1
|
Haq SU, Ling W, Aqib AI, Danmei H, Aleem MT, Fatima M, Ahmad S, Gao F. Exploring the intricacies of antimicrobial resistance: Understanding mechanisms, overcoming challenges, and pioneering innovative solutions. Eur J Pharmacol 2025; 998:177511. [PMID: 40090539 DOI: 10.1016/j.ejphar.2025.177511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Antimicrobial resistance (AMR) poses a growing global threat. This review examines AMR from diverse angles, tracing the story of antibiotic resistance from its origins to today's crisis. It explores the rise of AMR, from its historical roots to the urgent need to counter this escalating menace. The review explores antibiotic classes, mechanisms, resistance profiles, and genetics. It details bacterial resistance mechanisms with illustrative examples. Multidrug-resistant bacteria spotlight AMR's resilience. Modern AMR control offers hope through precision medicine, stewardship, combination therapy, surveillance, and international cooperation. Converging traditional and innovative treatments presents an exciting frontier as novel compounds seek to enhance antibiotic efficacy. This review calls for global unity and proactive engagement to address AMR collectively, emphasizing the quest for innovative solutions and responsible antibiotic use. It underscores the interconnectedness of science, responsibility, and action in combatting AMR. Humanity faces a choice between antibiotic efficacy and obsolescence. The call is clear: unite, innovate, and prevail against AMR.
Collapse
Affiliation(s)
- Shahbaz Ul Haq
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| | - Wang Ling
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, 730050, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Huang Danmei
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Saad Ahmad
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
2
|
Puangpathumanond S, Chee HL, Sevencan C, Yang X, Lau OS, Lew TTS. Stomata-targeted nanocarriers enhance plant defense against pathogen colonization. Nat Commun 2025; 16:4816. [PMID: 40410152 PMCID: PMC12102249 DOI: 10.1038/s41467-025-60112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 05/15/2025] [Indexed: 05/25/2025] Open
Abstract
Plant pathogens significantly threaten food security and agricultural sustainability, with climate change expected to exacerbate outbreaks. Despite these growing threats, current agrochemical delivery remains untargeted and inefficient. In this study, we develop surface ligand-engineered nanoparticles for targeted delivery to stomata (SENDS), a nanocarrier system designed to target stomatal guard cells, which serve as key pathogen entry points into the plant apoplast. Our approach employs rational ligand engineering of porous nanoparticles, optimizing ligand orientation for efficient stomata targeting across different plant species. Foliar application of SENDS encapsulating an antimicrobial plant alkaloid reduces colonization of Xanthomonas campestris, a major crop pathogen, by 20-fold compared to untargeted nanocarriers. Quantitative assessment of stomatal aperture movement and photosynthetic performance confirms that SENDS enhance plant defense against invading pathogens without disrupting natural stomatal function. This nanobiotechnology approach provides a targeted strategy to improve plant disease resistance, offering new insights into nanocarrier design for more resilient and sustainable agriculture.
Collapse
Affiliation(s)
- Suppanat Puangpathumanond
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Heng Li Chee
- Institute of Materials Research and Engineering, Agency of Science, Technology and Research, Singapore, Singapore
| | - Cansu Sevencan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Xin Yang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Research Centre for Sustainable Urban Farming, National University of Singapore, Singapore, Singapore
| | - Tedrick Thomas Salim Lew
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
- Research Centre for Sustainable Urban Farming, National University of Singapore, Singapore, Singapore.
- NUS Environmental Research Institute, Singapore, Singapore.
| |
Collapse
|
3
|
Wang R, Chen J, Chen H. Metagenomic insights into efficiency and mechanism of antibiotic resistome reduction by electronic mediators-enhanced microbial electrochemical system. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137350. [PMID: 39874761 DOI: 10.1016/j.jhazmat.2025.137350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Electronic mediators are an effective means of enhancing the efficiency of microbial electrochemical electron transfer; however, there are still gaps in understanding the strengthening mechanisms and the efficiency of removing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). This study systematically elucidates the effects of various electron mediators on bioelectrochemical processes, electron transfer efficiency, and the underlying mechanisms that inhibit ARG propagation within sediment microbial fuel cell systems (SMFCs). The results indicate that the addition of electron mediators significantly increased the output voltage (33.3 %-61.1 %) and maximum power density (14 %-106 %) of SMFCs, while also reducing ARB abundance and transmission risk. The enhancement effect follows the order of biochar, nanoscale zero-valent iron, graphene, and carbon nanotubes, with biochar emerging as the most economical and efficient choice for generating electricity and removing human pathogenic bacteria carrying ARGs. Procrustes analysis revealed that electron mediators facilitated the removal of ARGs by altering the structure of the microbiome, particularly the electricity-generating microorganisms (EGMs). Voltage and mobile genetic elements were the primary drivers of ARGs in the SMFCs. The network analysis results show that multiple carbohydrate-active enzymes, cluster of orthologous groups, and EGMs were negatively correlated with ARGs, indicating that the electron mediator-enhanced SMFCs mainly inhibit the spread of ARGs by promoting cell division, carbohydrate metabolism, and electricity generation. This study provides novel insights into how electron mediators affect ARG removal in microbial electrochemistry, which can inform economically viable strategies for sustainable environmental remediation.
Collapse
Affiliation(s)
- Rui Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Jinping Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
4
|
Cheng J, Wu L, Fu H, Hu L, Wang W, Heng BC, Zhang X, Liu O, Deng X, Liu Y. Biodegradable Piezoelectric Janus Membrane with Enhanced Antibacterial and Osteoinductive Properties for Periodontitis Therapy. Adv Healthc Mater 2025; 14:e2500543. [PMID: 40135252 DOI: 10.1002/adhm.202500543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Indexed: 03/27/2025]
Abstract
An ideal guided bone regeneration (GBR) membrane for periodontitis treatment should incorporate biocompatibility, biodegradability, mechanical strength, antibacterial properties, and osteoconductivity. However, no commercially available GBR membrane meets all these criteria simultaneously. In this study, a novel biodegradable piezoelectric double-layered membrane is developed, with a non-piezoelectric Poly-L-lactic acid (PLLA) side facing the gingiva and a piezoelectric PLLA-ZnO side facing the alveolar bone. This asymmetric GBR membrane, with distinct fiber orientations and charge distribution, combines and synergizes mechanical strength, degradability, barrier function, antibacterial activity and osteogenic potential to enhance bone regeneration efficacy. The GBR membrane can effectively prevent fibroblast migration, inhibits bacterial infection, and promotes bone regeneration both in vitro and in vivo. In vitro testing shows good antibacterial rate against Porphyromonas gingivalis (P. gingivalis) and Staphylococcus aureus (S. aureus) after 10 min of ultrasound stimulation. Expression levels of osteogenic genes Bone morphogenetic Protein 2 (BMP2), Runt-related transcription factor 2 (RUNX2), Osteopontin (OPN) and Osteocalcin (OCN) are over twice that of the control. In a mouse P. gingivalis-mediated periodontitis model, our composite membrane demonstrates effective antimicrobial effects and promote bone regeneration after 2- and 4-weeks implantation, facilitated by mechanisms such as physical isolation, zinc ion release, piezoelectric effects, enhanced expression of osteogenic genes through activation of osteogenesis-related signaling pathways, underscoring its strong potential for GBR applications.
Collapse
Affiliation(s)
- Jingrong Cheng
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University & Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine, 72 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, National Center for Stomatology, National Clinical Research Center for Oral Diseases, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, P. R. China
| | - Liping Wu
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, National Center for Stomatology, National Clinical Research Center for Oral Diseases, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, P. R. China
| | - Hongying Fu
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, National Center for Stomatology, National Clinical Research Center for Oral Diseases, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, P. R. China
| | - Le Hu
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, National Center for Stomatology, National Clinical Research Center for Oral Diseases, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, P. R. China
| | - Weijia Wang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, National Center for Stomatology, National Clinical Research Center for Oral Diseases, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, P. R. China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, National Center for Stomatology, National Clinical Research Center for Oral Diseases, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, National Center for Stomatology, National Clinical Research Center for Oral Diseases, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, P. R. China
| | - Ousheng Liu
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University & Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine, 72 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| | - Xuliang Deng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, National Center for Stomatology, National Clinical Research Center for Oral Diseases, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, P. R. China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Yang Liu
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, National Center for Stomatology, National Clinical Research Center for Oral Diseases, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, P. R. China
| |
Collapse
|
5
|
He M, Yang X, Xiang D, Chan YK, Yin G, Yang W, Deng Y. Jahn-Teller-Driven Electronic Modulation of Bio-Heterojunction for Wound Regeneration after Postoperative Tumor Resection. NANO LETTERS 2025; 25:6828-6838. [PMID: 40219956 DOI: 10.1021/acs.nanolett.5c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Abundant ·OH, 1O2, and ·O2- provide an efficient methodology for rapid tumor and bacteria killing, whereas a limitation focuses on the catalytic efficiency. Thus, Jahn-Teller-driven electronic modulation of a bioheterojunction (bioHJ) platform is developed for the remedy in diabetic infectious wound regeneration after postoperative tumor resection. The bioHJ is composed of MoTe2/MnO2 and glucose oxidase (GOx). GOx depletes glucose to H2O2, which intercepts their glucose metabolism. The H2O2 can be further converted into highly lethal ·OH owing to peroxidase-mimetic activity via the Jahn-Teller effect, while GSH can be consumed due to its GPx-mimetic activity. Both of which can be further amplified upon NIR irradiation as NIR-activatable enzyme-mimetic activities. In vivo studies in a subcutaneous tumor model and infectious model authenticate the ability to kill tumor, defeat bacterial infection, and accelerate wound regeneration. This work enlightens a powerful platform for postoperative infectious wound regeneration of tumor resection using an engineered bioHJ.
Collapse
Affiliation(s)
- Miaomiao He
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Xuyang Yang
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
- Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, P.R. China
| | - Danni Xiang
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Guangfu Yin
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Weizhong Yang
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
6
|
Kong S, Li J, Fan O, Lin F, Xie J, Lin J. Controllable Fabrication of ZnO Nanorod Arrays on the Surface of Titanium Material and Their Antibacterial and Anti-Adhesion Properties. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1645. [PMID: 40271847 PMCID: PMC11990534 DOI: 10.3390/ma18071645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/25/2025]
Abstract
The adhesion of deleterious bacteria on titanium substrates not only causes economic losses but also endangers human life and health. The study is expected to address the challenging issues of using ZnO as an antibacterial material, including low bactericidal efficiency without lighting, susceptibility to ZnO cluster formation, and easy adhesion of bacteria to its surface. It is proposed that the prepared ZnO nanorod arrays with a hexagonal wurtzite structure on the surface of titanium-based materials can address the issue of ZnO cluster formation. Remarkably, a mere 3.49 g cm-2 of decorated Ag/AgCl achieves over 99% sterilization efficiency without lighting. The incorporation of FAS (1H,1H,2H,2H-perfluorodecyltrimethoxysilane) molecules with low surface energy enables the prepared Ti@ZnO@Ag/AgCl@FAS to attain a Cassie-Baxter wetting state, thereby imparting exceptional bacterial anti-adhesion properties exceeding 99.50%. Furthermore, antibacterial and anti-adhesion models have been proposed to elucidate the underlying mechanisms. This innovative approach is anticipated to be adaptable for application across various material substrates, which opens up a new avenue for the application of the antibacterial and bacterial anti-adhesion properties on the surface of ZnO materials.
Collapse
Affiliation(s)
- Sifang Kong
- School of Traffic & Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
| | - Jialin Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ouyang Fan
- School of Traffic & Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
| | - Feng Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiayin Xie
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jing Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
7
|
Gao F, Li B, Zhang W, Wang H, Dai Y, Li X, Zhang W, Zhang X, Mao J, Zhao S, Zhang S, Zargul A, Zhang Y, Tang J, Liu J. A Size-Adaptive Nanomicrobicide for Synergistic Photothermal and Gaseous Dismantling of Multidrug-Resistant Biofilms. NANO LETTERS 2025; 25:5181-5192. [PMID: 40048494 DOI: 10.1021/acs.nanolett.4c06221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Biofilms significantly impede the efficacy of conventional antimicrobial agents, particularly in multidrug-resistant (MDR) infections. In this work, we developed a size-adaptive, bismuth-based nanomicrobicide encapsulated with neutrophil membranes (Bi2S3/SNP@CM), designed to selectively generate nitric oxide (NO) within acidic biofilms under near-infrared (NIR) irradiation. The nanomicrobicide's adaptive size ensures deeper biofilm penetration and accumulation, while the neutrophil membrane coating enhances biocompatibility and targeting at infection sites. Upon NIR irradiation, localized heating and NO release synergistically eradicate MDR biofilms. Furthermore, the interactions between the nanomicrobicide and glutathione, as well as the reactions between NO and ROS, disrupt the intracellular redox balance, further amplifying the antibacterial efficacy. This innovative design affords a promising nanomicrobicide for effectively treating MDR biofilm infections.
