1
|
Chen P, Wang J, Xue Y, Wang C, Sun W, Yu J, Guo H. From challenge to opportunity: Revolutionizing the monitoring of emerging contaminants in water with advanced sensors. WATER RESEARCH 2024; 265:122297. [PMID: 39208686 DOI: 10.1016/j.watres.2024.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Emerging contaminants in water represent long-term and unpredictable threats to both environmental and human health due to their persistence and bioaccumulation. Current research predominantly focuses on their removal rather than sustained monitoring. This review comprehensively investigates advanced sensor technologies for detecting these contaminants in water, critically evaluating biosensors, optical sensors, electrochemical sensors, and nanomaterial sensors. Elucidating the operational principles, performance metrics such as detection thresholds, and the pros and cons of their practical applications, the review addresses a significant research gap in environmental monitoring. Moreover, it enhances understanding of sensor effectiveness, which in turn guides researchers in selecting the right sensor types for various environmental scenarios. Furthermore, by emphasizing the integration of nanotechnology and the standardization of evaluation protocols, it promotes the development of robust, deployable sensing solutions. Ultimately, this leads to the proposal of a strategic framework aimed at significantly improving the detection capabilities of emerging contaminants and supporting the preservation of environmental health.
Collapse
Affiliation(s)
- Peng Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chunmiao Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianwei Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Zhu YQ, Chen Z, Chen ZY, Zhou ZW, Bai Q, Wu MX, Wang XH. Discrete Macrocyclic Polymer Hosts-Induced Cascade Luminescence Enhancement and Application in Bioimaging. Chemistry 2024:e202402808. [PMID: 39207820 DOI: 10.1002/chem.202402808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The integration of polymers, supramolecular macrocycles and aggregation-induced emission (AIE) molecules provides numerous possibilities for constructing various functional supramolecular systems. Herein, we constructed supramolecular assembled systems based on discrete macrocyclic polymer hosts via the cooperation of hydra-headed macrocycles containing two or three pillar[5]arene units (defined as P2, P3), the block polymer F127 and AIE molecules (alkyl-cyano modified tetraphenylethene, alkyl-triazole-cyano modified 9,10-distyrylanthracene, defined as TPE-(CN)4 and DSA-(TACN)2). Compared with the binary assembly between hydra-headed hosts or F127 and AIE molecules, cascaded supramolecular assembly-induced emission enhancement (SAIEE) in aqueous solution was achieved in discrete macrocyclic polymer-based supramolecular assembled systems. Considering the cascaded SAIEE performance, we have successfully applied discrete macrocyclic polymer-based supramolecular assembled systems to bioimaging and constructed an artificial light-harvesting system (LHs) to explore more potential applications. The supramolecular assembly form of discrete macrocyclic polymers hosts and AIE molecules proposed in this work provides new inspiration for the construction and application of high-performance supramolecular luminescent systems.
Collapse
Affiliation(s)
- Yu-Qi Zhu
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Zhaojun Chen
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Zhong-Yuan Chen
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Zhi-Wei Zhou
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Qian Bai
- Center for Medical Experiment, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, P. R. China
| | - Ming-Xue Wu
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Xing-Huo Wang
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| |
Collapse
|
3
|
Gao C, Gao Q, Zhao C, Huo Y, Zhang Z, Yang J, Jia C, Guo X. Technologies for investigating single-molecule chemical reactions. Natl Sci Rev 2024; 11:nwae236. [PMID: 39224448 PMCID: PMC11367963 DOI: 10.1093/nsr/nwae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Single molecules, the smallest independently stable units in the material world, serve as the fundamental building blocks of matter. Among different branches of single-molecule sciences, single-molecule chemical reactions, by revealing the behavior and properties of individual molecules at the molecular scale, are particularly attractive because they can advance the understanding of chemical reaction mechanisms and help to address key scientific problems in broad fields such as physics, chemistry, biology and materials science. This review provides a timely, comprehensive overview of single-molecule chemical reactions based on various technical platforms such as scanning probe microscopy, single-molecule junction, single-molecule nanostructure, single-molecule fluorescence detection and crossed molecular beam. We present multidimensional analyses of single-molecule chemical reactions, offering new perspectives for research in different areas, such as photocatalysis/electrocatalysis, organic reactions, surface reactions and biological reactions. Finally, we discuss the opportunities and challenges in this thriving field of single-molecule chemical reactions.
Collapse
Affiliation(s)
- Chunyan Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Yani Huo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Zhizhuo Zhang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Jinlong Yang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Ghasemi S, Shamsabadi M, Olesund A, Najera F, Erbs Hillers-Bendtsen A, Edhborg F, Aslam AS, Larsson W, Wang Z, Amombo Noa FM, Salthouse RJ, Öhrström L, Hölzel H, Perez-Inestrosa E, Mikkelsen KV, Hanrieder J, Albinsson B, Dreos A, Moth-Poulsen K. Pyrene Functionalized Norbornadiene-Quadricyclane Fluorescent Photoswitches: Characterization of their Spectral Properties and Application in Imaging of Amyloid Beta Plaques. Chemistry 2024; 30:e202400322. [PMID: 38629212 DOI: 10.1002/chem.202400322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 05/23/2024]
Abstract
This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aβ) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aβ plaques in situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.
Collapse
Affiliation(s)
- Shima Ghasemi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Monika Shamsabadi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Axel Olesund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Francisco Najera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590, Malaga, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | | | - Fredrik Edhborg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Adil S Aslam
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Wera Larsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Zhihang Wang
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge, CB3 0FS, U.K
| | - Francoise M Amombo Noa
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Rebecca Jane Salthouse
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - Lars Öhrström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Helen Hölzel
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - E Perez-Inestrosa
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590, Malaga, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, Denmark
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Ambra Dreos
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590, Malaga, Spain
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180, Mölndal, Sweden
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
- The Institute of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research & Advanced Studies, ICREA, Pg. Llu'ıs Companys 23, 08010, Barcelona, Spain
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| |
Collapse
|
5
|
Hu X, Liu J, Gong X, Xu J, Yao J, Li K, Liu H. Photochromic biomaterials: Synthesis and fluorescence properties of spiroxanthenes-grafted alginate derivatives. Carbohydr Polym 2024; 327:121664. [PMID: 38171681 DOI: 10.1016/j.carbpol.2023.121664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Herein, we reported a general and green synthetic strategy for photochromic functional alginate derivatives grafting with isoindolinone spiroxanthenes. Under mild condition, diverse 2-aminoalkyl isoindolinone spiroxanthene derivatives have been prepared from organic photochromic isobenzofuranone spiroxanthenes (including rhodamine B, rhodamine 6G and fluorescein), and grafted on alginate chains through amidation reaction using diamine as a linkage with water as a green solvent at room temperature. The photochromic properties of the fluorophores-modified polymers and the effect of pH value have been explored. Under acid conditions, the spiroisoindolinone rings of alginate derivatives are opened resulting in showing absorption bands and fluorescence with orange to green emission, while the alginate derivatives turned to colourless under basic conditions which is reversibly. In addition to biodegradability and biocompatibility, the polymers exhibit good film-forming properties simultaneously. The films and fibers produced from the alginate derivatives also project good fluorescence properties.
