1
|
Sun J, Lu S, Xiao J, Xu N, Li Y, Xu J, Deng M, Xuanyuan H, Zhang Y, Wu F, Jin W, Liu K. Inhibition of SARS-CoV-2 Replication by Self-Assembled siRNA Nanoparticles Targeting Multiple Highly Conserved Viral Sequences. Viruses 2024; 16:1072. [PMID: 39066234 PMCID: PMC11281333 DOI: 10.3390/v16071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 07/28/2024] Open
Abstract
Coronavirus infectious disease 2019 (COVID-19), caused by severe acute respiratory virus type 2 (SARS-CoV-2), has caused a global public health crisis. As an RNA virus, the high gene mutability of SARS-CoV-2 poses significant challenges to the development of broad-spectrum vaccines and antiviral therapeutics. There remains a lack of specific therapeutics directly targeting SARS-CoV-2. With the ability to efficiently inhibit the expression of target genes in a sequence-specific way, small interfering RNA (siRNA) therapy has exhibited significant potential in antiviral and other disease treatments. In this work, we presented a highly effective self-assembled siRNA nanoparticle targeting multiple highly conserved regions of SARS-CoV-2. The siRNA sequences targeting viral conserved regions were first screened and evaluated by their thermodynamic features, off-target effects, and secondary structure toxicities. RNA motifs including siRNA sequences were then designed and self-assembled into siRNA nanoparticles. These siRNA nanoparticles demonstrated remarkable uniformity and stability and efficiently entered cells directly through cellular endocytic pathways. Moreover, these nanoparticles effectively inhibited the replication of SARS-CoV-2, exhibiting a superior inhibitory effect compared to free siRNA. These results demonstrated that these self-assembled siRNA nanoparticles targeting highly conserved regions of SARS-CoV-2 represent highly effective antiviral candidates for the treatment of infections, and are promisingly effective against current and future viral variants.
Collapse
Affiliation(s)
- Jianan Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Siya Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Jizhen Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Nuo Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yingbin Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jinfeng Xu
- College of Life Sciences & Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Maohua Deng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Hanlu Xuanyuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yushi Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Fangli Wu
- College of Life Sciences & Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weibo Jin
- College of Life Sciences & Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kuancheng Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
2
|
Panigaj M, Skelly E, Beasock D, Marriott I, Johnson MB, Salotti J, Afonin KA. Therapeutic immunomodulation by rationally designed nucleic acids and nucleic acid nanoparticles. Front Immunol 2023; 14:1053550. [PMID: 36798121 PMCID: PMC9927404 DOI: 10.3389/fimmu.2023.1053550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023] Open
Abstract
The immune system has evolved to defend organisms against exogenous threats such as viruses, bacteria, fungi, and parasites by distinguishing between "self" and "non-self". In addition, it guards us against other diseases, such as cancer, by detecting and responding to transformed and senescent cells. However, for survival and propagation, the altered cells and invading pathogens often employ a wide range of mechanisms to avoid, inhibit, or manipulate the immunorecognition. As such, the development of new modes of therapeutic intervention to augment protective and prevent harmful immune responses is desirable. Nucleic acids are biopolymers essential for all forms of life and, therefore, delineating the complex defensive mechanisms developed against non-self nucleic acids can offer an exciting avenue for future biomedicine. Nucleic acid technologies have already established numerous approaches in therapy and biotechnology; recently, rationally designed nucleic acids nanoparticles (NANPs) with regulated physiochemical properties and biological activities has expanded our repertoire of therapeutic options. When compared to conventional therapeutic nucleic acids (TNAs), NANP technologies can be rendered more beneficial for synchronized delivery of multiple TNAs with defined stabilities, immunological profiles, and therapeutic functions. This review highlights several recent advances and possible future directions of TNA and NANP technologies that are under development for controlled immunomodulation.