Collapse
Affiliation(s)
- Fene Gao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Bo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science & Medicine, Northwest University, Xian 710069, China
| | - Weiyu Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, and NMPA Key Laboratory for Dental Materials, Beijing 100082, China
| | - Hui Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yizhi Dai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wanjun Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jiahui Mao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Sibo Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shipeng Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Aroofa Zargul
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Jinglong Tang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Zhang J, Liu X, Sun Y, Ge Z, Tian X, Shen J, Yuan J. Antioxidant and antibacterial PU/ZnS@Keratin mats with H 2S and Zn 2+ release for infected diabetic wound healing. Int J Biol Macromol 2025; 304:140787. [PMID: 39924032 DOI: 10.1016/j.ijbiomac.2025.140787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Diabetic wound healing is often hampered by persistent oxidative stress, poor angiogenesis, and bacterial infections. Herein, ZnS/keratin nanoclusters(ZnS@Ker) were first synthesized using the ion diffusion method based on chelation between keratin and metal ions, achieving the controlled release of hydrogen sulfide (H2S) and Zn2+ ions. These nanoclusters were then co-electrospun with polyurethane (PU) to afford PU/ZnS@Ker mats. These mats demonstrated acidic responsive release of Zn2+ and H2S under an infected wound microenvironment, fostering cell adhesion, migration, and angiogenesis while effectively combating bacterial infection and scavenging reactive oxygen species. Notably, in vivo wound healing studies in diabetic rats revealed that PU/ZnS@Ker mats promoted collagen deposition and tissue regeneration, thereby accelerating wound healing. Taken together, PU/ZnS@Ker biocomposite mats emerge as an up-and-coming solution for managing diabetic wound healing.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Xu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Yu Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Zhaoyan Ge
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Xinlu Tian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China.
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China.
| |
Collapse
|
9
|
Li M, Deng F, Dong L, Wang X, Jiang H, Yao S, Chen Y, Duan L, Du H, Qin G, Tang S. Phase-dependent hepatotoxicity of Aluminum oxide nanoparticles mediated through the intestinal microbiota. ENVIRONMENT INTERNATIONAL 2025; 198:109398. [PMID: 40139036 DOI: 10.1016/j.envint.2025.109398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Aluminum oxide (Al2O3) nanoparticles (NPs) are extensively utilized in the food industry for applications such as food packaging, antimicrobial coatings, food processing equipment, and additives. Despite their widespread use, the mechanisms underlying Al2O3 NP-induced hepatotoxicity and the relationship between their physicochemical properties and toxicity remain inadequately understood. In this study, we explored the hepatotoxic effects of α-Al2O3 and γ-Al2O3 NPs in rats subjected to oral exposure for 28 days. Employing an integrated metabolomics and microbiome approach, we aimed to elucidate the potential mechanisms involved. Our findings revealed distinct hepatotoxic profiles for α-Al2O3 and γ-Al2O3 NPs, potentially mediated by differential interactions with the intestinal microbiome. α-Al2O3 NPs exhibited reduced hepatotoxicity, as evidenced by minimal liver oxidative stress, which may be associated with the upregulation of digestion-related intestinal flora such as Peptococcaceae and Romboutsia, potentially influencing Al2O3 accumulation in the liver. Conversely, γ-Al2O3 NPs demonstrated pronounced hepatotoxicity, characterized by liver histopathological changes and elevated levels of alanine aminotransferase, malondialdehyde, and glutathione. This increased toxicity was correlated with alterations in intestinal flora, including Ruminococcaceae and Exiguobacterium, which affected metabolites like L-phenylalanine and arachidonic acid, potentially contributing to hepatotoxicity. The results underscore the importance of the intestinal microbiome in mediating NP-induced toxicity and determining differences in toxicities of different NP phases. This study provides valuable insights into the differential toxicological impacts of Al2O3 NP phases, paving the way for safer nanomaterial design and application in the food industry.
Collapse
Affiliation(s)
- Mingshu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Li Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaona Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haiyan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Siyu Yao
- Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning 530023, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Lian Duan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Huamao Du
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Guangqiu Qin
- Department of Preventive Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
10
|
Malheiros S, Borges MHR, Rangel EC, Fortulan CA, da Cruz NC, Barao VAR, Nagay BE. Zinc-Doped Antibacterial Coating as a Single Approach to Unlock Multifunctional and Highly Resistant Titanium Implant Surfaces. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18022-18045. [PMID: 40098312 PMCID: PMC11955950 DOI: 10.1021/acsami.4c21875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
Failures of dental and orthopedic implants due to microbial colonization, corrosion, and insufficient osseointegration remain persistent clinical challenges. Current implant surface coatings often lack the mechanical robustness needed for long-term success. Therefore, this study developed zinc (Zn)-doped coatings on titanium implants via plasma electrolytic oxidation (PEO), achieving 11 at % Zn incorporation primarily as zinc oxide (ZnO). The Zn-doped coatings were primarily composed of zinc, calcium, phosphorus, and oxygen, displaying moderate roughness (∼1 μm), hydrophilic behavior, and high crystallinity with anatase and rutile phases. Tribological tests demonstrated over a 50% reduction in mass loss, while electrochemical tests confirmed significantly enhanced corrosion resistance of Zn-doped coating with higher open circuit potential values, larger Nyquist plot semicircles, and higher impedance values at low frequencies compared to controls (p < 0.05). The Zn-doped coatings also showed superior antimicrobial efficacy, reducing Streptococcus sanguinis viability, completely inhibiting Escherichia coli growth, and reducing biofilm biomass by over 60%, which may be related to the sustained Zn release (∼6 μg/cm2) over 7 days. Enhanced bioactivity was evidenced by greater protein adsorption, increased hydroxyapatite formation, and improved preosteoblastic cell metabolism and morphology. Ex vivo analyses confirmed coating mechanical stability, without morphological or chemical impairment, during implant insertion and removal from bovine rib bone, with increased implant stability quotient (ISQ) values, indicating benefits in poor bone quality. These findings highlight the significant promise of Zn-doped plasma electrolytic oxidation coatings for advancing dental and orthopedic implant technology, offering enhanced longevity, antimicrobial defense, and improved bioactivity to optimize clinical outcomes.
Collapse
Affiliation(s)
- Samuel
S. Malheiros
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Maria Helena R. Borges
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Elidiane C. Rangel
- Laboratory
of Technological Plasmas, Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março,
511, Sorocaba, São
Paulo 18087-180, Brazil
| | - Carlos A Fortulan
- Department
of Mechanical Engineering, University of
São Paulo (USP), Trabalhador São Carlense, 400, São
Carlos, São Paulo 13566-590, Brazil
| | - Nilson C. da Cruz
- Laboratory
of Technological Plasmas, Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março,
511, Sorocaba, São
Paulo 18087-180, Brazil
| | - Valentim A. R. Barao
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E. Nagay
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
11
|
Feng H, Fan G, Liu Z, Zhou L, Wang X, Kang Z, Cai L. Nanomediated Stimulation: An Alternative to Brassinolide Hormone Replacement Therapy for Plant Resistance Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5767-5780. [PMID: 40019385 DOI: 10.1021/acs.jafc.4c09341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Facing harsher losses of crop yield due to virus infection, it is critical to reduce yield loss by improving plants' disease resistance. Here, we proposed using nanoparticles to prestimulate Nicotiana benthamiana as a nanomediated brassinolide (BR) hormone replacement therapy to trigger immune responses and subsequently increase plant immunity against viruses. Our results showed the prestimulated leaves of zinc oxide nanoparticles (ZnONPs) exhibit accelerated antiviral capability, and the plant resistance activation was increased with a decrease in the ZnONP size. Transcriptome data and hormone assays revealed that ZnONP stimulation activated the brassinolide hormone signaling pathway and increased the brassinolide concentration. Importantly, the induced activity of ZnONPs on antiviral capability could be eliminated by virus-mediated silencing of key genes of brassinolide in Nicotiana benthamiana. In summary, we showed prestimulated plants with ZnONPs induced systemic resistance to TMV by activating the brassinolide pathways. This simple nanostimulant-based hormone replacement therapy may alleviate pathogen infection in crop plants and reduce the need for pesticides.
Collapse
Affiliation(s)
- Hui Feng
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro-Bioengineering, Guizhou University, Guiyang , Guizhou Province 550025, China
| | - Guangjin Fan
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro-Bioengineering, Guizhou University, Guiyang , Guizhou Province 550025, China
| | - Zhongwei Liu
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro-Bioengineering, Guizhou University, Guiyang , Guizhou Province 550025, China
| | - Lihe Zhou
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro-Bioengineering, Guizhou University, Guiyang , Guizhou Province 550025, China
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Lin Cai
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro-Bioengineering, Guizhou University, Guiyang , Guizhou Province 550025, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
12
|
Kim SH, Kim DY, Park JS, Park M, Park MC. Antimicrobial and Antibiofilm Activities of Urinary Catheter Incorporated with ZnO-Carbon Nanotube. ACS APPLIED BIO MATERIALS 2025; 8:1397-1405. [PMID: 39874181 DOI: 10.1021/acsabm.4c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Urinary tract infections are among the most common nosocomial infections, with the majority being catheter-associated urinary tract infections (CAUTIs). This study demonstrated that an antimicrobial and antibiofilm urinary catheter containing zinc oxide-carbon nanotubes (ZnO-CNT) can inhibit CAUTIs in patients. ZnO-CNT polymers were synthesized by mixing ZnO and CNT using a high-shear mixer, and the synthesized ZnO-CNT polymers were incorporated into a silicone matrix to produce a ZnO-CNT urinary catheter. Scanning electron microscopy was used to evaluate the morphology and atomic composition of the polymer and urinary catheter, which contained 1.23% Zn element. Dynamic light scattering analysis showed an average particle size of 253.4 nm with a zeta potential of +21.4 mV. To assess antimicrobial activity, the ZnO-CNT polymer and urinary catheter were tested using minimum inhibitory concentration (MIC) and antibiofilm assays. The ZnO-CNT polymers exhibited MIC values of 0.0078, 1, 0.00625, and 0.0039% against E. coli, P. aeruginosa, E. faecalis, and S. aureus, respectively. Antibiofilm assays conducted at concentrations ranging from 1/4 to 2 × MIC demonstrated effective inhibition of biofilm formation at 1 × MIC or lower concentrations in E. coli and P. aeruginosa. The ZnO-CNT urinary catheter inhibited biofilm formation by 53.42 and 56.44% after 120 h of incubation compared to the silicone urinary catheter against E. coli and P. aeruginosa, respectively. These findings suggest that the ZnO-CNT urinary catheter could not only replace commonly used silicone catheters to reduce patient discomfort but also serve as a viable alternative to antimicrobial urinary catheters coated with metal alloys such as silver, gold, or palladium.
Collapse
Affiliation(s)
- Seong Hwan Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50832, Republic of Korea
| | - Dong Yun Kim
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea
| | - Je Seon Park
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50832, Republic of Korea
| | - Myungchan Park
- Department of Urology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Republic of Korea
| | - Min Chul Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea
| |
Collapse
|
13
|
Li XM, Shi ZZ, Tuoliken A, Gou W, Li CH, Wang LN. Highly plastic Zn-0.3Ca alloy for guided bone regeneration membrane: Breaking the trade-off between antibacterial ability and biocompatibility. Bioact Mater 2024; 42:550-572. [PMID: 39308544 PMCID: PMC11416609 DOI: 10.1016/j.bioactmat.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/21/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
A common problem for Zn alloys is the trade-off between antibacterial ability and biocompatibility. This paper proposes a strategy to solve this problem by increasing release ratio of Ca2+ ions, which is realized by significant refinement of CaZn13 particles through bottom circulating water-cooled casting (BCWC) and rolling. Compared with conventionally fabricated Zn-0.3Ca alloy, the BCWC-rolled alloy shows higher antibacterial abilities against E. coli and S. aureus, meanwhile much less toxicity to MC3T3-E1 cells. Additionally, plasticity, degradation uniformity, and ability to induce osteogenic differentiation in vitro of the alloy are improved. The elongation up to 49 %, which is the highest among Zn alloys with Ca, and is achieved since the sizes of CaZn13 particles and Zn grains are small and close. As a result, the long-standing problem of low formability of Zn alloys containing Ca has also been solved due to the elimination of large CaZn13 particles. The BCWC-rolled alloy is a promising candidate of making GBR membrane.