Collapse
Affiliation(s)
- Xiaoxia Hu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Xiaole Gong
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jiangtao Xu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jiuyong Yao
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Kai Li
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Honglei Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China.
| |
Collapse
|
6
|
Luo X, Zhang C, Yue C, Jiang Y, Yang F, Xian Y. A near-infrared light-activated nanoprobe for simultaneous detection of hydrogen polysulfide and sulfur dioxide in myocardial ischemia-reperfusion injury. Chem Sci 2023; 14:14290-14301. [PMID: 38098706 PMCID: PMC10718178 DOI: 10.1039/d3sc04937j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Ischemia-reperfusion-induced cardiomyocyte mortality constitutes a prominent contributor to global morbidity and mortality. However, early diagnosis and preventive treatment of cardiac I/R injury remains a challenge. Given the close relationship between ferroptosis and I/R injury, monitoring their pathological processes holds promise for advancing early diagnosis and treatment of the disease. Herein, we report a near-infrared (NIR) light-activated dual-responsive nanoprobe (UCNP@mSiO2@SP-NP-NAP) for controllable detection of hydrogen polysulfide (H2Sn) and sulfur dioxide (SO2) during ferroptosis-related myocardial I/R injury. The nanoprobe's responsive sites could be activated by NIR and Vis light modulation, reversibly alternating for at least 5 cycles. We employed the nanoprobe to monitor the fluctuation levels of H2Sn and SO2 in H9C2 cardiomyocytes and mice, revealing that H2Sn and SO2 levels were up-regulated during I/R. The NIR light-activated dual-responsive nanoprobe could be a powerful tool for myocardial I/R injury diagnosis. Moreover, we also found that inhibiting the initiation of the ferroptosis process contributed to attenuating cardiac I/R injury, which indicated great potential for treating I/R injury.
Collapse
Affiliation(s)
- Xianzhu Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Chenyang Yue
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Yuelin Jiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Fei Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| |
Collapse
|
7
|
Dreos A, Ge J, Najera F, Tebikachew BE, Perez-Inestrosa E, Moth-Poulsen K, Blennow K, Zetterberg H, Hanrieder J. Investigating New Applications of a Photoswitchable Fluorescent Norbornadiene as a Multifunctional Probe for Delineation of Amyloid Plaque Polymorphism. ACS Sens 2023; 8:1500-1509. [PMID: 36946692 PMCID: PMC10152485 DOI: 10.1021/acssensors.2c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
Amyloid beta (Aβ) plaques are a major pathological hallmark of Alzheimer's disease (AD) and constitute of structurally heterogenic entities (polymorphs) that have been implicated in the phenotypic heterogeneity of AD pathology and pathogenesis. Understanding amyloid aggregation has been a critical limiting factor to gain understanding of AD pathogenesis, ultimately reflected in that the underlying mechanism remains elusive. We identified a fluorescent probe in the form of a turn-off photoswitchable norbornadiene derivative (NBD1) with several microenvironment-sensitive properties that make it relevant for applications within advanced fluorescence imaging, for example, multifunctional imaging. We explored the application of NBD1 for in situ delineation of structurally heterogenic Aβ plaques in transgenic AD mouse models. NBD1 plaque imaging shows characteristic broader emission bands in the periphery and more narrow emission bands in the dense cores of mature cored plaques. Further, we demonstrate in situ photoisomerization of NBD1 to quadricyclane and thermal recovery in single plaques, which is relevant for applications within both functional and super-resolution imaging. This is the first time a norbornadiene photoswitch has been used as a probe for fluorescence imaging of Aβ plaque pathology in situ and that its spectroscopic and switching properties have been studied within the specific environment of senile Aβ plaques. These findings open the way toward new applications of NBD-based photoswitchable fluorescent probes for super-resolution or dual-color imaging and multifunctional microscopy of amyloid plaque heterogeneity. This could allow to visualize Aβ plaques with resolution beyond the diffraction limit, label different plaque types, and gain insights into their physicochemical composition.
Collapse
Affiliation(s)
- Ambra Dreos
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina−IBIMA Plataforma Bionand, 29590 Malaga, Spain
| | - Junyue Ge
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
| | - Francisco Najera
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina−IBIMA Plataforma Bionand, 29590 Malaga, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Behabitu Ergette Tebikachew
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Ezequiel Perez-Inestrosa
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina−IBIMA Plataforma Bionand, 29590 Malaga, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Kasper Moth-Poulsen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
- Institute
of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra, 08193 Barcelona, Spain
- Catalan
Institution for Research and Advanced Studies ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Department
of Chemical Engineering, Universitat Politecnica
de Catalunya, EEBE, Eduard
Maristany 10-14, 08019 Barcelona, Spain
| | - Kaj Blennow
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, 43180 Mölndal, Sweden
| | - Henrik Zetterberg
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, 43180 Mölndal, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK
Dementia Research Institute, University
College London, London WC1N 3BG, UK
- Hong
Kong Center for Neurodegenerative Diseases, Hong Kong 1512-1518, China
- UW
Department of Medicine, School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
8
|
Selvanathan P, Tufenkjian E, Galangau O, Roisnel T, Riobé F, Maury O, Norel L, Rigaut S. Ytterbium(III) Complex with Photochromic Ruthenium(II) Acetylide Ligand: All Visible Light Photoswitching of NIR Luminescence. Inorg Chem 2023; 62:2049-2057. [PMID: 36680521 DOI: 10.1021/acs.inorgchem.2c03628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report a ruthenium(II) bisacetylide complex bearing a photochromic dithienylethene (DTE) acetylide arm and a coordinating bipyridyl on the trans acetylide unit. Its coordination with Yb(TTA)3 centers (TTA = 2-thenoyltrifluoroacetonate) produces a bimetallic complex in which the dithienylethene isomerization is triggered by both ultraviolet (UV) light absorbed by the DTE unit and 450 nm excitation in a transition of the organometallic moiety. The redox behavior arising from the ruthenium(II) bisacetylide system is fully investigated by cyclic voltammetry and spectroelectrochemistry, revealing a lack of stability of the DTE-closed oxidized state preventing effective redox luminescence switching. On the other hand, the photoswitching of ytterbium(III) near-infrared (NIR) emission triggered by the photochromic reaction is fully operational. The electronic structure of this complex in its different states characterized by strong electronic coupling between the DTE and the ruthenium(II)-based moieties leading to metal-assisted photochromic behavior were rationalized with the help of time-dependent density functional theory (TD-DFT) calculations.