Collapse
Affiliation(s)
- Martin Panigaj
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, United States
- Institute of Biology & Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice, Slovakia
| | - Elizabeth Skelly
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Damian Beasock
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Jacqueline Salotti
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
3
|
Kasprzak WK, Shapiro BA. Application of Molecular Dynamics to Expand Docking Program's Exploratory Capabilities and to Evaluate Its Predictions. Methods Mol Biol 2023; 2568:75-101. [PMID: 36227563 DOI: 10.1007/978-1-0716-2687-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recognition of the growing importance of RNA as a target for therapeutic or diagnostic ligands brings the importance of computational predictions of docking poses to such receptors to the forefront. Most docking programs have been optimized for protein targets, based on a relatively rich pool of known docked protein structures. Unfortunately, despite progress, numbers of known docked RNA complexes are low and the accuracy of the computational predictions trained on those inadequate samples lags behind that achieved for proteins. Compared to proteins, RNA structures generally have fewer docking pockets, have less diverse electrostatic surfaces, and are more flexible, raising the possibility of producing only transiently available good docking targets. We are presenting a docking prediction protocol that adds molecular dynamics simulations before and after the actual docking in order to explore the conformational space of the target RNA and then to reevaluate the stability of the predicted RNA-ligand complex. In this way we are attempting to overcome important limitations of the docking programs: the rigid (fully or mostly) target structure and imperfect nature of the docking scoring functions.
Collapse
Affiliation(s)
- Wojciech K Kasprzak
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Bruce A Shapiro
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
4
|
Byrnes J, Chopra K, Rolband LA, Danai L, Chodankar S, Yang L, Afonin KA. Structural Characterization of Nucleic Acid Nanoparticles Using SAXS and SAXS-Driven MD. Methods Mol Biol 2023; 2709:65-94. [PMID: 37572273 PMCID: PMC10484297 DOI: 10.1007/978-1-0716-3417-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Structural characterization of nucleic acid nanoparticles (NANPs) in solution is critical for validation of correct assembly and for quantifying the size, shape, and flexibility of the construct. Small-angle X-ray scattering (SAXS) is a well-established method to obtain structural information of particles in solution. Here, we present a procedure for the preparation of NANPs for SAXS. This procedure outlines the steps for a successful SAXS experiment and the use of SAXS-driven molecular dynamics to generate an ensemble of structures that best explain the data observed in solution. We use an RNA NANP as an example, so the reader can prepare the sample for data collection, analyze the results, and perform SAXS-driven MD on similar NANPs.
Collapse
Affiliation(s)
| | | | - Lewis A Rolband
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Leyla Danai
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | | | - Lin Yang
- Brookhaven National Laboratory, Upton, NY, USA
| | - Kirill A Afonin
- University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
5
|
Trammell SR. Light-Assisted Drying for the Thermal Stabilization of Nucleic Acid Nanoparticles and Other Biologics. Methods Mol Biol 2023; 2709:117-130. [PMID: 37572276 DOI: 10.1007/978-1-0716-3417-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Cold-chain storage can be challenging and expensive for the transportation and storage of biologics, especially in low-resource settings. Nucleic acid nanoparticles (NANPs) are an example of new biological products that require refrigerated storage. Light-assisted drying (LAD) is a new processing technique to prepare biologics for anhydrous storage in a trehalose amorphous solid matrix at ambient temperatures. Small volume samples (10 μL) containing NANPs are irradiated with a 1064 nm laser to speed the evaporation of water and create an amorphous trehalose preservation matrix. In previous studies, samples were stored for 1 month at 4 °C or 20 °C without degradation. A FLIR SC655 mid-IR camera is used to record the temperature of samples during processing. The trehalose matrix was characterized using polarized light imaging to determine if crystallization occurred during processing or storage. Damage to LAD-processed NANPs was assessed after processing and storage using gel electrophoresis.
Collapse
Affiliation(s)
- Susan R Trammell
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
6
|
Klotz K, Radwan Y, Chakrabarti K. Dissecting Functional Biological Interactions Using Modular RNA Nanoparticles. Molecules 2022; 28:228. [PMID: 36615420 PMCID: PMC9821959 DOI: 10.3390/molecules28010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Nucleic acid nanoparticles (NANPs) are an exciting and innovative technology in the context of both basic and biomedical research. Made of DNA, RNA, or their chemical analogs, NANPs are programmed for carrying out specific functions within human cells. NANPs are at the forefront of preventing, detecting, and treating disease. Their nucleic acid composition lends them biocompatibility that provides their cargo with enhanced opportunity for coordinated delivery. Of course, the NANP system of targeting specific cells and tissues is not without its disadvantages. Accumulation of NANPs outside of the target tissue and the potential for off-target effects of NANP-mediated cargo delivery present challenges to research and medical professionals and these challenges must be effectively addressed to provide safe treatment to patients. Importantly, development of NANPs with regulated biological activities and immunorecognition becomes a promising route for developing versatile nucleic acid therapeutics. In a basic research context, NANPs can assist investigators in fine-tuning the structure-function relationship of final formulations and in this review, we explore the practical applications of NANPs in laboratory and clinical settings and discuss how we can use established nucleic acid research techniques to design effective NANPs.