Collapse
Affiliation(s)
- Xiang-Min Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhang-Zhi Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| | - Ayisulu Tuoliken
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Gou
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chang-Heng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lu-Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| |
Collapse
|
14
|
Selim MI, El-Banna T, Sonbol F, Elekhnawy E. Arthrospira maxima and biosynthesized zinc oxide nanoparticles as antibacterials against carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii: a review article. Microb Cell Fact 2024; 23:311. [PMID: 39558333 PMCID: PMC11575411 DOI: 10.1186/s12934-024-02584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
Carbapenem resistance among bacteria, especially Klebsiella pneumoniae and Acinetobacter baumannii, constitutes a dreadful threat to public health all over the world that requires developing new medications urgently. Carbapenem resistance emerges as a serious problem as this class is used as a last-line option to clear the multidrug-resistant bacteria. Arthrospira maxima (Spirulina) is a well-known cyanobacterium used as a food supplement as it is rich in protein, essential minerals and vitamins and previous studies showed it may have some antimicrobial activity against different organisms. Biosynthesized (green) zinc oxide nanoparticles have been investigated by several researchers as antibacterials because of their safety in health. In this article, previous studies were analyzed to get to a conclusion about their activity as antibacterials.
Collapse
Affiliation(s)
- Mohamed I Selim
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Tarek El-Banna
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Fatma Sonbol
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
15
|
Chen Z, Zhe M, Wu W, Yu P, Xiao Y, Liu H, Liu M, Xiang Z, Xing F. Injectable Photocrosslinked Hydrogel Dressing Encapsulating Quercetin-Loaded Zeolitic Imidazolate Framework-8 for Skin Wound Healing. Pharmaceutics 2024; 16:1429. [PMID: 39598552 PMCID: PMC11597769 DOI: 10.3390/pharmaceutics16111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Wound management is a critical component of clinical practice. Promoting timely healing of wounds is essential for patient recovery. Traditional treatments have limited efficacy due to prolonged healing times, excessive inflammatory responses, and susceptibility to infection. Methods: In this research, we created an injectable hydrogel wound dressing formulated from gelatin methacryloyl (GelMA) that encapsulates quercetin-loaded zeolitic imidazolate framework-8 (Qu@ZIF-8) nanoparticles. Next, its ability to promote skin wound healing was validated through in vitro experiments and animal studies. Results: Research conducted both in vitro and in vivo indicated that this hydrogel dressing effectively mitigates inflammation, inhibits bacterial growth, and promotes angiogenesis and collagen synthesis, thus facilitating a safe and efficient healing process for wounds. Conclusions: This cutting-edge scaffold system provides a novel strategy for wound repair and demonstrates significant potential for clinical applications.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.C.); (H.L.); (M.L.)
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Wenting Wu
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany;
| | - Yuzhen Xiao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China;
| | - Hao Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.C.); (H.L.); (M.L.)
| | - Ming Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.C.); (H.L.); (M.L.)
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.C.); (H.L.); (M.L.)
| | - Fei Xing
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
16
|
Kaya G, Koc EO, Özdemir S, Yalçın MS, Ocakoglu K, Dizge N. The Syntheses of Chromium Aluminum Carbide (Cr 2AlC) MAX Phase and Cr 2CTx MXene and Investigation of Their Antimicrobial Properties. Appl Biochem Biotechnol 2024; 196:7747-7761. [PMID: 38538871 DOI: 10.1007/s12010-024-04910-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 12/14/2024]
Abstract
Chromium aluminum carbide (Cr2AlC) MAX phase and Cr2CTx (MXene-Cr) were synthesized by the pressureless sintering method and hydrothermal method, respectively. In addition to this, the free radical scavenging activities (FRSA) of MAX-Cr phase and MXene-Cr compounds were tested and compared with ascorbic acid and trolox as standard compounds. The obtained FRSA results of MAX-Cr phase and MXene-Cr were 42.82 and 59.64%, respectively, at 100 mg/L concentration. MXene-Cr showed a 66.90% inhibitory effect on α-amylase at 200 mg/L. The DNA nuclease activity of compounds was determined to be extremely satisfactory at 50, 100, and 200 mg/L concentrations. Moreover, the prepared MAX-Cr phase and MXene-Cr were investigated for antimicrobial activity against six bacterial and two fungal strains by the broth microdilution method. Compounds provided more significant inhibition against Gram-positive bacteria than Gram-negative bacteria and fungi. MAX-Cr phase and MXene-Cr almost completely inhibited microbial cell viability at a 25 mg/L concentration. Additionally, MXene-Cr showed 89.86% and 87.01% antibiofilm activity against S. aureus and P. aeruginosa, respectively, while the antibiofilm activity of the MAX-Cr phase was over 90%.
Collapse
Affiliation(s)
- Gul Kaya
- Department of Engineering Fundamental Sciences, Tarsus University, Tarsus, 33400, Turkey
| | - Eda Ondul Koc
- Yeniçağa Yaşar Çelik Vocational School, Abant Izzet Baysal University, Bolu, 14280, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Mersin University, Technical Science Vocational School, Yenisehir, Mersin, 33343, Turkey
| | - M Serkan Yalçın
- Department of Chemistry and Chemical Processing Technologies, Mersin University, Technical Science Vocational School, Mersin, 33343, Turkey
| | - Kasim Ocakoglu
- Department of Engineering Fundamental Sciences, Tarsus University, Tarsus, 33400, Turkey.
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey.
| |
Collapse
|
17
|
Shuai C, Wang Z, Yang F, Zhang H, Liu J, Feng P. Laser additive manufacturing of shape memory biopolymer bone scaffold: 3D conductive network construction and electrically driven mechanism. J Adv Res 2024; 65:167-181. [PMID: 38030127 PMCID: PMC11519052 DOI: 10.1016/j.jare.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION The electro-actuated shape memory polymer scaffold has gained increasing attentions on the utilization of minimally invasive surgery for bone defect repair, which requires to construct an efficient conductive network to accomplish electrical-to-thermal conversion from conductive fillers to the entire matrix evenly. OBJECTIVES In this study, multiwall carbon nanotube (MWCNT) was convective self-assembled on the ZnO tetrapod (t-ZnO) template, where MWCNT was controlled to disperse uniformly and regulated to contact with each other effectively due to the immersion capillary force during the evaporation loss of the convective self-assembly process, leading to an interwoven layer on the t-ZnO surface. METHODS The prepared t-ZnO@MWCNT assembly was embedded in the poly(L-lactic acid)/thermoplastic polyurethane (PLLA/TPU) scaffold fabricated via selective laser sintering to construct a 3D conductive MWCNT network for improving the electro-actuated shape memory properties. RESULTS It was observed that the interconnected MWCNT formed a 3D conductive network in the matrix without significant aggregation, which boosted the electrical-to-thermal properties of the scaffold, and the scaffold containing t-ZnO@MWCNT assembly possessed better electro-actuated shape memory properties with shape fixity of 98.0% and shape recovery of 98.8%. CONCLUSION The scaffold exhibited improved electro-actuated shape memory properties and mechanical properties and the osteogenic inductivity was promoted with the combined effect of t-ZnO and electrical stimulation.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Zhicheng Wang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Haiyang Zhang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Jinglin Liu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
18
|
Ahamed T, Li C, Li M, Axe L. Interactions of graphene oxide with the microbial community of biologically active filters from a water treatment plant. WATER RESEARCH 2024; 263:122155. [PMID: 39088881 DOI: 10.1016/j.watres.2024.122155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
With widespread occurrence and increasing concern of emerging contaminants (CECs) in source water, biologically active filters (BAF) have been gaining acceptance in water treatment. Both BAFs and graphene oxide (GO) have been shown to be effective in treating CECs. However, studies to date have not addressed interactions between GO and microbial communities in water treatment processes such as BAFs. Therefore, in the present study, we investigated the effect of GO on the properties and microbial growth rate in a BAF system. Synthesized GO was characterized with a number of tools, including scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectrometry. GO exhibited the characteristic surface functional groups (i.e., C-OH, C=O, C-O-C, and COOH), crystalline structure, and sheet-like morphology. To address the potential toxicity of GO on the microbial community, reactive oxygen species (ROS) generation was measured using nitro blue tetrazolium (NBT) assay. Results revealed that during the exponential growth phase, ROS generation was not observed in the presence of GO compared to the control batch. In fact, the adenosine triphosphate (ATP) concentrations increased in the presence of GO (25 μg/L - 1000 μg/L) compared to the control without GO. The growth rate in systems with GO exceeded the control by 20 % to 46 %. SEM images showed that GO sheets can form an effective scaffold to promote bacterial adhesion, proliferation, and biofilm formation, demonstrating its biocompatibility. Next-generation sequencing (Illumina MiSeq) was used to characterize the BAF microbial community, and high-throughput sequencing analysis confirmed the greater richness and more diverse microbial communities compared to systems without GO. This study is the first to report the effect of GO on the microbial community of BAF from a water treatment plant, which provides new insights into the potential of utilizing a bio-optimized BAF for advanced and sustainable water treatment or reuse strategies.
Collapse
Affiliation(s)
- Tanvir Ahamed
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Chao Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Lisa Axe
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
19
|
Ruan S, Zhao Y, Chen R, Ma J, Guan Y, Ma J, Ren L. Effect of zinc oxide/graphene oxide nanocomposites on the cytotoxicity, antibacterial and mechanical properties of polymethyl methacrylate. BMC Oral Health 2024; 24:1013. [PMID: 39210376 PMCID: PMC11363655 DOI: 10.1186/s12903-024-04754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Enhancing the antibacterial properties of polymethyl methacrylate (PMMA) dental resins is crucial in preventing secondary infections following dental procedures. Despite the necessity for such improvement, a universally applicable method for augmenting the antibacterial properties of PMMA without compromising its mechanical properties and cytotoxicity remains elusive. Consequently, this study aims to address the aforementioned challenges by developing and implementing a composite material known as zinc oxide/graphene oxide (ZnO/GO) nanocomposites, to modify the PMMA. METHODS ZnO/GO nanocomposites were successfully synthesized by a one-step procedure and fully characterized by TEM, EDS, FTIR and XRD. Then the physical and mechanical properties of PMMA modified by ZnO/GO nanocomposites were evaluated through water absorption and solubility test, contact angle test, three-point bending tests, and compression test. Furthermore, the biological properties of the modified PMMA were evaluated by direct microscopic colony count method, crystal violet staining and CCK-8. RESULTS The results revealed that ZnO/GO nanocomposites were successfully constructed. When the concentration of nanocomposites in PMMA was 0.2 wt. %, the flexural strength of the resin was increased by 23.4%, the compressive strength was increased by 31.1%, and the number of bacterial colonies was reduced by 60.33%. Meanwhile, It was found that the aging of the resin did not affect its antibacterial properties, and CCK-8 revealed that the modified PMMA had no cytotoxicity. CONCLUSION ZnO/GO nanocomposites effectively improved the antibacterial properties of PMMA. Moreover, the mechanical properties of the resin were improved by adding ZnO/GO nanocomposites at a lower range of concentrations.
Collapse
Affiliation(s)
- Shaofan Ruan
- School and Hospital of Stomatology, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu, 730000, China
| | - Yanzong Zhao
- School and Hospital of Stomatology, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu, 730000, China
| | - Rui Chen
- School and Hospital of Stomatology, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu, 730000, China.
| | - Jie Ma
- School and Hospital of Stomatology, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu, 730000, China
| | - Yian Guan
- School and Hospital of Stomatology, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu, 730000, China
| | - Jianqiang Ma
- School and Hospital of Stomatology, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu, 730000, China
| | - Liling Ren
- School and Hospital of Stomatology, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
20
|
Li Y, Cheng L, Yang B, Ding Y, Zhao Y, Wu Y, Nie Y, Liu Y, Xu A. Zinc oxide/graphene oxide nanocomposites specifically remediated Cd-contaminated soil via reduction of bioavailability and ecotoxicity of Cd. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173641. [PMID: 38825205 DOI: 10.1016/j.scitotenv.2024.173641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
From both environment and health perspectives, sustainable management of ever-growing soil contamination by heavy metal is posing a serious global concern. The potential ecotoxicity of cadmium (Cd) to soil and ecosystem seriously threatens human health. Developing efficient, specific, and long-term remediation technology for Cd-contaminated soil is impending to synchronously minimize the bioavailability and ecotoxicity of Cd. In the present study, zinc oxide/graphene oxide nanocomposite (ZnO/GO) was developed as a novel amendment for remediating Cd-contaminated soil. Our results showed that ZnO/GO effectively decreased the available soil Cd content, and increased pH and cation exchange capacity (CEC) in both Cd-spiked standard soil and Cd-contaminated mine field soil through the interaction between ZnO/GO and soil organic acids. Using Caenorhabditis elegans (C. elegans) as a model organism for soil safety evaluation, ZnO/GO was further proved to decrease the ecotoxicity of Cd-contaminated soil. Specifically, ZnO/GO promoted Cd excretion and declined Cd storage in C. elegans by increasing the expression of gene ttm-1 and decreasing the level of gene cdf-2, which were responsible for Cd transportation and Cd accumulation, respectively. Moreover, the efficacy of ZnO/GO in remediating the properties and ecotoxicity of Cd-contaminated soil increased gradually with the time gradient, and could maintain a long-term effect after reaching the optimal remediation efficiency. Our findings established a specific and long-term strategy to simultaneously improve soil properties and reduce ecotoxicity of Cd-contaminated soil, which might provide new insights into the potential application of ZnO/GO in soil remediation for both ecosystem and human health.
