1
|
Bullows JE, Kanak A, Shedrick L, Kiessling C, Aklujkar M, Kostka J, Chin KJ. Anaerobic benzene oxidation in Geotalea daltonii involves activation by methylation and is regulated by the transition state regulator AbrB. Appl Environ Microbiol 2024; 90:e0085624. [PMID: 39287397 PMCID: PMC11497800 DOI: 10.1128/aem.00856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
Benzene is a widespread groundwater contaminant that persists under anoxic conditions. The aim of this study was to more accurately investigate anaerobic microbial degradation pathways to predict benzene fate and transport. Preliminary genomic analysis of Geotalea daltonii strain FRC-32, isolated from contaminated groundwater, revealed the presence of putative aromatic-degrading genes. G. daltonii was subsequently shown to conserve energy for growth on benzene as the sole electron donor and fumarate or nitrate as the electron acceptor. The hbs gene, encoding for 3-hydroxybenzylsuccinate synthase (Hbs), a homolog of the radical-forming, toluene-activating benzylsuccinate synthase (Bss), was upregulated during benzene oxidation in G. daltonii, while the bss gene was upregulated during toluene oxidation. Addition of benzene to the G. daltonii whole-cell lysate resulted in toluene formation, indicating that methylation of benzene was occurring. Complementation of σ54- (deficient) E. coli transformed with the bss operon restored its ability to grow in the presence of toluene, revealing bss to be regulated by σ54. Binding sites for σ70 and the transition state regulator AbrB were identified in the promoter region of the σ54-encoding gene rpoN, and binding was confirmed. Induced expression of abrB during benzene and toluene degradation caused G. daltonii cultures to transition to the death phase. Our results suggested that G. daltonii can anaerobically oxidize benzene by methylation, which is regulated by σ54 and AbrB. Our findings further indicated that the benzene, toluene, and benzoate degradation pathways converge into a single metabolic pathway, representing a uniquely efficient approach to anaerobic aromatic degradation in G. daltonii. IMPORTANCE The contamination of anaerobic subsurface environments including groundwater with toxic aromatic hydrocarbons, specifically benzene, toluene, ethylbenzene, and xylene, has become a global issue. Subsurface groundwater is largely anoxic, and further study is needed to understand the natural attenuation of these compounds. This study elucidated a metabolic pathway utilized by the bacterium Geotalea daltonii capable of anaerobically degrading the recalcitrant molecule benzene using a unique activation mechanism involving methylation. The identification of aromatic-degrading genes and AbrB as a regulator of the anaerobic benzene and toluene degradation pathways provides insights into the mechanisms employed by G. daltonii to modulate metabolic pathways as necessary to thrive in anoxic contaminated groundwater. Our findings contribute to the understanding of novel anaerobic benzene degradation pathways that could potentially be harnessed to develop improved strategies for bioremediation of groundwater contaminants.
Collapse
Affiliation(s)
- James E. Bullows
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Alison Kanak
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Lawrence Shedrick
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | | | - Muktak Aklujkar
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Joel Kostka
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kuk-Jeong Chin
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Wu P, Goujon G, Pan S, Tuccio B, Pégot B, Dagousset G, Anselmi E, Magnier E, Bolm C. Cyclic Sulfoximines as Methyl and Perdeuteromethyl Transfer Agents and Their Applications in Photoredox Catalysis. Angew Chem Int Ed Engl 2024:e202412418. [PMID: 39234959 DOI: 10.1002/anie.202412418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Benzo[1,3,2]dithiazole-1,1,3-trioxides are bench-stable and easy-to-use reagents. In photoredox catalysis, they generate methyl and perdeuteromethyl radicals which can add to a variety of radical acceptors, including olefins, acrylamides, quinoxalinones, isocyanides, enol silanes, and N-Ts acrylamide. As byproduct, a salt is formed which can be regenerated to the original methylating agent. Flow chemistry provides an option for reaction scale-up further underscoring the synthetic usefulness of these methylation reagents. Mechanistic investigations suggest a single-electron transfer (SET) pathway induced by photoredox catalysis.
Collapse
Affiliation(s)
- Peng Wu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Gabriel Goujon
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
| | - Shulei Pan
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Béatrice Tuccio
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397, Marseille Cedex 20, France
| | - Bruce Pégot
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
| | - Elsa Anselmi
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
- Université de Tours, Faculté des Sciences et Techniques, 37200, Tours, France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
3
|
Schröder MP, Pfeiffer IPM, Mordhorst S. Methyltransferases from RiPP pathways: shaping the landscape of natural product chemistry. Beilstein J Org Chem 2024; 20:1652-1670. [PMID: 39076295 PMCID: PMC11285071 DOI: 10.3762/bjoc.20.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
This review article aims to highlight the role of methyltransferases within the context of ribosomally synthesised and post-translationally modified peptide (RiPP) natural products. Methyltransferases play a pivotal role in the biosynthesis of diverse natural products with unique chemical structures and bioactivities. They are highly chemo-, regio-, and stereoselective allowing methylation at various positions. The different possible acceptor regions in ribosomally synthesised peptides are described in this article. Furthermore, we will discuss the potential application of these methyltransferases as powerful biocatalytic tools in the synthesis of modified peptides and other bioactive compounds. By providing an overview of the various methylation options available, this review is intended to emphasise the biocatalytic potential of RiPP methyltransferases and their impact on the field of natural product chemistry.
Collapse
Affiliation(s)
- Maria-Paula Schröder
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Isabel P-M Pfeiffer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Silja Mordhorst
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Nguyen DT, Zhu L, Gray DL, Woods TJ, Padhi C, Flatt KM, Mitchell DA, van der Donk WA. Biosynthesis of Macrocyclic Peptides with C-Terminal β-Amino-α-keto Acid Groups by Three Different Metalloenzymes. ACS CENTRAL SCIENCE 2024; 10:1022-1032. [PMID: 38799663 PMCID: PMC11117315 DOI: 10.1021/acscentsci.4c00088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
Advances in genome sequencing and bioinformatics methods have identified a myriad of biosynthetic gene clusters (BGCs) encoding uncharacterized molecules. By mining genomes for BGCs containing a prevalent peptide-binding domain used for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), we uncovered a new compound class involving modifications installed by a cytochrome P450, a multinuclear iron-dependent non-heme oxidative enzyme (MNIO, formerly DUF692), a cobalamin- and radical S-adenosyl-l-methionine-dependent enzyme (B12-rSAM), and a methyltransferase. All enzymes were functionally expressed in Burkholderia sp. FERM BP-3421. Structural characterization demonstrated that the P450 enzyme catalyzed the formation of a biaryl C-C cross-link between two Tyr residues with the B12-rSAM generating β-methyltyrosine. The MNIO transformed a C-terminal Asp residue into aminopyruvic acid, while the methyltransferase acted on the β-carbon of this α-keto acid. Exciton-coupled circular dichroism spectroscopy and microcrystal electron diffraction (MicroED) were used to elucidate the stereochemical configuration of the atropisomer formed upon biaryl cross-linking. To the best of our knowledge, the MNIO featured in this pathway is the first to modify a residue other than Cys. This study underscores the utility of genome mining to isolate new macrocyclic RiPPs biosynthesized via previously undiscovered enzyme chemistry.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lingyang Zhu
- School
of Chemical Sciences NMR Laboratory, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Danielle L. Gray
- School
of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials
Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Toby J. Woods
- School
of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials
Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chandrashekhar Padhi
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kristen M. Flatt
- Materials
Research Laboratory, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Sinha PR, Balasubramanian R, Hegde SR. Integrated sequence and -omic features reveal novel small proteome of Mycobacterium tuberculosis. Front Microbiol 2024; 15:1335310. [PMID: 38812687 PMCID: PMC11133741 DOI: 10.3389/fmicb.2024.1335310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
Bioinformatic studies on small proteins are under-represented due to difficulties in annotation posed by their small size. However, recent discoveries emphasize the functional significance of small proteins in cellular processes including cell signaling, metabolism, and adaptation to stress. In this study, we utilized a Random Forest classifier trained on sequence features, RNA-Seq, and Ribo-Seq data to uncover small proteins (smORFs) in M. tuberculosis. Independent predictions for the exponential and starvation conditions resulted in 695 potential smORFs. We examined the functional implications of these smORFs using homology searches, LC-MS/MS, and ChIP-seq data, testing their expression in diverse growth conditions, and identifying protein domains. We provide evidence that some of these smORFs could be part of operons, or exist as upstream ORFs. This expanded data resource for the proteins of M. tuberculosis would aid in fine-tuning the existing protein and gene regulatory networks, thereby improving system-wide studies. The primary goal of this study was to uncover and characterize smORFs in M. tuberculosis through bioinformatic analysis, shedding light on their functional roles and genomic organization. Further investigation of these potential smORFs would provide valuable insights into the genome organization and functional diversity of the M. tuberculosis proteome.
