1
|
Marton Menendez A, Nesbitt DJ. Thermodynamic compensation to temperature extremes in B. subtilis vs T. maritima lysine riboswitches. Biophys J 2024; 123:3331-3345. [PMID: 39091026 PMCID: PMC11480769 DOI: 10.1016/j.bpj.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
T. maritima and B. subtilis are bacteria that inhabit significantly different thermal environments, ∼80 vs. ∼40°C, yet employ similar lysine riboswitches to aid in the transcriptional regulation of the genes involved in the synthesis and transport of amino acids. Despite notable differences in G-C basepair frequency and primary sequence, the aptamer moieties of each riboswitch have striking similarities in tertiary structure, with several conserved motifs and long-range interactions. To explore genetic adaptation in extreme thermal environments, we compare the kinetic and thermodynamic behaviors in T. maritima and B. subtilis lysine riboswitches via single-molecule fluorescence resonance energy transfer analysis. Kinetic studies reveal that riboswitch folding rates increase with lysine concentration while the unfolding rates are independent of lysine. This indicates that both riboswitches bind lysine through an induced-fit ("bind-then-fold") mechanism, with lysine binding necessarily preceding conformational changes. Temperature-dependent van't Hoff studies reveal qualitative similarities in the thermodynamic landscapes for both riboswitches in which progression from the open, lysine-unbound state to both transition states (‡) and closed, lysine-bound conformations is enthalpically favored yet entropically penalized, with comparisons of enthalpic and entropic contributions extrapolated to a common [K+] = 100 mM in quantitative agreement. Finally, temperature-dependent Eyring analysis reveals the TMA and BSU riboswitches to have remarkably similar folding/unfolding rate constants when extrapolated to their respective (40 and 80°C) environmental temperatures. Such behavior suggests a shared strategy for ligand binding and aptamer conformational change in the two riboswitches, based on thermodynamic adaptations in number of G-C basepairs and/or modifications in tertiary structure that stabilize the ligand-unbound conformation to achieve biocompetence under both hyperthermophilic and mesothermophilic conditions.
Collapse
Affiliation(s)
- Andrea Marton Menendez
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado; Department of Chemistry, University of Colorado Boulder, Boulder, Colorado.
| | - David J Nesbitt
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado; Department of Chemistry, University of Colorado Boulder, Boulder, Colorado; Department of Physics, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
2
|
Kanti Panda M, Acharjee D, Nandi N, Koley S, Ghosh S. Unveiling the Influence of Brightness Heterogeneity in Fluorescence Correlation Spectroscopy of Perovskite Nanocrystals. Chemistry 2024; 30:e202401938. [PMID: 38984590 DOI: 10.1002/chem.202401938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Nanoparticles (NPs), including perovskite nanocrystals (PNCs) with single photon purity, present challenges in fluorescence correlation spectroscopy (FCS) studies due to their distinct photoluminescence (PL) behaviors. In particular, the zero-time correlation amplitude [g2(0)] and the associated diffusion timescale (τD) of their FCS curves show substantial dependency on pump intensity (IP). Optical saturation inadequately explains the origin of this FCS phenomenon in NPs, thus setting them apart from conventional dye molecules, which do not manifest such behavior. This observation is apparently attributed to either photo-brightening or optical trapping, both lead to increased NP occupancy (N) in the excitation volume, consequently reducing the g2(0) amplitude [since g2(0) α 1/N] at high IP. However, an advanced FCS study utilizing alternating laser excitation at two different intensities dismisses such possibilities. Further investigation into single-particle blinking behaviors as a function of IP reveals that the intensity dependence of g2(0) primarily arises from the brightness heterogeneity prevalent in almost all types of NPs. This report delves into the complexities of the photophysical properties of NPs and their adverse impacts on FCS studies.
Collapse
Affiliation(s)
- Mrinal Kanti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha, 752050, India
| | - Debopam Acharjee
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha, 752050, India
| | - Nilanjana Nandi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha, 752050, India
| | - Somnath Koley
- Institute of Physics, Sachivalaya Marg, Gajapati Nagar, Bhubaneswar, Odisha, 751005
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha, 752050, India
- Center for Interdisciplinary Sciences (CIS), National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha, 752050, India
| |
Collapse
|
3
|
Büber E, Yaadav R, Schröder T, Franquelim HG, Tinnefeld P. DNA Origami Vesicle Sensors with Triggered Single-Molecule Cargo Transfer. Angew Chem Int Ed Engl 2024:e202408295. [PMID: 39248369 DOI: 10.1002/anie.202408295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Interacting with living systems typically involves the ability to address lipid membranes of cellular systems. The first step of interaction of a nanorobot with a cell will thus be the detection of binding to a lipid membrane. Utilizing DNA origami, we engineered a biosensor with single-molecule Fluorescence Resonance Energy Transfer (smFRET) as transduction mechanism for precise lipid vesicle detection and cargo delivery. The system hinges on a hydrophobic ATTO647N modified single-stranded DNA (ssDNA) leash, protruding from a DNA origami nanostructure. In a vesicle-free environment, the ssDNA coils, ensuring high FRET efficiency. Upon vesicle binding to cholesterol anchors on the DNA origami, hydrophobic ATTO647N induces the ssDNA to stretch towards the lipid bilayer, reducing FRET efficiency. As the next step, the sensing strand serves as molecular cargo that can be transferred to the vesicle through a triggered strand displacement reaction. Depending on the number of cholesterols on the displacer strands, we either induce a diffusive release of the fluorescent load towards neighboring vesicles or a stoichiometric release of a single cargo-unit to the vesicle on the nanosensor. Ultimately, our multi-functional liposome interaction and detection platform opens up pathways for innovative biosensing applications and stoichiometric loading of vesicles with single-molecule control.
Collapse
Affiliation(s)
- Ece Büber
- Department of Chemistry, Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Renukka Yaadav
- Department of Chemistry, Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Tim Schröder
- Department of Chemistry, Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Henri G Franquelim
- Interfaculty Centre for Bioactive Matter, Leipzig University, Deutscher Platz 5 (BBZ), 04103, Leipzig, Germany
| | - Philip Tinnefeld
- Department of Chemistry, Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
4
|
Asadiatouei P, Salem CB, Wanninger S, Ploetz E, Lamb DC. Deep-LASI, single-molecule data analysis software. Biophys J 2024; 123:2682-2695. [PMID: 38384132 PMCID: PMC11393668 DOI: 10.1016/j.bpj.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
By avoiding ensemble averaging, single-molecule methods provide novel means of extracting mechanistic insights into function of material and molecules at the nanoscale. However, one of the big limitations is the vast amount of data required for analyzing and extracting the desired information, which is time-consuming and user dependent. Here, we introduce Deep-LASI, a software suite for the manual and automatic analysis of single-molecule traces, interactions, and the underlying kinetics. The software can handle data from one-, two- and three-color fluorescence data, and was particularly designed for the analysis of two- and three-color single-molecule fluorescence resonance energy transfer experiments. The functionalities of the software include: the registration of multiple-channels, trace sorting and categorization, determination of the photobleaching steps, calculation of fluorescence resonance energy transfer correction factors, and kinetic analyses based on hidden Markov modeling or deep neural networks. After a kinetic analysis, the ensuing transition density plots are generated, which can be used for further quantification of the kinetic parameters of the system. Each step in the workflow can be performed manually or with the support of machine learning algorithms. Upon reading in the initial data set, it is also possible to perform the remaining analysis steps automatically without additional supervision. Hence, the time dedicated to the analysis of single-molecule experiments can be reduced from days/weeks to minutes. After a thorough description of the functionalities of the software, we also demonstrate the capabilities of the software via the analysis of a previously published dynamic three-color DNA origami structure fluctuating between three states. With the drastic time reduction in data analysis, new types of experiments become realistically possible that complement our currently available palette of methodologies for investigating the nanoworld.
Collapse
Affiliation(s)
- Pooyeh Asadiatouei
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Clemens-Bässem Salem
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simon Wanninger
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Don C Lamb
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
5
|
Modak A, Kilic Z, Chattrakun K, Terry DS, Kalathur RC, Blanchard SC. Single-Molecule Imaging of Integral Membrane Protein Dynamics and Function. Annu Rev Biophys 2024; 53:427-453. [PMID: 39013028 DOI: 10.1146/annurev-biophys-070323-024308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Integral membrane proteins (IMPs) play central roles in cellular physiology and represent the majority of known drug targets. Single-molecule fluorescence and fluorescence resonance energy transfer (FRET) methods have recently emerged as valuable tools for investigating structure-function relationships in IMPs. This review focuses on the practical foundations required for examining polytopic IMP function using single-molecule FRET (smFRET) and provides an overview of the technical and conceptual frameworks emerging from this area of investigation. In this context, we highlight the utility of smFRET methods to reveal transient conformational states critical to IMP function and the use of smFRET data to guide structural and drug mechanism-of-action investigations. We also identify frontiers where progress is likely to be paramount to advancing the field.
Collapse
Affiliation(s)
- Arnab Modak
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Kanokporn Chattrakun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Ravi C Kalathur
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
6
|
Götz M, Barth A, Bohr SSR, Börner R, Chen J, Cordes T, Erie DA, Gebhardt C, Hadzic MCAS, Hamilton GL, Hatzakis NS, Hugel T, Kisley L, Lamb DC, de Lannoy C, Mahn C, Dunukara D, de Ridder D, Sanabria H, Schimpf J, Seidel CAM, Sigel RKO, Sletfjerding MB, Thomsen J, Vollmar L, Wanninger S, Weninger KR, Xu P, Schmid S. Reply to: On the statistical foundation of a recent single molecule FRET benchmark. Nat Commun 2024; 15:3626. [PMID: 38688911 PMCID: PMC11061175 DOI: 10.1038/s41467-024-47734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Affiliation(s)
- Markus Götz
- PicoQuant GmbH, Rudower Chaussee 29, 12489, Berlin, Germany.