Collapse
Affiliation(s)
- Pramila Selvanathan
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| | - Elsa Tufenkjian
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| | - Olivier Galangau
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| | - Thierry Roisnel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| | - François Riobé
- Univ. Lyon, CNRS, Ecole Normale Supérieure de Lyon, Laboratoire de Chimie UMR 5182, 46 Allée d'Italie, F-69007 Lyon, France
| | - Olivier Maury
- Univ. Lyon, CNRS, Ecole Normale Supérieure de Lyon, Laboratoire de Chimie UMR 5182, 46 Allée d'Italie, F-69007 Lyon, France
| | - Lucie Norel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| | - Stéphane Rigaut
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| |
Collapse
|
9
|
Truong VX, Holloway JO, Barner-Kowollik C. Fluorescence turn-on by photoligation - bright opportunities for soft matter materials. Chem Sci 2022; 13:13280-13290. [PMID: 36507164 PMCID: PMC9682895 DOI: 10.1039/d2sc05403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022] Open
Abstract
Photochemical ligation has become an indispensable tool for applications that require spatially addressable functionalisation, both in biology and materials science. Interestingly, a number of photochemical ligations result in fluorescent products, enabling a self-reporting function that provides almost instantaneous visual feedback of the reaction's progress and efficiency. Perhaps no other chemical reaction system allows control in space and time to the same extent, while concomitantly providing inherent feedback with regard to reaction success and location. While photoactivable fluorescent properties have been widely used in biology for imaging purposes, the expansion of the array of photochemical reactions has further enabled its utility in soft matter materials. Herein, we concisely summarise the key developments of fluorogenic-forming photoligation systems and their emerging applications in both biology and materials science. We further summarise the current challenges and future opportunities of exploiting fluorescent self-reporting reactions in a wide array of chemical disciplines.
Collapse
Affiliation(s)
- Vinh X Truong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way Singapore 138 634 Singapore
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
| | - Joshua O Holloway
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
10
|
Yu M, Chen Y, Luo Y, Gong G, Zhang Y, Tan H, Xu L, Xu J. Photoswitchable lanthanide-doped core-multishell nanoparticles for tunable triple-mode information encryption and dynamic anti-counterfeiting patterns. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Zhang H, Qi Y, Zhao X, Li M, Wang R, Cheng H, Li Z, Guo H, Li Z. Dithienylethene-Bridged Fluoroquinolone Derivatives for Imaging-Guided Reversible Control of Antibacterial Activity. J Org Chem 2022; 87:7446-7455. [PMID: 35608344 DOI: 10.1021/acs.joc.2c00797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emerging field of photopharmacology has offered a promising alternative to guard against the bacterial resistance by effectively avoiding antibiotic accumulation in the body or environment. However, the degradation, toxicity, and thermal reversibility have always been an ongoing concern for potential applications of azobenzene-based photopharmacology. Developing novel photopharmacological agents based on a more matched switch is highly in demand and remains a major challenge. Herein, two novel dithienylethene-bridged dual-fluoroquinolone derivatives have been developed by introducing two fluoroquinolone drugs into both ends of the dithienylethene (DTE) switch, in which the fluoroquinolone acts as a fluorophore except for the pharmacodynamic component. For comparison, two monofluoroquinolone-DTE hybrids were also prepared by a similar strategy. As expected, these resultant DTE-based antibacterial agents displayed efficient photochromism and fluorescence switching behavior in dimethyl sulfoxide. Moreover, improved antibacterial activities compared to those of monofluoroquinolone derivatives and a maximum fourfold active difference against Escherichia coli (E. coli) for open and closed isomers and photoswitchable bacterial imaging for Staphylococcus aureus and E. coli were observed. The molecular docking to DNA gyrase gave a rationale for the discrepancies in antibacterial activity for both isomers. Therefore, these fluoroquinolone derivatives can act as interesting imaging-guided photopharmacological agents for further in vivo studies.
Collapse
Affiliation(s)
- Haining Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yueheng Qi
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xinru Zhao
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Manman Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ruyue Wang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Huiping Cheng
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Zhuo Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Hui Guo
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ziyong Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| |
Collapse
|
12
|
Galangau O, Norel L, Rigaut S. Metal complexes bearing photochromic ligands: photocontrol of functions and processes. Dalton Trans 2021; 50:17879-17891. [PMID: 34792058 DOI: 10.1039/d1dt03397b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metal complexes associated with photochromic molecules are attractive platforms to achieve smart light-switching materials with innovative and exciting properties due to specific optical, electronic, magnetic or catalytic features of metal complexes and by perturbing the excited-state properties of both components to generate new reactivity and photochemical properties. In this overview, we focus on selected achievements in key domains dealing with optical, redox, magnetic properties, as well as application in catalysis or supramolecular chemistry. We also try to point out scientific challenges that are still faced for future developments and applications.
Collapse
Affiliation(s)
- Olivier Galangau
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Lucie Norel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Stéphane Rigaut
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
13
|
Podshibyakin VА, Shepelenko ЕN, Yu. Karlutova O, Kuzmina LG, Dubonosov AD, Bren VA, Minkin VI. An efficient approach to diarylethene-amino acid photochromic fluorescent hybrids. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Behera SK, Park SY, Gierschner J. Duale Emission: Klassen, Mechanismen und Bedingungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Santosh Kumar Behera
- Madrid Institute for Advanced Studies IMDEA Nanociencia Ciudad Universitaria de Cantoblanco C/ Faraday 9 28049 Madrid Spanien
| | - Soo Young Park
- Laboratory of Supramolecular Optoelectronic Materials and Research Institute of Advanced Materials (RIAM) Department of Materials Science and Engineering Seoul National University ENG 445 Seoul 08826 Korea
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies IMDEA Nanociencia Ciudad Universitaria de Cantoblanco C/ Faraday 9 28049 Madrid Spanien
| |
Collapse
|
15
|
Guo C, Zhai J, Wang Y, Yang W, Xie X. Wash-Free Detection of Nucleic Acids with Photoswitch-Mediated Fluorescence Resonance Energy Transfer against Optical Background Interference. Anal Chem 2021; 93:8128-8133. [PMID: 34048645 DOI: 10.1021/acs.analchem.1c01594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The optical background such as autofluorescence and light scattering poses a big challenge to quantify nucleic acids with conventional fluorescence-based methods. We report here high-contrast nucleic acid detection with photoswitch-mediated fluorescence resonance energy transfer (FRET), which strongly occurs between the open forms of the photoswitch (a naphthopyran) and the signal fluorophores brought to the surface of the nanoprobes (≲15 nm). The fluorescence change (ΔF) upon UV irradiation is highly sensitive and more robust to quantify the target DNAs than traditional intensity measurements. Therefore, the method works in samples with strong background fluorescence from the unbound fluorophores. The photoswitchable nanoprobes could be easily prepared and interrogated in capillaries for high-throughput measurements. The method was evaluated in both sandwich-like hybridization and DNA label-free detection with a nucleic stain SG. Without DNA amplification and sample pretreatment of blood serum, the photoswitchable nanoprobes provided a limit of detection of 0.5 nM, which is ∼6 to 20 times lower than conventional FRET.