Collapse
Affiliation(s)
| | | | - Shubhada R. Hegde
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, India
| |
Collapse
|
6
|
Cai Q, McWhinnie IM, Dow NW, Chan AY, MacMillan DWC. Engaging Alkenes in Metallaphotoredox: A Triple Catalytic, Radical Sorting Approach to Olefin-Alcohol Cross-Coupling. J Am Chem Soc 2024; 146:12300-12309. [PMID: 38657210 PMCID: PMC11493080 DOI: 10.1021/jacs.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metallaphotoredox cross-coupling is a well-established strategy for generating clinically privileged aliphatic scaffolds via single-electron reactivity. Correspondingly, expanding metallaphotoredox to encompass new C(sp3)-coupling partners could provide entry to a novel, medicinally relevant chemical space. In particular, alkenes are abundant, bench-stable, and capable of versatile C(sp3)-radical reactivity via metal-hydride hydrogen atom transfer (MHAT), although metallaphotoredox methodologies invoking this strategy remain underdeveloped. Importantly, merging MHAT activation with metallaphotoredox could enable the cross-coupling of olefins with feedstock partners such as alcohols, which undergo facile open-shell activation via photocatalysis. Herein, we report the first C(sp3)-C(sp3) coupling of MHAT-activated alkenes with alcohols by performing deoxygenative hydroalkylation via triple cocatalysis. Through synergistic Ir photoredox, Mn MHAT, and Ni radical sorting pathways, this branch-selective protocol pairs diverse olefins and methanol or primary alcohols with remarkable functional group tolerance to enable the rapid construction of complex aliphatic frameworks.
Collapse
Affiliation(s)
- Qinyan Cai
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Iona M. McWhinnie
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Nathan W. Dow
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Amy Y. Chan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
7
|
Wang JZ, Lyon WL, MacMillan DWC. Alkene dialkylation by triple radical sorting. Nature 2024; 628:104-109. [PMID: 38350601 PMCID: PMC11474584 DOI: 10.1038/s41586-024-07165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
The development of bimolecular homolytic substitution (SH2) catalysis has expanded cross-coupling chemistries by enabling the selective combination of any primary radical with any secondary or tertiary radical through a radical sorting mechanism1-8. Biomimetic9,10 SH2 catalysis can be used to merge common feedstock chemicals-such as alcohols, acids and halides-in various permutations for the construction of a single C(sp3)-C(sp3) bond. The ability to sort these two distinct radicals across commercially available alkenes in a three-component manner would enable the simultaneous construction of two C(sp3)-C(sp3) bonds, greatly accelerating access to complex molecules and drug-like chemical space11. However, the simultaneous in situ formation of electrophilic and primary nucleophilic radicals in the presence of unactivated alkenes is problematic, typically leading to statistical radical recombination, hydrogen atom transfer, disproportionation and other deleterious pathways12,13. Here we report the use of bimolecular homolytic substitution catalysis to sort an electrophilic radical and a nucleophilic radical across an unactivated alkene. This reaction involves the in situ formation of three distinct radical species, which are then differentiated by size and electronics, allowing for regioselective formation of the desired dialkylated products. This work accelerates access to pharmaceutically relevant C(sp3)-rich molecules and defines a distinct mechanistic approach for alkene dialkylation.
Collapse
Affiliation(s)
- Johnny Z Wang
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | - William L Lyon
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
8
|
Liu X, Feng H, Li R, Zhang Q, Wu Y, Pang B. Mechanistic Insights into the Proton Transfer and Substitution Dynamics of N-Atom Center Reactions: A Study of CH 3O - with NH 2Cl. J Phys Chem A 2024. [PMID: 38502933 DOI: 10.1021/acs.jpca.3c08447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Bimolecular substitution reactions involving N as the central atom have continuously improved our understanding of substitution dynamics. This work used chemical dynamics simulations to investigate the dynamics of NH2Cl with N as the central atom and the multiatomic nucleophile CH3O- and compared these results with the F- + NH2Cl reaction. The most noteworthy difference is in the competition between proton transfer (PT) and the SN2 pathways. Our results demonstrate that, for the CH3O- + NH2Cl system, the PT pathway is considerably more favorable than the SN2 pathway. In contrast, no PT pathway was observed for the F- + NH2Cl system at room temperature. This can be attributed to the exothermic reaction of the PT pathway for the CH3O- + NH2Cl reaction and is coupled with a more stable transition state compared to the substitution pathway. Furthermore, the bulky nature of the CH3O- group impedes its participation in SN2 reactions, which enhances both the thermodynamic and the dynamic advantages of the PT reaction. Interestingly, the atomic mechanism reveals that the PT pathway is primarily governed by indirect mechanisms, similar to the SN2 pathway, with trajectories commonly trapped in the entrance channel being a prominent feature. These trajectories are often accompanied by prolonged and frequent proton exchange or proton abstraction processes. This current work provides insights into the dynamics of N-centered PT reactions, which are useful in gaining a comprehensive understanding of the dynamics behavior of similar reactions.
Collapse
Affiliation(s)
- Xu Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Huining Feng
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Rui Li
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Qiuju Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Yang Wu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Boxue Pang
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
9
|
De BC, Yang C, Huang C, Zhang C, Zhang W. Non-enzymatic synthesis of C-methylated fluostatins: discovery and reaction mechanism. Org Biomol Chem 2024; 22:1152-1156. [PMID: 38214554 DOI: 10.1039/d3ob01920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Two C-methylated fluostatins (FSTs) B3 (1) and B4 (2) were synthesized from flavin-mediated nonenzymatic epoxide ring-opening reactions of FST C. The structures of 1 and 2 were elucidated by HRESIMS, NMR, and ECD spectroscopic analyses. A subsequent 13C labeling study demonstrated that the C-methyl groups of 1 and 2 were derived from DMSO and enabled the mechanistic proposal of a nonenzymatic C-methylation.