Collapse
Affiliation(s)
- Yang Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China
| | - Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China
| | - Yuting Ding
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China
| | - Yanan Zhao
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China
| | - Yuanyuan Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China.
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
21
|
Dong X, Hu X, Yu F, Deng P, Jia Y. Interpretable Causal System Optimization Framework for the Advancement of Biological Effect Prediction and Redesign of Nanoparticles. J Am Chem Soc 2024; 146:22747-22758. [PMID: 39086108 DOI: 10.1021/jacs.4c07700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Nanomedicine has promising applications in disease treatment, given the remarkable safety concerns (e.g., nanotoxicity and inflammation) of nanomaterials, and realizing the trade-off between the immune response and organ burden of NPs and deeply understanding the interactions of the organism-nano systems are crucial to facilitate the biological applications of NPs. Here, we propose an interpretable causal system optimization (ICSO) framework and construct the upstream and downstream tasks of accurate prediction and intelligent NP optimization. ICSO framework screens the key drivers (recovery duration, specific surface area, and nanomaterial size) and potential causal information for immune responses and organ burden, revealing the hidden priming/constraint effects in bionano interactions. ICSO can be used to quantify the thresholds of biological responses to multiple properties (e.g., the specific surface area, diameter, and zeta potential). ICSO provides quantitative information and constraint conditions for the design of highly biocompatible and targeted organ delivery nanomaterials. For example, negative inflammation is reduced by 36.19%, and positive lung accumulation is promoted by 40.14% by optimizing the specific surface areas and shape and increasing the diameter-to-length ratio. ICSO overcomes the limitations of experience-dependent approaches and provides powerful and automated solutions for decision-makers during nanomaterial design.
Collapse
Affiliation(s)
- Xu Dong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fubo Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Deng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuying Jia
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
22
|
Takayanagi S, Sugahara Y, Guégan R. Enhanced Electrochemical Performances of Heterostructures Based on the Colloidal Association of Graphene Oxide and Titanium Disulfide Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39133079 DOI: 10.1021/acs.langmuir.4c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Due to the large proliferation of electrical devices combined with the ecological transition for carbon neutrality in various modern countries, the demand for compact and efficient portable energy sources is continuously increasing. In this research work, we have developed electrochemical energy storage heterostructures based on graphene oxides (GOs) and titanium disulfide (TiS2) nanosheets of different lateral sizes through a facile colloidal association thanks to the opposite electric charges of the two types of nanosheets. Large GO (LGO) served as a template system to organize TiS2 nanosheets at different loadings, of which incorporation prevented any restacking of the layered graphitic structure. While large nanosheets led to the decoration of TiS2 aggregates including Li+ cations on LGO, the association of the nanosheets of different compositions but equivalent sizes drove the formation of an interstratified organization of the nanosheets. The singular organization within GO and TiS2 nanosheets remained after a hydrothermal reduction process, leading to heterostructure materials with a large specific surface area and capacitance of 113 F/g obtained in 6 M KOH aqueous solution. These outstanding electrochemical performances, drastically enhanced by about 41% from those of the individual reduced GO (capacitance of 80 F/g) used as a collector for the electric carriers, suggest that the developed heterostructures present a possible application as electrochemical energy storage technology materials for supercapacitor applications.
Collapse
Affiliation(s)
- Seira Takayanagi
- Department of Applied Chemistry, Waseda University, Faculty of Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Kagami Memorial Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Yoshiyuki Sugahara
- Department of Applied Chemistry, Waseda University, Faculty of Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Kagami Memorial Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Régis Guégan
- Kagami Memorial Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
- Interfaces, Confinement, Matériaux et Nanostructures ICMN-UMR 737, CNRS-Université d'Orléans, 1b Rue de la Férollerie, Orléans 45100, France
| |
Collapse
|
23
|
He M, Wang Z, Xiang D, Sun D, Chan YK, Ren H, Lin Z, Yin G, Deng Y, Yang W. A H₂S-Evolving Alternately-Catalytic Enzyme Bio-Heterojunction with Antibacterial and Macrophage-Reprogramming Activity for All-Stage Infectious Wound Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405659. [PMID: 38943427 DOI: 10.1002/adma.202405659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/24/2024] [Indexed: 07/01/2024]
Abstract
The disorder of the macrophage phenotype and the hostile by-product of lactate evoked by pathogenic infection in hypoxic deep wound inevitably lead to the stagnant skin regeneration. In this study, hydrogen sulfide (H2S)-evolving alternately catalytic bio-heterojunction enzyme (AC-BioHJzyme) consisting of CuFe2S3 and lactate oxidase (LOD) named as CuFe2S3@LOD is developed. AC-BioHJzyme exhibits circular enzyme-mimetic antibacterial (EMA) activity and macrophage re-rousing capability, which can be activated by near-infrared-II (NIR-II) light. In this system, LOD exhausts lactate derived from bacterial anaerobic respiration and generated hydrogen peroxide (H2O2), which provides an abundant stock for the peroxidase-mimetic activity to convert the produced H2O2 into germicidal •OH. The GPx-mimetic activity endows AC-BioHJzyme with a glutathione consumption property to block the antioxidant systems in bacterial metabolism, while the O2 provided by the CAT-mimetic activity can generate 1O2 under the NIR-II irradiation. Synchronously, the H2S gas liberated from CuFe2S3@LOD under the infectious micromilieu allows the reduction of Fe(III)/Cu(II) to Fe(II)/Cu(І), resulting in sustained circular EMA activity. In vitro and in vivo assays indicate that the CuFe2S3@LOD AC-BioHJzyme significantly facilitates the infectious cutaneous regeneration by killing bacteria, facilitating epithelialization/collagen deposition, promoting angiogenesis, and reprogramming macrophages. This study provides a countermeasure for deep infectious wound healing via circular enzyme-mimetic antibiosis and macrophage re-rousing.
Collapse
Affiliation(s)
- Miaomiao He
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zuyao Wang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Danni Xiang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Dan Sun
- Department Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, BT9 5AH, UK
| | - Yau Kai Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Huilin Ren
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhijie Lin
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Guangfu Yin
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Weizhong Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
24
|
Sedighi O, Bednarke B, Sherriff H, Doiron AL. Nanoparticle-Based Strategies for Managing Biofilm Infections in Wounds: A Comprehensive Review. ACS OMEGA 2024; 9:27853-27871. [PMID: 38973924 PMCID: PMC11223148 DOI: 10.1021/acsomega.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Chronic wounds containing opportunistic bacterial pathogens are a growing problem, as they are the primary cause of morbidity and mortality in developing and developed nations. Bacteria can adhere to almost every surface, forming architecturally complex communities called biofilms that are tolerant to an individual's immune response and traditional treatments. Wound dressings are a primary source and potential treatment avenue for biofilm infections, and research has recently focused on using nanoparticles with antimicrobial activity for infection control. This Review categorizes nanoparticle-based approaches into four main types, each leveraging unique mechanisms against biofilms. Metallic nanoparticles, such as silver and copper, show promising data due to their ability to disrupt bacterial cell membranes and induce oxidative stress, although their effectiveness can vary based on particle size and composition. Phototherapy-based nanoparticles, utilizing either photodynamic or photothermal therapy, offer targeted microbial destruction by generating reactive oxygen species or localized heat, respectively. However, their efficacy depends on the presence of light and oxygen, potentially limiting their use in deeper or more shielded biofilms. Nanoparticles designed to disrupt extracellular polymeric substances directly target the biofilm structure, enhancing the penetration and efficacy of antimicrobial agents. Lastly, nanoparticles that induce biofilm dispersion represent a novel strategy, aiming to weaken the biofilm's defense and restore susceptibility to antimicrobials. While each method has its advantages, the selection of an appropriate nanoparticle-based treatment depends on the specific requirements of the wound environment and the type of biofilm involved. The integration of these nanoparticles into wound dressings not only promises enhanced treatment outcomes but also offers a reduction in the overall use of antibiotics, aligning with the urgent need for innovative solutions in the fight against antibiotic-tolerant infections. The overarching objective of employing these diverse nanoparticle strategies is to replace antibiotics or substantially reduce their required dosages, providing promising avenues for biofilm infection management.
Collapse
Affiliation(s)
- Omid Sedighi
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Brooke Bednarke
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Hannah Sherriff
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Amber L. Doiron
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
25
|
Huang H, Han R, Huang PP, Qiao CY, Bian S, Xiao H, Ma L. Preparation and Performance Evaluation of a Zinc Oxide-Graphene Oxideloaded Chitosan-Based Thermosensitive Gel. J Microbiol Biotechnol 2024; 34:1229-1238. [PMID: 38755002 PMCID: PMC11239403 DOI: 10.4014/jmb.2402.02055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
This study aimed to develop and assess a chitosan biomedical antibacterial gel ZincOxide-GrapheneOxide/Chitosan/β-Glycerophosphate (ZnO-GO/CS/β-GP) loaded with nano-zinc oxide (ZnO) and graphene oxide (GO), known for its potent antibacterial properties, biocompatibility, and sustained drug release. ZnO nanoparticles (ZnO-NPs) were modified and integrated with GO sheets to create 1% and 3% ZnO-GO/CS/β-GP thermo-sensitive hydrogels based on ZnO-GO to Chitosan (CS) mass ratio. Gelation time, pH, structural changes, and microscopic morphology were evaluated. The hydrogel's antibacterial efficacy against Porphyromonas gingivalis, biofilm biomass, and metabolic activity was examined alongside its impact (MC3T3-e1). The findings of this study revealed that both hydrogel formulations exhibited temperature sensitivity, maintaining a neutral pH. The ZnO-GO/CS/β-GP formulation effectively inhibited P. gingivalis bacterial activity and biofilm formation, with a 3% ZnO-GO/CS/β-GP antibacterial rate approaching 100%. MC3T3-e1 cells displayed good biocompatibility when cultured in the hydrogel extract.The ZnO-GO/CS/β-GP thermo-sensitive hydrogel demonstrates favorable physical and chemical properties, effectively preventing P. gingivalis biofilm formation. It exhibits promising biocompatibility, suggesting its potential as an adjuvant therapy for managing and preventing peri-implantitis, subject to further clinical investigations.
Collapse
Affiliation(s)
- Hao Huang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
- School of Stomatology, Qingdao University, Qingdao 266023, P.R. China
| | - Rui Han
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
- School of Stomatology, Qingdao University, Qingdao 266023, P.R. China
| | - Ping-Ping Huang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
- School of Stomatology, Qingdao University, Qingdao 266023, P.R. China
| | - Chuan-Yue Qiao
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
- School of Stomatology, Qingdao University, Qingdao 266023, P.R. China
| | - Shuang Bian
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
- School of Stomatology, Qingdao University, Qingdao 266023, P.R. China
| | - Han Xiao
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
- School of Stomatology, Qingdao University, Qingdao 266023, P.R. China
| | - Lei Ma
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
- School of Stomatology, Qingdao University, Qingdao 266023, P.R. China
| |
Collapse
|
26
|
Yousefi M, Ghahremanzadeh R, Nejadmoghaddam MR, Samadi FY, Najafzadeh S, Fatideh FM, Mohammadi Z, Minai-Tehrani A. Nanofabrication of chitosan-based dressing to treat the infected wounds: in vitro and in vivo evaluations. Future Sci OA 2024; 10:FSO921. [PMID: 38827799 PMCID: PMC11140651 DOI: 10.2144/fsoa-2023-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/12/2023] [Indexed: 06/05/2024] Open
Abstract
Aim: Here, an innovative kind of antibacterial nanocomposite film is developed by incorporating graphene oxide and zinc oxide into chitosan matrix. Materials & methods: Our dressing was fabricated using the solution casting method. Fourier transform infrared spectra and TGA-DTG clearly confirmed the structure of film dressing. Results & conclusion: Our results showed the tensile strength and elongation at the break of the films were 20.1 ± 0.7 MPa and 36 ± 10%, respectively. Our fabricated film could absorb at least three-times the fluid of its dry weight while being biocompatible, antibacterial, non-irritant and non-allergic. In addition, it accelerated the healing process of infected wounds by regulating epithelium thickness and the number of inflammatory cells, thus it may be useful for direct application to damaged infected wounds.