Collapse
Affiliation(s)
- Chao Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingying Zhai
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yifu Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
16
|
Abstract
Technologies for RNA imaging in live cells play an important role in understanding the function and regulatory process of RNAs. One approach for genetically encoded fluorescent RNA imaging involves fluorescent light-up aptamers (FLAPs), which are short RNA sequences that can bind cognate fluorogens and activate their fluorescence greatly. Over the past few years, FLAPs have emerged as genetically encoded RNA-based fluorescent biosensors for the cellular imaging and detection of various targets of interest. In this review, we first give a brief overview of the development of the current FLAPs based on various fluorogens. Then we further discuss on the photocycles of the reversibly photoswitching properties in FLAPs and their photostability. Finally, we focus on the applications of FLAPs as genetically encoded RNA-based fluorescent biosensors in biosensing and bioimaging, including RNA, non-nucleic acid molecules, metal ions imaging and quantitative imaging. Their design strategies and recent cellular applications are emphasized and summarized in detail.
Collapse
Affiliation(s)
- Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China.,NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai, China
| |
Collapse
|
17
|
Recent advances in fluorescent probes for cellular antioxidants: Detection of NADH, hNQO1, H2S, and other redox biomolecules. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213613] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Norel L, Galangau O, Al Sabea H, Rigaut S. Remote Control of Near Infrared Emission with Lanthanide Complexes. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lucie Norel
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 F-35000 Rennes France
| | - Olivier Galangau
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 F-35000 Rennes France
| | - Hassan Al Sabea
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 F-35000 Rennes France
| | - Stéphane Rigaut
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 F-35000 Rennes France
| |
Collapse
|
19
|
Ozhogin IV, Mukhanov EL, Chernyshev AV, Pugachev AD, Lukyanov BS, Metelitsa AV. Synthesis and study of new photochromic unsymmetrical bis-spiropyrans with nonequivalent heteroarene fragments conjugated through the common 2H,8H-pyrano[2,3-f]chromene moiety. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Casimiro L, Maisonneuve S, Retailleau P, Silvi S, Xie J, Métivier R. Photophysical Properties of 4-Dicyanomethylene-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran Revisited: Fluorescence versus Photoisomerization. Chemistry 2020; 26:14341-14350. [PMID: 32652655 DOI: 10.1002/chem.202002828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 11/08/2022]
Abstract
Although 4-dicyanomethylene-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran (DCM) has been known for many decades as a bright and photostable fluorophore, used for a wide variety of applications in chemistry, biology and physics, only little attention has been paid so far to the presence of multiple isomers and conformers, namely s-trans-(E), s-cis-(E), s-trans-(Z), and s-cis-(Z). In particular, light-induced E-Z isomerization plays a great role on the overall photophysical properties of DCM. Herein, we give a full description of a photoswitchable DCM derivative by a combination of structural, theoretical and spectroscopic methods. The main s-trans-(E) isomer is responsible for most of the fluorescence features, whereas the s-cis-(E) conformer only contributes marginally. The non-emitting Z isomers are generated in large conversion yields upon illumination with visible light (e.g., 485 or 514 nm) and converted back to the E forms by UV irradiation (e.g., 365 nm). Such photoswitching is efficient and reversible, with high fatigue resistance. The E→Z and Z→E photoisomerization quantum yields were determined in different solvents and at different irradiation wavelengths. Interestingly, the fluorescence and photoisomerization properties are strongly influenced by the solvent polarity: the fluorescence is predominant at higher polarity, whereas photoisomerization becomes more efficient at lower polarity. Intermediate medium (THF) represents an optimized situation with a good balance between these two features.
Collapse
Affiliation(s)
- Lorenzo Casimiro
- ENS Paris-Saclay, CNRS, PPSM, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.,CLAN-Center for Light Activated Nanostructures, Università di Bologna and Consiglio Nazionale delle Ricerche, Via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Stéphane Maisonneuve
- ENS Paris-Saclay, CNRS, PPSM, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Pascal Retailleau
- ICSN, CNRS UPR 2301, Université Paris-Saclay, Gif-Sur-Yvette, 91198, France
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures, Università di Bologna and Consiglio Nazionale delle Ricerche, Via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Juan Xie
- ENS Paris-Saclay, CNRS, PPSM, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Rémi Métivier
- ENS Paris-Saclay, CNRS, PPSM, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| |
Collapse
|
21
|
|
22
|
Wang J, Wang Z, Xu Y, Wang X, Yang Z, Wang H, Tian Z. Correlative dual-alternating-color photoswitching fluorescence imaging and AFM enable ultrastructural analyses of complex structures with nanoscale resolution. NANOSCALE 2020; 12:17203-17212. [PMID: 32789405 DOI: 10.1039/d0nr04584e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is a practical motivation for correlating different types of microscopy for revealing complementary information of ultrastructures with resolution beyond the diffraction limit. The correlative microscopy strategy based on the combination of super-resolution fluorescence imaging with atomic force microscopy (AFM) is expected to provide both the specificity and three-dimensional structural information of nanomaterials. Herein we synthesized a dual-alternating-color photoswitchable fluorescent probe based on a naphthalimide-spiropyran dyad (NI-SP) and explored the capability of such correlative microscopy for visualizing nanostructures with complex structural hierarchy. NI-SP underwent reversible photoswitching between green and red fluorescence based on a reversible photochemical reaction and such reaction-linked correlation between two distinct types of fluorescence signals intrinsically enabled mutual authentication in super-resolution fluorescence imaging. Additionally, such correlative microscopy also demonstrated mutual complementation between different pieces of structural information of the target acquired via fluorescence imaging and AFM, respectively, in which the former reveals spatial distribution of fluorescent dyes in the nanoscale polymer fibroid micelles while the latter maps the topographical structure of the target with complex structural hierarchy. The results obtained in this work proclaimed that the combination of such correlative microscopy with our NI-SP probe is an effective modality for ultrastructural analysis and has future applications in various complex systems such as tissue/organ imaging.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| | - Zicheng Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| | - Yangyue Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun 130022, PR China.