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands
| | - Søren S-R Bohr
- Department of Chemistry, University of Copenhagen, 2100, Copenhagen, Denmark
- Novo Nordisk Center for optimised oligo escape and control of disease University of Copenhagen, 2100 Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Richard Börner
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, 09648, Mittweida, Germany
| | - Jixin Chen
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Dorothy A Erie
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | | | - George L Hamilton
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Nikos S Hatzakis
- Department of Chemistry, University of Copenhagen, 2100, Copenhagen, Denmark
- Novo Nordisk Center for optimised oligo escape and control of disease University of Copenhagen, 2100 Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Don C Lamb
- Department of Chemistry and Center for Nano Science (CeNS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Carlos de Lannoy
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Chelsea Mahn
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dushani Dunukara
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Julia Schimpf
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Magnus B Sletfjerding
- Department of Chemistry, University of Copenhagen, 2100, Copenhagen, Denmark
- Novo Nordisk Center for optimised oligo escape and control of disease University of Copenhagen, 2100 Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Johannes Thomsen
- Department of Chemistry, University of Copenhagen, 2100, Copenhagen, Denmark
- Novo Nordisk Center for optimised oligo escape and control of disease University of Copenhagen, 2100 Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Leonie Vollmar
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Simon Wanninger
- Department of Chemistry and Center for Nano Science (CeNS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sonja Schmid
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands.
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Nguyen TD, Chen YI, Nguyen AT, Chen LH, Yonas S, Litvinov M, He Y, Kuo YA, Hong S, Rylander HG, Yeh HC. Multiplexed imaging in live cells using pulsed interleaved excitation spectral FLIM. OPTICS EXPRESS 2024; 32:3290-3307. [PMID: 38297554 PMCID: PMC11018333 DOI: 10.1364/oe.505667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Multiplexed fluorescence detection has become increasingly important in the fields of biosensing and bioimaging. Although a variety of excitation/detection optical designs and fluorescence unmixing schemes have been proposed to allow for multiplexed imaging, rapid and reliable differentiation and quantification of multiple fluorescent species at each imaging pixel is still challenging. Here we present a pulsed interleaved excitation spectral fluorescence lifetime microscopic (PIE-sFLIM) system that can simultaneously image six fluorescent tags in live cells in a single hyperspectral snapshot. Using an alternating pulsed laser excitation scheme at two different wavelengths and a synchronized 16-channel time-resolved spectral detector, our PIE-sFLIM system can effectively excite multiple fluorophores and collect their emission over a broad spectrum for analysis. Combining our system with the advanced live-cell labeling techniques and the lifetime/spectral phasor analysis, our PIE-sFLIM approach can well unmix the fluorescence of six fluorophores acquired in a single measurement, thus improving the imaging speed in live-specimen investigation.
Collapse
Affiliation(s)
- Trung Duc Nguyen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Yuan-I Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Anh-Thu Nguyen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Limin H. Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Siem Yonas
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Mitchell Litvinov
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Yujie He
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Yu-An Kuo
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Soonwoo Hong
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - H. Grady Rylander
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Texas Materials Institute, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
8
|
Shen YI, Cheng KC, Wei YJ, Lee IR. Structural Dynamics Role of AGG Interruptions in Inhibition CGG Repeat Expansion Associated with Fragile X Syndrome. ACS Chem Neurosci 2024; 15:230-235. [PMID: 38133821 DOI: 10.1021/acschemneuro.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Abnormal expansion of trinucleotide CGG repeats is responsible for Fragile X syndrome. AGG interruptions in CGG repeat tracts were found in most healthy individuals, suggesting a crucial role in preventing disease-prone repeat expansion. Previous biophysics studies emphasize a difference in the secondary structure affected by AGG interruptions. However, the mechanism of how AGG interruptions impede repeat expansion remains elusive. We utilized single-molecule fluorescence resonance energy transfer spectroscopy to investigate the structural dynamics of CGG repeats and their AGG-interrupted variants. Tandem CGG repeats fold into a stem-loop hairpin structure with the capability to undergo a conformational rearrangement to modulate the length of the overhang. However, this conformational rearrangement is much more retarded when two AGG interruptions are present. Considering the significance of hairpin slippage in repeat expansion, we present a molecular basis suggesting that the internal loop created by two AGG interruptions acts as a barrier, obstructing the hairpin slippage reconfiguration. This impediment potentially plays a crucial role in curbing abnormal expansion, thereby contributing to the genomic stability.
Collapse
Affiliation(s)
- Yang-I Shen
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Kai-Chun Cheng
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Yu-Jie Wei
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - I-Ren Lee
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
9
|
Nepal S, Holmstrom ED. Single-molecule-binding studies of antivirals targeting the hepatitis C virus core protein. J Virol 2023; 97:e0089223. [PMID: 37772835 PMCID: PMC10617558 DOI: 10.1128/jvi.00892-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE The hepatitis C virus is associated with nearly 300,000 deaths annually. At the core of the virus is an RNA-protein complex called the nucleocapsid, which consists of the viral genome and many copies of the core protein. Because the assembly of the nucleocapsid is a critical step in viral replication, a considerable amount of effort has been devoted to identifying antiviral therapeutics that can bind to the core protein and disrupt assembly. Although several candidates have been identified, little is known about how they interact with the core protein or how those interactions alter the structure and thus the function of this viral protein. Our work biochemically characterizes several of these binding interactions, highlighting both similarities and differences as well as strengths and weaknesses. These insights bolster the notion that this viral protein is a viable target for novel therapeutics and will help to guide future developments of these candidate antivirals.
Collapse
Affiliation(s)
- Sudip Nepal
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Erik D. Holmstrom
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
10
|
Wanninger S, Asadiatouei P, Bohlen J, Salem CB, Tinnefeld P, Ploetz E, Lamb DC. Deep-LASI: deep-learning assisted, single-molecule imaging analysis of multi-color DNA origami structures. Nat Commun 2023; 14:6564. [PMID: 37848439 PMCID: PMC10582187 DOI: 10.1038/s41467-023-42272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
Single-molecule experiments have changed the way we explore the physical world, yet data analysis remains time-consuming and prone to human bias. Here, we introduce Deep-LASI (Deep-Learning Assisted Single-molecule Imaging analysis), a software suite powered by deep neural networks to rapidly analyze single-, two- and three-color single-molecule data, especially from single-molecule Förster Resonance Energy Transfer (smFRET) experiments. Deep-LASI automatically sorts recorded traces, determines FRET correction factors and classifies the state transitions of dynamic traces all in ~20-100 ms per trajectory. We benchmarked Deep-LASI using ground truth simulations as well as experimental data analyzed manually by an expert user and compared the results with a conventional Hidden Markov Model analysis. We illustrate the capabilities of the technique using a highly tunable L-shaped DNA origami structure and use Deep-LASI to perform titrations, analyze protein conformational dynamics and demonstrate its versatility for analyzing both total internal reflection fluorescence microscopy and confocal smFRET data.
Collapse
Affiliation(s)
- Simon Wanninger
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstr. 5-13, 81377, Munich, Germany
| | - Pooyeh Asadiatouei
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstr. 5-13, 81377, Munich, Germany
| | - Johann Bohlen
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstr. 5-13, 81377, Munich, Germany
| | - Clemens-Bässem Salem
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstr. 5-13, 81377, Munich, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstr. 5-13, 81377, Munich, Germany
| | - Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstr. 5-13, 81377, Munich, Germany.
| | - Don C Lamb
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
11
|
Agam G, Gebhardt C, Popara M, Mächtel R, Folz J, Ambrose B, Chamachi N, Chung SY, Craggs TD, de Boer M, Grohmann D, Ha T, Hartmann A, Hendrix J, Hirschfeld V, Hübner CG, Hugel T, Kammerer D, Kang HS, Kapanidis AN, Krainer G, Kramm K, Lemke EA, Lerner E, Margeat E, Martens K, Michaelis J, Mitra J, Moya Muñoz GG, Quast RB, Robb NC, Sattler M, Schlierf M, Schneider J, Schröder T, Sefer A, Tan PS, Thurn J, Tinnefeld P, van Noort J, Weiss S, Wendler N, Zijlstra N, Barth A, Seidel CAM, Lamb DC, Cordes T. Reliability and accuracy of single-molecule FRET studies for characterization of structural dynamics and distances in proteins. Nat Methods 2023; 20:523-535. [PMID: 36973549 PMCID: PMC10089922 DOI: 10.1038/s41592-023-01807-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/31/2023] [Indexed: 03/29/2023]
Abstract
Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.
