond its potential for supporting humans in space, bioengineered microbial-based food could lead to a new paradigm for Earth's food manufacturing that provides greater self-sufficiency and removes pressure from natural ecosystems.
Collapse
Affiliation(s)
- Briardo Llorente
- ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia.
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Thomas C Williams
- ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Hugh D Goold
- ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- New South Wales Department of Primary Industries, Orange, NSW, 2800, Australia
| | - Isak S Pretorius
- ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian T Paulsen
- ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
27
|
Carruthers DN, Lee TS. Translating advances in microbial bioproduction to sustainable biotechnology. Front Bioeng Biotechnol 2022; 10:968437. [PMID: 36082166 PMCID: PMC9445250 DOI: 10.3389/fbioe.2022.968437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Advances in synthetic biology have radically changed our ability to rewire microorganisms and significantly improved the scalable production of a vast array of drop-in biopolymers and biofuels. The success of a drop-in bioproduct is contingent on market competition with petrochemical analogues and weighted upon relative economic and environmental metrics. While the quantification of comparative trade-offs is critical for accurate process-level decision making, the translation of industrial ecology to synthetic biology is often ambiguous and assessment accuracy has proven challenging. In this review, we explore strategies for evaluating industrial biotechnology through life cycle and techno-economic assessment, then contextualize how recent developments in synthetic biology have improved process viability by expanding feedstock availability and the productivity of microbes. By juxtaposing biological and industrial constraints, we highlight major obstacles between the disparate disciplines that hinder accurate process evaluation. The convergence of these disciplines is crucial in shifting towards carbon neutrality and a circular bioeconomy.
Collapse
Affiliation(s)
- David N. Carruthers
- Joint BioEnergy Institute, Emeryville, CA, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- *Correspondence: Taek Soon Lee,
| |
Collapse
|
28
|
Kelso PA, Chow LKM, Carpenter AC, Paulsen IT, Williams TC. Toward Methanol-Based Biomanufacturing: Emerging Strategies for Engineering Synthetic Methylotrophy in Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:2548-2563. [PMID: 35848307 DOI: 10.1021/acssynbio.2c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The global expansion of biomanufacturing is currently limited by the availability of sugar-based microbial feedstocks, which require farmland for cultivation and therefore cannot support large increases in production without impacting the human food supply. One-carbon feedstocks, such as methanol, present an enticing alternative to sugar because they can be produced independently of arable farmland from organic waste, atmospheric carbon dioxide, and hydrocarbons such as biomethane, natural gas, and coal. The development of efficient industrial microorganisms that can convert one-carbon feedstocks into valuable products is an ongoing challenge. This review discusses progress in the field of synthetic methylotrophy with a focus on how it pertains to the important industrial yeast, Saccharomyces cerevisiae. Recent insights generated from engineering synthetic methylotrophic xylulose- and ribulose-monophosphate cycles, reductive glycine pathways, and adaptive laboratory evolution studies are critically assessed to generate novel strategies for the future engineering of methylotrophy in S. cerevisiae.
Collapse
Affiliation(s)
- Philip A Kelso
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia
| | | | - Alex C Carpenter
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia
| | - Ian T Paulsen
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia
| | - Thomas C Williams
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia
| |
Collapse
|
29
|
Zhang C, Ottenheim C, Weingarten M, Ji L. Microbial Utilization of Next-Generation Feedstocks for the Biomanufacturing of Value-Added Chemicals and Food Ingredients. Front Bioeng Biotechnol 2022; 10:874612. [PMID: 35480982 PMCID: PMC9035589 DOI: 10.3389/fbioe.2022.874612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Global shift to sustainability has driven the exploration of alternative feedstocks beyond sugars for biomanufacturing. Recently, C1 (CO2, CO, methane, formate and methanol) and C2 (acetate and ethanol) substrates are drawing great attention due to their natural abundance and low production cost. The advances in metabolic engineering, synthetic biology and industrial process design have greatly enhanced the efficiency that microbes use these next-generation feedstocks. The metabolic pathways to use C1 and C2 feedstocks have been introduced or enhanced into industrial workhorses, such as Escherichia coli and yeasts, by genetic rewiring and laboratory evolution strategies. Furthermore, microbes are engineered to convert these low-cost feedstocks to various high-value products, ranging from food ingredients to chemicals. This review highlights the recent development in metabolic engineering, the challenges in strain engineering and bioprocess design, and the perspectives of microbial utilization of C1 and C2 feedstocks for the biomanufacturing of value-added products.