| | - Xuefei Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| | - Zhiyong Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun 130022, PR China.
| | - Zhiyuan Tian
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| |
Collapse
|
23
|
Behera SK, Park SY, Gierschner J. Dual Emission: Classes, Mechanisms, and Conditions. Angew Chem Int Ed Engl 2020; 60:22624-22638. [PMID: 32783293 DOI: 10.1002/anie.202009789] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/10/2020] [Indexed: 12/28/2022]
Abstract
There has been much interest in dual-emission materials in the past few years for materials and life science applications; however, a systematic overview of the underlying processes is so-far missing. We resolve this issue herein by classifying dual-emission (DE) phenomena as relying on one emitter with two emitting states (DE1), two independent emitters (DE2), or two correlated emitters (DE3). Relevant DE mechanisms for materials science are then briefly described together with the electronic and/or geometrical conditions under which they occur. For further reading, references are given that offer detailed insight into the complex mechanistic aspects of the various DE processes or provide overviews on materials families or their applications. By avoiding ambiguities and misinterpretations, this systematic, insightful Review might inspire future targeted designs of DE materials.
Collapse
Affiliation(s)
- Santosh Kumar Behera
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, 28049, Madrid, Spain
| | - Soo Young Park
- Laboratory of Supramolecular Optoelectronic Materials and Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, ENG 445, Seoul, 08826, Korea
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, 28049, Madrid, Spain
| |
Collapse
|
24
|
Jin C, Liang F, Wang J, Wang L, Liu J, Liao X, Rees TW, Yuan B, Wang H, Shen Y, Pei Z, Ji L, Chao H. Rational Design of Cyclometalated Iridium(III) Complexes for Three‐Photon Phosphorescence Bioimaging. Angew Chem Int Ed Engl 2020; 59:15987-15991. [DOI: 10.1002/anie.202006964] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Fengyin Liang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases Department of Neurology The First Affiliated Hospital Sun Yat-Sen University Guangzhou 510080 P. R. China
| | - Jinquan Wang
- Guangdong Province Key Lab Biotechnology Candidate Drug Guangdong Pharmaceutical University Guangzhou 510006 Guangdong P. R. China
| | - Lili Wang
- School of Physics Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Bo Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Wang
- School of Physics Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhong Pei
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases Department of Neurology The First Affiliated Hospital Sun Yat-Sen University Guangzhou 510080 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
25
|
Jin C, Liang F, Wang J, Wang L, Liu J, Liao X, Rees TW, Yuan B, Wang H, Shen Y, Pei Z, Ji L, Chao H. Rational Design of Cyclometalated Iridium(III) Complexes for Three‐Photon Phosphorescence Bioimaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Fengyin Liang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases Department of Neurology The First Affiliated Hospital Sun Yat-Sen University Guangzhou 510080 P. R. China
| | - Jinquan Wang
- Guangdong Province Key Lab Biotechnology Candidate Drug Guangdong Pharmaceutical University Guangzhou 510006 Guangdong P. R. China
| | - Lili Wang
- School of Physics Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Bo Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Wang
- School of Physics Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhong Pei
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases Department of Neurology The First Affiliated Hospital Sun Yat-Sen University Guangzhou 510080 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
26
|
Pugachev AD, Ozhogin IV, Lukyanova MB, Lukyanov BS, Rostovtseva IA, Dorogan IV, Makarova NI, Tkachev VV, Metelitsa AV, Aldoshin SM. Visible to near-IR molecular switches based on photochromic indoline spiropyrans with a conjugated cationic fragment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118041. [PMID: 31955116 DOI: 10.1016/j.saa.2020.118041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Photochromic molecules which can absorb and emit light within the "biological window" (650-1450 nm) are of great interest for using in various important biomedical applications such as bio-imaging, photopharmacology, targeted drug delivery, etc. Here we present three new indoline spiropyrans containing conjugated cationic fragments and halogen substituents in the 2H-chromene moiety which were synthesized by a simple one-pot method. The molecular structure of the obtained compounds was confirmed by FT-IR, 1H and 13C NMR spectroscopy (including 2D methods), HRMS, elemental and single crystal X-ray analysis. Photochemical studies revealed the photochromic activity of spiropyrans at room temperature which caused photoswitchable fluorescence in the near-IR region after UV-irradiation. While the spirocyclic forms of compounds demonstrated absorption bands in the UV-Vis spectra with maxima in the visible region at about 445 nm and were not fluorescent, the photogenerated merocyanine isomers absorbed in the near-IR range at 708-738 nm and emitted at 768-791 nm. It was found that compound 1a with fluorine substituent possesses the most red-shifted absorption and emission bands of merocyanine form among all the known photochromic spiropyrans with maxima at 738 and 791 nm correspondingly. TD DFT calculations have shown that the longest wavelength absorption maxima of the merocyanine forms correspond to S0-S1 transitions of the isomers with at least one trans-trans-trans-configured vinylindolium fragment which brings them closer to cyanine-like structure and causes an appearance of the absorption and emission bands in the near-IR region.
Collapse
Affiliation(s)
- Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation.
| | - Maria B Lukyanova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation; Don State Technical University, 1 Gagarin sq., 344000 Rostov-on-Don, Russian Federation
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Igor V Dorogan
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Valery V Tkachev
- Institute of Problems of Chemical Physics, Russian Acadeemy of Sciences, 1 Akad. Semenova ave., 142432 Chernogolovka, Moscow Region, Russian Federation; Institute of Physiologically Active Substances, 1 Severny proezd, 142432 Chernogolovka, Moscow Region, Russian Federation
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Sergey M Aldoshin
- Institute of Problems of Chemical Physics, Russian Acadeemy of Sciences, 1 Akad. Semenova ave., 142432 Chernogolovka, Moscow Region, Russian Federation
| |
Collapse
|
27
|
Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115811] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Nguyen HTT, Kang SH. Base Pair Distance in Single‐DNA Molecule via TIRF‐Based Super‐Resolution Radial Fluctuations‐Stream Module. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huong Thi Thuy Nguyen
- Department of ChemistryGraduate School, Kyung Hee University Yongin‐si 17104 Republic of Korea
| | - Seong Ho Kang
- Department of ChemistryGraduate School, Kyung Hee University Yongin‐si 17104 Republic of Korea
- Department of Applied Chemistry, Institute of Natural SciencesKyung Hee University Yongin‐si 17104 Republic of Korea
| |
Collapse
|
29
|
Al Sabea H, Hamon N, Galangau O, Norel L, Maury O, Riobé F, Tripier R, Rigaut S. Efficient luminescence control in dithienylethene functionalized cyclen macrocyclic lanthanide complexes. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00354a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report the synthesis of an original ligand scaffold based on a dimethyl-cyclen platform Medo2pa with two dithienylethene units attached to each picolinate arm and the corresponding yttrium(iii), europium(iii) and ytterbium(iii) complexes.