Collapse
Affiliation(s)
- Bidhan Chandra De
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Chunfang Yang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Chunshuai Huang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
10
|
Zhang C, Seyedsayamdost MR. Widespread Peptide Surfactants with Post-translational C-methylations Promote Bacterial Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576971. [PMID: 38328144 PMCID: PMC10849626 DOI: 10.1101/2024.01.23.576971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Bacteria produce a variety of peptides to mediate nutrient acquisition, microbial interactions, and other physiological processes. Of special interest are surface-active peptides that aid in growth and development. Herein, we report the structure and characterization of clavusporins, unusual and hydrophobic ribosomal peptides with multiple C-methylations at unactivated carbon centers, which help drastically reduce the surface tension of water and thereby aid in Streptomyces development. The peptides are synthesized by a previously uncharacterized protein superfamily, termed DUF5825, in conjunction with a vitamin B12-dependent radical S-adenosylmethionine metalloenzyme. The operon encoding clavusporin is wide-spread among actinomycete bacteria, suggesting a prevalent role for clavusporins as morphogens in erecting aerial hyphae and thereby advancing sporulation and proliferation.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
11
|
Nguyen DT, Zhu L, Gray DL, Woods TJ, Padhi C, Flatt KM, Mitchell DA, van der Donk WA. Biosynthesis of macrocyclic peptides with C-terminal β-amino-α-keto acid groups by three different metalloenzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564719. [PMID: 37965205 PMCID: PMC10635010 DOI: 10.1101/2023.10.30.564719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Advances in genome sequencing and bioinformatics methods have identified a myriad of biosynthetic gene clusters (BGCs) encoding uncharacterized molecules. By mining genomes for BGCs containing a prevalent peptide-binding domain used for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), we uncovered a new class involving modifications installed by a cytochrome P450, a multi-nuclear iron-dependent non-heme oxidative enzyme (MNIO, formerly DUF692), a cobalamin- and radical S-adenosyl-L-methionine-dependent enzyme (B12-rSAM), and a methyltransferase. All enzymes encoded by the BGC were functionally expressed in Burkholderia sp. FERM BP-3421. Structural characterization with 2D-NMR and Marfey's method on the resulting RiPP demonstrated that the P450 enzyme catalyzed the formation of a biaryl C-C crosslink between two Tyr residues with the B12-rSAM generating β-methyltyrosine. The MNIO transformed a C-terminal Asp residue into aminopyruvic acid while the methyltransferase acted on the β-carbon of the α-keto acid. Exciton-coupled circular dichroism spectroscopy and microcrystal electron diffraction (MicroED) were used to elucidate the stereochemical configurations of the atropisomer that formed upon biaryl crosslinking. The conserved Cys residue in the precursor peptide was not modified as in all other characterized MNIO-containing BGCs; However, mutational analyses demonstrated that it was essential for the MNIO activity on the C-terminal Asp. To the best of our knowledge, the MNIO featured in this pathway is the first to modify a residue other than Cys. This study underscores the utility of genome mining to discover new macrocyclic RiPPs and that RiPPs remain a significant source of previously undiscovered enzyme chemistry.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Danielle L. Gray
- School of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Toby J. Woods
- School of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Chandrashekhar Padhi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Kristen M. Flatt
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
12
|
Keith AD, Sawyer EB, Choy DCY, Xie Y, Biggs GS, Klein OJ, Brear PD, Wales DJ, Barker PD. Combining experiment and energy landscapes to explore anaerobic heme breakdown in multifunctional hemoproteins. Phys Chem Chem Phys 2024; 26:695-712. [PMID: 38053511 DOI: 10.1039/d3cp03897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
To survive, many pathogens extract heme from their host organism and break down the porphyrin scaffold to sequester the Fe2+ ion via a heme oxygenase. Recent studies have revealed that certain pathogens can anaerobically degrade heme. Our own research has shown that one such pathway proceeds via NADH-dependent heme degradation, which has been identified in a family of hemoproteins from a range of bacteria. HemS, from Yersinia enterocolitica, is the main focus of this work, along with HmuS (Yersinia pestis), ChuS (Escherichia coli) and ShuS (Shigella dysenteriae). We combine experiments, Energy Landscape Theory, and a bioinformatic investigation to place these homologues within a wider phylogenetic context. A subset of these hemoproteins are known to bind certain DNA promoter regions, suggesting not only that they can catalytically degrade heme, but that they are also involved in transcriptional modulation responding to heme flux. Many of the bacterial species responsible for these hemoproteins (including those that produce HemS, ChuS and ShuS) are known to specifically target oxygen-depleted regions of the gastrointestinal tract. A deeper understanding of anaerobic heme breakdown processes exploited by these pathogens could therefore prove useful in the development of future strategies for disease prevention.
Collapse
Affiliation(s)
- Alasdair D Keith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Elizabeth B Sawyer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Desmond C Y Choy
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Yuhang Xie
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - George S Biggs
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Oskar James Klein
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Paul D Brear
- Department of Biochemistry, University of Cambridge, Sanger Building, Cambridge CB2 1GA, UK
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Paul D Barker
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
13
|
Li QY, He Y, Lin YM, Gong L. Photo-Induced C-H Methylation Reactions. Chemistry 2023; 29:e202302542. [PMID: 37800464 DOI: 10.1002/chem.202302542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
Direct C-H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo-induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp3 )-H, C(sp2 )-H, and C(sp)-H bonds in various organic molecules. The discussed methodologies encompass transition-metal-based photocatalysis, organophotocatalysis, as well as other metal-free approaches, including electron donor-acceptor (EDA)-enabled transformations. Importantly, a wide range of easily accessible agents such as tert-butyl peroxide, methanol, DMSO, methyl tert-butyl ether, TsOMe, N-(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C-H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds.
Collapse
Affiliation(s)
- Qian-Yu Li
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yuhang He
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and, Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian, 361005, China
| |
Collapse
|
14
|
Chen W, Zou F, Song T, Xia Y, Xing J, Rao T, Zhou X, Ning J, Zhao S, Yu W, Cheng F. Comprehensive analysis reveals XCL2 as a cancer prognosis and immune infiltration-related biomarker. Aging (Albany NY) 2023; 15:11891-11917. [PMID: 37905956 PMCID: PMC10683633 DOI: 10.18632/aging.205156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND X-C Motif Chemokine Ligand 2 (XCL2) is a 114 amino acid, structurally conserved chemokine involved in activating cytotoxic T cells. However, the pathophysiological mechanisms of XCL2 protein in various disease conditions, particularly cancer, remain poorly understood. METHODS Bioinformatics was used to detect the expression of XCL2, the relationship between survival time and XCL2 in BLCA patients, the mutational status of XCL2, the role of XCL2 in the tumor immune microenvironment, and the sensitivity of XCL2-targeted drugs in 33 cancers. In vitro experiments were conducted to investigate the chemotactic effects of XCL2 expression on M1-type macrophages in human specimens and in isolated cancer cells. RESULTS XCL2 expression was downregulated in tumor tissues and closely associated with the prognosis of human cancers. Furthermore, XCL2 affects DNA methylation, tumor mutation burden (TMB), microsatellite instability (MSI), and mismatch repair (MMR) in human cancers. The expression level of XCL2 significantly correlated with infiltrated immune cells, immunological pathways, and other immune markers. More importantly, we found that XCL2 was positively associated with T lymphocytes and macrophages in the transcriptome and single-cell sequencing data. Using multiple immunofluorescence staining, we found that the expression level of XCL2 was upregulated in many cells in pan-cancer samples, and the number of M1 macrophage marker CD68 and INOS-positive cells increased. 786O, U251, and MDA-MB-231 cells could recruit more M1 macrophages in vitro after overexpressing XCL2. CONCLUSIONS Our results reveal that XCL2 could act as a vital chemokine in pan-cancer and provide new targets and concepts for cancer treatment.
Collapse
Affiliation(s)
- Wu Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Zou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tianbao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ji Xing
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
15
|
Wilkens D, Simon J. Biosynthesis and function of microbial methylmenaquinones. Adv Microb Physiol 2023; 83:1-58. [PMID: 37507157 DOI: 10.1016/bs.ampbs.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The membranous quinone/quinol pool is essential for the majority of life forms and its composition has been widely used as a biomarker in microbial taxonomy. The most abundant quinone is menaquinone (MK), which serves as an essential redox mediator in various electron transport chains of aerobic and anaerobic respiration. Several methylated derivatives of MK, designated methylmenaquinones (MMKs), have been reported to be present in members of various microbial phyla possessing either the classical MK biosynthesis pathway (Men) or the futalosine pathway (Mqn). Due to their low redox midpoint potentials, MMKs have been proposed to be specifically involved in appropriate electron transport chains of anaerobic respiration. The class C radical SAM methyltransferases MqnK, MenK and MenK2 have recently been shown to catalyse specific MK methylation reactions at position C-8 (MqnK/MenK) or C-7 (MenK2) to synthesise 8-MMK, 7-MMK and 7,8-dimethylmenaquinone (DMMK). MqnK, MenK and MenK2 from organisms such as Wolinella succinogenes, Adlercreutzia equolifaciens, Collinsella tanakaei, Ferrimonas marina and Syntrophus aciditrophicus have been functionally produced in Escherichia coli, enabling extensive quinone/quinol pool engineering of the native MK and 2-demethylmenaquinone (DMK). Cluster and phylogenetic analyses of available MK and MMK methyltransferase sequences revealed signature motifs that allowed the discrimination of MenK/MqnK/MenK2 family enzymes from other radical SAM enzymes and the identification of C-7-specific menaquinone methyltransferases of the MenK2 subfamily. It is envisaged that this knowledge will help to predict the methylation status of the menaquinone/menaquinol pool of any microbial species (or even a microbial community) from its (meta)genome.
Collapse
Affiliation(s)
- Dennis Wilkens
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
16
|
Neti SS, Wang B, Iwig DF, Onderko EL, Booker SJ. Enzymatic Fluoromethylation Enabled by the S-Adenosylmethionine Analog Te-Adenosyl- L-(fluoromethyl)homotellurocysteine. ACS CENTRAL SCIENCE 2023; 9:905-914. [PMID: 37252363 PMCID: PMC10214534 DOI: 10.1021/acscentsci.2c01385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 05/31/2023]
Abstract
Fluoromethyl, difluoromethyl, and trifluoromethyl groups are present in numerous pharmaceuticals and agrochemicals, where they play critical roles in the efficacy and metabolic stability of these molecules. Strategies for late-stage incorporation of fluorine-containing atoms in molecules have become an important area of organic and medicinal chemistry as well as synthetic biology. Herein, we describe the synthesis and use of Te-adenosyl-L-(fluoromethyl)homotellurocysteine (FMeTeSAM), a novel and biologically relevant fluoromethylating agent. FMeTeSAM is structurally and chemically related to the universal cellular methyl donor S-adenosyl-L-methionine (SAM) and supports the robust transfer of fluoromethyl groups to oxygen, nitrogen, sulfur, and some carbon nucleophiles. FMeTeSAM is also used to fluoromethylate precursors to oxaline and daunorubicin, two complex natural products that exhibit antitumor properties.