Collapse
Affiliation(s)
- Ganesh Agam
- Department of Chemistry, Ludwig-Maximilians University München, München, Germany
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Milana Popara
- Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecca Mächtel
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Julian Folz
- Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Neharika Chamachi
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Sang Yoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | | | - Marijn de Boer
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, AG Groningen, the Netherlands
| | - Dina Grohmann
- Department of Biochemistry, Genetics and Microbiology, Institute of Microbiology, Single-Molecule Biochemistry Laboratory, University of Regensburg, Regensburg, Germany
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine and Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Andreas Hartmann
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jelle Hendrix
- Dynamic Bioimaging Laboratory, Advanced Optical Microscopy Center and Biomedical Research Institute, Hasselt University, Agoralaan C (BIOMED), Hasselt, Belgium
- Department of Chemistry, KU Leuven, Leuven, Belgium
| | | | | | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Dominik Kammerer
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
- Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Hyun-Seo Kang
- Bayerisches NMR Zentrum, Department of Bioscience, School of Natural Sciences, Technical University of München, Garching, Germany
| | - Achillefs N Kapanidis
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
- Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Georg Krainer
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Kevin Kramm
- Department of Biochemistry, Genetics and Microbiology, Institute of Microbiology, Single-Molecule Biochemistry Laboratory, University of Regensburg, Regensburg, Germany
| | - Edward A Lemke
- Biocenter, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics and Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Kirsten Martens
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands
| | | | - Jaba Mitra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine and Howard Hughes Medical Institute, Baltimore, MD, USA
- Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Gabriel G Moya Muñoz
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Robert B Quast
- Centre de Biologie Structurale (CBS), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicole C Robb
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
- Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford, UK
- Warwick Medical School, The University of Warwick, Coventry, UK
| | - Michael Sattler
- Bayerisches NMR Zentrum, Department of Bioscience, School of Natural Sciences, Technical University of München, Garching, Germany
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Munich, Germany
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Jonathan Schneider
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Tim Schröder
- Department of Chemistry, Ludwig-Maximilians University München, München, Germany
| | - Anna Sefer
- Institute for Biophysics, Ulm University, Ulm, Germany
| | - Piau Siong Tan
- Biocenter, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Johann Thurn
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Institute of Technical Physics, German Aerospace Center (DLR), Stuttgart, Germany
| | - Philip Tinnefeld
- Department of Chemistry, Ludwig-Maximilians University München, München, Germany
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Nicolas Wendler
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Niels Zijlstra
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Anders Barth
- Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| | - Claus A M Seidel
- Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Don C Lamb
- Department of Chemistry, Ludwig-Maximilians University München, München, Germany.
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany.
| |
Collapse
|
12
|
Mieskes F, Ploetz E, Wehnekamp F, Rat V, Lamb DC. Multicolor 3D Orbital Tracking. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204726. [PMID: 36709484 DOI: 10.1002/smll.202204726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Feedback-based single-particle tracking (SPT) is a powerful technique for investigating particle behavior with very high spatiotemporal resolution. The ability to follow different species and their interactions independently adds a new dimension to the information available from SPT. However, only a few approaches have been expanded to multiple colors and no method is currently available that can follow two differently labeled biomolecules in 4 dimensions independently. In this proof-of-concept paper, the new modalities available when performing 3D orbital tracking with a second detection channel are demonstrated. First, dual-color tracking experiments are described studying independently diffusing particles of different types. For interacting particles where their motion is correlated, a second modality is implemented where a particle is tracked in one channel and the position of the second fluorescence species is monitored in the other channel. As a third modality, 3D orbital tracking is performed in one channel while monitoring its spectral signature in a second channel. This last modality is used to successfully readout accurate Förster Resonance Energy Transfer (FRET) values over time while tracking a mobile particle.
Collapse
Affiliation(s)
- Frank Mieskes
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 11, 81377, Munich, Germany
- Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799, Munich, Germany
- Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 11, 81377, Munich, Germany
- Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799, Munich, Germany
- Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Fabian Wehnekamp
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 11, 81377, Munich, Germany
- Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799, Munich, Germany
- Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Virgile Rat
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 11, 81377, Munich, Germany
- Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799, Munich, Germany
- Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Don C Lamb
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 11, 81377, Munich, Germany
- Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799, Munich, Germany
- Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
13
|
Saurabh A, Fazel M, Safar M, Sgouralis I, Pressé S. Single-photon smFRET. I: Theory and conceptual basis. BIOPHYSICAL REPORTS 2023; 3:100089. [PMID: 36582655 PMCID: PMC9793182 DOI: 10.1016/j.bpr.2022.100089] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
We present a unified conceptual framework and the associated software package for single-molecule Förster resonance energy transfer (smFRET) analysis from single-photon arrivals leveraging Bayesian nonparametrics, BNP-FRET. This unified framework addresses the following key physical complexities of a single-photon smFRET experiment, including: 1) fluorophore photophysics; 2) continuous time kinetics of the labeled system with large timescale separations between photophysical phenomena such as excited photophysical state lifetimes and events such as transition between system states; 3) unavoidable detector artefacts; 4) background emissions; 5) unknown number of system states; and 6) both continuous and pulsed illumination. These physical features necessarily demand a novel framework that extends beyond existing tools. In particular, the theory naturally brings us to a hidden Markov model with a second-order structure and Bayesian nonparametrics on account of items 1, 2, and 5 on the list. In the second and third companion articles, we discuss the direct effects of these key complexities on the inference of parameters for continuous and pulsed illumination, respectively.
Collapse
Affiliation(s)
- Ayush Saurabh
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Mohamadreza Fazel
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Matthew Safar
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Mathematics and Statistical Science, Arizona State University, Tempe, Arizona
| | - Ioannis Sgouralis
- Department of Mathematics, University of Tennessee Knoxville, Knoxville, Tennesse
| | - Steve Pressé
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
14
|
Saurabh A, Safar M, Fazel M, Sgouralis I, Pressé S. Single-photon smFRET: II. Application to continuous illumination. BIOPHYSICAL REPORTS 2023; 3:100087. [PMID: 36582656 PMCID: PMC9792399 DOI: 10.1016/j.bpr.2022.100087] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Here we adapt the Bayesian nonparametrics (BNP) framework presented in the first companion article to analyze kinetics from single-photon, single-molecule Förster resonance energy transfer (smFRET) traces generated under continuous illumination. Using our sampler, BNP-FRET, we learn the escape rates and the number of system states given a photon trace. We benchmark our method by analyzing a range of synthetic and experimental data. Particularly, we apply our method to simultaneously learn the number of system states and the corresponding kinetics for intrinsically disordered proteins using two-color FRET under varying chemical conditions. Moreover, using synthetic data, we show that our method can deduce the number of system states even when kinetics occur at timescales of interphoton intervals.
Collapse
Affiliation(s)
- Ayush Saurabh
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Matthew Safar
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Mathematics and Statistical Science, Arizona State University, Tempe, Arizona
| | - Mohamadreza Fazel
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Ioannis Sgouralis
- Department of Mathematics, University of Tennessee Knoxville, Knoxville, Tennessee
| | - Steve Pressé
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
15
|
Büber E, Schröder T, Scheckenbach M, Dass M, Franquelim HG, Tinnefeld P. DNA Origami Curvature Sensors for Nanoparticle and Vesicle Size Determination with Single-Molecule FRET Readout. ACS NANO 2023; 17:3088-3097. [PMID: 36735241 DOI: 10.1021/acsnano.2c11981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Particle size is an important characteristic of materials with a direct effect on their physicochemical features. Besides nanoparticles, particle size and surface curvature are particularly important in the world of lipids and cellular membranes as the cell membrane undergoes conformational changes in many biological processes which leads to diverging local curvature values. On account of that, it is important to develop cost-effective, rapid and sufficiently precise systems that can measure the surface curvature on the nanoscale that can be translated to size for spherical particles. As an alternative approach for particle characterization, we present flexible DNA nanodevices that can adapt to the curvature of the structure they are bound to. The curvature sensors use Fluorescence Resonance Energy Transfer (FRET) as the transduction mechanism on the single-molecule level. The curvature sensors consist of segmented DNA origami structures connected via flexible DNA linkers incorporating a FRET pair. The activity of the sensors was first demonstrated with defined binding to different DNA origami geometries used as templates. Then the DNA origami curvature sensors were applied to measure spherical silica beads having different size, and subsequently on lipid vesicles. With the designed sensors, we could reliably distinguish different sized nanoparticles within a size range of 50-300 nm as well as the bending angle range of 50-180°. This study helps with the development of more advanced modular-curvature sensing devices that are capable of determining the sizes of nanoparticles and biological complexes.
Collapse
Affiliation(s)
- Ece Büber
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377Munich, Germany
| | - Tim Schröder
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377Munich, Germany
| | - Michael Scheckenbach
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377Munich, Germany
| | - Mihir Dass
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, 80539Munich, Germany
| | - Henri G Franquelim
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152Martinsried, Germany
- Interfaculty Centre for Bioactive Matter, Leipzig University, c/o Deutscher Platz 5 (BBZ), 04109Leipzig, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377Munich, Germany
| |
Collapse
|
16
|
Kristoffersen E, Coletta A, Lund L, Schiøtt B, Birkedal V. Inhibited complete folding of consecutive human telomeric G-quadruplexes. Nucleic Acids Res 2023; 51:1571-1582. [PMID: 36715345 PMCID: PMC9976873 DOI: 10.1093/nar/gkad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Noncanonical DNA structures, termed G-quadruplexes, are present in human genomic DNA and are important elements in many DNA metabolic processes. Multiple sites in the human genome have G-rich DNA stretches able to support formation of several consecutive G-quadruplexes. One of those sites is the telomeric overhang region that has multiple repeats of TTAGGG and is tightly associated with both cancer and aging. We investigated the folding of consecutive G-quadruplexes in both potassium- and sodium-containing solutions using single-molecule FRET spectroscopy, circular dichroism, thermal melting and molecular dynamics simulations. Our observations show coexistence of partially and fully folded DNA, the latter consisting of consecutive G-quadruplexes. Following the folding process over hours in sodium-containing buffers revealed fast G-quadruplex folding but slow establishment of thermodynamic equilibrium. We find that full consecutive G-quadruplex formation is inhibited by the many DNA structures randomly nucleating on the DNA, some of which are off-path conformations that need to unfold to allow full folding. Our study allows describing consecutive G-quadruplex formation in both nonequilibrium and equilibrium conditions by a unified picture, where, due to the many possible DNA conformations, full folding with consecutive G-quadruplexes as beads on a string is not necessarily achieved.