Collapse
Affiliation(s)
- Hassan Al Sabea
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | | | - Olivier Galangau
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Lucie Norel
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | | | | | | | - Stéphane Rigaut
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| |
Collapse
|
30
|
Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101149] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Feuerstein TJ, Müller R, Barner-Kowollik C, Roesky PW. Investigating the Photochemistry of Spiropyran Metal Complexes with Online LED-NMR. Inorg Chem 2019; 58:15479-15486. [DOI: 10.1021/acs.inorgchem.9b02547] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Thomas J. Feuerstein
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Rouven Müller
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe, Germany
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Peter W. Roesky
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| |
Collapse
|
32
|
Ren B, Yang Y, Qu Y, Cao J, Wu Y. Two fluorophore compounds based on 1, 8-naphthalimide: Synthesis, crystal structure, and optical properties. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Qin Y, Chen LJ, Zhang Y, Hu YX, Jiang WL, Yin GQ, Tan H, Li X, Xu L, Yang HB. Photoswitchable Förster resonance energy transfer (FRET) within a heterometallic Ir-Pt macrocycle. Chem Commun (Camb) 2019; 55:11119-11122. [PMID: 31461096 DOI: 10.1039/c9cc05377h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new heterometallic macrocycle with photochromic properties was succesfully constructed through coordination-driven self-assembly, which features interesting photoswitchable Förster resonance energy transfer (FRET) behaviour.
Collapse
Affiliation(s)
- Yi Qin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.
| | - Li-Jun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.
| | - Ying Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.
| | - Wei-Ling Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.
| | - Hongwei Tan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.
| |
Collapse
|
34
|
Dual-color fluorescent nanoparticles showing perfect color-specific photoswitching for bioimaging and super-resolution microscopy. Nat Commun 2019; 10:3089. [PMID: 31300649 PMCID: PMC6626011 DOI: 10.1038/s41467-019-10986-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/31/2019] [Indexed: 11/14/2022] Open
Abstract
Dual-emissive systems showing color-specific photoswitching are promising in bioimaging and super-resolution microscopy. However, their switching efficiency has been limited because a delicate manipulation of all the energy transfer crosstalks in the systems is unfeasible. Here, we report a perfect color-specific photoswitching, which is rationally designed by combining the complete off-to-on fluorescence switching capability of a fluorescent photochromic diarylethene and the frustrated energy transfer to the other fluorescent dye based on the excited-state intramolecular proton transfer (ESIPT) process. Upon alternation of UV and visible light irradiations, the system achieves 100% switching on/off of blue emission from the diarylethene while orange emission from the ESIPT dye is unchanged in the polymer film. By fabricating this system into biocompatible polymer nanoparticles, we demonstrate microscopic imaging of RAW264.7 macrophage cells with reversible blue-color specific fluorescence switching that enables super-resolution imaging with a resolution of 70 nm. Photoswitchable nanoparticles can be used for selective imaging in biological systems but usually have only one color. Here the authors develop a two-color fluorescent emissive system that allows full on-off switching of one component color of the system while the other color is unaffected, which has implications for super-resolution imaging.
Collapse
|
35
|
Zhang W, Huo F, Yin C. Photocontrolled Single-/Dual-Site Alternative Fluorescence Probes Distinguishing Detection of H2S/SO2 in Vivo. Org Lett 2019; 21:5277-5280. [DOI: 10.1021/acs.orglett.9b01879] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Weijie Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
36
|
Fan Y, Lu M, Yu XA, He M, Zhang Y, Ma XN, Kou J, Yu BY, Tian J. Targeted Myocardial Hypoxia Imaging Using a Nitroreductase-Activatable Near-Infrared Fluorescent Nanoprobe. Anal Chem 2019; 91:6585-6592. [PMID: 30994329 DOI: 10.1021/acs.analchem.9b00298] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Development of a highly selective and sensitive imaging probe for accurate detection of myocardial hypoxia will be helpful to estimate the degree of ischemia and subsequently guide personalized treatment. However, an efficient optical approach for hypoxia monitoring in myocardial ischemia is still lacking. In this work, a cardiomyocyte-specific and nitroreductase-activatable near-infrared nanoprobe has been developed for selective and sensitive imaging of myocardial hypoxia. The nanoprobe is a liposome-based nanoarchitecture which is functionalized with a peptide (GGGGDRVYIHPF) for targeting heart cells and encapsulating a nitrobenzene-substituted BODIPY for nitroreductase imaging. The nanoprobe can specifically recognize and bind to angiotensin II type 1 receptor that is overexpressed on the ischemic heart cells by the peptide and is subsequently uptaken into heart cells, in which the probe is released and activated by hypoxia-related nitroreductase to produce fluorescence emission at 713 nm. The in vitro response of the nanoprobe toward nitroreductase resulted in 55-fold fluorescence enhancement with the limit of detection as low as 7.08 ng/mL. Confocal fluorescence imaging confirmed the successful uptake of nanoprobe by hypoxic heart cells and intracellular detection of nitroreductase. More significantly, in vivo imaging of hypoxia in a murine model of myocardial ischemia was achieved by the nanoprobe with high sensitivity and good biocompatibility. Therefore, this work presents a new tool for targeted detection of myocardial hypoxia and will promote the investigation of the hypoxia-related physiological and pathological process of ischemic heart disease.