Collapse
Affiliation(s)
- Kaitlin Klotz
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Yasmine Radwan
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| |
Collapse
|
7
|
Rolband L, Beasock D, Wang Y, Shu YG, Dinman JD, Schlick T, Zhou Y, Kieft JS, Chen SJ, Bussi G, Oukhaled A, Gao X, Šulc P, Binzel D, Bhullar AS, Liang C, Guo P, Afonin KA. Biomotors, viral assembly, and RNA nanobiotechnology: Current achievements and future directions. Comput Struct Biotechnol J 2022; 20:6120-6137. [PMID: 36420155 PMCID: PMC9672130 DOI: 10.1016/j.csbj.2022.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) serves to further the development of a wide variety of functional nucleic acids and other related nanotechnology platforms. To aid in the dissemination of the most recent advancements, a biennial discussion focused on biomotors, viral assembly, and RNA nanobiotechnology has been established where international experts in interdisciplinary fields such as structural biology, biophysical chemistry, nanotechnology, cell and cancer biology, and pharmacology share their latest accomplishments and future perspectives. The results summarized here highlight advancements in our understanding of viral biology and the structure-function relationship of frame-shifting elements in genomic viral RNA, improvements in the predictions of SHAPE analysis of 3D RNA structures, and the understanding of dynamic RNA structures through a variety of experimental and computational means. Additionally, recent advances in the drug delivery, vaccine design, nanopore technologies, biomotor and biomachine development, DNA packaging, RNA nanotechnology, and drug delivery are included in this critical review. We emphasize some of the novel accomplishments, major discussion topics, and present current challenges and perspectives of these emerging fields.
Collapse
Affiliation(s)
- Lewis Rolband
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Damian Beasock
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yang Wang
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | - Yao-Gen Shu
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | | | - Tamar Schlick
- New York University, Department of Chemistry and Courant Institute of Mathematical Sciences, Simons Center for Computational Physical Chemistry, New York, NY 10012, USA
| | - Yaoqi Zhou
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
| | - Jeffrey S. Kieft
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shi-Jie Chen
- University of Missouri at Columbia, Columbia, MO 65211, USA
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | | | - Xingfa Gao
- National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Petr Šulc
- Arizona State University, Tempe, AZ, USA
| | | | | | - Chenxi Liang
- The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- The Ohio State University, Columbus, OH 43210, USA
| | - Kirill A. Afonin
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
8
|
Chandler M, Jain S, Halman J, Hong E, Dobrovolskaia MA, Zakharov AV, Afonin KA. Artificial Immune Cell, AI-cell, a New Tool to Predict Interferon Production by Peripheral Blood Monocytes in Response to Nucleic Acid Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204941. [PMID: 36216772 PMCID: PMC9671856 DOI: 10.1002/smll.202204941] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Nucleic acid nanoparticles, or NANPs, rationally designed to communicate with the human immune system, can offer innovative therapeutic strategies to overcome the limitations of traditional nucleic acid therapies. Each set of NANPs is unique in their architectural parameters and physicochemical properties, which together with the type of delivery vehicles determine the kind and the magnitude of their immune response. Currently, there are no predictive tools that would reliably guide the design of NANPs to the desired immunological outcome, a step crucial for the success of personalized therapies. Through a systematic approach investigating physicochemical and immunological profiles of a comprehensive panel of various NANPs, the research team developes and experimentally validates a computational model based on the transformer architecture able to predict the immune activities of NANPs. It is anticipated that the freely accessible computational tool that is called an "artificial immune cell," or AI-cell, will aid in addressing the current critical public health challenges related to safety criteria of nucleic acid therapies in a timely manner and promote the development of novel biomedical tools.