Collapse
Affiliation(s)
- Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- *Correspondence: Congqiang Zhang, ,
| | - Christoph Ottenheim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Melanie Weingarten
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - LiangHui Ji
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Du C, Li Y, Xiang R, Yuan W. Formate Dehydrogenase Improves the Resistance to Formic Acid and Acetic Acid Simultaneously in Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms23063406. [PMID: 35328826 PMCID: PMC8954399 DOI: 10.3390/ijms23063406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 01/06/2023] Open
Abstract
Bioethanol from lignocellulosic biomass is a promising and sustainable strategy to meet the energy demand and to be carbon neutral. Nevertheless, the damage of lignocellulose-derived inhibitors to microorganisms is still the main bottleneck. Developing robust strains is critical for lignocellulosic ethanol production. An evolved strain with a stronger tolerance to formate and acetate was obtained after adaptive laboratory evolution (ALE) in the formate. Transcriptional analysis was conducted to reveal the possible resistance mechanisms to weak acids, and fdh coding for formate dehydrogenase was selected as the target to verify whether it was related to resistance enhancement in Saccharomyces cerevisiae F3. Engineered S. cerevisiae FA with fdh overexpression exhibited boosted tolerance to both formate and acetate, but the resistance mechanism to formate and acetate was different. When formate exists, it breaks down by formate dehydrogenase into carbon dioxide (CO2) to relieve its inhibition. When there was acetate without formate, FDH1 converted CO2 from glucose fermentation to formate and ATP and enhanced cell viability. Together, fdh overexpression alone can improve the tolerance to both formate and acetate with a higher cell viability and ATP, which provides a novel strategy for robustness strain construction to produce lignocellulosic ethanol.
Collapse
Affiliation(s)
- Cong Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Y.L.); (R.X.)
| | - Yimin Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Y.L.); (R.X.)
| | - Ruijuan Xiang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Y.L.); (R.X.)
| | - Wenjie Yuan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Y.L.); (R.X.)
- Ningbo Research Institute, Dalian University of Technology, Ningbo 315000, China
- Correspondence:
| |
Collapse
|
31
|
Engineering the Reductive Glycine Pathway: A Promising Synthetic Metabolism Approach for C1-Assimilation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:299-350. [DOI: 10.1007/10_2021_181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Xu Y, Ren J, Wang W, Zeng A. Improvement of glycine biosynthesis from one-carbon compounds and ammonia catalyzed by the glycine cleavage system in vitro. Eng Life Sci 2022; 22:40-53. [PMID: 35024026 PMCID: PMC8727733 DOI: 10.1002/elsc.202100047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/25/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
Glycine cleavage system (GCS) plays a central role in one-carbon (C1) metabolism and receives increasing interest as a core part of the recently proposed reductive glycine pathway (rGlyP) for assimilation of CO2 and formate. Despite decades of research, GCS has not yet been well understood and kinetic data are barely available. This is to a large degree because of the complexity of GCS, which is composed of four proteins (H, T, P, and L) and catalyzes reactions involving different substrates and cofactors. In vitro kinetics of reconstructed microbial multi-enzyme glycine cleavage/synthase system is desired to better implement rGlyP in microorganisms like Escherichia coli for the use of C1 resources. Here, we examined in vitro several factors that may affect the rate of glycine synthesis via the reverse GCS reaction. We found that the ratio of GCS component proteins has a direct influence on the rate of glycine synthesis, namely higher ratios of P protein and especially H protein to T and L proteins are favorable, and the carboxylation reaction catalyzed by P protein is a key step determining the glycine synthesis rate, whereas increasing the ratio of L protein to other GCS proteins does not have significant effect and the ratio of T protein to other GCS proteins should be kept low. The effect of substrate concentrations on glycine synthesis is quite complex, showing interdependence with the ratios of GCS component proteins. Furthermore, adding the reducing agent dithiothreitol to the reaction mixture not only results in great tolerance to high concentration of formaldehyde, but also increases the rate of glycine synthesis, probably due to its functions in activating P protein and taking up the role of L protein in the non-enzymatic reduction of Hox to Hred. Moreover, the presence of some monovalent and divalent metal ions can have either positive or negative effect on the rate of glycine synthesis, depending on their type and their concentration.