Collapse
Affiliation(s)
- Emil Laust Kristoffersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Andrea Coletta
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Line Mørkholt Lund
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Birgit Schiøtt
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark,Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | | |
Collapse
|
17
|
Mahato J, Ray S, Maji SK, Chowdhury A. Spectrally Resolved FRET Microscopy of α-Synuclein Phase-Separated Liquid Droplets. Methods Mol Biol 2023; 2551:425-447. [PMID: 36310218 DOI: 10.1007/978-1-0716-2597-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liquid-liquid phase separation (LLPS) has emerged as an important phenomenon associated with formation of membraneless organelles. Recently, LLPS has been shown to act as nucleation centers for disease-associated protein aggregation and amyloid fibril formation. Phase-separated α-synuclein droplets gradually rigidify during the course of protein aggregation, and it is very challenging to understand the biomolecular interactions that lead to liquid-like to solid-like transition using conventional ensemble measurements. Here, we describe a spectrally-resolved fluorescence microscopy based Förster resonance energy transfer (FRET) imaging to probe interactions of α-synuclein in individual droplets during LLPS-mediated aggregation. By acquiring entire emission spectral profiles of individual droplets upon sequential excitation of acceptors and donors therein, this technique allows for the quantification of sensitized emission proportional to the extent of FRET, which enables interrogation of the evolution of local interactions of donor-/acceptor-labeled α-synuclein molecules within each droplet. The present study on single droplets is not only an important development for studying LLPS but can also be used to investigate self-assembly or aggregation in biomolecular systems and soft materials.
Collapse
Affiliation(s)
| | - Soumik Ray
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India.
| | | |
Collapse
|
18
|
Svirina A, Chamachi N, Schlierf M. Single‐molecule approaches reveal outer membrane protein biogenesis dynamics. Bioessays 2022; 44:e2200149. [DOI: 10.1002/bies.202200149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Anna Svirina
- TU Dresden B CUBE – Center for Molecular Bioengineering Dresden Germany
| | - Neharika Chamachi
- TU Dresden B CUBE – Center for Molecular Bioengineering Dresden Germany
| | - Michael Schlierf
- TU Dresden B CUBE – Center for Molecular Bioengineering Dresden Germany
- Cluster of Excellence Physics of Life Technische Universität Dresden Dresden Germany
| |
Collapse
|
19
|
Harris PD, Lerner E. Identification and quantification of within-burst dynamics in singly labeled single-molecule fluorescence lifetime experiments. BIOPHYSICAL REPORTS 2022; 2. [PMID: 36204594 PMCID: PMC9534301 DOI: 10.1016/j.bpr.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Single-molecule spectroscopy has revolutionized molecular biophysics and provided means to probe how structural moieties within biomolecules spatially reorganize at different timescales. There are several single-molecule methodologies that probe local structural dynamics in the vicinity of a single dye-labeled residue, which rely on fluorescence lifetimes as readout. Nevertheless, an analytical framework to quantify dynamics in such single-molecule single dye fluorescence bursts, at timescales of microseconds to milliseconds, has not yet been demonstrated. Here, we suggest an analytical framework for identifying and quantifying within-burst lifetime-based dynamics, such as conformational dynamics recorded in single-molecule photo-isomerization-related fluorescence enhancement. After testing the capabilities of the analysis on simulations, we proceed to exhibit within-burst millisecond local structural dynamics in the unbound α-synuclein monomer. The analytical framework provided in this work paves the way for extracting a full picture of the energy landscape for the coordinate probed by fluorescence lifetime-based single-molecule measurements.
Collapse
Affiliation(s)
- Paul David Harris
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
20
|
Single-molecule FRET uncovers hidden conformations and dynamics of human Argonaute 2. Nat Commun 2022; 13:3825. [PMID: 35780145 PMCID: PMC9250533 DOI: 10.1038/s41467-022-31480-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Human Argonaute 2 (hAgo2) constitutes the functional core of the RNA interference pathway. Guide RNAs direct hAgo2 to target mRNAs, which ultimately leads to hAgo2-mediated mRNA degradation or translational inhibition. Here, we combine site-specifically labeled hAgo2 with time-resolved single-molecule FRET measurements to monitor conformational states and dynamics of hAgo2 and hAgo2-RNA complexes in solution that remained elusive so far. We observe dynamic anchoring and release of the guide’s 3’-end from the PAZ domain during the stepwise target loading process even with a fully complementary target. We find differences in structure and dynamic behavior between partially and fully paired canonical hAgo2-guide/target complexes and the miRNA processing complex formed by hAgo2 and pre-miRNA451. Furthermore, we detect a hitherto unknown conformation of hAgo2-guide/target complexes that poises them for target-directed miRNA degradation. Taken together, our results show how the conformational flexibility of hAgo2-RNA complexes determines function and the fate of the ribonucleoprotein particle. Single-molecule FRET measurements provide detailed insights into the conformational states and dynamics of human Argonaute 2 that are required for its function at the core of the eukaryotic RNA silencing pathway.
Collapse
|
21
|
Barth A, Opanasyuk O, Peulen TO, Felekyan S, Kalinin S, Sanabria H, Seidel CAM. Unraveling multi-state molecular dynamics in single-molecule FRET experiments. I. Theory of FRET-lines. J Chem Phys 2022; 156:141501. [PMID: 35428384 PMCID: PMC9014241 DOI: 10.1063/5.0089134] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 01/31/2023] Open
Abstract
Conformational dynamics of biomolecules are of fundamental importance for their function. Single-molecule studies of Förster Resonance Energy Transfer (smFRET) between a tethered donor and acceptor dye pair are a powerful tool to investigate the structure and dynamics of labeled molecules. However, capturing and quantifying conformational dynamics in intensity-based smFRET experiments remains challenging when the dynamics occur on the sub-millisecond timescale. The method of multiparameter fluorescence detection addresses this challenge by simultaneously registering fluorescence intensities and lifetimes of the donor and acceptor. Together, two FRET observables, the donor fluorescence lifetime τD and the intensity-based FRET efficiency E, inform on the width of the FRET efficiency distribution as a characteristic fingerprint for conformational dynamics. We present a general framework for analyzing dynamics that relates average fluorescence lifetimes and intensities in two-dimensional burst frequency histograms. We present parametric relations of these observables for interpreting the location of FRET populations in E-τD diagrams, called FRET-lines. To facilitate the analysis of complex exchange equilibria, FRET-lines serve as reference curves for a graphical interpretation of experimental data to (i) identify conformational states, (ii) resolve their dynamic connectivity, (iii) compare different kinetic models, and (iv) infer polymer properties of unfolded or intrinsically disordered proteins. For a simplified graphical analysis of complex kinetic networks, we derive a moment-based representation of the experimental data that decouples the motion of the fluorescence labels from the conformational dynamics of the biomolecule. Importantly, FRET-lines facilitate exploring complex dynamic models via easily computed experimental observables. We provide extensive computational tools to facilitate applying FRET-lines.
Collapse
Affiliation(s)
- Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Oleg Opanasyuk
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Thomas-Otavio Peulen
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Suren Felekyan
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Stanislav Kalinin
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631, USA
| | - Claus A. M. Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
22
|
Laurence MJ, Carpenter TS, Laurence TA, Coleman MA, Shelby M, Liu C. Biophysical Characterization of Membrane Proteins Embedded in Nanodiscs Using Fluorescence Correlation Spectroscopy. MEMBRANES 2022; 12:membranes12040392. [PMID: 35448362 PMCID: PMC9028781 DOI: 10.3390/membranes12040392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
Proteins embedded in biological membranes perform essential functions in all organisms, serving as receptors, transporters, channels, cell adhesion molecules, and other supporting cellular roles. These membrane proteins comprise ~30% of all human proteins and are the targets of ~60% of FDA-approved drugs, yet their extensive characterization using established biochemical and biophysical methods has continued to be elusive due to challenges associated with the purification of these insoluble proteins. In response, the development of nanodisc techniques, such as nanolipoprotein particles (NLPs) and styrene maleic acid polymers (SMALPs), allowed membrane proteins to be expressed and isolated in solution as part of lipid bilayer rafts with defined, consistent nanometer sizes and compositions, thus enabling solution-based measurements. Fluorescence correlation spectroscopy (FCS) is a relatively simple yet powerful optical microscopy-based technique that yields quantitative biophysical information, such as diffusion kinetics and concentrations, about individual or interacting species in solution. Here, we first summarize current nanodisc techniques and FCS fundamentals. We then provide a focused review of studies that employed FCS in combination with nanodisc technology to investigate a handful of membrane proteins, including bacteriorhodopsin, bacterial division protein ZipA, bacterial membrane insertases SecYEG and YidC, Yersinia pestis type III secretion protein YopB, yeast cell wall stress sensor Wsc1, epidermal growth factor receptor (EGFR), ABC transporters, and several G protein-coupled receptors (GPCRs).
Collapse
Affiliation(s)
- Matthew J. Laurence
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
| | - Timothy S. Carpenter
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
| | - Ted A. Laurence
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;
| | - Matthew A. Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95616, USA
| | - Megan Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Correspondence: (M.S.); (C.L.)
| | - Chao Liu
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Correspondence: (M.S.); (C.L.)
| |
Collapse
|
23
|
Hadzic MCAS, Sigel RKO, Börner R. Single-Molecule Kinetic Studies of Nucleic Acids by Förster Resonance Energy Transfer. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2439:173-190. [PMID: 35226322 DOI: 10.1007/978-1-0716-2047-2_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Single-molecule microscopy is often used to observe and characterize the conformational dynamics of nucleic acids (NA). Due to the large variety of NA structures and the challenges specific to single-molecule observation techniques, the data recorded in such experiments must be processed via multiple statistical treatments to finally yield a reliable mechanistic view of the NA dynamics. In this chapter, we propose a comprehensive protocol to analyze single-molecule trajectories in the scope of single-molecule Förster resonance energy transfer (FRET) microscopy. The suggested protocol yields the conformational states common to all molecules in the investigated sample, together with the associated conformational transition kinetics. The given model resolves states that are indistinguishable by their observed FRET signals and is estimated with 95% confidence using error calculations on FRET states and transition rate constants. In the end, a step-by-step user guide is given to reproduce the protocol with the Multifunctional Analysis Software to Handle single-molecule FRET data (MASH-FRET).