Collapse
Affiliation(s)
- Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | | | - Fatemeh Yazdi Samadi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | - Somayeh Najafzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | | | - Zohreh Mohammadi
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, 1475886973, Iran
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| |
Collapse
|
27
|
Yu Z, Deng C, Ding C, Zhang X, Liu Y, Liu C, Lou Z, Seidi F, Han J, Yong Q, Xiao H. Organic-inorganic hybrid ZIF-8/MXene/cellulose-based textiles with improved antibacterial and electromagnetic interference shielding performance. Int J Biol Macromol 2024; 266:131080. [PMID: 38537850 DOI: 10.1016/j.ijbiomac.2024.131080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
Despite the tremendous efforts on developing antibacterial wearable textile materials containing Ti3C2Tx MXene, the singular antimicrobial mechanism, poor antibacterial durability, and oxidation susceptibility of MXene limits their applications. In this context, flexible multifunctional cellulosic textiles were prepared via layer-by-layer assembly of MXene and the in-situ synthesis of zeolitic imidazolate framework-8 (ZIF-8). Specifically, the introduction of highly conductive MXene enhanced the interface interactions between the ZIF-8 layer and cellulose fibers, endowing the green-based materials with outstanding synergistic photothermal/photodynamic therapy (PTT/PDT) activity and adjustable electromagnetic interference (EMI) shielding performance. In-situ polymerization formed a MXene/ZIF-8 bilayer structure, promoting the generation of reactive oxygen species (ROS) while protecting MXene from oxidation. The as-prepared smart textile exhibited excellent bactericidal efficacy of >99.99 % against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) after 5 min of NIR (300 mW cm-2) irradiation which is below the maximum permissible exposure (MPE) limit. The sustained released Zn2+ from the ZIF-8 layer achieved a bactericidal efficiency of over 99.99 % within 48 h without NIR light. Furthermore, this smart textile also demonstrated remarkable EMI shielding efficiency (47.7 dB). Clearly, this study provides an elaborate strategy for designing and constructing multifunctional cellulose-based materials for a variety of applications.
Collapse
Affiliation(s)
- Zhaochuan Yu
- International Innovation Center fo Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Chao Deng
- International Innovation Center fo Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China.
| | - Chenhui Ding
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany
| | - Xing Zhang
- College of Textile and Fashion, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
| | - Yuqian Liu
- International Innovation Center fo Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Chao Liu
- International Innovation Center fo Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhichao Lou
- International Innovation Center fo Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- International Innovation Center fo Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jingquan Han
- International Innovation Center fo Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- International Innovation Center fo Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| |
Collapse
|
28
|
Hiba IH, Koh JK, Lai CW, Mousavi SM, Badruddin IA, Hussien M, Wong JP. Polyrhodanine-based nanomaterials for biomedical applications: A review. Heliyon 2024; 10:e28902. [PMID: 38633652 PMCID: PMC11021909 DOI: 10.1016/j.heliyon.2024.e28902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Rhodanine is a heterocyclic organic compound that has been investigated for its potential biomedical applications, particularly in drug discovery. Rhodanine derivatives have been examined as the medication options for numerous illnesses, including cancer, inflammation, and infectious diseases. Some rhodanine derivatives have also shown promising activity against drug-resistant strains of bacteria and viruses. One of these derivatives is polyrhodanine (PR), a conducting polymer that has gained attention for its biomedical properties. This review article summarises the latest advancements in creating biomaterials based on PR for biosensing, antimicrobial treatments, and anticancer therapies. The distinctive characteristics of PR, such as biocompatibility, biodegradability, and good conductivity, render it an attractive candidate for these applications. The article also explores obstacles and potential future paths for advancing biomaterials made with PR, including synthesis modifications, characterisation techniques, and in vivo evaluation of biocompatibility and efficacy. Overall, as an emerging research topic, this review emphasises the potential of PR as a promising biomaterial for various biomedical applications and provides insights into the contemporary state of research and prospective directions for investigation.
Collapse
Affiliation(s)
- Ibrahim Huzyan Hiba
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), 50603, Kuala Lumpur, Malaysia
| | - Jin Kwei Koh
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), 50603, Kuala Lumpur, Malaysia
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), 50603, Kuala Lumpur, Malaysia
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Hussien
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Jest Phia Wong
- Harper Elite Sdn Bhd, UG-23, PJ Midtown, Jalan Kemajuan, Seksyen 13, 46200, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
29
|
Petcu G, Ciobanu EM, Paun G, Neagu E, Baran A, Trica B, Neacsu A, Atkinson I, Bucuresteanu R, Badaluta A, Ditu LM, Parvulescu V. Hybrid Materials Obtained by Immobilization of Biosynthesized Ag Nanoparticles with Antioxidant and Antimicrobial Activity. Int J Mol Sci 2024; 25:4003. [PMID: 38612814 PMCID: PMC11012143 DOI: 10.3390/ijms25074003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Ag nanoparticles (AgNPs) were biosynthesized using sage (Salvia officinalis L.) extract. The obtained nanoparticles were supported on SBA-15 mesoporous silica (S), before and after immobilization of 10% TiO2 (Degussa-P25, STp; commercial rutile, STr; and silica synthesized from Ti butoxide, STb). The formation of AgNPs was confirmed by X-ray diffraction. The plasmon resonance effect, evidenced by UV-Vis spectra, was preserved after immobilization only for the sample supported on STb. The immobilization and dispersion properties of AgNPs on supports were evidenced by TEM microscopy, energy-dispersive X-rays, dynamic light scattering, photoluminescence and FT-IR spectroscopy. The antioxidant activity of the supported samples significantly exceeded that of the sage extract or AgNPs. Antimicrobial tests were carried out, in conditions of darkness and white light, on Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. Higher antimicrobial activity was evident for SAg and STbAg samples. White light increased antibacterial activity in the case of Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). In the first case, antibacterial activity increased for both supported and unsupported AgNPs, while in the second one, the activity increased only for SAg and STbAg samples. The proposed antibacterial mechanism shows the effect of AgNPs and Ag+ ions on bacteria in dark and light conditions.
Collapse
Affiliation(s)
- Gabriela Petcu
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| | - Elena Madalina Ciobanu
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| | - Gabriela Paun
- National Institute for Research-Development of Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, P.O. Box 17-16, 060031 Bucharest, Romania
| | - Elena Neagu
- National Institute for Research-Development of Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, P.O. Box 17-16, 060031 Bucharest, Romania
| | - Adriana Baran
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| | - Bogdan Trica
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Andreea Neacsu
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| | - Irina Atkinson
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| | - Razvan Bucuresteanu
- Microbiology Department, Faculty of Biology, University of Bucharest, Intr. Portocalelor 1-3, 060101 Bucharest, Romania (A.B.)
| | - Alexandra Badaluta
- Microbiology Department, Faculty of Biology, University of Bucharest, Intr. Portocalelor 1-3, 060101 Bucharest, Romania (A.B.)
| | - Lia Mara Ditu
- Microbiology Department, Faculty of Biology, University of Bucharest, Intr. Portocalelor 1-3, 060101 Bucharest, Romania (A.B.)
| | - Viorica Parvulescu
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| |
Collapse
|
30
|
Wang Y, Zhao Y, Ma S, Fu M, Wu M, Li J, Wu K, Zhuang X, Lu Z, Guo J. Injective Programmable Proanthocyanidin-Coordinated Zinc-Based Composite Hydrogel for Infected Bone Repair. Adv Healthc Mater 2024; 13:e2302690. [PMID: 37885334 DOI: 10.1002/adhm.202302690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Effectively integrating infection control and osteogenesis to promote infected bone repair is challenging. Herein, injective programmable proanthocyanidin (PC)-coordinated zinc-based composite hydrogels (ipPZCHs) are developed by compositing antimicrobial and antioxidant PC-coordinated zinc oxide (ZnO) microspheres with thioether-grafted sodium alginate (TSA), followed by calcium chloride (CaCl2 ) crosslinking. Responsive to the high endogenous reactive oxygen species (ROS) microenvironment in infected bone defects, the hydrophilicity of TSA can be significantly improved, to trigger the disintegration of ipPZCHs and the fast release of PC-coordinated ZnOs. This together with the easily dissociable PC-Zn2+ coordination induced fast release of antimicrobial zinc (Zn2+ ) with/without silver (Ag+ ) ions from PC-coordinated ZnOs (for Zn2+ , > 100 times that of pure ZnO) guarantees the strong antimicrobial activity of ipPZCHs. The exogenous ROS generated by ZnO and silver nanoparticles during the antimicrobial process further speeds up the disintegration of ipPZCHs, augmenting the antimicrobial efficacy. At the same time, ROS-responsive degradation/disintegration of ipPZCHs vacates space for bone ingrowth. The concurrently released strong antioxidant PC scavenges excess ROS thus enhances the immunomodulatory (in promoting the anti-inflammatory phenotype (M2) polarization of macrophages) and osteoinductive properties of Zn2+ , thus the infected bone repair is effectively promoted via the aforementioned programmable and self-adaptive processes.
Collapse
Affiliation(s)
- Yue Wang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Yitao Zhao
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Shiyuan Ma
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Meimei Fu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Min Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Jintao Li
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Keke Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Zhihui Lu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
- Regenerative Medicine and Tissue Repair Material Research Center, Huangpu Institute of Materials, 88 Yonglong Avenue of Xinlong Town, Guangzhou, 511363, P. R. China
| | - Jinshan Guo
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
- Regenerative Medicine and Tissue Repair Material Research Center, Huangpu Institute of Materials, 88 Yonglong Avenue of Xinlong Town, Guangzhou, 511363, P. R. China
- Guangzhou New Materials Science Center, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 88 Yonglong Avenue of Xinlong Town, Guangzhou, 511361, P. R. China
| |
Collapse
|
31
|
Sui J, Hou Y, Chen M, Zheng Z, Meng X, Liu L, Huo S, Liu S, Zhang H. Nanomaterials for Anti-Infection in Orthopedic Implants: A Review. COATINGS 2024; 14:254. [DOI: 10.3390/coatings14030254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Postoperative implant infection is a severe complication in orthopedic surgery, often leading to implant failure. Current treatment strategies mainly rely on systemic antibiotic therapies, despite contributing to increasing bacterial resistance. In recent years, nanomaterials have gained attention for their potential in anti-infection methods. They exhibit more substantial bactericidal effects and lower drug resistance than conventional antimicrobial agents. Nanomaterials also possess multiple bactericidal mechanisms, such as physico-mechanical interactions. Additionally, they can serve as carriers for localized antimicrobial delivery. This review explores recent applications of nanomaterials with different morphologies in post-orthopedic surgery infections and categorizes their bactericidal mechanisms.
Collapse
Affiliation(s)
- Junhao Sui
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Yijin Hou
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mengchen Chen
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Zhong Zheng
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Xiangyu Meng
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Lu Liu
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai 200003, China
| | - Shu Liu
- Department of Spine Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| |
Collapse
|
32
|
Jin X, Xie D, Zhang Z, Liu A, Wang M, Dai J, Wang X, Deng H, Liang Y, Zhao Y, Wen P, Li Y. In vitro and in vivo studies on biodegradable Zn porous scaffolds with a drug-loaded coating for the treatment of infected bone defect. Mater Today Bio 2024; 24:100885. [PMID: 38169782 PMCID: PMC10758886 DOI: 10.1016/j.mtbio.2023.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Additively manufactured biodegradable zinc (Zn) scaffolds have great potential to repair infected bone defects due to their osteogenic and antibacterial properties. However, the enhancement of antibacterial properties depends on a high concentration of dissolved Zn2+, which in return deteriorates osteogenic activity. In this study, a vancomycin (Van)-loaded polydopamine (PDA) coating was prepared on pure Zn porous scaffolds to solve the above dilemma. Compared with pure Zn scaffolds according to comprehensive in vitro tests, the PDA coating resulted in a slow degradation and inhibited the excessive release of Zn2+ at the early stage, thus improving cytocompatibility and osteogenic activity. Meanwhile, the addition of Van drug substantially suppressed the attachment and proliferation of S. aureus and E. coli bacterial. Furthermore, in vivo implantation confirmed the simultaneously improved osteogenic and antibacterial functions by using the pure Zn scaffolds with Van-loaded PDA coating. Therefore, it is promising to employ biodegradable Zn porous scaffolds with the proposed drug-loaded coating for the treatment of infected bone defects.
Collapse
Affiliation(s)
- Xiang Jin
- Postgraduate Training Base, Jinzhou Medical University and The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 10048, China
- Department of Stomatology, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
| | - Dongxu Xie
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenbao Zhang
- Department of Stomatology, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
| | - Aobo Liu
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Menglin Wang
- Department of Stomatology, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
| | - Jiabao Dai
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xuan Wang
- Postgraduate Training Base, Jinzhou Medical University and The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 10048, China
- Department of Stomatology, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
| | - Huanze Deng
- Department of Stomatology, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
| | - Yijie Liang
- Postgraduate Training Base, Jinzhou Medical University and The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 10048, China
- Department of Stomatology, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
| | - Yantao Zhao
- Department of Stomatology, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
- Senior Department of Orthopedics, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Peng Wen
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanfeng Li
- Postgraduate Training Base, Jinzhou Medical University and The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 10048, China
- Department of Stomatology, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
| |
Collapse
|
33
|
Sun T, Kang L, Zhao H, Zhao Y, Gu Y. Photoacid Generators for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302875. [PMID: 38039443 PMCID: PMC10837391 DOI: 10.1002/advs.202302875] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/26/2023] [Indexed: 12/03/2023]
Abstract
Photoacid generators (PAGs) are compounds capable of producing hydrogen protons (H+ ) upon irradiation, including irreversible and reversible PAGs, which have been widely studied in photoinduced polymerization and degradation for a long time. In recent years, the applications of PAGs in the biomedical field have attracted more attention due to their promising clinical value. So, an increasing number of novel PAGs have been reported. In this review, the recent progresses of PAGs for biomedical applications is systematically summarized, including tumor treatment, antibacterial treatment, regulation of protein folding and unfolding, control of drug release and so on. Furthermore, a concept of water-dependent reversible photoacid (W-RPA) and its antitumor effect are highlighted. Eventually, the challenges of PAGs for clinical applications are discussed.