Collapse
Affiliation(s)
- Yingying Xu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingP. R. China
| | - Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingP. R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri‐product Quality and SafetyMinistry of AgricultureInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingP. R. China
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of TechnologyHamburgGermany
| | - An‐Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingP. R. China
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of TechnologyHamburgGermany
| |
Collapse
|
33
|
Hong Y, Zeng AP. Biosynthesis Based on One-Carbon Mixotrophy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:351-371. [DOI: 10.1007/10_2021_198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Understanding and Engineering Glycine Cleavage System and Related Metabolic Pathways for C1-Based Biosynthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:273-298. [DOI: 10.1007/10_2021_186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Bioconversion of Methanol by Synthetic Methylotrophy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:149-168. [PMID: 34545421 DOI: 10.1007/10_2021_176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
As an important building block in the chemical industry, methanol has become an attractive substrate in biorefinery owing to its abundance and low cost. With the development of synthetic biology, metabolic engineering of non-methylotrophy to construct synthetic methylotrophy has drawn increased attention. As for the metabolic construction of methanol assimilation pathway in some industrial hosts, several artificial methanol assimilation pathways have recently been designed and constructed based on the computer-aided design. Particularly, these artificial methanol assimilation pathways possess advantages of shorter reaction steps, stronger driving forces, and independence on oxygen. Accordingly, this chapter reviewed strategies of constructing synthetic methylotrophs, including introducing methanol metabolic modules derived from natural methylotrophs and designing artificial methanol assimilation pathways. Future challenges and prospects were also discussed.
Collapse
|
36
|
Neuendorf CS, Vignolle GA, Derntl C, Tomin T, Novak K, Mach RL, Birner-Grünberger R, Pflügl S. A quantitative metabolic analysis reveals Acetobacterium woodii as a flexible and robust host for formate-based bioproduction. Metab Eng 2021; 68:68-85. [PMID: 34537366 DOI: 10.1016/j.ymben.2021.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022]
Abstract
Cheap and renewable feedstocks such as the one-carbon substrate formate are emerging for sustainable production in a growing chemical industry. We investigated the acetogen Acetobacterium woodii as a potential host for bioproduction from formate alone and together with autotrophic and heterotrophic co-substrates by quantitatively analyzing physiology, transcriptome, and proteome in chemostat cultivations in combination with computational analyses. Continuous cultivations with a specific growth rate of 0.05 h-1 on formate showed high specific substrate uptake rates (47 mmol g-1 h-1). Co-utilization of formate with H2, CO, CO2 or fructose was achieved without catabolite repression and with acetate as the sole metabolic product. A transcriptomic comparison of all growth conditions revealed a distinct adaptation of A. woodii to growth on formate as 570 genes were changed in their transcript level. Transcriptome and proteome showed higher expression of the Wood-Ljungdahl pathway during growth on formate and gaseous substrates, underlining its function during utilization of one-carbon substrates. Flux balance analysis showed varying flux levels for the WLP (0.7-16.4 mmol g-1 h-1) and major differences in redox and energy metabolism. Growth on formate, H2/CO2, and formate + H2/CO2 resulted in low energy availability (0.20-0.22 ATP/acetate) which was increased during co-utilization with CO or fructose (0.31 ATP/acetate for formate + H2/CO/CO2, 0.75 ATP/acetate for formate + fructose). Unitrophic and mixotrophic conversion of all substrates was further characterized by high energetic efficiencies. In silico analysis of bioproduction of ethanol and lactate from formate and autotrophic and heterotrophic co-substrates showed promising energetic efficiencies (70-92%). Collectively, our findings reveal A. woodii as a promising host for flexible and simultaneous bioconversion of multiple substrates, underline the potential of substrate co-utilization to improve the energy availability of acetogens and encourage metabolic engineering of acetogenic bacteria for the efficient synthesis of bulk chemicals and fuels from sustainable one carbon substrates.