Collapse
Affiliation(s)
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Richard Börner
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, Mittweida, Germany.
| |
Collapse
|
24
|
Zosel F, Holla A, Schuler B. Labeling of Proteins for Single-Molecule Fluorescence Spectroscopy. Methods Mol Biol 2022; 2376:207-233. [PMID: 34845612 DOI: 10.1007/978-1-0716-1716-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single-molecule fluorescence spectroscopy has become an important technique for studying the conformational dynamics and folding of proteins. A key step for performing such experiments is the availability of high-quality samples. This chapter describes a simple and widely applicable strategy for preparing proteins that are site-specifically labeled with a donor and an acceptor dye for single-molecule Förster resonance energy transfer (FRET) experiments. The method is based on introducing two cysteine residues that are labeled with maleimide-functionalized fluorophores, combined with high-resolution chromatography. We discuss how to optimize site-specific labeling even in the absence of orthogonal coupling chemistry and present purification strategies that are suitable for samples ranging from intrinsically disordered proteins to large folded proteins. We also discuss common problems in protein labeling, how to avoid them, and how to stringently control sample quality.
Collapse
Affiliation(s)
- Franziska Zosel
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Novo Nordisk A/S, Måløv, Denmark
| | - Andrea Holla
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
- Department of Physics, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
|
26
|
Chio US, Liu Y, Chung S, Shim WJ, Chandrasekar S, Weiss S, Shan SO. Subunit cooperation in the Get1/2 receptor promotes tail-anchored membrane protein insertion. J Cell Biol 2021; 220:212681. [PMID: 34614151 PMCID: PMC8530227 DOI: 10.1083/jcb.202103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022] Open
Abstract
The guided entry of tail-anchored protein (GET) pathway, in which the Get3 ATPase delivers an essential class of tail-anchored membrane proteins (TAs) to the Get1/2 receptor at the endoplasmic reticulum, provides a conserved mechanism for TA biogenesis in eukaryotic cells. The membrane-associated events of this pathway remain poorly understood. Here we show that complex assembly between the cytosolic domains (CDs) of Get1 and Get2 strongly enhances the affinity of the individual subunits for Get3•TA, thus enabling efficient capture of the targeting complex. In addition to the known role of Get1CD in remodeling Get3 conformation, two molecular recognition features (MoRFs) in Get2CD induce Get3 opening, and both subunits are required for optimal TA release from Get3. Mutation of the MoRFs attenuates TA insertion into the ER in vivo. Our results demonstrate extensive cooperation between the Get1/2 receptor subunits in the capture and remodeling of the targeting complex, and emphasize the role of MoRFs in receptor function during membrane protein biogenesis.
Collapse
Affiliation(s)
- Un Seng Chio
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Yumeng Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Woo Jun Shim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA.,Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
27
|
Sobhy MA, Tehseen M, Takahashi M, Bralić A, De Biasio A, Hamdan SM. Implementing fluorescence enhancement, quenching, and FRET for investigating flap endonuclease 1 enzymatic reaction at the single-molecule level. Comput Struct Biotechnol J 2021; 19:4456-4471. [PMID: 34471492 PMCID: PMC8385120 DOI: 10.1016/j.csbj.2021.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is an important component of the intricate molecular machinery for DNA replication and repair. FEN1 is a structure-specific 5' nuclease that cleaves nascent single-stranded 5' flaps during the maturation of Okazaki fragments. Here, we review our research primarily applying single-molecule fluorescence to resolve important mechanistic aspects of human FEN1 enzymatic reaction. The methodology presented in this review is aimed as a guide for tackling other biomolecular enzymatic reactions by fluorescence enhancement, quenching, and FRET and their combinations. Using these methods, we followed in real-time the structures of the substrate and product and 5' flap cleavage during catalysis. We illustrate that FEN1 actively bends the substrate to verify its features and continues to mold it to induce a protein disorder-to-order transitioning that controls active site assembly. This mechanism suppresses off-target cleavage of non-cognate substrates and promotes their dissociation with an accuracy that was underestimated from bulk assays. We determined that product release in FEN1 after the 5' flap release occurs in two steps; a brief binding to the bent nicked-product followed by longer binding to the unbent nicked-product before dissociation. Based on our cryo-electron microscopy structure of the human lagging strand replicase bound to FEN1, we propose how this two-step product release mechanism may regulate the final steps during the maturation of Okazaki fragments.
Collapse
Affiliation(s)
- Mohamed A Sobhy
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Masateru Takahashi
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester LE1 7HB, UK
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
28
|
Alston JJ, Soranno A, Holehouse AS. Integrating single-molecule spectroscopy and simulations for the study of intrinsically disordered proteins. Methods 2021; 193:116-135. [PMID: 33831596 PMCID: PMC8713295 DOI: 10.1016/j.ymeth.2021.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Over the last two decades, intrinsically disordered proteins and protein regions (IDRs) have emerged from a niche corner of biophysics to be recognized as essential drivers of cellular function. Various techniques have provided fundamental insight into the function and dysfunction of IDRs. Among these techniques, single-molecule fluorescence spectroscopy and molecular simulations have played a major role in shaping our modern understanding of the sequence-encoded conformational behavior of disordered proteins. While both techniques are frequently used in isolation, when combined they offer synergistic and complementary information that can help uncover complex molecular details. Here we offer an overview of single-molecule fluorescence spectroscopy and molecular simulations in the context of studying disordered proteins. We discuss the various means in which simulations and single-molecule spectroscopy can be integrated, and consider a number of studies in which this integration has uncovered biological and biophysical mechanisms.
Collapse
Affiliation(s)
- Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA.
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA.
| |
Collapse
|
29
|
Lee CY, Myong S. Probing steps in DNA transcription using single-molecule methods. J Biol Chem 2021; 297:101086. [PMID: 34403697 PMCID: PMC8441165 DOI: 10.1016/j.jbc.2021.101086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022] Open
Abstract
Transcriptional regulation is one of the key steps in determining gene expression. Diverse single-molecule techniques have been applied to characterize the stepwise progression of transcription, yielding complementary results. These techniques include, but are not limited to, fluorescence-based microscopy with single or multiple colors, force measuring and manipulating microscopy using magnetic field or light, and atomic force microscopy. Here, we summarize and evaluate these current methodologies in studying and resolving individual steps in the transcription reaction, which encompasses RNA polymerase binding, initiation, elongation, mRNA production, and termination. We also describe the advantages and disadvantages of each method for studying transcription.
Collapse
Affiliation(s)
- Chun-Ying Lee
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA; Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, Urbana, Illinois, USA.
| |
Collapse
|
30
|
Rice LJ, Ecroyd H, van Oijen AM. Illuminating amyloid fibrils: Fluorescence-based single-molecule approaches. Comput Struct Biotechnol J 2021; 19:4711-4724. [PMID: 34504664 PMCID: PMC8405898 DOI: 10.1016/j.csbj.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
The aggregation of proteins into insoluble filamentous amyloid fibrils is a pathological hallmark of neurodegenerative diseases that include Parkinson's disease and Alzheimer's disease. Since the identification of amyloid fibrils and their association with disease, there has been much work to describe the process by which fibrils form and interact with other proteins. However, due to the dynamic nature of fibril formation and the transient and heterogeneous nature of the intermediates produced, it can be challenging to examine these processes using techniques that rely on traditional ensemble-based measurements. Single-molecule approaches overcome these limitations as rare and short-lived species within a population can be individually studied. Fluorescence-based single-molecule methods have proven to be particularly useful for the study of amyloid fibril formation. In this review, we discuss the use of different experimental single-molecule fluorescence microscopy approaches to study amyloid fibrils and their interaction with other proteins, in particular molecular chaperones. We highlight the mechanistic insights these single-molecule techniques have already provided in our understanding of how fibrils form, and comment on their potential future use in studying amyloid fibrils and their intermediates.
Collapse
Affiliation(s)
- Lauren J. Rice
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Antoine M. van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
31
|
Wilson H, Wang Q. ABEL-FRET: tether-free single-molecule FRET with hydrodynamic profiling. Nat Methods 2021; 18:816-820. [PMID: 34127856 DOI: 10.1038/s41592-021-01173-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/04/2021] [Indexed: 02/03/2023]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) has become a versatile and widespread method to probe nanoscale conformation and dynamics. However, current experimental modalities often resort to molecule immobilization for long observation times and do not always approach the resolution limit of FRET-based nanoscale metrology. Here we present ABEL-FRET, an immobilization-free platform for smFRET measurements with ultrahigh resolving power in FRET efficiency. Importantly, single-molecule diffusivity is used to provide additional size and shape information for hydrodynamic profiling of individual molecules, which, together with the concurrently measured intramolecular conformation through FRET, enables a holistic and dynamic view of biomolecules and their complexes.