Collapse
Affiliation(s)
- Morgan Chandler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Sankalp Jain
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Justin Halman
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Enping Hong
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
9
|
Anh Lam P, Furr DP, Tran A, McKeough RQ, Beasock D, Chandler M, Afonin KA, Trammell SR. The Application of Light-Assisted Drying to the Thermal Stabilization of Nucleic Acid Nanoparticles. Biopreserv Biobank 2022; 20:451-460. [PMID: 36067075 PMCID: PMC9603253 DOI: 10.1089/bio.2022.0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Cold-chain storage can be challenging and expensive for the transportation and storage of biologics, especially in low-resource settings. Nucleic acid nanoparticles (NANPs) are an example of new biological products that require refrigerated storage. Light-assisted drying (LAD) is a new processing technique to prepare biologics for anhydrous storage in a trehalose amorphous solid matrix at ambient temperatures. In this study, LAD was used to thermally stabilize four types of NANPs with differing structures and melting temperatures. Methods: Small volume samples (10 μL) containing NANPs were irradiated with a 1064 nm laser to speed the evaporation of water and create an amorphous trehalose preservation matrix. Samples were then stored for 1 month at 4°C or 20°C. A FLIR C655 mid-IR camera was used to record the temperature of samples during processing. The trehalose matrix was characterized using polarized light imaging (PLI) to determine if crystallization occurred during processing or storage. Damage to LAD-processed NANPs was assessed after processing and storage using gel electrophoresis. Results: Based on the end moisture content (EMC) as a function time and the thermal histories of samples, a LAD processing time of 30 min is sufficient to achieve low EMCs for the 10 μL samples used in this study. PLI demonstrates that the trehalose matrix was resistant to crystallization during processing and after storage at 4°C and at room temperature. The native-polyacrylamide gel electrophoresis results for DNA cubes, RNA cubes, and RNA rings indicate that the main structures of these NANPs were not damaged significantly after LAD processing and being stored at 4°C or at room temperature for 1 month. Conclusions: These preliminary studies indicate that LAD processing can stabilize NANPs for dry-state storage at room temperature, providing an alternative to refrigerated storage for these nanomedicine products.
Collapse
Affiliation(s)
- Phuong Anh Lam
- Department of Physics and Optical Science and University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Daniel P. Furr
- Department of Physics and Optical Science and University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Allison Tran
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Riley Q. McKeough
- Department of Physics and Optical Science and University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Damian Beasock
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Morgan Chandler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Susan R. Trammell
- Department of Physics and Optical Science and University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
10
|
Tian Y, Tirrell MV, LaBelle JL. Harnessing the Therapeutic Potential of Biomacromolecules through Intracellular Delivery of Nucleic Acids, Peptides, and Proteins. Adv Healthc Mater 2022; 11:e2102600. [PMID: 35285167 PMCID: PMC9232950 DOI: 10.1002/adhm.202102600] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/09/2022] [Indexed: 12/19/2022]
Abstract
Biomacromolecules have long been at the leading edge of academic and pharmaceutical drug development and clinical translation. With the clinical advances of new therapeutics, such as monoclonal antibodies and nucleic acids, the array of medical applications of biomacromolecules has broadened considerably. A major on-going effort is to expand therapeutic targets within intracellular locations. Owing to their large sizes, abundant charges, and hydrogen-bond donors and acceptors, advanced delivery technologies are required to deliver biomacromolecules effectively inside cells. In this review, strategies used for the intracellular delivery of three major forms of biomacromolecules: nucleic acids, proteins, and peptides, are highlighted. An emphasis is placed on synthetic delivery approaches and the major hurdles needed to be overcome for their ultimate clinical translation.