Collapse
Affiliation(s)
- Yunshi Fan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| | - Mi Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| | - Xie-An Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| | - Miaoling He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| | - Yu Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| | - Xiao-Nan Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| | - Junping Kou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| |
Collapse
|
37
|
Wang S, Li T, Zhang X, Ma L, Li C, Yao X, Cao D, Ma X. Stimuli‐Responsive Copolymer and Uniform Polymeric Nanoparticles with Photochromism and Switchable Emission. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sheng Wang
- School of Chemistry and Chemical Engineering Development Center for New Materials Engineering and Technology in Universities of GuangdongLingnan Normal University Zhanjiang 524048, China P. R. China
- School of Chemistry and Chemical Engineering State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510641 P. R. China
| | - Teng Li
- Key Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science & Technology Shanghai 200237 P. R. China
| | - Xiaoduo Zhang
- School of Chemistry and Chemical Engineering Development Center for New Materials Engineering and Technology in Universities of GuangdongLingnan Normal University Zhanjiang 524048, China P. R. China
- School of Chemistry and Chemical Engineering State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510641 P. R. China
| | - Liangwei Ma
- Key Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science & Technology Shanghai 200237 P. R. China
| | - Chenpeng Li
- School of Chemistry and Chemical Engineering Development Center for New Materials Engineering and Technology in Universities of GuangdongLingnan Normal University Zhanjiang 524048, China P. R. China
| | - Xuyang Yao
- Key Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science & Technology Shanghai 200237 P. R. China
| | - Derong Cao
- School of Chemistry and Chemical Engineering State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510641 P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science & Technology Shanghai 200237 P. R. China
| |
Collapse
|
38
|
Zhou H, Qin C, Chen R, Liu Y, Zhou W, Zhang G, Gao Y, Xiao L, Jia S. Quantum Coherent Modulation-Enhanced Single-Molecule Imaging Microscopy. J Phys Chem Lett 2019; 10:223-228. [PMID: 30599135 DOI: 10.1021/acs.jpclett.8b03606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In fluorescence imaging and detection, undesired fluorescence interference (such as autofluorescence) often hampers the contrast of the image and even prevents the identification of structures of interest. Here, we develop a quantum coherent modulation-enhanced (QCME) single-molecule imaging microscopy (SMIM) to substantially eliminate the strong fluorescence interference, based on manipulation of the excited-state population probability of a single molecule. By periodically modulating the phase difference between the ultrashort pulse pairs and performing a discrete Fourier transform of the arrival time of emitted photons, the decimation of single molecules from strong interference in QCME-SMIM has been clearly determined, where the signal-to-interference ratio is enhanced by more than 2 orders of magnitude. This technique, confirmed to be universal to organic dyes and linked with biomacromolecules, paves the way to high-contrast bioimaging under unfavorable conditions.
Collapse
Affiliation(s)
- Haitao Zhou
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan , Shanxi 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan , Shanxi 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Ruiyun Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan , Shanxi 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Yaoming Liu
- Scientific Instrument Center , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Wenjin Zhou
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan , Shanxi 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan , Shanxi 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Yan Gao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan , Shanxi 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan , Shanxi 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan , Shanxi 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| |
Collapse
|
39
|
Cador O, Le Guennic B, Pointillart F. Electro-activity and magnetic switching in lanthanide-based single-molecule magnets. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00875f] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work reviews switching of single-molecule magnetic behaviour achieved through various stimuli such as temperature, light irradiation, redox processes, solvation/desolvation, and magnetic field.
Collapse
Affiliation(s)
- Olivier Cador
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| | - Boris Le Guennic
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| | - Fabrice Pointillart
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| |
Collapse
|
40
|
|
41
|
Abstract
The past decade has witnessed an explosion in the use of super-resolution fluorescence microscopy methods in biology and other fields. Single-molecule localization microscopy (SMLM) is one of the most widespread of these methods and owes its success in large part to the ability to control the on-off state of fluorophores through various chemical, photochemical, or binding-unbinding mechanisms. We provide here a comprehensive overview of switchable fluorophores in SMLM including a detailed review of all major classes of SMLM fluorophores, and we also address strategies for labeling specimens, considerations for multichannel and live-cell imaging, potential pitfalls, and areas for future development.
Collapse
Affiliation(s)
- Honglin Li
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA, 98195
| |
Collapse
|
42
|
Kang X, Chong H, Zhu M. Au 25(SR) 18: the captain of the great nanocluster ship. NANOSCALE 2018; 10:10758-10834. [PMID: 29873658 DOI: 10.1039/c8nr02973c] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Noble metal nanoclusters are in the intermediate state between discrete atoms and plasmonic nanoparticles and are of significance due to their atomically accurate structures, intriguing properties, and great potential for applications in various fields. In addition, the size-dependent properties of nanoclusters construct a platform for thoroughly researching the structure (composition)-property correlations, which is favorable for obtaining novel nanomaterials with enhanced physicochemical properties. Thus far, more than 100 species of nanoclusters (mono-metallic Au or Ag nanoclusters, and bi- or tri-metallic alloy nanoclusters) with crystal structures have been reported. Among these nanoclusters, Au25(SR)18-the brightest molecular star in the nanocluster field-is capable of revealing the past developments and prospecting the future of the nanoclusters. Since being successfully synthesized (in 1998, with a 20-year history) and structurally determined (in 2008, with a 10-year history), Au25(SR)18 has stimulated the interest of chemists as well as material scientists, due to the early discovery, easy preparation, high stability, and easy functionalization and application of this molecular star. In this review, the preparation methods, crystal structures, physicochemical properties, and practical applications of Au25(SR)18 are summarized. The properties of Au25(SR)18 range from optics and chirality to magnetism and electrochemistry, and the property-oriented applications include catalysis, chemical imaging, sensing, biological labeling, biomedicine and beyond. Furthermore, the research progress on the Ag-based M25(SR)18 counterpart (i.e., Ag25(SR)18) is included in this review due to its homologous composition, construction and optical absorption to its gold-counterpart Au25(SR)18. Moreover, the alloying methods, metal-exchange sites and property alternations based on the templated Au25(SR)18 are highlighted. Finally, some perspectives and challenges for the future research of the Au25(SR)18 nanocluster are proposed (also holding true for all members in the nanocluster field). This review is directed toward the broader scientific community interested in the metal nanocluster field, and hopefully opens up new horizons for scientists studying nanomaterials. This review is based on the publications available up to March 2018.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institute of Physical Science and Information Technology and AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | | | | |
Collapse
|
43
|
Wan H, Xue H, Ling Y, Qiao Y, Chen Y, Zhou G. Electron donor and acceptor functionalized dithienylethenes: effects of charge density on photochromic properties. Phys Chem Chem Phys 2018; 20:14348-14356. [PMID: 29766171 DOI: 10.1039/c8cp02238k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron-donating triphenylamine and/or electron-withdrawing pyromellitic diimide (PMDI) are functionalized on dithienylethene (DTE) and three novel photochromic materials have been designed and successfully synthesized. All the compounds display reversible photochromism due to the molecular switching between ring-closed isomers upon UV light irradiation and ring-open isomers upon exposure to visible light. Thus they can be applied as an anti-counterfeiting ink. Moreover, the study of the photoswitching kinetics reveals that both the ring-closing and ring-opening reactions are first-order reactions. Further charge population analysis discovers that the electron densities of the substituents at the DTE core have a dramatic influence on the photochromic properties. The incorporation of electron-donating triphenylamine groups at the α-position of the thiophene rings in the DTE unit facilitates the ring-closing reaction upon UV light irradiation. In contrast, the substitution of an electron-withdrawing PMDI unit in the DTE unit is beneficial to the ring-opening reaction upon irradiation of visible light. This work may help to understand the photochromism of DTE derivatives and provide a pathway for designing DTE-based photochromes with more or less sensitivity to UV or visible light.