Collapse
Affiliation(s)
- Hugh Wilson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Quan Wang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
32
|
Danial JSH, Shalaby R, Cosentino K, Mahmoud MM, Medhat F, Klenerman D, Garcia Saez AJ. DeepSinse: deep learning based detection of single molecules. Bioinformatics 2021; 37:3998-4000. [PMID: 33964131 DOI: 10.1093/bioinformatics/btab352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Imaging single molecules has emerged as a powerful characterization tool in the biological sciences. The detection of these under various noise conditions requires the use of algorithms that are dependent on the end-user inputting several parameters, the choice of which can be challenging and subjective. RESULTS In this work, we propose DeepSinse, an easily-trainable and useable deep neural network that can detect single molecules with little human input and across a wide range of signal-to-noise ratios. We validate the neural network on the detection of single bursts in simulated and experimental data and compare its performance with the best-in-class, domain-specific algorithms. AVAILABILITY Ground truth ROI simulating code, neural network training, validation code, classification code, ROI picker, GUI for simulating, training and validating DeepSinse as well as pre-trained networks are all released under the MIT License on www.github.com/jdanial/DeepSinse.The dSTORM dataset processing code is released under the MIT License on www.github.com/jdanial/StormProcessor. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.,UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Raed Shalaby
- Institute of Genetics, University of Cologne, Cologne, Germany
| | - Katia Cosentino
- Department of Biology, University of Osnabruck, Osnabruck, Germany
| | - Marwa M Mahmoud
- Department of Computer Science, University of Cambridge, Cambridge, United Kingdom
| | - Fady Medhat
- Department of Computer Science, University of York, York, United Kingdom
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.,UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
33
|
Lee JH, Jomaa A, Chung S, Hwang Fu YH, Qian R, Sun X, Hsieh HH, Chandrasekar S, Bi X, Mattei S, Boehringer D, Weiss S, Ban N, Shan SO. Receptor compaction and GTPase rearrangement drive SRP-mediated cotranslational protein translocation into the ER. SCIENCE ADVANCES 2021; 7:eabg0942. [PMID: 34020957 PMCID: PMC8139590 DOI: 10.1126/sciadv.abg0942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 05/07/2023]
Abstract
The conserved signal recognition particle (SRP) cotranslationally delivers ~30% of the proteome to the eukaryotic endoplasmic reticulum (ER). The molecular mechanism by which eukaryotic SRP transitions from cargo recognition in the cytosol to protein translocation at the ER is not understood. Here, structural, biochemical, and single-molecule studies show that this transition requires multiple sequential conformational rearrangements in the targeting complex initiated by guanosine triphosphatase (GTPase)-driven compaction of the SRP receptor (SR). Disruption of these rearrangements, particularly in mutant SRP54G226E linked to severe congenital neutropenia, uncouples the SRP/SR GTPase cycle from protein translocation. Structures of targeting intermediates reveal the molecular basis of early SRP-SR recognition and emphasize the role of eukaryote-specific elements in regulating targeting. Our results provide a molecular model for the structural and functional transitions of SRP throughout the targeting cycle and show that these transitions provide important points for biological regulation that can be perturbed in genetic diseases.
Collapse
Affiliation(s)
- Jae Ho Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu-Hsien Hwang Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ruilin Qian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xuemeng Sun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hao-Hsuan Hsieh
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xiaotian Bi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Simone Mattei
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
- Cryo-EM Knowledge Hub, ETH Zurich, 8093 Zurich, Switzerland
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
34
|
Yang Z, Xu H, Wang J, Chen W, Zhao M. Single-Molecule Fluorescence Techniques for Membrane Protein Dynamics Analysis. APPLIED SPECTROSCOPY 2021; 75:491-505. [PMID: 33825543 DOI: 10.1177/00037028211009973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorescence-based single-molecule techniques, mainly including fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence resonance energy transfer (smFRET), are able to analyze the conformational dynamics and diversity of biological macromolecules. They have been applied to analysis of the dynamics of membrane proteins, such as membrane receptors and membrane transport proteins, due to their superior ability in resolving spatio-temporal heterogeneity and the demand of trace amounts of analytes. In this review, we first introduced the basic principle involved in FCS and smFRET. Then we summarized the labeling and immobilization strategies of membrane protein molecules, the confocal-based and TIRF-based instrumental configuration, and the data processing methods. The applications to membrane protein dynamics analysis are described in detail with the focus on how to select suitable fluorophores, labeling sites, experimental setup, and analysis methods. In the last part, the remaining challenges to be addressed and further development in this field are also briefly discussed.
Collapse
Affiliation(s)
- Ziyu Yang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Haiqi Xu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Jiayu Wang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Wei Chen
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| |
Collapse
|
35
|
Ma J, Saikia N, Godar S, Hamilton GL, Ding F, Alper J, Sanabria H. Ensemble Switching Unveils a Kinetic Rheostat Mechanism of the Eukaryotic Thiamine Pyrophosphate Riboswitch. RNA (NEW YORK, N.Y.) 2021; 27:rna.075937.120. [PMID: 33863818 PMCID: PMC8208051 DOI: 10.1261/rna.075937.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/13/2021] [Indexed: 05/05/2023]
Abstract
Thiamine pyrophosphate (TPP) riboswitches regulate thiamine metabolism by inhibiting the translation of enzymes essential to thiamine synthesis pathways upon binding to thiamine pyrophosphate in cells across all domains of life. Recent work on the Arabidopsis thaliana TPP riboswitch suggests a multi-step TPP binding process involving multiple riboswitch configurational ensembles and that Mg2+ dependence underlies the mechanism of TPP recognition and subsequent transition to the expression-inhibiting state of the aptamer domain followed by changes in the expression platform. However, details of the relationship between TPP riboswitch conformational changes and interactions with TPP and Mg2+ ¬¬in the aptamer domain constituting this mechanism are unknown. Therefore, we integrated single-molecule multiparameter fluorescence and force spectroscopy with atomistic molecular dynamics simulations and found that conformational transitions within the aptamer domain's sensor helices associated with TPP and Mg2+ ligand binding occurred between at least five different ensembles on timescales ranging from µs to ms. These dynamics are orders of magnitude faster than the 10 second-timescale folding kinetics associated with expression-state switching in the switch sequence. Together, our results show that a TPP and Mg2+ dependent mechanism determines dynamic configurational state ensemble switching of the aptamer domain's sensor helices that regulates the stability of the switch helix, which ultimately may lead to the expression-inhibiting state of the riboswitch. Additionally, we propose that two pathways exist for ligand recognition and that this mechanism underlies a kinetic rheostat-like behavior of the Arabidopsis thaliana TPP riboswitch.
Collapse
Affiliation(s)
- Junyan Ma
- Department of Chemistry, Clemson University
| | | | - Subash Godar
- Department of Physics and Astronomy, Clemson University
| | | | - Feng Ding
- Department of Physics and Astronomy, Clemson University
| | - Joshua Alper
- Department of Physics and Astronomy, Clemson University
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University
| |
Collapse
|
36
|
Ploetz E, Schuurman-Wolters GK, Zijlstra N, Jager AW, Griffith DA, Guskov A, Gouridis G, Poolman B, Cordes T. Structural and biophysical characterization of the tandem substrate-binding domains of the ABC importer GlnPQ. Open Biol 2021; 11:200406. [PMID: 33823661 PMCID: PMC8025302 DOI: 10.1098/rsob.200406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ATP-binding cassette transporter GlnPQ is an essential uptake system that transports glutamine, glutamic acid and asparagine in Gram-positive bacteria. It features two extra-cytoplasmic substrate-binding domains (SBDs) that are linked in tandem to the transmembrane domain of the transporter. The two SBDs differ in their ligand specificities, binding affinities and their distance to the transmembrane domain. Here, we elucidate the effects of the tandem arrangement of the domains on the biochemical, biophysical and structural properties of the protein. For this, we determined the crystal structure of the ligand-free tandem SBD1-2 protein from Lactococcus lactis in the absence of the transporter and compared the tandem to the isolated SBDs. We also used isothermal titration calorimetry to determine the ligand-binding affinity of the SBDs and single-molecule Förster resonance energy transfer (smFRET) to relate ligand binding to conformational changes in each of the domains of the tandem. We show that substrate binding and conformational changes are not notably affected by the presence of the adjoining domain in the wild-type protein, and changes only occur when the linker between the domains is shortened. In a proof-of-concept experiment, we combine smFRET with protein-induced fluorescence enhancement (PIFE–FRET) and show that a decrease in SBD linker length is observed as a linear increase in donor-brightness for SBD2 while we can still monitor the conformational states (open/closed) of SBD1. These results demonstrate the feasibility of PIFE–FRET to monitor protein–protein interactions and conformational states simultaneously.
Collapse
Affiliation(s)
- Evelyn Ploetz
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Department of Chemistry, Center for Nanosciences (CeNS) and Center for Integrated Proteins Science Munich (CiPSM), Ludwig Maximilians-Universität München, Butenandtstraße 11, 81377 Munich, Germany
| | - Gea K Schuurman-Wolters
- Groningen Biomolecular Science and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Niels Zijlstra
- Physical and Synthetic Biology, Faculty of Biology, Großhaderner Straße 2-4, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Amarins W Jager
- Groningen Biomolecular Science and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Douglas A Griffith
- Physical and Synthetic Biology, Faculty of Biology, Großhaderner Straße 2-4, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Albert Guskov
- Groningen Biomolecular Science and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Moscow Institute of Physics and Technology (MIPT), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141701, Russian Federation
| | - Giorgos Gouridis
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Structural Biology Division, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Nikolaou Plastira 100, Heraklion, Crete, Greece
| | - Bert Poolman
- Groningen Biomolecular Science and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Physical and Synthetic Biology, Faculty of Biology, Großhaderner Straße 2-4, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
37
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
38
|
Kilic Z, Sgouralis I, Pressé S. Residence time analysis of RNA polymerase transcription dynamics: A Bayesian sticky HMM approach. Biophys J 2021; 120:1665-1679. [PMID: 33705761 DOI: 10.1016/j.bpj.2021.02.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023] Open
Abstract
The time spent by a single RNA polymerase (RNAP) at specific locations along the DNA, termed "residence time," reports on the initiation, elongation, and termination stages of transcription. At the single-molecule level, this information can be obtained from dual ultrastable optical trapping experiments, revealing a transcriptional elongation of RNAP interspersed with residence times of variable duration. Successfully discriminating between long and short residence times was used by previous approaches to learn about RNAP's transcription elongation dynamics. Here, we propose an approach based on the Bayesian sticky hidden Markov model that treats all residence times for an Escherichia coli RNAP on an equal footing without a priori discriminating between long and short residence times. Furthermore, our method has two additional advantages: we provide full distributions around key point statistics and directly treat the sequence dependence of RNAP's elongation rate. By applying our approach to experimental data, we find assigned relative probabilities on long versus short residence times, force-dependent average residence time transcription elongation dynamics, ∼10% drop in the average backtracking durations in the presence of GreB, and ∼20% drop in the average residence time as a function of applied force in the presence of RNaseA.