Collapse
Affiliation(s)
- Yu Tian
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - Matthew V. Tirrell
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - James L. LaBelle
- Department of Pediatrics, Section of Hematology/OncologyThe University of Chicago900 E 57th StChicagoIL60637USA
| |
Collapse
|
11
|
Zhang S, Cheng Y, Guo P, Chen SJ. VfoldMCPX: predicting multistrand RNA complexes. RNA (NEW YORK, N.Y.) 2022; 28:596-608. [PMID: 35058350 PMCID: PMC8925972 DOI: 10.1261/rna.079020.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Multistrand RNA complexes play a critical role in RNA-related biological processes. The understanding of RNA functions and the rational design of RNA nanostructures require accurate prediction of the structure and folding stability of the complexes, including those containing pseudoknots. Here, we present VfoldMCPX, a new model for predicting two-dimensional (2D) structures and folding stabilities of multistrand RNA complexes. Based on a partition function-based algorithm combined with physical loop free energy parameters, the VfoldMCPX model predicts not only the native structure but also the folding stability of the complex. An important advantage of the model is the ability to treat pseudoknotted structures. Extensive tests on structure predictions show the VfoldMCPX model provides improved accuracy for multistranded RNA complexes, especially for RNA complexes with three or more strands and/or containing pseudoknots. We have developed a freely accessible VfoldMCPX web server at http://rna.physics.missouri.edu/vfoldMCPX2.
Collapse
Affiliation(s)
- Sicheng Zhang
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, USA
| | - Yi Cheng
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
12
|
Afonin KA, Dobrovolskaia MA, Ke W, Grodzinski P, Bathe M. Critical review of nucleic acid nanotechnology to identify gaps and inform a strategy for accelerated clinical translation. Adv Drug Deliv Rev 2022; 181:114081. [PMID: 34915069 PMCID: PMC8886801 DOI: 10.1016/j.addr.2021.114081] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/01/2023]
Abstract
With numerous recent advances, the field of therapeutic nucleic acid nanotechnology is now poised for clinical translation supported by several examples of FDA-approved nucleic acid nanoformulations including two recent mRNA-based COVID-19 vaccines. Within this rapidly growing field, a new subclass of nucleic acid therapeutics called nucleic acid nanoparticles (NANPs) has emerged in recent years, which offers several unique properties distinguishing it from traditional therapeutic nucleic acids. Key unique aspects of NANPs include their well-defined 3D structure, their tunable multivalent architectures, and their ability to incorporate conditional activations of therapeutic targeting and release functions that enable diagnosis and therapy of cancer, regulation of blood coagulation disorders, as well as the development of novel vaccines, immunotherapies, and gene therapies. However, non-consolidated research developments of this highly interdisciplinary field create crucial barriers that must be overcome in order to impact a broader range of clinical indications. Forming a consortium framework for nucleic acid nanotechnology would prioritize and consolidate translational efforts, offer several unifying solutions to expedite their transition from bench-to-bedside, and potentially decrease the socio-economic burden on patients for a range of conditions. Herein, we review the unique properties of NANPs in the context of therapeutic applications and discuss their associated translational challenges.
Collapse
Affiliation(s)
- Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Weina Ke
- Biomedical Informatics and Data Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Johnson MB, Chandler M, Afonin KA. Nucleic acid nanoparticles (NANPs) as molecular tools to direct desirable and avoid undesirable immunological effects. Adv Drug Deliv Rev 2021; 173:427-438. [PMID: 33857556 PMCID: PMC8178219 DOI: 10.1016/j.addr.2021.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Nucleic acid nanoparticles (NANPs) represent a highly versatile molecular platform for the targeted delivery of various therapeutics. However, despite their promise, further clinical translation of this innovative technology can be hindered by immunological off-target effects. All human cells are equipped with an arsenal of receptors that recognize molecular patterns specific to foreign nucleic acids and understanding the rules that guide this recognition offer the key rationale for the development of therapeutic NANPs with tunable immune stimulation. Numerous recent studies have provided increasing evidence that in addition to NANPs' physicochemical properties and therapeutic effects, their interactions with cells of the immune system can be regulated through multiple independently programmable architectural parameters. The results further suggest that defined immunomodulation by NANPs can either support their immunoquiescent delivery or be used for conditional stimulation of beneficial immunological responses.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