Collapse
Affiliation(s)
- Syam Sundar Neti
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Bo Wang
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - David F. Iwig
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Elizabeth L. Onderko
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Squire J. Booker
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Brimberry M, Corrigan P, Silakov A, Lanzilotta WN. Evidence for Porphyrin-Mediated Electron Transfer in the Radical SAM Enzyme HutW. Biochemistry 2023; 62:1191-1196. [PMID: 36877586 PMCID: PMC10035031 DOI: 10.1021/acs.biochem.2c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/16/2023] [Indexed: 03/07/2023]
Abstract
Bacteria that infect the human gut must compete for essential nutrients, including iron, under a variety of different metabolic conditions. Several enteric pathogens, including Vibrio cholerae and Escherichia coli O157:H7, have evolved mechanisms to obtain iron from heme in an anaerobic environment. Our laboratory has demonstrated that a radical S-adenosylmethionine (SAM) methyltransferase is responsible for the opening of the heme porphyrin ring and release of iron under anaerobic conditions. Furthermore, the enzyme in V. cholerae, HutW, has recently been shown to accept electrons from NADPH directly when SAM is utilized to initiate the reaction. However, how NADPH, a hydride donor, catalyzes the single electron reduction of a [4Fe-4S] cluster, and/or subsequent electron/proton transfer reactions, was not addressed. In this work, we provide evidence that the substrate, in this case, heme, facilitates electron transfer from NADPH to the [4Fe-4S] cluster. This study uncovers a new electron transfer pathway adopted by radical SAM enzymes and further expands our understanding of these enzymes in bacterial pathogens.
Collapse
Affiliation(s)
- Marley Brimberry
- Department
of Biochemistry and Molecular Biology & Center for Metalloenzyme
Studies, University of Georgia, Athens, Georgia 30602, United States
| | - Patrick Corrigan
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Alexey Silakov
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - William N. Lanzilotta
- Department
of Biochemistry and Molecular Biology & Center for Metalloenzyme
Studies, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Abstract
Methyl groups are well understood to play a critical role in pharmaceutical molecules, especially those bearing saturated heterocyclic cores. Accordingly, methods that install methyl groups onto complex molecules are highly coveted. Late-stage C-H functionalization is a particularly attractive approach, allowing chemists to bypass lengthy syntheses and facilitating the expedited synthesis of drug analogues. Herein, we disclose the direct introduction of methyl groups via C(sp3)-H functionalization of a broad array of saturated heterocycles, enabled by the merger of decatungstate photocatalysis and a unique nickel-mediated SH2 bond formation. To further demonstrate its synthetic utility as a tool for late-stage functionalization, this method was applied to a range of drug molecules en route to an array of methylated drug analogues.
Collapse
Affiliation(s)
- Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
19
|
Hu X, Shi Y, Jiang B, Fu J, Li X, Li S, Sun G, Ren W, Hu X, You X, Liu Z, Han X, Zhang T, Hong B, Wu L. Iterative Methylation Leads to 3-Methylchuangxinmycin Production in Actinoplanes tsinanensis CPCC 200056. JOURNAL OF NATURAL PRODUCTS 2023; 86:1-7. [PMID: 36649560 DOI: 10.1021/acs.jnatprod.2c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A new congener of chuangxinmycin (CM) was identified from Actinoplanes tsinanensis CPCC 200056. Its structure was determined as 3-methylchuangxinmycin (MCM) by 1D and 2D NMR. MCM could be generated in vivo from CM by heterologous expression of the vitamin B12-dependent radical SAM enzyme CxnA/A1 responsible for methylation of 3-demethylchuangxinmycin (DCM) in CM biosynthesis, indicating that CxnA/A1 could perform iterative methylation for MCM production. In vitro assays revealed significant activities of CM, DCM, and MCM against Mycobacterium tuberculosis H37Rv and clinically isolated isoniazid/rifampin-resistant M. tuberculosis, suggesting that CM and its derivatives may have potential for antituberculosis drug development.
Collapse
Affiliation(s)
- Xiaomin Hu
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yuanyuan Shi
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Bingya Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jie Fu
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xingxing Li
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shufen Li
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Guizhi Sun
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Weicong Ren
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xinxin Hu
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xuefu You
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Xingli Han
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Linzhuan Wu
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
20
|
Tsymbal AV, Bizzini LD, MacMillan DWC. Nickel Catalysis via S H2 Homolytic Substitution: The Double Decarboxylative Cross-Coupling of Aliphatic Acids. J Am Chem Soc 2022; 144:21278-21286. [PMID: 36375080 PMCID: PMC10680145 DOI: 10.1021/jacs.2c08989] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cross-coupling platforms are traditionally built around a sequence of closed-shell steps, such as oxidative addition, transmetalation, and reductive elimination. Herein, we describe a dual photo/nickel catalytic manifold that performs cross-coupling via a complementary sequence involving free radical generation, radical sorting via selective binding to a Ni(II) center, and bimolecular homolytic substitution (SH2) at a high-valent nickel-alkyl complex. This catalytic manifold enables the hitherto elusive cross-coupling of diverse aliphatic carboxylic acids to generate valuable C(sp3)-C(sp3)-products. Notably, the powerful SH2 mechanism provides general access to sterically encumbered quaternary carbon centers, addressing a long-standing challenge in fragment coupling chemistry.
Collapse
Affiliation(s)
- Artem V Tsymbal
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Lorenzo Delarue Bizzini
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
21
|
Nie L, Wei T, Cao M, Lyu Y, Wang S, Feng Z. Biosynthesis of coelulatin for the methylation of anthraquinone featuring HemN-like radical S-adenosyl-L-methionine enzyme. Front Microbiol 2022; 13:1040900. [PMID: 36466681 PMCID: PMC9714029 DOI: 10.3389/fmicb.2022.1040900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 09/11/2024] Open
Abstract
Bacterial aromatic polyketides are usually biosynthesized by the type II polyketide synthase (PKS-II) system. Advances in deoxyribonucleic acid (DNA) sequencing, informatics, and biotechnologies have broadened opportunities for the discovery of aromatic polyketides. Meanwhile, metagenomics is a biotechnology that has been considered as a promising approach for the discovery of novel natural products from uncultured bacteria. Here, we cloned a type II polyketide biosynthetic gene cluster (BGC) from the soil metagenome, and the heterologous expression of this gene cluster in Streptomyces coelicolor M1146 resulted in the production of three anthraquinones, two of which (coelulatins 2 and 3) had special hydroxymethyl and methyloxymethyl modifications at C2 of the polyketide scaffold. Gene deletion and in vitro biochemical characterization indicated that the HemN-like radical S-adenosyl-L-methionine (SAM) enzyme CoeI exhibits methylation and is involved in C2 modification.
Collapse
Affiliation(s)
- Lishuang Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tianyi Wei
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Mingming Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shaochen Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyang Feng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Abstract
Covering: up to 2022The report provides a broad approach to deciphering the evolution of coenzyme biosynthetic pathways. Here, these various pathways are analyzed with respect to the coenzymes required for this purpose. Coenzymes whose biosynthesis relies on a large number of coenzyme-mediated reactions probably appeared on the scene at a later stage of biological evolution, whereas the biosyntheses of pyridoxal phosphate (PLP) and nicotinamide (NAD+) require little additional coenzymatic support and are therefore most likely very ancient biosynthetic pathways.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
23
|
Nguyen TQ, Nicolet Y. Structure and Catalytic Mechanism of Radical SAM Methylases. Life (Basel) 2022; 12:1732. [PMID: 36362886 PMCID: PMC9692996 DOI: 10.3390/life12111732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 08/14/2023] Open
Abstract
Methyl transfer is essential in myriad biological pathways found across all domains of life. Unlike conventional methyltransferases that catalyze this reaction through nucleophilic substitution, many members of the radical S-adenosyl-L-methionine (SAM) enzyme superfamily use radical-based chemistry to methylate unreactive carbon centers. These radical SAM methylases reductively cleave SAM to generate a highly reactive 5'-deoxyadenosyl radical, which initiates a broad range of transformations. Recently, crystal structures of several radical SAM methylases have been determined, shedding light on the unprecedented catalytic mechanisms used by these enzymes to overcome the substantial activation energy barrier of weakly nucleophilic substrates. Here, we review some of the discoveries on this topic over the last decade, focusing on enzymes for which three-dimensional structures are available to identify the key players in the mechanisms, highlighting the dual function of SAM as a methyl donor and a 5'-deoxyadenosyl radical or deprotonating base source. We also describe the role of the protein matrix in orchestrating the reaction through different strategies to catalyze such challenging methylations.