Collapse
Affiliation(s)
- Zeliha Kilic
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona
| | - Ioannis Sgouralis
- Department of Mathematics, University of Tennessee, Knoxville, Tennessee
| | - Steve Pressé
- Center for Biological Physics, Department of Physics and School of Molecular Sciences, Arizona State University, Tempe, Arizona. spresse@%20asu.edu
| |
Collapse
|
39
|
Multispectroscopic, electrochemical and molecular docking approaches on binding comparison of camptothecin, 10-hydroxycamptothecin to bovine serum albumin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115296] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Saran R, Wang Y, Li ITS. Mechanical Flexibility of DNA: A Quintessential Tool for DNA Nanotechnology. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7019. [PMID: 33302459 PMCID: PMC7764255 DOI: 10.3390/s20247019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The mechanical properties of DNA have enabled it to be a structural and sensory element in many nanotechnology applications. While specific base-pairing interactions and secondary structure formation have been the most widely utilized mechanism in designing DNA nanodevices and biosensors, the intrinsic mechanical rigidity and flexibility are often overlooked. In this article, we will discuss the biochemical and biophysical origin of double-stranded DNA rigidity and how environmental and intrinsic factors such as salt, temperature, sequence, and small molecules influence it. We will then take a critical look at three areas of applications of DNA bending rigidity. First, we will discuss how DNA's bending rigidity has been utilized to create molecular springs that regulate the activities of biomolecules and cellular processes. Second, we will discuss how the nanomechanical response induced by DNA rigidity has been used to create conformational changes as sensors for molecular force, pH, metal ions, small molecules, and protein interactions. Lastly, we will discuss how DNA's rigidity enabled its application in creating DNA-based nanostructures from DNA origami to nanomachines.
Collapse
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, Biochemistry and Molecular Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V1V7, Canada;
| | - Yong Wang
- Department of Physics, Materials Science and Engineering Program, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Isaac T. S. Li
- Department of Chemistry, Biochemistry and Molecular Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V1V7, Canada;
| |
Collapse
|
41
|
Cosco ED, Spearman AL, Ramakrishnan S, Lingg JGP, Saccomano M, Pengshung M, Arús BA, Wong KCY, Glasl S, Ntziachristos V, Warmer M, McLaughlin RR, Bruns OT, Sletten EM. Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time. Nat Chem 2020; 12:1123-1130. [PMID: 33077925 PMCID: PMC7680456 DOI: 10.1038/s41557-020-00554-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/17/2020] [Indexed: 01/06/2023]
Abstract
High-resolution, multiplexed experiments are a staple in cellular imaging. Analogous experiments in animals are challenging, however, due to substantial scattering and autofluorescence in tissue at visible (350-700 nm) and near-infrared (700-1,000 nm) wavelengths. Here, we enable real-time, non-invasive multicolour imaging experiments in animals through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000-2,000 nm) region and complementary advances in imaging technologies. We developed tunable, SWIR-emissive flavylium polymethine dyes and established relationships between structure and photophysical properties for this class of bright SWIR contrast agents. In parallel, we designed an imaging system with variable near-infrared/SWIR excitation and single-channel detection, facilitating video-rate multicolour SWIR imaging for optically guided surgery and imaging of awake and moving mice with multiplexed detection. Optimized dyes matched to 980 nm and 1,064 nm lasers, combined with the clinically approved indocyanine green, enabled real-time, three-colour imaging with high temporal and spatial resolutions.
Collapse
Affiliation(s)
- Emily D Cosco
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anthony L Spearman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shyam Ramakrishnan
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jakob G P Lingg
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mara Saccomano
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Monica Pengshung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bernardo A Arús
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kelly C Y Wong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah Glasl
- Institute of Biomedical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Martin Warmer
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ryan R McLaughlin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Oliver T Bruns
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Kirk J, Lee JY, Lee Y, Kang C, Shin S, Lee E, Song JJ, Hohng S. Yeast Chd1p Unwraps the Exit Side DNA upon ATP Binding to Facilitate the Nucleosome Translocation Occurring upon ATP Hydrolysis. Biochemistry 2020; 59:4481-4487. [PMID: 33174727 DOI: 10.1021/acs.biochem.0c00747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chromodomain-helicase-DNA-binding protein 1 (CHD1) remodels chromatin by translocating nucleosomes along DNA, but its mechanism remains poorly understood. We use single-molecule fluorescence experiments to clarify the mechanism by which yeast CHD1 (Chd1p) remodels nucleosomes. We find that binding of ATP to Chd1p induces transient unwrapping of the DNA on the exit side of the nucleosome, facilitating nucleosome translocation. ATP hydrolysis is required to induce nucleosome translocation. The unwrapped DNA after translocation is then rewrapped after the release of the hydrolyzed nucleotide and phosphate, revealing that each step of the ATP hydrolysis cycle is responsible for a distinct step of nucleosome remodeling. These results show that Chd1p remodels nucleosomes via a mechanism that is unique among the other ATP-dependent chromatin remodelers.
Collapse
Affiliation(s)
- Jaewon Kirk
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju Yeon Lee
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Yejin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chanshin Kang
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Soochul Shin
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunhye Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
43
|
Calabrase W, Bishop LDC, Dutta C, Misiura A, Landes CF, Kisley L. Transforming Separation Science with Single-Molecule Methods. Anal Chem 2020; 92:13622-13629. [PMID: 32936608 DOI: 10.1021/acs.analchem.0c02572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Empirical optimization of the multiscale parameters underlying chromatographic and membrane separations leads to enormous resource waste and production costs. A bottom-up approach to understand the physical phenomena underlying challenges in separations is possible with single-molecule observations of solute-stationary phase interactions. We outline single-molecule fluorescence techniques that can identify key interactions under ambient conditions. Next, we describe how studying increasingly complex samples heightens the relevance of single-molecule results to industrial applications. Finally, we illustrate how separation methods that have not been studied at the single-molecule scale can be advanced, using chiral chromatography as an example case. We hope new research directions based on a molecular approach to separations will emerge based on the ideas, technologies, and open scientific questions presented in this Perspective.
Collapse
Affiliation(s)
- William Calabrase
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Logan D C Bishop
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Chayan Dutta
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Anastasiia Misiura
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, Houston, Texas 77251, United States.,Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77251, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77251, United States.,Smalley-Curl Institute, Rice University, Houston, Texas 77251, United States
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
44
|
Gomes GNW, Krzeminski M, Namini A, Martin EW, Mittag T, Head-Gordon T, Forman-Kay JD, Gradinaru CC. Conformational Ensembles of an Intrinsically Disordered Protein Consistent with NMR, SAXS, and Single-Molecule FRET. J Am Chem Soc 2020; 142:15697-15710. [PMID: 32840111 PMCID: PMC9987321 DOI: 10.1021/jacs.0c02088] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intrinsically disordered proteins (IDPs) have fluctuating heterogeneous conformations, which makes their structural characterization challenging. Although challenging, characterization of the conformational ensembles of IDPs is of great interest, since their conformational ensembles are the link between their sequences and functions. An accurate description of IDP conformational ensembles depends crucially on the amount and quality of the experimental data, how it is integrated, and if it supports a consistent structural picture. We used integrative modeling and validation to apply conformational restraints and assess agreement with the most common structural techniques for IDPs: Nuclear Magnetic Resonance (NMR) spectroscopy, Small-angle X-ray Scattering (SAXS), and single-molecule Förster Resonance Energy Transfer (smFRET). Agreement with such a diverse set of experimental data suggests that details of the generated ensembles can now be examined with a high degree of confidence. Using the disordered N-terminal region of the Sic1 protein as a test case, we examined relationships between average global polymeric descriptions and higher-moments of their distributions. To resolve apparent discrepancies between smFRET and SAXS inferences, we integrated SAXS data with NMR data and reserved the smFRET data for independent validation. Consistency with smFRET, which was not guaranteed a priori, indicates that, globally, the perturbative effects of NMR or smFRET labels on the Sic1 ensemble are minimal. Analysis of the ensembles revealed distinguishing features of Sic1, such as overall compactness and large end-to-end distance fluctuations, which are consistent with biophysical models of Sic1's ultrasensitive binding to its partner Cdc4. Our results underscore the importance of integrative modeling and validation in generating and drawing conclusions from IDP conformational ensembles.