Collapse
Affiliation(s)
- Christian Simon Neuendorf
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | - Gabriel A Vignolle
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | - Christian Derntl
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | - Tamara Tomin
- Technische Universität Wien, Institute for Chemical Technologies and Analytics, Research Group Bioanalytics, Getreidemarkt 9, 1060, Vienna, Austria.
| | - Katharina Novak
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | - Robert L Mach
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | - Ruth Birner-Grünberger
- Technische Universität Wien, Institute for Chemical Technologies and Analytics, Research Group Bioanalytics, Getreidemarkt 9, 1060, Vienna, Austria; Medical University of Graz, Diagnostic and Research Institute of Pathology, Center for Medical Research, Stiftingtalstrasse 24, 8036, Graz, Austria.
| | - Stefan Pflügl
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
37
|
Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nat Chem Biol 2021; 17:845-855. [PMID: 34312558 DOI: 10.1038/s41589-021-00836-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
One-carbon (C1) substrates are preferred feedstocks for the biomanufacturing industry and have recently gained attention owing to their natural abundance, low production cost and availability as industrial by-products. However, native pathways to utilize these substrates are absent in most biotechnologically relevant microorganisms. Recent advances in synthetic biology, genome engineering and laboratory evolution are enabling the first steps towards the creation of synthetic C1-utilizing microorganisms. Here, we briefly review the native metabolism of methane, methanol, CO2, CO and formate, and how these C1-utilizing pathways can be engineered into heterologous hosts. In addition, this review analyses the potential, the challenges and the perspectives of C1-based biomanufacturing.
Collapse
|
38
|
Calzadiaz-Ramirez L, Meyer AS. Formate dehydrogenases for CO 2 utilization. Curr Opin Biotechnol 2021; 73:95-100. [PMID: 34348217 DOI: 10.1016/j.copbio.2021.07.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
New measures for reducing atmospheric CO2 are urgently needed. Formate dehydrogenases (FDHs, EC 1.17.1.9) catalyze conversion of CO2 to formate (HCOO-) via a reverse catalytic ability. This enzymatic conversion of CO2 represents a novel first step approach for biocatalytic carbon capture and utilization targeting both CO2 reduction and substitution of petrochemical-based production of important commodity chemicals. To achieve robust and efficient FDH catalyzed CO2 conversion for sustainable large-scale implementation, it is critical to focus on the efficacy of the electron donor, enzyme stabilization, and on how the desired reverse FDH reactivity can be enhanced. Recent advances include the realization that NADH, the most common natural cofactor for reverse FDH catalysis, is an inefficient electron donor for FDH catalyzed CO2 conversion. Improved understanding of the redox reaction details and structure-function relations of both metal-dependent and metal-independent FDHs provides the foundation for achieving rational technological advancements to promote enzymatic CO2 utilization.
Collapse
Affiliation(s)
- Liliana Calzadiaz-Ramirez
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
39
|
Dixon TA, Williams TC, Pretorius IS. Bioinformational trends in grape and wine biotechnology. Trends Biotechnol 2021; 40:124-135. [PMID: 34108075 DOI: 10.1016/j.tibtech.2021.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
The creative destruction caused by the coronavirus pandemic is yielding immense opportunity for collaborative innovation networks. The confluence of biosciences, information sciences, and the engineering of biology, is unveiling promising bioinformational futures for a vibrant and sustainable bioeconomy. Bioinformational engineering, underpinned by DNA reading, writing, and editing technologies, has become a beacon of opportunity in a world paralysed by uncertainty. This article draws on lessons from the current pandemic and previous agricultural blights, and explores bioinformational research directions aimed at future-proofing the grape and wine industry against biological shocks from global blights and climate change.
Collapse
Affiliation(s)
- Thomas A Dixon
- Department of Modern History, Politics and International Relations, Macquarie University, Sydney, NSW 2109, Australia.