14
|
Xu C, Zhang K, Yin H, Li Z, Krasnoslobodtsev A, Zheng Z, Ji Z, Guo S, Li S, Chiu W, Guo P. 3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution. NANO RESEARCH 2020; 13:3241-3247. [PMID: 34484616 PMCID: PMC8412138 DOI: 10.1007/s12274-020-2996-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 05/12/2023]
Abstract
Ribonucleic acid (RNA) nanotechnology platforms have the potential of harboring therapeutics for in vivo delivery in disease treatment. However, the nonspecific interaction between the harbored hydrophobic drugs and cells or other components before reaching the diseased site has been an obstacle in drug delivery. Here we report an encapsulation strategy to prevent such nonspecific hydrophobic interactions in vitro and in vivo based on a self-assembled three-dimensional (3D) RNA nanocage. By placing an RNA three-way junction (3WJ) in the cavity of the nanocage, the conjugated hydrophobic molecules were specifically positioned within the nanocage, preventing their exposure to the biological environment. The assembly of the nanocages was characterized by native polyacrylamide gel electrophoresis (PAGE), atomic force microscopy (AFM), and cryogenic electron microscopy (cryo-EM) imaging. The stealth effect of the nanocage for hydrophobic molecules in vitro was evaluated by gel electrophoresis, flow cytometry, and confocal microscopy. The in vivo sheathing effect of the nanocage for hydrophobic molecules was assessed by biodistribution profiling in mice. The RNA nanocages with hydrophobic biomolecules underwent faster clearance in liver and spleen in comparison to their counterparts. Therefore, this encapsulation strategy holds promise for in vivo delivery of hydrophobic drugs for disease treatment.
Collapse
Affiliation(s)
- Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Kaiming Zhang
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Hongran Yin
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Zhefeng Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Alexey Krasnoslobodtsev
- Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182, USA
- Nanoimaging Core Facility, Office of Vice-Chancellor for Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhen Zheng
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Zhouxiang Ji
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Sijin Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Shanshan Li
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Wah Chiu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Lazaratos M, Karathanou K, Mainas E, Chatzigoulas A, Pippa N, Demetzos C, Cournia Z. Coating of magnetic nanoparticles affects their interactions with model cell membranes. Biochim Biophys Acta Gen Subj 2020; 1864:129671. [DOI: 10.1016/j.bbagen.2020.129671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 05/24/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
|
16
|
Juneja R, Vadarevu H, Halman J, Tarannum M, Rackley L, Dobbs J, Marquez J, Chandler M, Afonin K, Vivero-Escoto JL. Combination of Nucleic Acid and Mesoporous Silica Nanoparticles: Optimization and Therapeutic Performance In Vitro. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38873-38886. [PMID: 32805923 PMCID: PMC7748385 DOI: 10.1021/acsami.0c07106] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Programmable nucleic acid nanoparticles (NANPs) with precisely controlled functional compositions can regulate the conditional activation of various biological pathways and responses in human cells. However, the intracellular delivery of NANPs alone is hindered by their susceptibility to nuclease activity and inefficient crossing of biological membranes. In this work, we optimized the internalization and therapeutic performance of several representative NANPs delivered with mesoporous silica nanoparticles (MSNPs) tailored for efficient electrostatic association with NANPs. We compared the immunostimulatory properties of different NA-MS-NP complexes formed with globular, planar, and fibrous NANPs and demonstrated the maximum immunostimulation for globular NANPs. As a proof of concept, we assessed the specific gene silencing by NA-MS-NP complexes functionalized with siRNA targeting green fluorescent protein expressed in triple-negative human breast cancer cells. We showed that the fibrous NANPs have the highest silencing efficiency when compared to globular or planar counterparts. Finally, we confirmed the multimodal ability of MSNPs to co-deliver a chemotherapy drug, doxorubicin, and NANPs targeting apoptosis regulator gene BCL2 in triple-negative breast cancer and melanoma cell lines. Overall, the combination of NANPs and MSNPs may become a new promising approach to efficiently treat cancer and other diseases via the simultaneous targeting of various pathways.