Collapse
Affiliation(s)
- Hao Wan
- Lab of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | | | | | | | | | | |
Collapse
|
44
|
Barrez E, Laurent G, Pavageau C, Sliwa M, Métivier R. Comparative photophysical investigation of doubly-emissive photochromic-fluorescent diarylethenes. Phys Chem Chem Phys 2018; 20:2470-2479. [PMID: 29313042 DOI: 10.1039/c7cp06541h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diarylethene molecules showing photochromism and fluorescence properties in both open and closed forms, associated with two different emission colors, are very promising for applications involving ratiometric emissive photoswitches. We report here a complete study on the competition between the multiple photophysical processes involved in the excited states for two sulfone derivatives of benzothiophene-based diarylethene molecules, only differing by the substituent groups on their reactive carbon (methyl for DAE-Me and ethyl for DAE-Et). Steady-state and time-resolved spectroscopy, combined with DFT and TD-DFT calculations, allow a complete determination of the kinetic constants leading to fluorescence and photoreaction pathways in different solvents, and enlighten the specific role of the substituent group in the photophysical properties due to a shielding effect against the solvation environment. The predominant role of the non-radiative deactivation processes in such a family of molecules is shown, and a tentative excited state mechanistic scheme is proposed based on femtosecond transient absorption experiments performed on the closed forms.
Collapse
Affiliation(s)
- E Barrez
- ENS Cachan, CNRS, Université Paris-Saclay, UMR 8531, PPSM, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 94235 Cachan, France.
| | | | | | | | | |
Collapse
|
45
|
Sasaki S, Watanabe T, Ishibashi Y, Fukaminato T, Asahi T. Giant Fluorescence Modulation Induced by UV–vis Excitation of Benzothiadiazole Nanoparticles Doped with Diarylethene Derivatives. CHEM LETT 2018. [DOI: 10.1246/cl.170973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shino Sasaki
- Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tomohiro Watanabe
- Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yukihide Ishibashi
- Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tuyoshi Fukaminato
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Tsuyoshi Asahi
- Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
46
|
He XP, Tian H. Lightening Up Membrane Receptors with Fluorescent Molecular Probes and Supramolecular Materials. Chem 2018. [DOI: 10.1016/j.chempr.2017.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Selvanathan P, Dorcet V, Roisnel T, Bernot K, Huang G, Le Guennic B, Norel L, Rigaut S. trans to cis photo-isomerization in merocyanine dysprosium and yttrium complexes. Dalton Trans 2018; 47:4139-4148. [DOI: 10.1039/c8dt00299a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A unique light-switching behavior is revealed in Yttrium(iii) and Dysprosium(iii) merocyanine complexes through NMR and AC magnetometry experiments. Its impact on slow relaxation of magnetization is described.
Collapse
Affiliation(s)
- Pramila Selvanathan
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Vincent Dorcet
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Thierry Roisnel
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Kévin Bernot
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Gang Huang
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Boris Le Guennic
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Lucie Norel
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Stéphane Rigaut
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| |
Collapse
|
48
|
Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations. Nat Commun 2017; 8:969. [PMID: 29042541 PMCID: PMC5645393 DOI: 10.1038/s41467-017-00847-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/01/2017] [Indexed: 01/10/2023] Open
Abstract
We present speed out-of-phase imaging after optical modulation (OPIOM), which exploits reversible photoswitchable fluorophores as fluorescent labels and combines optimized periodic illumination with phase-sensitive detection to specifically retrieve the label signal. Speed OPIOM can extract the fluorescence emission from a targeted label in the presence of spectrally interfering fluorophores and autofluorescence. Up to four fluorescent proteins exhibiting a similar green fluorescence have been distinguished in cells either sequentially or in parallel. Speed OPIOM is compatible with imaging biological processes in real time in live cells. Finally speed OPIOM is not limited to microscopy but is relevant for remote imaging as well, in particular, under ambient light. Thus, speed OPIOM has proved to enable fast and quantitative live microscopic and remote-multiplexed fluorescence imaging of biological samples while filtering out noise, interfering fluorophores, as well as ambient light. Generally, fluorescence imaging needs to be done in a dark environment using molecules with spectrally separated emissions. Here, Quérard et al. develop a protocol for high-speed imaging and remote sensing of spectrally overlapping reversible photoswitchable fluorophores in ambient light.
Collapse
|
49
|
Remote light-controlled intracellular target recognition by photochromic fluorescent glycoprobes. Nat Commun 2017; 8:987. [PMID: 29042558 PMCID: PMC5715093 DOI: 10.1038/s41467-017-01137-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/18/2017] [Indexed: 11/10/2022] Open
Abstract
Development of powerful fluorescence imaging probes and techniques sets the basis for the spatiotemporal tracking of cells at different physiological and pathological stages. While current imaging approaches rely on passive probe–analyte interactions, here we develop photochromic fluorescent glycoprobes capable of remote light-controlled intracellular target recognition. Conjugation between a fluorophore and spiropyran produces the photochromic probe, which is subsequently equipped with a glycoligand “antenna” to actively localize a target cell expressing a selective receptor. We demonstrate that the amphiphilic glycoprobes that form micelles in water can selectively enter the target cell to operate photochromic cycling as controlled by alternate UV/Vis irradiations. We further show that remote light conversion of the photochromic probe from one isomeric state to the other activates its reactivity toward a target intracellular analyte, producing locked fluorescence that is no longer photoisomerizable. We envision that this research may spur the use of photochromism for the development of bioimaging probes. Fluorescence sensing in biological environments is prone to background signal interference. Here the authors design a photochromic fluorescent glycoprobe for light-controlled photo-switchable cell imaging and photo-activated target recognition, resulting in an increased sensing precision.
Collapse
|
50
|
Patel SK, Cao J, Lippert AR. A volumetric three-dimensional digital light photoactivatable dye display. Nat Commun 2017; 8:15239. [PMID: 28695887 PMCID: PMC5508202 DOI: 10.1038/ncomms15239] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/13/2017] [Indexed: 12/14/2022] Open
Abstract
Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated ‘on-off’ cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays. Despite living in a three-dimensional world, almost all information in our society is conveyed in a two-dimensional format. Here, the authors provide a technique for the generation of spatially accurate and high-resolution three-dimensional images using fluorescent photoswitch chemistry.
Collapse
Affiliation(s)
- Shreya K Patel
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, USA
| | - Jian Cao
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, USA.,Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, USA
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, USA.,Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, USA.,Center for Global Health Impact (CGHI), Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, USA
| |
Collapse
|