Collapse
Affiliation(s)
- Tianzhen Sun
- School of Medical TechnologyBeijing Institute of TechnologyNo. 5 South Street, ZhongguancunHaidian DistrictBeijing100081China
| | - Lin Kang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of SciencesNo. 29 Zhongguancun East Road, Haidian DistrictBeijing100190China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
| | - Hongyou Zhao
- School of Medical TechnologyBeijing Institute of TechnologyNo. 5 South Street, ZhongguancunHaidian DistrictBeijing100081China
| | - Yuxia Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of SciencesNo. 29 Zhongguancun East Road, Haidian DistrictBeijing100190China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
| | - Ying Gu
- Department of Laser MedicineThe First Medical CentreChinese PLA General HospitalNo. 28 Fuxing Road, Haidian DistrictBeijing100853China
| |
Collapse
|
34
|
Ji MK, Kim H, Jeong G, Kim WJ, Ryu JH, Cho H, Lim HP. Effects of TiO 2 Nanotubes and Reduced Graphene Oxide on Streptococcus mutans and Preosteoblastic Cells at an Early Stage. Int J Mol Sci 2024; 25:1351. [PMID: 38279351 PMCID: PMC10816206 DOI: 10.3390/ijms25021351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
The effects of TiO2 nanotube (TNT) and reduced graphene oxide (rGO) deposition onto titanium, which is widely used in dental implants, on Streptococcus mutans (S. mutans) and preosteoblastic cells were evaluated. TNTs were formed through anodic oxidation on pure titanium, and rGO was deposited using an atmospheric plasma generator. The specimens used were divided into a control group of titanium specimens and three experimental groups: Group N (specimens with TNT formation), Group G (rGO-deposited specimens), and Group NG (specimens under rGO deposition after TNT formation). Adhesion of S. mutans to the surface was assessed after 24 h of culture using a crystal violet assay, while adhesion and proliferation of MC3T3-E1 cells, a mouse preosteoblastic cell line, were evaluated after 24 and 72 h through a water-soluble tetrazolium salt assay. TNT formation and rGO deposition on titanium decreased S. mutans adhesion (p < 0.05) and increased MC3T3-E1 cell adhesion and proliferation (p < 0.0083). In Group NG, S. mutans adhesion was the lowest (p < 0.05), while MC3T3-E1 cell proliferation was the highest (p < 0.0083). In this study, TNT formation and rGO deposition on a pure titanium surface inhibited the adhesion of S. mutans at an early stage and increased the initial adhesion and proliferation of preosteoblastic cells.
Collapse
Affiliation(s)
- Min-Kyung Ji
- Dental 4D Research Center, Chonnam National University, 33 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
| | - Hyeonji Kim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, 33 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
| | - Geonwoo Jeong
- Department of Materials Science & Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
| | - Won-Jae Kim
- Department of Oral Physiology, School of Dentistry, Chonnam National University, 33 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
| | - Je-Hwang Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
| | - Hoonsung Cho
- Department of Materials Science & Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
| | - Hyun-Pil Lim
- Dental 4D Research Center, Chonnam National University, 33 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Prosthodontics, School of Dentistry, Chonnam National University, 33 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
| |
Collapse
|
35
|
Samal PP, Swain J, Qaiyum MA, Ghosh A, Mandal D, Dey B, Dey S. Green synthesis of MnO 2-embedded Rauvolfia tetraphylla leaves (MnO 2@RTL) for crystal violet dye removal and as an antibacterial agent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5457-5472. [PMID: 38123767 DOI: 10.1007/s11356-023-31442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The application of green synthesized nanocomposites for the prevention of environmental pollution is increasing nowadays. Here, a green composite has been synthesized by embedding MnO2 on Rauvolfia tetraphylla leaves using its leaf extract hereinafter termed as MnO2@RTL, and demonstrated for crystal violet (CV) dye removal from simulated and real wastewater. The surface properties of the material were determined by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) surface area, pHZPC, and zeta potential. The material exhibits a remarkable adsorption capacity of 61.162 mg/g at 328 K and pH 7. The adsorption was best fitted with Pseudo-second-order kinetic (R2 = 0.998) and a combination of Langmuir and Freundlich isotherm model (R2 = 0.994-0.999). The thermodynamic study revealed spontaneous (ΔG values = - 2.988 to - 4.978 kJ/mol) and endothermic (ΔH values = 6.830 to 11.018 kJ/mol) adsorption. After adsorption, 80% regeneration occurred with 50% methanol, and recycled up to five times. Advantageously, the material was able to remove CV dye in the presence of coexistent ions and from industrial wastewater, confirming field applicability. The adsorption capacity of the material is superior to previously reported materials. The standard deviation and relative standard deviations have been evaluated to be 0.000422-0.000667 and 0.473-0.749%, which suggests the reliability of the experiments. The exhausted material, after recycling, was pyrolyzed to overcome the disposal problem. It was established as a secondary adsorbent with 73% efficiency which makes the material win-win. The material showed antibacterial properties with Staphylococcus aureus bacteria with a zone of inhibition 5 mm.
Collapse
Affiliation(s)
- Priyanka Priyadarsini Samal
- Department of Chemistry, Environment Protection Laboratory, Central University of Jharkhand, Ranchi, 835205, India
| | - Jashminirani Swain
- Department of Chemistry, Environment Protection Laboratory, Central University of Jharkhand, Ranchi, 835205, India
| | - Md Atif Qaiyum
- Department of Chemistry, Environment Protection Laboratory, Central University of Jharkhand, Ranchi, 835205, India
| | - Adrija Ghosh
- Department of Polymer Science & Technology, University of Calcutta, Kolkata, 700009, West Bengal, India
| | - Debashmita Mandal
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, 700106, West Bengal, India
| | - Banashree Dey
- Department of Chemistry, The Graduate School College for Women, Jamshedpur, 831001, India
| | - Soumen Dey
- Department of Chemistry, Environment Protection Laboratory, Central University of Jharkhand, Ranchi, 835205, India.
| |
Collapse
|
36
|
Wang R, Li Z, Tian Q, Ma Z, Zhu M. Making graphene oxide (GO)-cladded SiO 2 spheres (SiO 2 @GO) as inorganic fillers for dental restorative resin composites. Dent Mater 2023; 39:1076-1084. [PMID: 37827873 DOI: 10.1016/j.dental.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVE Graphene oxide (GO) is of great interest in dentistry as the functional filler, mainly owing to its ability to inhibit the formation of cariogenic bacteria and possess low cytotoxicity to different cells, such as human dental pulp cells, HeLa cells, etc. However, its typical brown color limits the practical application. METHODS Here, the refractive-index-matched monodisperse SiO2 were used as the supporting substrates to synthesize GO-cladded SiO2 spheres (xSiO2 @ yGO) through a mild electrostatic self-assembly process, where x and y represent the amount of SiO2 and GO in the reaction mixture, respectively. The morphology and the optical performance of the obtained xSiO2 @ yGO particles were modulated by varying the mass ratio of SiO2 and GO (5:1, 10:1, 50:1, and 100:1). All developed hybrid particles were silanized and formulated with dimethacrylate-based resins. These were tested for curing depth, polymerization conversion, mechanical performance, in vitro cell viability, and antibacterial activity. RESULTS Of all xSiO2 @ yGO materials, increasing the mass ratio to 100:1 made the 100SiO2 @GO particles appear light brown and possess the lowest light absorbance from 300 to 800 nm. The results of CIEL*a*b* system showed that all these hybrid particles exhibited obvious discoloration compared with SiO2 and GO, where 100SiO2 @GO possessed the smallest color difference. Furthermore, following the results of curing depth, polymerization conversion, and mechanical performance of dental composites, the optimal filler composition was 100SiO2 @GO at 5 wt% filler loading. The resultant 100SiO2 @GO-filled composite produced the highest flexural strength (115 ± 12 MPa) and the lowest bacterial concentration (6.7 × 108 CFU/mL) than those of the resin matrix (78 ± 11 MPa; 9.2 × 108 CFU/mL) and 5 wt% SiO2-filled composite (106 ± 9 MPa; 9.1 × 108 CFU/mL), respectively, without affecting in vitro cell viability. SIGNIFICANCE The facile and mild synthesis of xSiO2 @ yGO hybrid particles provided a convenient way to tune their optical property. The optimal 100SiO2 @GO particles could be considered as the promising antibacterial filler to be applied in dental care and therapy.
Collapse
Affiliation(s)
- Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Zhihao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qingyi Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
37
|
Singh A, Gautam A, Banerjee S, Singh A, Kushwaha HR. Synthesis of copper-reduced graphene oxide nanomaterials using glucose and study of its antibacterial and anticancer activities. Biomed Mater 2023; 18:065025. [PMID: 37820688 DOI: 10.1088/1748-605x/ad0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
In this work, glucose-capped copper nanoparticles decorated reduced graphene oxide nanomaterial are synthesized at 100 °C and 200 °C via chemical reduction method and studied for their antibacterial and anticancer activities. Synthesized nanomaterials were characterized using x-ray diffraction, Fourier-transform infrared, transmission electron microscope, and RAMAN. It is observed in transmission electron microscopy and selected area electron diffraction studies that copper nanoparticles deposited onto reduced graphene oxide are smaller than nanoparticles generated in the absence of reduced graphene oxide. Also, the size of copper nanoparticles synthesized at 200 °C is smaller than at 100 °C. Results suggest that Cu/Glu/rGO synthesized at both temperatures showed significant antibacterial activity againstEscherichia coliandBacillus anthracis,similarly, showed significant cell death in cancer cell lines [Cal33 and HCT-116 p53 (+/+)]. Interestingly, the nanomaterials were seen to be more effective against the cancer cell lines harboring aggregating mutant p53. Tumors with aggregating mutants of p53 are difficult to treat hence, Cu/Glu/rGO can be promising therapeutic agents against these difficult cancers. However, the antibacterial and anticancer activity of Cu/Glu/rGO synthesized at 100 °C where Cu2O form is obtained was found to be more effective compared to Cu/Glu/rGO synthesized at 200 °C where Cu form is obtained. Though fine-tuning of the material may be required for its commercial applications.
Collapse
Affiliation(s)
- Anu Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Akanksha Gautam
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sagarika Banerjee
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Awantika Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Hemant R Kushwaha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
38
|
Farid A, Ooda A, Nabil A, Nasser A, Ahmed E, Ali F, Mohamed F, Farid H, Badran M, Ahmed M, Ibrahim M, Rasmy M, Saleeb M, Riad V, Ibrahim Y, Madbouly N. Eobania vermiculata whole-body muscle extract-loaded chitosan nanoparticles enhanced skin regeneration and decreased pro-inflammatory cytokines in vivo. J Nanobiotechnology 2023; 21:373. [PMID: 37828599 PMCID: PMC10571447 DOI: 10.1186/s12951-023-02143-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Usually, wounds recover in four to six weeks. Wounds that take longer time than this to heal are referred to as chronic wounds. Impaired healing can be caused by several circumstances like hypoxia, microbial colonization, deficiency of blood flow, reperfusion damage, abnormal cellular reaction and deficiencies in collagen production. Treatment of wounds can be enhanced through systemic injection of the antibacterial drugs and/or other topical applications of medications. However, there are a number of disadvantages to these techniques, including the limited or insufficient medication penetration into the underlying skin tissue and the development of bacterial resistance with repeated antibiotic treatment. One of the more recent treatment options may involve using nanotherapeutics in combination with naturally occurring biological components, such as snail extracts (SE). In this investigation, chitosan nanoparticles (CS NPs) were loaded with an Eobania vermiculata whole-body muscle extract. The safety of the synthesized NPs was investigated in vitro to determine if these NPs might be utilized to treat full-skin induced wounds in vivo. RESULTS SEM and TEM images showed uniformly distributed, spherical, smooth prepared CS NPs and snail extract-loaded chitosan nanoparticles (SE-CS NPs) with size ranges of 76-81 and 91-95 nm, respectively. The zeta potential of the synthesized SE-CS NPs was - 24.5 mV, while that of the CS NPs was 25 mV. SE-CS NPs showed a remarkable, in vitro, antioxidant, anti-inflammatory and antimicrobial activities. Successfully, SE-CS NPs (50 mg/kg) reduced the oxidative stress marker (malondialdehyde), reduced inflammation, increased the levels of the antioxidant enzymes (superoxide dismutase and glutathione), and assisted the healing of induced wounds. SE-CS NPs (50 mg/kg) can be recommended to treat induced wounds safely. SE was composed of a collection of several wound healing bioactive components [fatty acids, amino acids, minerals and vitamins) that were loaded on CS NPs. CONCLUSIONS The nanostructure enabled bioactive SE components to pass through cell membranes and exhibit their antioxidant and anti-inflammatory actions, accelerating the healing process of wounds. Finally, it is advised to treat rats' wounds with SE-CS NPs.