Collapse
Affiliation(s)
- Ridhima Juneja
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Hemapriyadarshini Vadarevu
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Justin Halman
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Mubin Tarannum
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Lauren Rackley
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Jacob Dobbs
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Jose Marquez
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Morgan Chandler
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill Afonin
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Juan L Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
17
|
Badu S, Melnik R, Singh S. Mathematical and computational models of RNA nanoclusters and their applications in data-driven environments. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1804564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shyam Badu
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
- BCAM-Basque Center for Applied Mathematics, Bilbao, Spain
| | - Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
18
|
Yourston L, Rolband L, West C, Lushnikov A, Afonin KA, Krasnoslobodtsev AV. Tuning properties of silver nanoclusters with RNA nanoring assemblies. NANOSCALE 2020; 12:16189-16200. [PMID: 32705105 DOI: 10.1039/d0nr03589k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Combining atomically resolved DNA-templated silver nanoclusters (AgNCs) with nucleic acid nanotechnology opens new exciting possibilities for engineering bioinorganic nanomaterials with uniquely tunable properties. In this unforeseen cooperation, nucleic acids not only drive the formation of AgNCs but also promote their spatial organization in supra-assemblies. In this work, we confirm the feasibility of this approach using programmable RNA rings to control formation and optical properteis of six individual AgNCs. "Red" (λEXC/λEM = 565/623 nm) and "green" (λEXC/λEM = 440/523 nm) emitting AgNCs are templated on cytosine-rich DNA fragments embedded into the RNA rings. Optical properties of the AgNCs formed on the RNA rings are characterized in detail. While all "red" species passively transition to "green" emitters with time, the initial fluorescent properties and relative stabilities of "red" AgNCs can be regulated by altering the relative orientation of AgNCs within the RNA rings. As such, the oxidative stability increases dramatically for AgNC positioned towards the center of the RNA rings rather than facing outward. Overall, our findings expand the existing AgNC fluorescent toolkit while uncovering the complexity of the AgNC electronic structures with the abundance of possibilities for controlling de-excitation processes.
Collapse
Affiliation(s)
- Liam Yourston
- Department of Physics, University of Nebraska Omaha, Omaha, NE 68182, USA.
| | - Lewis Rolband
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Caroline West
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Alexander Lushnikov
- Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Alexey V Krasnoslobodtsev
- Department of Physics, University of Nebraska Omaha, Omaha, NE 68182, USA. and Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
19
|
Torelli E, Kozyra J, Shirt-Ediss B, Piantanida L, Voïtchovsky K, Krasnogor N. Cotranscriptional Folding of a Bio-orthogonal Fluorescent Scaffolded RNA Origami. ACS Synth Biol 2020; 9:1682-1692. [PMID: 32470289 DOI: 10.1021/acssynbio.0c00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The scaffolded origami technique is an attractive tool for engineering nucleic acid nanostructures. This paper demonstrates scaffolded RNA origami folding in vitro in which, for the first time, all components are transcribed simultaneously in a single-pot reaction. Double-stranded DNA sequences are transcribed by T7 RNA polymerase into scaffold and staple strands able to correctly fold in a high synthesis yield into the nanoribbon. Synthesis is successfully confirmed by atomic force microscopy, and the unpurified transcription reaction mixture is analyzed by an in gel-imaging assay where the transcribed RNA nanoribbons are able to capture the specific dye through the reconstituted split Broccoli aptamer showing a clear green fluorescent band. Finally, we simulate the RNA origami in silico using the nucleotide-level coarse-grained model oxRNA to investigate the thermodynamic stability of the assembled nanostructure in isothermal conditions over a period of time. Our work suggests that the scaffolded origami technique is a viable, and potentially more powerful, assembly alternative to the single-stranded origami technique for future in vivo applications.
Collapse
Affiliation(s)
- Emanuela Torelli
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| | - Jerzy Kozyra
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| | - Ben Shirt-Ediss
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| | - Luca Piantanida
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Kislon Voïtchovsky
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| |
Collapse
|
20
|
Puri A, Viard M, Zakrevsky P, Zampino S, Chen A, Isemann C, Alvi S, Clogston J, Chitgupi U, Lovell JF, Shapiro BA. Photoactivation of sulfonated polyplexes enables localized gene silencing by DsiRNA in breast cancer cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 26:102176. [PMID: 32151748 PMCID: PMC8117728 DOI: 10.1016/j.nano.2020.102176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/23/2020] [Accepted: 02/23/2020] [Indexed: 12/29/2022]
Abstract
Translation potential of RNA interference nanotherapeutics remains challenging due to in vivo off-target effects and poor endosomal escape. Here, we developed novel polyplexes for controlled intracellular delivery of dicer substrate siRNA, using a light activation approach. Sulfonated polyethylenimines covalently linked to pyropheophorbide-α for photoactivation and bearing modified amines (sulfo-pyro-PEI) for regulated endosomal escape were investigated. Gene knock-down by the polymer-complexed DsiRNA duplexes (siRNA-NPs) was monitored in breast cancer cells. Surprisingly, sulfo-pyro-PEI/siRNA-NPs failed to downregulate the PLK1 or eGFP proteins. However, photoactivation of these cell associated-polyplexes with a 661-nm laser clearly restored knock-down of both proteins. In contrast, protein down-regulation by non-sulfonated pyro-PEI/siRNA-NPs occurred without any laser treatments, indicating cytoplasmic disposition of DsiRNA followed a common intracellular release mechanism. Therefore, sulfonated pyro-PEI holds potential as a unique trap and release light-controlled delivery platform for on-demand gene silencing bearing minimal off target effects.