Collapse
Affiliation(s)
| | - Yvain Nicolet
- Metalloproteins Unit, Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| |
Collapse
|
24
|
Abdelraheem E, Thair B, Varela RF, Jockmann E, Popadić D, Hailes HC, Ward JM, Iribarren AM, Lewkowicz ES, Andexer JN, Hagedoorn P, Hanefeld U. Methyltransferases: Functions and Applications. Chembiochem 2022; 23:e202200212. [PMID: 35691829 PMCID: PMC9539859 DOI: 10.1002/cbic.202200212] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Indexed: 11/25/2022]
Abstract
In this review the current state-of-the-art of S-adenosylmethionine (SAM)-dependent methyltransferases and SAM are evaluated. Their structural classification and diversity is introduced and key mechanistic aspects presented which are then detailed further. Then, catalytic SAM as a target for drugs, and approaches to utilise SAM as a cofactor in synthesis are introduced with different supply and regeneration approaches evaluated. The use of SAM analogues are also described. Finally O-, N-, C- and S-MTs, their synthetic applications and potential for compound diversification is given.
Collapse
Affiliation(s)
- Eman Abdelraheem
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Benjamin Thair
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Romina Fernández Varela
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Emely Jockmann
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Désirée Popadić
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - John M. Ward
- Department of Biochemical EngineeringBernard Katz BuildingUniversity College LondonLondonWC1E 6BTUK
| | - Adolfo M. Iribarren
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Elizabeth S. Lewkowicz
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Jennifer N. Andexer
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Peter‐Leon Hagedoorn
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Ulf Hanefeld
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| |
Collapse
|
25
|
Gagsteiger J, Jahn S, Heidinger L, Gericke L, Andexer JN, Friedrich T, Loenarz C, Layer G. A Cobalamin-Dependent Radical SAM Enzyme Catalyzes the Unique C α -Methylation of Glutamine in Methyl-Coenzyme M Reductase. Angew Chem Int Ed Engl 2022; 61:e202204198. [PMID: 35638156 PMCID: PMC9401015 DOI: 10.1002/anie.202204198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 12/22/2022]
Abstract
Methyl‐coenzyme M reductase, which is responsible for the production of the greenhouse gas methane during biological methane formation, carries several unique posttranslational amino acid modifications, including a 2‐(S)‐methylglutamine. The enzyme responsible for the Cα‐methylation of this glutamine is not known. Herein, we identify and characterize a cobalamin‐dependent radical SAM enzyme as the glutamine C‐methyltransferase. The recombinant protein from Methanoculleus thermophilus binds cobalamin in a base‐off, His‐off conformation and contains a single [4Fe‐4S] cluster. The cobalamin cofactor cycles between the methyl‐cob(III)alamin, cob(II)alamin and cob(I)alamin states during catalysis and produces methylated substrate, 5′‐deoxyadenosine and S‐adenosyl‐l‐homocysteine in a 1 : 1 : 1 ratio. The newly identified glutamine C‐methyltransferase belongs to the class B radical SAM methyltransferases known to catalyze challenging methylation reactions of sp3‐hybridized carbon atoms.
Collapse
Affiliation(s)
- Jana Gagsteiger
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 19, 79104, Freiburg, Germany
| | - Sören Jahn
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Lorenz Heidinger
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Lukas Gericke
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Jennifer N Andexer
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Christoph Loenarz
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Gunhild Layer
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 19, 79104, Freiburg, Germany
| |
Collapse
|
26
|
Liu YA, Quechol R, Solomon JB, Lee CC, Ribbe MW, Hu Y, Hedman B, Hodgson KO. Radical SAM-dependent formation of a nitrogenase cofactor core on NifB. J Inorg Biochem 2022; 233:111837. [PMID: 35550498 PMCID: PMC9526504 DOI: 10.1016/j.jinorgbio.2022.111837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 11/15/2022]
Abstract
Nitrogenase is a versatile metalloenzyme that reduces N2, CO and CO2 at its cofactor site. Designated the M-cluster, this complex cofactor has a composition of [(R-homocitrate)MoFe7S9C], and it is assembled through the generation of a unique [Fe8S9C] core prior to the insertion of Mo and homocitrate. NifB is a radical S-adenosyl-L-methionine (SAM) enzyme that is essential for nitrogenase cofactor assembly. This review focuses on the recent work that sheds light on the role of NifB in the formation of the [Fe8S9C] core of the nitrogenase cofactor, highlighting the structure, function and mechanism of this unique radical SAM methyltransferase.
Collapse
Affiliation(s)
- Yiling A Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America
| | - Robert Quechol
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America
| | - Joseph B Solomon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America; Department of Chemistry, University of California, Irvine, CA 92697-2025, United States of America
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America; Department of Chemistry, University of California, Irvine, CA 92697-2025, United States of America.
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States of America.
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, United States of America.
| | - Keith O Hodgson
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, United States of America; Department of Chemistry, Stanford University, Stanford, CA 94305, United States of America.
| |
Collapse
|
27
|
Lloyd CT, Iwig DF, Wang B, Cossu M, Metcalf WW, Boal AK, Booker SJ. Discovery, structure, and mechanism of a tetraether lipid synthase. Nature 2022; 609:197-203. [PMID: 35882349 PMCID: PMC9433317 DOI: 10.1038/s41586-022-05120-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
Abstract
Archaea synthesize isoprenoid-based ether-linked membrane lipids, which enable them to withstand extreme environmental conditions, such as high temperatures, high salinity, and low or high pH values1–5. In some archaea, such as Methanocaldococcus jannaschii, these lipids are further modified by forming carbon–carbon bonds between the termini of two lipid tails within one glycerophospholipid to generate the macrocyclic archaeol or forming two carbon–carbon bonds between the termini of two lipid tails from two glycerophospholipids to generate the macrocycle glycerol dibiphytanyl glycerol tetraether (GDGT)1,2. GDGT contains two 40-carbon lipid chains (biphytanyl chains) that span both leaflets of the membrane, providing enhanced stability to extreme conditions. How these specialized lipids are formed has puzzled scientists for decades. The reaction necessitates the coupling of two completely inert sp3-hybridized carbon centres, which, to our knowledge, has not been observed in nature. Here we show that the gene product of mj0619 from M. jannaschii, which encodes a radical S-adenosylmethionine enzyme, is responsible for biphytanyl chain formation during synthesis of both the macrocyclic archaeol and GDGT membrane lipids6. Structures of the enzyme show the presence of four metallocofactors: three [Fe4S4] clusters and one mononuclear rubredoxin-like iron ion. In vitro mechanistic studies show that Csp3–Csp3 bond formation takes place on fully saturated archaeal lipid substrates and involves an intermediate bond between the substrate carbon and a sulfur of one of the [Fe4S4] clusters. Our results not only establish the biosynthetic route for tetraether formation but also improve the use of GDGT in GDGT-based paleoclimatology indices7–10. In Methanocaldococcus jannaschii, a radical S-adenosylmethionine enzyme catalyses the formation of the biphytanyl chain.