| | - Thomas C Williams
- Department of Molecular Sciences and ARC Centre of Excellence in Synthetic Biology, Centre Headquarters, Macquarie University, Sydney, NSW 2109, Australia
| | - Isak S Pretorius
- Department of Molecular Sciences and ARC Centre of Excellence in Synthetic Biology, Centre Headquarters, Macquarie University, Sydney, NSW 2109, Australia; Chancellery, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
40
|
Guo S, Asset T, Atanassov P. Catalytic Hybrid Electrocatalytic/Biocatalytic Cascades for Carbon Dioxide Reduction and Valorization. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04862] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shengyuan Guo
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine, California 92697, United States
| | - Tristan Asset
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine, California 92697, United States
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
41
|
Claassens NJ. Reductive Glycine Pathway: A Versatile Route for One-Carbon Biotech. Trends Biotechnol 2021; 39:327-329. [PMID: 33632541 DOI: 10.1016/j.tibtech.2021.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 11/27/2022]
Abstract
Hong et al. heterologously expressed the metabolic core of the reductive glycine pathway (rGlyP) as a sink for the anaerobic conversion of glycerol. This recent study concludes several reports in 2020 on the ATP-efficient, one-carbon-assimilating rGlyP. Its engineering in diverse hosts could help the transformation toward renewable, one-carbon-based bioproduction.
Collapse
Affiliation(s)
- Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
| |
Collapse
|
42
|
Yang Q, Guo X, Liu Y, Jiang H. Biocatalytic C-C Bond Formation for One Carbon Resource Utilization. Int J Mol Sci 2021; 22:ijms22041890. [PMID: 33672882 PMCID: PMC7918591 DOI: 10.3390/ijms22041890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 12/22/2022] Open
Abstract
The carbon-carbon bond formation has always been one of the most important reactions in C1 resource utilization. Compared to traditional organic synthesis methods, biocatalytic C-C bond formation offers a green and potent alternative for C1 transformation. In recent years, with the development of synthetic biology, more and more carboxylases and C-C ligases have been mined and designed for the C1 transformation in vitro and C1 assimilation in vivo. This article presents an overview of C-C bond formation in biocatalytic C1 resource utilization is first provided. Sets of newly mined and designed carboxylases and ligases capable of catalyzing C-C bond formation for the transformation of CO2, formaldehyde, CO, and formate are then reviewed, and their catalytic mechanisms are discussed. Finally, the current advances and the future perspectives for the development of catalysts for C1 resource utilization are provided.
Collapse
Affiliation(s)
- Qiaoyu Yang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Q.Y.); (X.G.)
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxian Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Q.Y.); (X.G.)
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yuwan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Q.Y.); (X.G.)
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Correspondence: (Y.L.); (H.J.)
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Q.Y.); (X.G.)
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Correspondence: (Y.L.); (H.J.)
| |
Collapse
|
43
|
Nguyen DTN, Lee OK, Nguyen TT, Lee EY. Type II methanotrophs: A promising microbial cell-factory platform for bioconversion of methane to chemicals. Biotechnol Adv 2021; 47:107700. [PMID: 33548453 DOI: 10.1016/j.biotechadv.2021.107700] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Methane, the predominant element in natural gas and biogas, represents a promising alternative to carbon feedstocks in the biotechnological industry due to its low cost and high abundance. The bioconversion of methane to value-added products can enhance the value of gas and mitigate greenhouse gas emissions. Methanotrophs, methane-utilizing bacteria, can make a significant contribution to the production of various valuable biofuels and chemicals from methane. Type II methanotrophs in comparison with Type I methanotrophs have distinct advantages, including high acetyl-CoA flux and the co-incorporation of two important greenhouse gases (methane and CO2), making it a potential microbial cell-factory platform for methane-derived biomanufacturing. Herein, we review the most recent advances in Type II methanotrophs related to multi-omics studies and metabolic engineering. Representative examples and prospects of metabolic engineering strategies for the production of suitable products are also discussed.
Collapse
Affiliation(s)
- Diep Thi Ngoc Nguyen
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Thu Thi Nguyen
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
44
|
Synthetic Biology Approaches To Enhance Microalgal Productivity. Trends Biotechnol 2021; 39:1019-1036. [PMID: 33541719 DOI: 10.1016/j.tibtech.2020.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
The major bottleneck in commercializing biofuels and other commodities produced by microalgae is the high cost associated with phototrophic cultivation. Improving microalgal productivities could be a solution to this problem. Synthetic biology methods have recently been used to engineer the downstream production pathways in several microalgal strains. However, engineering upstream photosynthetic and carbon fixation metabolism to enhance growth, productivity, and yield has barely been explored in microalgae. We describe strategies to improve the generation of reducing power from light, as well as to improve the assimilation of CO2 by either the native Calvin cycle or synthetic alternatives. Overall, we are optimistic that recent technological advances will prompt long-awaited breakthroughs in microalgal research.