Collapse
Affiliation(s)
- Gregory-Neal W Gomes
- Department of Physics, University of Toronto, Toronto, Ontario M5G 1X8, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Mickaël Krzeminski
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Ashley Namini
- Department of Physics, University of Toronto, Toronto, Ontario M5G 1X8, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Erik W Martin
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Teresa Head-Gordon
- Departments of Chemistry, Bioengineering, Chemical and Biomolecular Engineering University of California, Berkeley, California 94720, United States
| | - Julie D Forman-Kay
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, Ontario M5G 1X8, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
45
|
Szabó Á, Szendi-Szatmári T, Szöllősi J, Nagy P. Quo vadis FRET? Förster's method in the era of superresolution. Methods Appl Fluoresc 2020; 8:032003. [PMID: 32521530 DOI: 10.1088/2050-6120/ab9b72] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the theoretical foundations of Förster resonance energy transfer (FRET) were laid in the 1940s as part of the quantum physical revolution of the 20th century, it was only in the 1970s that it made its way to biology as a result of the availability of suitable measuring and labeling technologies. Thanks to its ease of application, FRET became widely used for studying molecular associations on the nanometer scale. The development of superresolution techniques at the turn of the millennium promised an unprecedented insight into the structure and function of molecular complexes. Without downplaying the significance of superresolution microscopies this review expresses our view that FRET is still a legitimate tool in the armamentarium of biologists for studying molecular associations since it offers distinct advantages and overcomes certain limitations of superresolution approaches.
Collapse
Affiliation(s)
- Ágnes Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032 Debrecen, Hungary. MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032 Debrecen, Hungary
| | | | | | | |
Collapse
|
46
|
Kramm K, Schröder T, Gouge J, Vera AM, Gupta K, Heiss FB, Liedl T, Engel C, Berger I, Vannini A, Tinnefeld P, Grohmann D. DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability. Nat Commun 2020; 11:2828. [PMID: 32504003 PMCID: PMC7275037 DOI: 10.1038/s41467-020-16702-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
The TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. The reason for the emergence and strict requirement of the additional initiation factor Bdp1 in the RNA polymerase (RNAP) III system, however, remained elusive. A poorly studied aspect in this context is the effect of DNA strain arising from DNA compaction and transcriptional activity on initiation complex formation. We made use of a DNA origami-based force clamp to follow the assembly of human initiation complexes in the RNAP II and RNAP III systems at the single-molecule level under piconewton forces. We demonstrate that TBP-DNA complexes are force-sensitive and TFIIB is sufficient to stabilise TBP on a strained promoter. In contrast, Bdp1 is the pivotal component that ensures stable anchoring of initiation factors, and thus the polymerase itself, in the RNAP III system. Thereby, we offer an explanation for the crucial role of Bdp1 for the high transcriptional output of RNAP III.
Collapse
Affiliation(s)
- Kevin Kramm
- Single-Molecule Biochemistry Lab, Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany
| | - Tim Schröder
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Jerome Gouge
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Andrés Manuel Vera
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Kapil Gupta
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Clifton, BS8 1TD, UK
| | - Florian B Heiss
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany
| | - Tim Liedl
- Faculty of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Christoph Engel
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany
| | - Imre Berger
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Clifton, BS8 1TD, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
- Human Technopole Foundation, Centre of Structural Biology, 20157, Milan, Italy
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Dina Grohmann
- Single-Molecule Biochemistry Lab, Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany.
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
47
|
Rehó B, Lau L, Mocsár G, Müller G, Fadel L, Brázda P, Nagy L, Tóth K, Vámosi G. Simultaneous Mapping of Molecular Proximity and Comobility Reveals Agonist-Enhanced Dimerization and DNA Binding of Nuclear Receptors. Anal Chem 2020; 92:2207-2215. [PMID: 31870146 DOI: 10.1021/acs.analchem.9b04902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Single Plane Illumination Microscopy (SPIM) revolutionized time lapse imaging of live cells and organisms due to its high speed and reduced photodamage. Quantitative mapping of molecular (co)mobility by fluorescence (cross-)correlation spectroscopy (F(C)CS) in a SPIM has been introduced to reveal molecular diffusion and binding. A complementary aspect of interactions is proximity, which can be studied by Förster resonance energy transfer (FRET). Here, we extend SPIM-FCCS by alternating laser excitation, which reduces false positive cross-correlation and facilitates comapping of FRET. Thus, different aspects of interacting systems can be studied simultaneously, and molecular subpopulations can be discriminated by multiparameter analysis. After demonstrating the benefits of the method on the AP-1 transcription factor, the dimerization and DNA binding behavior of retinoic acid receptor (RAR) and retinoid X receptor (RXR) is revealed, and an extension of the molecular switch model of the nuclear receptor action is proposed. Our data imply that RAR agonist enhances RAR-RXR heterodimerization, and chromatin binding/dimerization are positively correlated. We also propose a ligand induced conformational change bringing the N-termini of RAR and RXR closer together. The RXR agonist increased homodimerization of RXR suggesting that RXR may act as an autonomous transcription factor.
Collapse
Affiliation(s)
- Bálint Rehó
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Lukas Lau
- Division Biophysics of Macromolecules , German Cancer Research Center , Im Neuenheimer Feld 280 , D-69120 Heidelberg , Germany
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Gabriele Müller
- Division Biophysics of Macromolecules , German Cancer Research Center , Im Neuenheimer Feld 280 , D-69120 Heidelberg , Germany
| | - Lina Fadel
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Péter Brázda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - László Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary.,Johns Hopkins University School of Medicine , Department of Medicine and Biological Chemistry, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital , 600 Fifth Street South Saint Petersburg , Florida 33701-4634 , United States
| | - Katalin Tóth
- Division Biophysics of Macromolecules , German Cancer Research Center , Im Neuenheimer Feld 280 , D-69120 Heidelberg , Germany
| | - György Vámosi
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| |
Collapse
|
48
|
Bartnik K, Barth A, Pilo-Pais M, Crevenna AH, Liedl T, Lamb DC. A DNA Origami Platform for Single-Pair Förster Resonance Energy Transfer Investigation of DNA-DNA Interactions and Ligation. J Am Chem Soc 2020; 142:815-825. [PMID: 31800234 DOI: 10.1021/jacs.9b09093] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DNA double-strand breaks (DSBs) pose an everyday threat to the conservation of genetic information and therefore life itself. Several pathways have evolved to repair these cytotoxic lesions by rejoining broken ends, among them the nonhomologous end-joining mechanism that utilizes a DNA ligase. Here, we use a custom-designed DNA origami nanostructure as a model system to specifically mimic a DNA DSB, enabling us to study the end-joining of two fluorescently labeled DNA with the T4 DNA ligase on the single-molecule level. The ligation reaction is monitored by Förster resonance energy transfer (FRET) experiments both in solution and on surface-anchored origamis. Due to the modularity of DNA nanotechnology, DNA double strands with different complementary overhang lengths can be studied using the same DNA origami design. We show that the T4 DNA ligase repairs sticky ends more efficiently than blunt ends and that the ligation efficiency is influenced by both DNA sequence and the incubation conditions. Before ligation, dynamic fluctuations of the FRET signal are observed due to transient binding of the sticky overhangs. After ligation, the FRET signal becomes static. Thus, we can directly monitor the ligation reaction through the transition from dynamic to static FRET signals. Finally, we revert the ligation process using a restriction enzyme digestion and religate the resulting blunt ends. The here-presented DNA origami platform is thus suited to study complex multistep reactions occurring over several cycles of enzymatic treatment.
Collapse
Affiliation(s)
- Kira Bartnik
- Department of Chemistry, Center for Nanoscience (CeNS), Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CIPSM) , Ludwig-Maximilians-Universität München , 81377 Munich , Germany
| | - Anders Barth
- Department of Chemistry, Center for Nanoscience (CeNS), Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CIPSM) , Ludwig-Maximilians-Universität München , 81377 Munich , Germany
| | - Mauricio Pilo-Pais
- Department of Physics and Center for Nanoscience (CeNS) , Ludwig-Maximilians-Universität , 80539 Munich , Germany
| | - Alvaro H Crevenna
- Department of Chemistry, Center for Nanoscience (CeNS), Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CIPSM) , Ludwig-Maximilians-Universität München , 81377 Munich , Germany
| | - Tim Liedl
- Department of Physics and Center for Nanoscience (CeNS) , Ludwig-Maximilians-Universität , 80539 Munich , Germany
| | - Don C Lamb
- Department of Chemistry, Center for Nanoscience (CeNS), Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CIPSM) , Ludwig-Maximilians-Universität München , 81377 Munich , Germany
| |
Collapse
|
49
|
Zelger-Paulus S, Hadzic MCAS, Sigel RKO, Börner R. Encapsulation of Fluorescently Labeled RNAs into Surface-Tethered Vesicles for Single-Molecule FRET Studies in TIRF Microscopy. Methods Mol Biol 2020; 2113:1-16. [PMID: 32006303 DOI: 10.1007/978-1-0716-0278-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Imaging fluorescently labeled biomolecules on a single-molecule level is a well-established technique to follow intra- and intermolecular processes in time, usually hidden in the ensemble average. The classical approach comprises surface immobilization of the molecule of interest, which increases the risk of restricting the natural behavior due to surface interactions. Encapsulation of such biomolecules into surface-tethered phospholipid vesicles enables to follow one molecule at a time, freely diffusing and without disturbing surface interactions. Further, the encapsulation allows to keep reaction partners (reactants and products) in close proximity and enables higher temperatures otherwise leading to desorption of the direct immobilized biomolecules.Here, we describe a detailed protocol for the encapsulation of a catalytically active RNA starting from surface passivation over RNA encapsulation to data evaluation of single-molecule FRET experiments in TIRF microscopy. We present an optimized procedure that preserves RNA functionality and applies to investigations of, e.g., large ribozymes and RNAs, where direct immobilization is structurally not possible.
Collapse
Affiliation(s)
| | | | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| | - Richard Börner
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, Mittweida, Germany.
| |
Collapse
|
50
|
Krainer G, Keller S, Schlierf M. Structural dynamics of membrane-protein folding from single-molecule FRET. Curr Opin Struct Biol 2019; 58:124-137. [DOI: 10.1016/j.sbi.2019.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
|