Collapse
Affiliation(s)
- Cody T Lloyd
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - David F Iwig
- The Howard Hughes Medical Institute, Pennsylvania State University, University. Park, PA, USA
| | - Bo Wang
- The Howard Hughes Medical Institute, Pennsylvania State University, University. Park, PA, USA
| | - Matteo Cossu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - William W Metcalf
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Institute for Genomic Biology, University of Illinois Urbana- Champaign, Urbana, IL, USA
| | - Amie K Boal
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA. .,The Howard Hughes Medical Institute, Pennsylvania State University, University. Park, PA, USA.
| | - Squire J Booker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA. .,The Howard Hughes Medical Institute, Pennsylvania State University, University. Park, PA, USA. .,Department of Chemistry, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
28
|
Yu Y, van der Donk WA. Biosynthesis of 3-thia-α-amino acids on a carrier peptide. Proc Natl Acad Sci U S A 2022; 119:e2205285119. [PMID: 35787182 PMCID: PMC9303977 DOI: 10.1073/pnas.2205285119] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
A subset of natural products, such as polyketides and nonribosomal peptides, is biosynthesized while tethered to a carrier peptide via a thioester linkage. Recently, we reported that the biosyntheses of 3-thiaglutamate and ammosamide, single amino acid-derived natural products, employ a very different type of carrier peptide to which the biosynthetic intermediates are bound via an amide linkage. During their biosyntheses, a peptide aminoacyl-transfer ribonucleic acid (tRNA) ligase (PEARL) first loads an amino acid to the C terminus of the carrier peptide for subsequent modification by other enzymes. Proteolytic removal of the modified C-terminal amino acid yields the mature product. We termed natural products that are biosynthesized using such pathways pearlins. To investigate the diversity of pearlins, in this study we experimentally characterized another PEARL-encoding biosynthetic gene cluster (BGC) from Tistrella mobilis (tmo). The enzymes encoded in the tmo BGC transformed cysteine into 3-thiahomoleucine both in vitro and in Escherichia coli. During this process, a cobalamin-dependent radical S-adenosylmethionine (SAM) enzyme catalyzes C-isopropylation. This work illustrates that the biosynthesis of amino acid-derived natural products on a carrier peptide is a widespread strategy in nature and expands the spectrum of thiahemiaminal analogs of amino acids that may serve a broader, currently unknown function.
Collapse
Affiliation(s)
- Yue Yu
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- HHMI, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- HHMI, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
29
|
Bridwell-Rabb J, Li B, Drennan CL. Cobalamin-Dependent Radical S-Adenosylmethionine Enzymes: Capitalizing on Old Motifs for New Functions. ACS BIO & MED CHEM AU 2022; 2:173-186. [PMID: 35726326 PMCID: PMC9204698 DOI: 10.1021/acsbiomedchemau.1c00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/21/2023]
Abstract
The members of the radical S-adenosylmethionine (SAM) enzyme superfamily are responsible for catalyzing a diverse set of reactions in a multitude of biosynthetic pathways. Many members of this superfamily accomplish their transformations using the catalytic power of a 5'-deoxyadenosyl radical (5'-dAdo•), but there are also enzymes within this superfamily that bind auxiliary cofactors and extend the catalytic repertoire of SAM. In particular, the cobalamin (Cbl)-dependent class synergistically uses Cbl to facilitate challenging methylation and radical rearrangement reactions. Despite identification of this class by Sofia et al. 20 years ago, the low sequence identity between members has led to difficulty in predicting function of uncharacterized members, pinpointing catalytic residues, and elucidating reaction mechanisms. Here, we capitalize on the three recent structures of Cbl-dependent radical SAM enzymes that use common cofactors to facilitate ring contraction as well as radical-based and non-radical-based methylation reactions. With these three structures as a framework, we describe how the Cbl-dependent radical SAM enzymes repurpose the traditional SAM- and Cbl-binding motifs to form an active site where both Cbl and SAM can participate in catalysis. In addition, we describe how, in some cases, the classic SAM- and Cbl-binding motifs support the diverse functionality of this enzyme class, and finally, we define new motifs that are characteristic of Cbl-dependent radical SAM enzymes.
Collapse
Affiliation(s)
- Jennifer Bridwell-Rabb
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109, United States,
| | - Bin Li
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109, United States
| | - Catherine L. Drennan
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States,Department
of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States,Howard
Hughes Medical Institute, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Gagsteiger J, Jahn S, Heidinger L, Gericke L, Andexer JN, Friedrich T, Loenarz C, Layer G. A Cobalamin‐Dependent Radical SAM Enzyme Catalyzes the Unique Cα‐Methylation of Glutamine in Methyl‐Coenzyme M Reductase. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jana Gagsteiger
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie GERMANY
| | - Sören Jahn
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie GERMANY
| | - Lorenz Heidinger
- Albert-Ludwigs-Universität Freiburg Institut für Biochemie GERMANY
| | - Lukas Gericke
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie GERMANY
| | - Jennifer N. Andexer
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie GERMANY
| | - Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Biochemie GERMANY
| | - Christoph Loenarz
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie GERMANY
| | - Gunhild Layer
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie Stefan-Meier-Str. 19 79104 Freiburg GERMANY
| |
Collapse
|
31
|
Wu R, Ding W, Zhang Q. Consecutive Methylation catalyzed by
TsrM
, an atypical Class B radical
SAM
methylase. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Runze Wu
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
32
|
Wang B, Wu P, Shaik S. Critical Roles of Exchange and Superexchange Interactions in Dictating Electron Transfer and Reactivity in Metalloenzymes. J Phys Chem Lett 2022; 13:2871-2877. [PMID: 35325545 DOI: 10.1021/acs.jpclett.2c00513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electron transfer (ET) is a fundamental process in transition-metal-dependent metalloenzymes. In these enzymes, the spin-spin interactions within the same metal center and/or between different metal sites can play a pivotal role in the catalytic cycle and reactivity. This Perspective highlights that the exchange and/or superexchange interactions can intrinsically modulate the inner-sphere and long-range electron transfer, thus controlling the mechanism and activity of metalloenzymes. For mixed-valence diiron oxygenases, the spin-regulated inner-sphere ET can be dictated by exchange interactions, leading to efficient O-O bond activations. Likewise, the spin-regulated inner-sphere ET can be enhanced by both exchange and superexchange interactions in [Fe4S4]-dependent SAM enzymes, which enable the efficient cleavage of the S─C(γ) or S─C5' bond of SAM. In addition to inner-sphere ET, superexchange interactions may modulate the long-range ET between metalloenzymes. We anticipate that the exchange and superexchange enhanced reactivity could be applicable in other important metalloenzymes, such as Photosystem II and nitrogenases.
Collapse
Affiliation(s)
- Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
33
|
Tachikawa H. Reaction mechanism of an intracluster S N2 reaction induced by electron capture. Phys Chem Chem Phys 2022; 24:3941-3950. [PMID: 35098286 DOI: 10.1039/d1cp04697g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimolecular nucleophilic substitution (SN2) reactions have been widely investigated from both experimental and theoretical points of view because they represent one of the simplest organic reactions. Most studies on SN2 reactions have been focused on bimolecular collision. In contrast, information on intracluster SN2 reactions is limited. In this study, an intracluster SN2 reaction of NF3-CH3Cl triggered by electron attachment was investigated using a direct ab initio molecular dynamics (AIMD) method. In the structure of NF3-CH3Cl, the N-F bond in NF3 is oriented collinearly toward the carbon atom of CH3Cl. After electron capture by NF3-CH3Cl, the F- ion that is generated from the (NF3)- moiety collides with the carbon atom of CH3Cl. The intracluster SN2 reaction occurs as follows: (NF3-CH3Cl)- (electron capture state) → NF2-(F-)-CH3Cl (pre-reaction complex) → transition state (TS) → NF2-CH3F-Cl- (post-reaction complex) → NF2 + CH3F + Cl- (product state). The reaction energy is efficiently transferred to the translational mode of Cl-, and the Cl- ion with a high translational energy is then removed from the system. This energy is significantly larger than that of Cl- formed in the bimolecular SN2 reaction (F- + CH3Cl). The reaction mechanism is discussed based on the theoretical results.
Collapse
Affiliation(s)
- Hiroto Tachikawa
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| |
Collapse
|
34
|
Affiliation(s)
- Jinduo Cheng
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
35
|
Cheng J, Liu WQ, Zhu X, Zhang Q. Functional Diversity of HemN-like Proteins. ACS BIO & MED CHEM AU 2022; 2:109-119. [PMID: 37101745 PMCID: PMC10114718 DOI: 10.1021/acsbiomedchemau.1c00058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
HemN is a radical S-adenosylmethionine (SAM) enzyme that catalyzes the anaerobic oxidative decarboxylation of coproporphyrinogen III to produce protoporphyrinogen IX, a key intermediate in heme biosynthesis. Proteins homologous to HemN (HemN-like proteins) are widespread in both prokaryotes and eukaryotes. Although these proteins are in most cases annotated as anaerobic coproporphyrinogen III oxidases (CPOs) in the public database, many of them are actually not CPOs but have diverse functions such as methyltransferases, cyclopropanases, heme chaperones, to name a few. This Perspective discusses the recent advances in the understanding of HemN-like proteins, and particular focus is placed on the diverse chemistries and functions of this growing protein family.