Collapse
|
45
|
Ullmann L, Phan ANT, Kaplan DKP, Blank LM. Ustilaginaceae Biocatalyst for Co-Metabolism of CO 2-Derived Substrates toward Carbon-Neutral Itaconate Production. J Fungi (Basel) 2021; 7:jof7020098. [PMID: 33573033 PMCID: PMC7911105 DOI: 10.3390/jof7020098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
The family Ustilaginaceae (belonging to the smut fungi) are known for their plant pathogenicity. Despite the fact that these plant diseases cause agricultural yield reduction, smut fungi attracted special attention in the field of industrial biotechnology. Ustilaginaceae show a versatile product spectrum such as organic acids (e.g., itaconate, malate, succinate), polyols (e.g., erythritol, mannitol), and extracellular glycolipids, which are considered value-added chemicals with potential applications in the pharmaceutical, food, and chemical industries. This study focused on itaconate as a platform chemical for the production of resins, plastics, adhesives, and biofuels. During this work, 72 different Ustilaginaceae strains from 36 species were investigated for their ability to (co-) consume the CO2-derived substrates acetate and formate, potentially contributing toward a carbon-neutral itaconate production. The fungal growth and product spectrum with special interest in itaconate was characterized. Ustilago maydis MB215 and Ustilago rabenhorstiana NBRC 8995 were identified as promising candidates for acetate metabolization whereas Ustilago cynodontis NBRC 7530 was identified as a potential production host using formate as a co-substrate enhancing the itaconate production. Selected strains with the best itaconate production were characterized in more detail in controlled-batch bioreactor experiments confirming the co-substrate utilization. Thus, a proof-of-principle study was performed resulting in the identification and characterization of three promising Ustilaginaceae biocatalyst candidates for carbon-neutral itaconate production contributing to the biotechnological relevance of Ustilaginaceae.
Collapse
|
46
|
Hong Y, Arbter P, Wang W, Rojas LN, Zeng AP. Introduction of glycine synthase enables uptake of exogenous formate and strongly impacts the metabolism in Clostridium pasteurianum. Biotechnol Bioeng 2020; 118:1366-1380. [PMID: 33331660 DOI: 10.1002/bit.27658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 11/11/2022]
Abstract
Autotrophic or mixotrophic use of one-carbon (C1) compounds is gaining importance for sustainable bioproduction. In an effort to integrate the reductive glycine pathway (rGP) as a highly promising pathway for the assimilation of CO2 and formate, genes coding for glycine synthase system from Gottschalkia acidurici were successfully introduced into Clostridium pasteurianum, a non-model host microorganism with industrial interests. The mutant harboring glycine synthase exhibited assimilation of exogenous formate and reduced CO2 formation. Further metabolic data clearly showed large impacts of expression of glycine synthase on the product metabolism of C. pasteurianum. In particular, 2-oxobutyrate (2-OB) was observed for the first time as a metabolic intermediate of C. pasteurianum and its secretion was solely triggered by the expression of glycine synthase. The perturbation of C1 metabolism is discussed regarding its interactions with pathways of the central metabolism, acidogenesis, solventogenesis, and amino acid metabolism. The secretion of 2-OB is considered as a consequence of metabolic and redox instabilities due to the activity of glycine synthase and may represent a common metabolic response of Clostridia in enhanced use of C1 compounds.
Collapse
Affiliation(s)
- Yaeseong Hong
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Philipp Arbter
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Lilian N Rojas
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
47
|
Zhang Y, Nielsen J, Liu Z. Yeast based biorefineries for oleochemical production. Curr Opin Biotechnol 2020; 67:26-34. [PMID: 33360103 DOI: 10.1016/j.copbio.2020.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/04/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022]
Abstract
Biosynthesis of oleochemicals enables sustainable production of natural and unnatural alternatives from renewable feedstocks. Yeast cell factories have been extensively studied and engineered to produce a variety of oleochemicals, focusing on both central carbon metabolism and lipid metabolism. Here, we review recent progress towards oleochemical synthesis in yeast based biorefineries, as well as utilization of alternative renewable feedstocks, such as xylose and l-arabinose. We also review recent studies of C1 compound utilization or co-utilization and discuss how these studies can lead to third generation yeast based biorefineries for oleochemical production.