Collapse
Affiliation(s)
- Alyaa Farid
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Adham Ooda
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Nabil
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Areej Nasser
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Esraa Ahmed
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Fatma Ali
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Fatma Mohamed
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Habiba Farid
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Mai Badran
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Mariam Ahmed
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Mariam Ibrahim
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Mariam Rasmy
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Martina Saleeb
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Vereena Riad
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Yousr Ibrahim
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Neveen Madbouly
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
39
|
Rhoomi Z, Ahmed DS, Jabir MS, Balasubramanian B, Al-Garadi MA, Swelum AA. Facile Hydrothermal Synthesis of BiVO 4/MWCNTs Nanocomposites and Their Influences on the Biofilm Formation of Multidrug Resistance Streptococcus mutans and Proteus mirabilis. ACS OMEGA 2023; 8:37147-37161. [PMID: 37841170 PMCID: PMC10569021 DOI: 10.1021/acsomega.3c04722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
This study utilized a simple hydrothermal technique to prepare pure BiVO4 and tightly bound BiVO4/multiwalled carbon nanotubes (MWCNTs) nanocomposite materials. The surfactant was employed to control the growth, size, and assembly of BiVO4 and the nanocomposite. Various techniques including X-ray diffraction (XRD), Ultraviolet-visible (UV-vis), photoluminescence (PL), Raman, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were utilized to analyze and characterize BiVO4 and the BiVO4/MWCNTs nanocomposite. Through XRD analysis, it was found that the carbon nanotubes were effectively embedded within the lattice of BiVO4 without generating any separate impurity phase and had no influence on the BiVO4 monoclinic structure. TEM images confirmed the presence of MWCNTs within BiVO4. Furthermore, adding MWCNTs in the BiVO4/MWCNTs nanocomposite resulted in an effective charge transfer transition and improved carrier separation, as evidenced by PL analysis. The introduction of MWCNTs also led to a significant reduction in the optical band gap due to quantum effects. Finally, the antibacterial activity of pure BiVO4 and the BiVO4/MWCNTs nanocomposite was assessed by exposing Proteus mirabilis and Streptococcus mutans to these materials. Biofilm inhibition and antibiofilm activity were measured using a crystal violet assay and a FilmTracer LIVE/DEAD Biofilm Viability Kit. The results demonstrated that pure BiVO4 and BiVO4/MWCNTs effectively inhibited biofilm formation. In conclusion, both pure BiVO4 and BiVO4/MWCNTs are promising materials for inhibiting the bacterial biofilm during bacterial infections.
Collapse
Affiliation(s)
- Zeena
R. Rhoomi
- Applied
Sciences Department, University of Technology, Baghdad 11231, Iraq
| | - Duha S. Ahmed
- Applied
Sciences Department, University of Technology, Baghdad 11231, Iraq
| | - Majid S. Jabir
- Applied
Sciences Department, University of Technology, Baghdad 11231, Iraq
| | | | - Maged A. Al-Garadi
- Department
of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ayman A. Swelum
- Department
of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
40
|
Shabbir M, Imran M, Haider A, Shahzadi I, Ahmad W, Ul-Hamid A, Nabgan W, Shahzadi A, Al-Shanini A, Al-Anazy MM, Adam M, Ikram M. Efficient Samarium-Grafted-C 3N 4-Doped α-MoO 3 Used as a Dye Degrader and Antibacterial Agent: In Silico Molecular Docking Study. ACS OMEGA 2023; 8:34805-34815. [PMID: 37779977 PMCID: PMC10535254 DOI: 10.1021/acsomega.3c03910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
This study was used to evaluate the catalytic activity (CA) and bactericidal activity of α-MoO3 and Sm-g-C3N4-doped α-MoO3 composites prepared through an efficient, cost-effective coprecipitation route. Their characteristic studies verify the formation of α-MoO3 and its composites (3, 6, and 9 mL Sm-g-C3N4-doped α-MoO3), which showed high crystallinity, as confirmed by X-ray diffraction (XRD) analysis. The production of superoxide and hydroxyl radicals due to charge transfer through α-MoO3 and g-C3N4 eventually forms electrons in g-C3N4 and holes around α-MoO3. CA against Rhodamine B (RhB) in basic medium provides maximum results compared to acidic and neutral media. The bactericidal efficacy of the (9 mL) doped sample represents a greater inhibition zone of 6.10 mm against the negative bacterial strain Escherichia coli. Furthermore, in silico studies showed that the generated nanorods may inhibit DNA gyrase and dihydropteroate synthase (DHPS) enzymes.
Collapse
Affiliation(s)
- Mohsin Shabbir
- Department
of Chemistry, Government College University, Faisalabad, Pakpattan Road, Sahiwal 57000, Punjab, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Government College University, Faisalabad, Pakpattan Road, Sahiwal 57000, Punjab, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Punjab, Pakistan
| | - Iram Shahzadi
- Punjab
University College of Pharmacy, Allama Iqbal Campus, University of Punjab, Lahore 54000, Pakistan
| | - Wakeel Ahmad
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Anwar Ul-Hamid
- Core
Research Facilities, Research Institute, King Fahd University of Petroleum
& Minerals, Dhahran 31261, Saudi Arabia
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain
| | - Anum Shahzadi
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Ali Al-Shanini
- College
of Petroleum and Engineering, Hadhramout
University, Mukalla 50511, Hadhramout, P. O. Box 50511, Yemen
| | - Murefah mana Al-Anazy
- Department
of Chemistry, College of Sciences, Princess
Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Adam
- Department
of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| |
Collapse
|
41
|
Mahakal S, Pathan HM, Prasad M, Rondiya S, Patole SP, Jadkar SR. Modification in Toxicity of l-Histidine-Incorporated ZnO Nanoparticles toward Escherichia coli. ACS OMEGA 2023; 8:34354-34363. [PMID: 37780019 PMCID: PMC10536091 DOI: 10.1021/acsomega.3c01183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 10/03/2023]
Abstract
This paper presents a comparative study of the toxicity of pristine-ZnO and l-histidine-incorporated ZnO toward Escherichia coli (E. coli) as a Gram-negative model organism. Pristine-ZnO and l-histidine-incorporated ZnO with different l-histidine concentrations were synthesized using an open aqueous solution bath technique. XRD studies revealed the formation of polycrystalline wurtzite ZnO. The average crystallite size of the synthesized l-histidine-incorporated ZnO decreased as the concentration of l-histidine increased. The FTIR spectra showed the presence of Zn-O, CO2-/CO3-, and C-N (only in l-histidine-incorporated ZnO samples) and -OH bond vibration signals in all samples. The chemical purity of all the samples was ensured using XPS analysis. The microbial activity of these samples was investigated using E. coli. The solution with 100 μg/mL ZnO in sterile distilled water showed up to 94% growth inhibition of E. coli, establishing antibacterial activity. However, l-histidine incorporated in ZnO showed reduced antibacterial activity with the increase of the concentration of l-histidine in ZnO. Furthermore, flow cytometry studies during the interaction of ZnO and E. coli confirmed the generation of reactive oxygen species (ROS), validating its antibacterial activity. The interaction of l-histidine-incorporated ZnO and E. coli showed declining ROS with the increase in the l-histidine concentration, indicating a ZnO toxicity reduction.
Collapse
Affiliation(s)
- Shraddha Mahakal
- Department
of Physics, Savitribai Phule Pune University, Pune 411 007, India
| | - Habib M. Pathan
- Department
of Physics, Savitribai Phule Pune University, Pune 411 007, India
| | - Mohit Prasad
- Department
of Physics, Savitribai Phule Pune University, Pune 411 007, India
- Department
of Applied Science and Humanities, Pimpri
Chinchwad College Of Engineering (PCCOE), Nigdi, Pune 411 004, India
| | - Sachin Rondiya
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore 560 012, India
| | - Shashikant P. Patole
- Department
of Physics, Khalifa University of Science
and Technology, Abu Dhabi 127788, UAE
| | - Sandesh R. Jadkar
- Department
of Physics, Savitribai Phule Pune University, Pune 411 007, India
| |
Collapse
|
42
|
Guégan R, Cheng X, Huang X, Němečková Z, Kubáňová M, Zelenka J, Ruml T, Grasset F, Sugahara Y, Lang K, Kirakci K. Graphene Oxide Sheets Decorated with Octahedral Molybdenum Cluster Complexes for Enhanced Photoinactivation of Staphylococcus aureus. Inorg Chem 2023; 62:14243-14251. [PMID: 37608779 PMCID: PMC10481373 DOI: 10.1021/acs.inorgchem.3c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 08/24/2023]
Abstract
The emergence of multidrug-resistant microbial pathogens poses a significant threat, severely limiting the options for effective antibiotic therapy. This challenge can be overcome through the photoinactivation of pathogenic bacteria using materials generating reactive oxygen species upon exposure to visible light. These species target vital components of living cells, significantly reducing the likelihood of resistance development by the targeted pathogens. In our research, we have developed a nanocomposite material consisting of an aqueous colloidal suspension of graphene oxide sheets adorned with nanoaggregates of octahedral molybdenum cluster complexes. The negative charge of the graphene oxide and the positive charge of the nanoaggregates promoted their electrostatic interaction in aqueous medium and close cohesion between the colloids. Upon illumination with blue light, the colloidal system exerted a potent antibacterial effect against planktonic cultures of Staphylococcus aureus largely surpassing the individual contributions of the components. The underlying mechanism behind this phenomenon lies in the photoinduced electron transfer from the nanoaggregates of the cluster complexes to the graphene oxide sheets, which triggers the generation of reactive oxygen species. Thus, leveraging the unique properties of graphene oxide and light-harvesting octahedral molybdenum cluster complexes can open more effective and resilient antibacterial strategies.
Collapse
Affiliation(s)
- Régis Guégan
- Global
Center for Science and Engineering, Waseda
University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Interfaces,
Confinement, Matériaux et Nanostructures ICMN-UMR 7374, CNRS-Université d’Orléans, 1 Rue de la Férollerie, Orléans 45100, France
| | - Xiaoxue Cheng
- Department
of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xiang Huang
- Department
of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Zuzana Němečková
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 250 68, Czech Republic
| | - Michaela Kubáňová
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Praha 166 28, Czech Republic
| | - Jaroslav Zelenka
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Praha 166 28, Czech Republic
| | - Tomáš Ruml
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Praha 166 28, Czech Republic
| | - Fabien Grasset
- Univ Rennes,
CNRS, Institut des Sciences Chimiques de Rennes (ISCR)-UMR 6226, Rennes 35000, France
- CNRS-Saint-Gobain-NIMS,
IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Yoshiyuki Sugahara
- Department
of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Kagami
Memorial Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Kamil Lang
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 250 68, Czech Republic
| | - Kaplan Kirakci
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 250 68, Czech Republic
| |
Collapse
|
43
|
Balusamy SR, Perumalsamy H, Huq MA, Yoon TH, Mijakovic I, Thangavelu L, Yang DC, Rahimi S. A comprehensive and systemic review of ginseng-based nanomaterials: Synthesis, targeted delivery, and biomedical applications. Med Res Rev 2023; 43:1374-1410. [PMID: 36939049 DOI: 10.1002/med.21953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/22/2022] [Accepted: 02/26/2023] [Indexed: 03/21/2023]
Abstract
Among 17 Panax species identified across the world, Panax ginseng (Korean ginseng), Panax quinquefolius (American ginseng), and Panax notoginseng (Chinese ginseng) are highly recognized for the presence of bioactive compound, ginsenosides and their pharmacological effects. P. ginseng is widely used for synthesis of different types of nanoparticles compared to P. quinquefolius and P. notoginseng. The use of nano-ginseng could increase the oral bioavailability, membrane permeability, and thus provide effective delivery of ginsenosides to the target sites through transport system. In this review, we explore the synthesis of ginseng nanoparticles using plant extracts from various organs, microbes, and polymers, as well as their biomedical applications. Furthermore, we highlight transporters involved in transport of ginsenoside nanoparticles to the target sites. Size, zeta potential, temperature, and pH are also discussed as the critical parameters affecting the quality of ginseng nanoparticles synthesis.