Collapse
Affiliation(s)
- Jinduo Cheng
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Wan-Qiu Liu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xiaoyu Zhu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
36
|
Afoullouss S, Sanchez AR, Jennings LK, Kee Y, Allcock AL, Thomas OP. Unveiling the Chemical Diversity of the Deep-Sea Sponge Characella pachastrelloides. Mar Drugs 2022; 20:md20010052. [PMID: 35049906 PMCID: PMC8779493 DOI: 10.3390/md20010052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Sponges are at the forefront of marine natural product research. In the deep sea, extreme conditions have driven secondary metabolite pathway evolution such that we might expect deep-sea sponges to yield a broad range of unique natural products. Here, we investigate the chemodiversity of a deep-sea tetractinellid sponge, Characella pachastrelloides, collected from ~800 m depth in Irish waters. First, we analyzed the MS/MS data obtained from fractions of this sponge on the GNPS public online platform to guide our exploration of its chemodiversity. Novel glycolipopeptides named characellides were previously isolated from the sponge and herein cyanocobalamin, a manufactured form of vitamin B12, not previously found in nature, was isolated in a large amount. We also identified several poecillastrins from the molecular network, a class of polyketide known to exhibit cytotoxicity. Light sensitivity prevented the isolation and characterization of these polyketides, but their presence was confirmed by characteristic NMR and MS signals. Finally, we isolated the new betaine 6-methylhercynine, which contains a unique methylation at C-2 of the imidazole ring. This compound showed potent cytotoxicity towards against HeLa (cervical cancer) cells.
Collapse
Affiliation(s)
- Sam Afoullouss
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland; (S.A.); (L.K.J.)
- School of Natural Sciences and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland;
| | - Anthony R. Sanchez
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA; (A.R.S.); (Y.K.)
| | - Laurence K. Jennings
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland; (S.A.); (L.K.J.)
| | - Younghoon Kee
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA; (A.R.S.); (Y.K.)
| | - A. Louise Allcock
- School of Natural Sciences and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland;
| | - Olivier P. Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland; (S.A.); (L.K.J.)
- Correspondence:
| |
Collapse
|
37
|
Deng WH, Liao RZ. Computational Study revealed a “Pull-Push” Radical Transfer Mechanism of Mmp10-Catalyzed Cδ-methylation of Arginine. Chem Commun (Camb) 2022; 58:7144-7147. [DOI: 10.1039/d2cc02052a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mmp10 is a B12-dependent SAM radical enzyme that catalyzes Cδ-methylation of arginine. The quantum chemical cluster calculations of Mmp10 revealed a “Pull-Push” radical transfer mechanism in which 5’-deoxyadenosine radical first...
Collapse
|
38
|
Brimberry MA, Mathew L, Lanzilotta W. Making and breaking carbon-carbon bonds in class C radical SAM methyltransferases. J Inorg Biochem 2022; 226:111636. [PMID: 34717253 PMCID: PMC8667262 DOI: 10.1016/j.jinorgbio.2021.111636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Radical S-adenosylmethionine (SAM) enzymes utilize a [4Fe-4S]1+ cluster and S-(5'-adenosyl)-L-methionine, (SAM), to generate a highly reactive radical and catalyze what is arguably the most diverse set of chemical reactions for any known enzyme family. At the heart of radical SAM catalysis is a highly reactive 5'-deoxyadenosyl radical intermediate (5'-dAdo●) generated through reductive cleavage of SAM or nucleophilic attack of the unique iron of the [4Fe-4S]+ cluster on the 5' C atom of SAM. Spectroscopic studies reveal the 5'-dAdo● is transiently captured in an FeC bond (Ω species). In the presence of substrate, homolytic scission of this metal‑carbon bond regenerates the 5'-dAdo● for catalytic hydrogen atom abstraction. While reminiscent of the adenosylcobalamin mechanism, radical SAM enzymes appear to encompass greater catalytic diversity. In this review we discuss recent developments for radical SAM enzymes involved in unique chemical rearrangements, specifically regarding class C radical SAM methyltransferases. Illuminating this class of radical SAM enzymes is especially significant as many enzymes have been shown to play critical roles in pathogenesis and the synthesis of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Marley A. Brimberry
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602
| | - Liju Mathew
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602
| | - William Lanzilotta
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602.,To whom correspondence should be addressed. Phone, (706) 542-1324; fax, (706) 542-1738;
| |
Collapse
|
39
|
Wang B, Silakov A, Booker SJ. Using peptide substrate analogs to characterize a radical intermediate in NosN catalysis. Methods Enzymol 2022; 666:469-487. [DOI: 10.1016/bs.mie.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Liu W, Lavagnino MN, Gould CA, Alcázar J, MacMillan DWC. A biomimetic S H2 cross-coupling mechanism for quaternary sp 3-carbon formation. Science 2021; 374:1258-1263. [PMID: 34762491 PMCID: PMC8926084 DOI: 10.1126/science.abl4322] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bimolecular homolytic substitution (SH2) is an open-shell mechanism that is implicated across a host of biochemical alkylation pathways. Surprisingly, however, this radical substitution manifold has not been generally deployed as a design element in synthetic C–C bond formation. We found that the SH2 mechanism can be leveraged to enable a biomimetic sp3-sp3 cross-coupling platform that furnishes quaternary sp3-carbon centers, a long-standing challenge in organic molecule construction. This heteroselective radical-radical coupling uses the capacity of iron porphyrin to readily distinguish between the SH2 bond-forming roles of open-shell primary and tertiary carbons, combined with photocatalysis to generate both radical classes simultaneously from widely abundant functional groups. Mechanistic studies confirm the intermediacy of a primary alkyl–Fe(III) species prior to coupling and provide evidence for the SH2 displacement pathway in the critical quaternary sp3-carbon bond formation step.
Collapse
Affiliation(s)
- Wei Liu
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| | | | - Colin A. Gould
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| | - Jesús Alcázar
- Discovery Chemistry, Janssen Research and Development, Janssen-Cilag S.A., C/Jarama 75A, Toledo 45007, Spain
| | | |
Collapse
|
41
|
Ma S, Mandalapu D, Wang S, Zhang Q. Biosynthesis of cyclopropane in natural products. Nat Prod Rep 2021; 39:926-945. [PMID: 34860231 DOI: 10.1039/d1np00065a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: 2012 to 2021Cyclopropane attracts wide interests in the fields of synthetic and pharmaceutical chemistry, and chemical biology because of its unique structural and chemical properties. This structural motif is widespread in natural products, and is usually essential for biological activities. Nature has evolved diverse strategies to access this structural motif, and increasing knowledge of the enzymes forming cyclopropane (i.e., cyclopropanases) has been revealed over the last two decades. Here, the scientific literature from the last two decades relating to cyclopropane biosynthesis is summarized, and the enzymatic cyclopropanations, according to reaction mechanism, which can be grouped into two major pathways according to whether the reaction involves an exogenous C1 unit from S-adenosylmethionine (SAM) or not, is discussed. The reactions can further be classified based on the key intermediates required prior to cyclopropane formation, which can be carbocations, carbanions, or carbon radicals. Besides the general biosynthetic pathways of the cyclopropane-containing natural products, particular emphasis is placed on the mechanism and engineering of the enzymes required for forming this unique structure motif.
Collapse
Affiliation(s)
- Suze Ma
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | | | - Shu Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
42
|
Pogorevc D, Müller R. Biotechnological production optimization of argyrins - a potent immunomodulatory natural product class. Microb Biotechnol 2021; 15:353-369. [PMID: 34724343 PMCID: PMC8719831 DOI: 10.1111/1751-7915.13959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
Argyrins represent a family of cyclic octapeptides exhibiting promising immunomodulatory activity via inhibiting mitochondrial protein synthesis, which leads to reduced IL-17 production by the T-helper 17 cells. Argyrins are formed by a non-ribosomal peptide synthetase (NRPS), originating from the myxobacterial producer strains Archangium gephyra Ar8082 and Cystobacter sp. SBCb004. In this work, a previously established heterologous production platform was employed to provide evidence of direct D-configured amino acid incorporation by the argyrin assembly line. An adenylation domain of the argyrin NRPS was characterized and shown to have a high preference for D-configured amino acids. Eight novel argyrin derivatives were generated via biosynthetic engineering of the heterologous production system. The system was also optimized to enable formation of methylated argyrin C and D derivatives with improved immunosuppressive activity compared with their unmethylated counterparts. Furthermore, the optimization of cultivation conditions allowed exclusive production of one major derivative at a time, drastically improving the purification process. Importantly, engineering of transcription and translation initiation resulted in a substantially improved production titre reaching 350-400 mg l-1 . The optimized system presented herein thus provides a versatile platform for production of this promising class of immunosuppressants at a scale that should provide sufficient supply for upcoming pre-clinical development.