Collapse
Affiliation(s)
- Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark.
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
48
|
Liang B, Zhao Y, Yang J. Recent Advances in Developing Artificial Autotrophic Microorganism for Reinforcing CO 2 Fixation. Front Microbiol 2020; 11:592631. [PMID: 33240247 PMCID: PMC7680860 DOI: 10.3389/fmicb.2020.592631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/21/2020] [Indexed: 11/13/2022] Open
Abstract
With the goal of achieving carbon sequestration, emission reduction and cleaner production, biological methods have been employed to convert carbon dioxide (CO2) into fuels and chemicals. However, natural autotrophic organisms are not suitable cell factories due to their poor carbon fixation efficiency and poor growth rate. Heterotrophic microorganisms are promising candidates, since they have been proven to be efficient biofuel and chemical production chassis. This review first briefly summarizes six naturally occurring CO2 fixation pathways, and then focuses on recent advances in artificially designing efficient CO2 fixation pathways. Moreover, this review discusses the transformation of heterotrophic microorganisms into hemiautotrophic microorganisms and delves further into fully autotrophic microorganisms (artificial autotrophy) by use of synthetic biological tools and strategies. Rapid developments in artificial autotrophy have laid a solid foundation for the development of efficient carbon fixation cell factories. Finally, this review highlights future directions toward large-scale applications. Artificial autotrophic microbial cell factories need further improvements in terms of CO2 fixation pathways, reducing power supply, compartmentalization and host selection.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
49
|
Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat Commun 2020; 11:5564. [PMID: 33149159 PMCID: PMC7643182 DOI: 10.1038/s41467-020-19390-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/05/2020] [Indexed: 01/22/2023] Open
Abstract
Utilising one-carbon substrates such as carbon dioxide, methane, and methanol is vital to address the current climate crisis. Methylotrophic metabolism enables growth and energy generation from methanol, providing an alternative to sugar fermentation. Saccharomyces cerevisiae is an important industrial microorganism for which growth on one-carbon substrates would be relevant. However, its ability to metabolize methanol has been poorly characterised. Here, using adaptive laboratory evolution and 13C-tracer analysis, we discover that S. cerevisiae has a native capacity for methylotrophy. A systems biology approach reveals that global rearrangements in central carbon metabolism fluxes, gene expression changes, and a truncation of the uncharacterized transcriptional regulator Ygr067cp supports improved methylotrophy in laboratory evolved S. cerevisiae. This research paves the way for further biotechnological development and fundamental understanding of methylotrophy in the preeminent eukaryotic model organism and industrial workhorse, S. cerevisiae. Methylotrophic metabolism enables growth on methanol, an alternative to sugar fermentation. Here the authors use adaptive laboratory evolution to uncover native methylotrophy capacity in Saccharomyces cerevisiae.
Collapse
|
50
|
Schindler D. Genetic Engineering and Synthetic Genomics in Yeast to Understand Life and Boost Biotechnology. Bioengineering (Basel) 2020; 7:E137. [PMID: 33138080 PMCID: PMC7711850 DOI: 10.3390/bioengineering7040137] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
The field of genetic engineering was born in 1973 with the "construction of biologically functional bacterial plasmids in vitro". Since then, a vast number of technologies have been developed allowing large-scale reading and writing of DNA, as well as tools for complex modifications and alterations of the genetic code. Natural genomes can be seen as software version 1.0; synthetic genomics aims to rewrite this software with "build to understand" and "build to apply" philosophies. One of the predominant model organisms is the baker's yeast Saccharomyces cerevisiae. Its importance ranges from ancient biotechnologies such as baking and brewing, to high-end valuable compound synthesis on industrial scales. This tiny sugar fungus contributed greatly to enabling humankind to reach its current development status. This review discusses recent developments in the field of genetic engineering for budding yeast S. cerevisiae, and its application in biotechnology. The article highlights advances from Sc1.0 to the developments in synthetic genomics paving the way towards Sc2.0. With the synthetic genome of Sc2.0 nearing completion, the article also aims to propose perspectives for potential Sc3.0 and subsequent versions as well as its implications for basic and applied research.
Collapse
Affiliation(s)
- Daniel Schindler
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany; ; Tel.: +49-6421-178533
| |
Collapse
|