Collapse
Affiliation(s)
- Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Seoul, Gwangjin-gu, Republic of Korea
| | - Haribalan Perumalsamy
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Md Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Tae Hyun Yoon
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, India
| | - Deok Chun Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
44
|
Huang H, Zhao Y, Yang H, Li J, Ying Y, Li J, Wang S. Light-driven MOF-based micromotors with self-floating characteristics for water sterilization. NANOSCALE 2023; 15:14165-14174. [PMID: 37593810 DOI: 10.1039/d3nr02299d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Three-dimensional motion (especially in the Z-axis direction) of metal-organic frameworks (MOFs)-based micromotors (MOFtors) is essential but still in its infancy. Herein, we propose a simple strategy for designing light-driven MOFtors that move in the Z-axis direction and efficiently kill Staphylococcus aureus (S. aureus). The as-prepared polypyrrole nanoparticles (PPy NPs) with excellent photothermal properties are combined with ZIF-8 through a simple in situ encapsulation method, resulting in multi-wavelength photothermally-responsive MOFtors (PPy/ZIF-8). Under the irradiation of near-infrared (NIR)/ultraviolet (UV)/blue light, the MOFtors all exhibited negative phototaxis and high-speed motion behaviour with the highest speed of 2215 ± 338 μm s-1. In addition, it is proved that these MOFtors can slowly self-float up in an aqueous environment. The light irradiation will accelerate the upward movement of the MOFtors, and the time required for the MOFtors to move to the top is negatively correlated with the light intensity. Finally, efficient antibacterial performances (up to 98.89% against S. aureus) are achieved with these light-driven MOFtors owing to the boosted Zn2+ release by vigorous stirring motion and physical entrapment by the upward motion under light irradiation.
Collapse
Affiliation(s)
- Hai Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yu Zhao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Haowei Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jie Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Sheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
45
|
Fan G, Xiao Q, Li Q, Xia Y, Feng H, Ma X, Cai L, Sun X. Antimicrobial mechanisms of ZnO nanoparticles to phytopathogen Pseudomonas syringae: Damage of cell envelope, suppression of metabolism, biofilm and motility, and stimulation of stomatal immunity on host plant. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105455. [PMID: 37532364 DOI: 10.1016/j.pestbp.2023.105455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 08/04/2023]
Abstract
Nanoparticles have recently been employed as a new strategy to act as bactericides in agricultural applications. However, the effects and mechanisms of foliar deposition of nanoparticles on bacterial pathogens, plant physiology and particularly plant immunity have not been sufficiently understood. Here, we investigated the effects and mechanisms of ZnO NPs in controlling of tobacco wildfire caused by Pseudomonas syringae pv. tabaci, through the comprehensive analysis of biological changes of both bacteria and plants. The global gene expression changes of Pseudomonas syringae pv. tabaci supported that the functions of "protein secretion", "membrane part", "signal transducer activity", "locomotion", "chemotaxis" and "taxis" in bacteria, as well as the metabolic pathways of "bacterial chemotaxis", "two-component system", "biofilm formation", "ABC transporters" and "valine, leucine and isoleucine degradation" were significantly down-regulated by ZnO NPs. Correspondingly, we reconfirmed that the cell envelope structure, biofilm and motility of Pseudomonas syringae pv. tabaci were directly disrupted or suppressed by ZnO NPs. Different from completely killing Pseudomonas syringae pv. tabaci, ZnO NPs (0.5 mg/mL) potentially improved plant growth and immunity through enzymatic activity and global molecular response analysis. Furthermore, the changes of gene expression in ABA signaling pathway, ABA concentration and stomatal aperture all supported that ZnO NPs can specifically stimulate stomatal immunity, which is important to defend bacterial infection. Taken together, we proposed that both the inhibition or damage of motility, biofilm, metabolisms, virulence and cell envelope on P. syringae pv. tabaci, and the activation of the stomatal immunity formed two-layered antibacterial mechanisms of ZnO NPs on phytopathogenic bacteria.
Collapse
Affiliation(s)
- Guangjin Fan
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Qingli Xiao
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, Chongqing 400060, China
| | - Qian Li
- Henan Tobacco Company Nanyang City Co., Ltd, Nanyang 473000, China
| | - Yinling Xia
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Hui Feng
- College of Tobacco Science, Guizhou University, Guiyang 550025, China
| | - Xiaozhou Ma
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Lin Cai
- College of Tobacco Science, Guizhou University, Guiyang 550025, China.
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
46
|
Abdelbasir SM, Rayan DA, Ismail MM. Synthesis of Cu and CuO nanoparticles from e-waste and evaluation of their antibacterial and photocatalytic properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89690-89704. [PMID: 37458881 PMCID: PMC10412494 DOI: 10.1007/s11356-023-28437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/21/2023] [Indexed: 08/11/2023]
Abstract
Waste printed circuit boards (WPCBs) contain a plethora of valuable metals, considered an attractive secondary resource. In the current research, a hydrometallurgical process combined ammonia/ammonium chloride leaching and reduction (using L-ascorbic acid) to recover copper and its oxide (CuO) as nanosized particles from WPCBs was investigated. The results of leaching indicated that 96.7% of copper could be recovered at a temperature of 35 °C for a leaching duration of 2 h with ammonium chloride and ammonia concentration of 2 mol/L at a solid:liquid ratio of 1:10 g/cm3. The synthesized particles exhibit spherical and distorted sphere morphology with average particle size of 460 nm and 50 nm for Cu and CuO NPs, respectively. The antibacterial activity of Cu, CuO, and a (1:1) blend of both (Cu/CuO) has been examined against five different bacterial and fungal strains. The highest zone of inhibition was measured as 21.2 mm for Cu NPs toward Escherichia coli and 16.7 mm for Cu/CuO blend toward Bacillus cereus bacteria. The highest zone of inhibition was measured as 13 mm and 13.8 mm for Cu/CuO blend toward Fusarium proliferatum and Penicillium verrucosum fungi. Cu/CuO blend showed notable photocatalytic activity towards Rhodamine B dye under visible light irradiation with 96% degradation rate within 120 min. Using the process developed in this study, copper and its oxide as nanoparticles can be produced from WPCBs and used for multifunctional applications.
Collapse
Affiliation(s)
- Sabah M Abdelbasir
- Central Metallurgical R&D Institute (CMRDI), P.O. Box 87, Helwan, Cairo, 11421, Egypt.
| | - Diaa A Rayan
- Central Metallurgical R&D Institute (CMRDI), P.O. Box 87, Helwan, Cairo, 11421, Egypt
- Department of Physics, Deraya University, New Minya, Minya, Egypt
| | - Mahmoud M Ismail
- Physics Department, Faculty of Science, Al-Azhar Unversity, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
47
|
Mohammadipour-Nodoushan R, Shekarriz S, Shariatinia Z, Heydari A, Montazer M. Improved cotton fabrics properties using zinc oxide-based nanomaterials: A review. Int J Biol Macromol 2023; 242:124916. [PMID: 37276903 DOI: 10.1016/j.ijbiomac.2023.124916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have gained significant attention in the textile industry for their ability to enhance the physicochemical properties of fabrics. In recent years, there has been a growing focus on the development of ZnO-based nanomaterials and their applications for cotton and other fabrics. This review paper provides an overview of the synthesis and diverse applications of ZnO-based nanomaterials for textile fabrics, including protection against UV irradiation, bacteria, fungi, microwave, electromagnetic radiation, water, and fire. Furthermore, the study offers the potential of these materials in energy harvesting applications, such as wearable pressure sensors, piezoelectric nanogenerators, supercapacitors, and human energy harvesting. Additionally, we discuss the potential of ZnO-based nanomaterials for environmental cleaning, including water, oil, and solid cleaning. The current research in this area has focused on various materials used to prepare ZnO-based nanocomposites, such as metals/nonmetals, semiconductors, metal oxides, carbon materials, polymers, MXene, metal-organic frameworks, and layered double hydroxides. The findings of this review highlight the potential of ZnO-based nanomaterials to improve the performance of textile fabrics in a range of applications, and the importance of continued research in this field to further advance the development and use of ZnO-based nanomaterials in the textile industry.
Collapse
Affiliation(s)
- Roya Mohammadipour-Nodoushan
- Color and Polymer Research Centre, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran
| | - Shahla Shekarriz
- Color and Polymer Research Centre, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran.
| | - Zahra Shariatinia
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran.
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Majid Montazer
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran
| |
Collapse
|
48
|
Zhang K, Liu Y, Shi X, Zhang R, He Y, Zhang H, Wang W. Application of polyvinyl alcohol/chitosan copolymer hydrogels in biomedicine: A review. Int J Biol Macromol 2023:125192. [PMID: 37276897 DOI: 10.1016/j.ijbiomac.2023.125192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/20/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Hydrogels is a hydrophilic, cross-linked polymer of three-dimensional network structures. The application of hydrogels prepared from a single polymer in the biomedical field has many drawbacks. The functional blend of polyvinyl alcohol and chitosan allows hydrogels to have better and more desirable properties than those produced from a single polymer, which is a good biomaterial for development and design. In this paper, we have reviewed the progress in the application of polyvinyl alcohol/chitosan composite hydrogels in various medical fields, the different cross-linking agents and cross-linking methods, and the research progress in the optimization of composite hydrogels for their subsequent wide range of biomedical applications.
Collapse
Affiliation(s)
- Kui Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| | - Yan Liu
- Department of Gynecology, First Affiliated Hospital of Xi 'an Medical College, Xi'an 710000, China
| | - Xuewen Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Ruihao Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Yixiang He
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Huaibin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Wenji Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
49
|
Park L, Kim HS, Jang W, Ji MK, Ryu JH, Cho H, Lim HP. Antibacterial Evaluation of Zirconia Coated with Plasma-Based Graphene Oxide with Photothermal Properties. Int J Mol Sci 2023; 24:ijms24108888. [PMID: 37240234 DOI: 10.3390/ijms24108888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The alternative antibacterial treatment photothermal therapy (PTT) significantly affects oral microbiota inactivation. In this work, graphene with photothermal properties was coated on a zirconia surface using atmospheric pressure plasma, and then the antibacterial properties against oral bacteria were evaluated. For the graphene oxide coating on the zirconia specimens, an atmospheric pressure plasma generator (PGS-300, Expantech, Suwon, Republic of Korea) was used, and an Ar/CH4 gas mixture was coated on a zirconia specimen at a power of 240 W and a rate of 10 L/min. In the physiological property test, the surface properties were evaluated by measuring the surface shape of the zirconia specimen coated with graphene oxide, as well as the chemical composition and contact angle of the surface. In the biological experiment, the degree of adhesion of Streptococcus mutans (S. mutans) and Porphyromonas gingivalis (P. gingivalis) was determined by crystal violet assay and live/dead staining. All statistical analyzes were performed using SPSS 21.0 (SPSS Inc., Chicago, IL, USA). The group in which the zirconia specimen coated with graphene oxide was irradiated with near-infrared rays demonstrated a significant reduction in the adhesion of S. mutans and P. gingivalis compared with the group not irradiated. The oral microbiota inactivation was reduced by the photothermal effect on the zirconia coated with graphene oxide, exhibiting photothermal properties.
Collapse
Affiliation(s)
- Lydia Park
- Department of Prosthodontics, School of Dentistry, Chonnam National University, 33 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hee-Seon Kim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, 33 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Woohyung Jang
- Department of Prosthodontics, School of Dentistry, Chonnam National University, 33 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Min-Kyung Ji
- Dental 4D Research Center, Chonnam National University, 33 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Je-Hwang Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hoonsung Cho
- School of Materials Science & Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hyun-Pil Lim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, 33 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
50
|
Zhivkov AM, Popov TT, Hristova SH. Composite Hydrogels with Included Solid-State Nanoparticles Bearing Anticancer Chemotherapeutics. Gels 2023; 9:gels9050421. [PMID: 37233012 DOI: 10.3390/gels9050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels have many useful physicochemical properties which, in combination with their biocompatibility, suggest their application as a drug delivery system for the local and prorogated release of drugs. However, their drug-absorption capacity is limited because of the gel net's poor adsorption of hydrophilic molecules and in particular, hydrophobic molecules. The absorption capacity of hydrogels can be increased with the incorporation of nanoparticles due to their huge surface area. In this review, composite hydrogels (physical, covalent and injectable) with included hydrophobic and hydrophilic nanoparticles are considered as suitable for use as carriers of anticancer chemotherapeutics. The main focus is given to the surface properties of the nanoparticles (hydrophilicity/hydrophobicity and surface electric charge) formed from metal and dielectric substances: metals (gold, silver), metal-oxides (iron, aluminum, titanium, zirconium), silicates (quartz) and carbon (graphene). The physicochemical properties of the nanoparticles are emphasized in order to assist researchers in choosing appropriate nanoparticles for the adsorption of drugs with hydrophilic and hydrophobic organic molecules.
Collapse
Affiliation(s)
- Alexandar M Zhivkov
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
| | - Trifon T Popov
- Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Svetlana H Hristova
- Department of Medical Physics and Biophysics, Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| |
Collapse
|