Collapse
Affiliation(s)
- Domen Pogorevc
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrücken, 66123, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, 66123, Germany.,DZIF - German Centre for Infection Research, Partnersite Hannover-Braunschweig, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrücken, 66123, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, 66123, Germany.,DZIF - German Centre for Infection Research, Partnersite Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
43
|
Huang J, Chen Z, Wu J. Recent Progress in Methyl-Radical-Mediated Methylation or Demethylation Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jiapian Huang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P. R. China
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Zhiyuan Chen
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P. R. China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
44
|
Chen C, Wang ZJ, Lu H, Zhao Y, Shi Z. Generation of non-stabilized alkyl radicals from thianthrenium salts for C-B and C-C bond formation. Nat Commun 2021; 12:4526. [PMID: 34312381 PMCID: PMC8313578 DOI: 10.1038/s41467-021-24716-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Sulfonium salts bearing a positively charged sulfur atom with three organic substituents have intrigued chemists for more than a century for their unusual structures and high chemical reactivity. These compounds are known to undergo facile single-electron reduction to emerge as a valuable and alternative source of aryl radicals for organic synthesis. However, the generation of non-stabilized alkyl radicals from sulfonium salts has been a challenge for several decades. Here we report the treatment of S-(alkyl) thianthrenium salts to generate non-stabilized alkyl radicals as key intermediates granting the controlled and selective outcome of the ensuing reactions under mild photoredox conditions. The value of these reagents has been demonstrated through the efficient construction of alkylboronates and other transformations, including heteroarylation, alkylation, alkenylation, and alkynylation. The developed method is practical, and provides the opportunity to convert C-OH bond to C-B and C-C bonds.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zheng-Jun Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
45
|
McLaughlin M, Pallitsch K, Wallner G, van der Donk WA, Hammerschmidt F. Overall Retention of Methyl Stereochemistry during B 12-Dependent Radical SAM Methyl Transfer in Fosfomycin Biosynthesis. Biochemistry 2021; 60:1587-1596. [PMID: 33942609 PMCID: PMC8158854 DOI: 10.1021/acs.biochem.1c00113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/24/2021] [Indexed: 11/30/2022]
Abstract
Methylcobalamin-dependent radical S-adenosylmethionine (SAM) enzymes methylate non-nucleophilic atoms in a range of substrates. The mechanism of the methyl transfer from cobalt to the receiving atom is still mostly unresolved. Here we determine the stereochemical course of this process at the methyl group during the biosynthesis of the clinically used antibiotic fosfomycin. In vitro reaction of the methyltransferase Fom3 using SAM labeled with 1H, 2H, and 3H in a stereochemically defined manner, followed by chemoenzymatic conversion of the Fom3 product to acetate and subsequent stereochemical analysis, shows that the overall reaction occurs with retention of configuration. This outcome is consistent with a double-inversion process, first in the SN2 reaction of cob(I)alamin with SAM to form methylcobalamin and again in a radical transfer of the methyl group from methylcobalamin to the substrate. The methods developed during this study allow high-yield in situ generation of labeled SAM and recombinant expression and purification of the malate synthase needed for chiral methyl analysis. These methods facilitate the broader use of in vitro chiral methyl analysis techniques to investigate the mechanisms of other novel enzymes.
Collapse
Affiliation(s)
- Martin
I. McLaughlin
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | - Gabriele Wallner
- Institute
of Inorganic Chemistry, University of Vienna, Vienna 1090, Austria
| | - Wilfred A. van der Donk
- Department
of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | |
Collapse
|
46
|
Zhang H, Ge H, Zhang Y, Wang Y, Zhang P. Slr0320 Is Crucial for Optimal Function of Photosystem II during High Light Acclimation in Synechocystis sp. PCC 6803. Life (Basel) 2021; 11:life11040279. [PMID: 33810453 PMCID: PMC8065906 DOI: 10.3390/life11040279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Upon exposure of photosynthetic organisms to high light (HL), several HL acclimation responses are triggered. Herein, we identified a novel gene, slr0320, critical for HL acclimation in Synechocystis sp. PCC 6803. The growth rate of the Δslr0320 mutant was similar to wild type (WT) under normal light (NL) but severely declined under HL. Net photosynthesis of the mutant was lower under HL, but maximum photosystem II (PSII) activity was higher under NL and HL. Immunodetection revealed the accumulation and assembly of PSII were similar between WT and the mutant. Chlorophyll fluorescence traces showed the stable fluorescence of the mutant under light was much higher. Kinetics of single flash-induced chlorophyll fluorescence increase and decay revealed the slower electron transfer from QA to QB in the mutant. These data indicate that, in the Δslr0320 mutant, the number of functional PSIIs was comparable to WT even under HL but the electron transfer between QA and QB was inefficient. Quantitative proteomics and real-time PCR revealed that expression profiles of psbL, psbH and psbI were significantly altered in the Δslr0320 mutant. Thus, Slr0320 protein plays critical roles in optimizing PSII activity during HL acclimation and is essential for PSII electron transfer from QA to QB.
Collapse
Affiliation(s)
- Hao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (Y.Z.)
| | - Haitao Ge
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.G.); (Y.W.)
| | - Ye Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (Y.Z.)
| | - Yingchun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.G.); (Y.W.)
| | - Pengpeng Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (Y.Z.)
- Correspondence:
| |
Collapse
|
47
|
Abstract
The evolution of coenzymes, or their impact on the origin of life, is fundamental for understanding our own existence. Having established reasonable hypotheses about the emergence of prebiotic chemical building blocks, which were probably created under palaeogeochemical conditions, and surmising that these smaller compounds must have become integrated to afford complex macromolecules such as RNA, the question of coenzyme origin and its relation to the evolution of functional biochemistry should gain new impetus. Many coenzymes have a simple chemical structure and are often nucleotide-derived, which suggests that they may have coexisted with the emergence of RNA and may have played a pivotal role in early metabolism. Based on current theories of prebiotic evolution, which attempt to explain the emergence of privileged organic building blocks, this Review discusses plausible hypotheses on the prebiotic formation of key elements within selected extant coenzymes. In combination with prebiotic RNA, coenzymes may have dramatically broadened early protometabolic networks and the catalytic scope of RNA during the evolution of life.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
48
|
Sun Q, Huang M, Wei Y. Diversity of the reaction mechanisms of SAM-dependent enzymes. Acta Pharm Sin B 2021; 11:632-650. [PMID: 33777672 PMCID: PMC7982431 DOI: 10.1016/j.apsb.2020.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 02/08/2023] Open
Abstract
S-adenosylmethionine (SAM) is ubiquitous in living organisms and is of great significance in metabolism as a cofactor of various enzymes. Methyltransferases (MTases), a major group of SAM-dependent enzymes, catalyze methyl transfer from SAM to C, O, N, and S atoms in small-molecule secondary metabolites and macromolecules, including proteins and nucleic acids. MTases have long been a hot topic in biomedical research because of their crucial role in epigenetic regulation of macromolecules and biosynthesis of natural products with prolific pharmacological moieties. However, another group of SAM-dependent enzymes, sharing similar core domains with MTases, can catalyze nonmethylation reactions and have multiple functions. Herein, we mainly describe the nonmethylation reactions of SAM-dependent enzymes in biosynthesis. First, we compare the structural and mechanistic similarities and distinctions between SAM-dependent MTases and the non-methylating SAM-dependent enzymes. Second, we summarize the reactions catalyzed by these enzymes and explore the mechanisms. Finally, we discuss the structural conservation and catalytical diversity of class I-like non-methylating SAM-dependent enzymes and propose a possibility in enzymes evolution, suggesting future perspectives for enzyme-mediated chemistry and biotechnology, which will help the development of new methods for drug synthesis.
Collapse
|
49
|
Aynetdinova D, Callens MC, Hicks HB, Poh CYX, Shennan BDA, Boyd AM, Lim ZH, Leitch JA, Dixon DJ. Installing the “magic methyl” – C–H methylation in synthesis. Chem Soc Rev 2021; 50:5517-5563. [DOI: 10.1039/d0cs00973c] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following notable cases of remarkable potency increases in methylated analogues of lead compounds, this review documents the state-of-the-art in C–H methylation technology.
Collapse
Affiliation(s)
- Daniya Aynetdinova
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Mia C. Callens
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Harry B. Hicks
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Charmaine Y. X. Poh
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | | | - Alistair M. Boyd
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Zhong Hui Lim
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Jamie A. Leitch
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Darren J. Dixon
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| |
Collapse
|
50
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 414] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|