Collapse
Affiliation(s)
- Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Mathias Viard
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Paul Zakrevsky
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Serena Zampino
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Arabella Chen
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Camryn Isemann
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Sohaib Alvi
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Jeff Clogston
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Bruce A Shapiro
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
21
|
Chandler M, Johnson MB, Panigaj M, Afonin KA. Innate immune responses triggered by nucleic acids inspire the design of immunomodulatory nucleic acid nanoparticles (NANPs). Curr Opin Biotechnol 2020; 63:8-15. [PMID: 31778882 PMCID: PMC7246180 DOI: 10.1016/j.copbio.2019.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
Abstract
The unknown immune stimulation by nucleic acid nanoparticles (NANPs) has become one of the major impediments to a broad spectrum of clinical developments of this novel technology. Having evolved to defend against bacterial and viral nucleic acids, mammalian cells have established patterns of recognition that are also the pathways through which NANPs can be processed. Explorations into the immune stimulation brought about by a vast diversity of known NANPs have shown that variations in design correlate with variations in immune response. Therefore, as the mechanisms of stimulation are further elucidated, these trends are now being taken into account in the design phase to allow for development of NANPs that are tailored for controlled immune activation or quiescence.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Morgan Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Martin Panigaj
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice, 041 54, Slovak Republic
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
22
|
Johnson MB, Halman JR, Burmeister AR, Currin S, Khisamutdinov EF, Afonin KA, Marriott I. Retinoic acid inducible gene-I mediated detection of bacterial nucleic acids in human microglial cells. J Neuroinflammation 2020; 17:139. [PMID: 32357908 PMCID: PMC7195775 DOI: 10.1186/s12974-020-01817-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Bacterial meningitis and meningoencephalitis are associated with devastating neuroinflammation. We and others have demonstrated the importance of glial cells in the initiation of immune responses to pathogens invading the central nervous system (CNS). These cells use a variety of pattern recognition receptors (PRRs) to identify common pathogen motifs and the cytosolic sensor retinoic acid inducible gene-1 (RIG-I) is known to serve as a viral PRR and initiator of interferon (IFN) responses. Intriguingly, recent evidence indicates that RIG-I also has an important role in the detection of bacterial nucleic acids, but such a role has not been investigated in glia. Methods In this study, we have assessed whether primary or immortalized human and murine glia express RIG-I either constitutively or following stimulation with bacteria or their products by immunoblot analysis. We have used capture ELISAs and immunoblot analysis to assess human microglial interferon regulatory factor 3 (IRF3) activation and IFN production elicited by bacterial nucleic acids and novel engineered nucleic acid nanoparticles. Furthermore, we have utilized a pharmacological inhibitor of RIG-I signaling and siRNA-mediated knockdown approaches to assess the relative importance of RIG-I in such responses. Results We demonstrate that RIG-I is constitutively expressed by human and murine microglia and astrocytes, and is elevated following bacterial infection in a pathogen and cell type-specific manner. Additionally, surface and cytosolic PRR ligands are also sufficient to enhance RIG-I expression. Importantly, our data demonstrate that bacterial RNA and DNA both trigger RIG-I-dependent IRF3 phosphorylation and subsequent type I IFN production in human microglia. This ability has been confirmed using our nucleic acid nanoparticles where we demonstrate that both RNA- and DNA-based nanoparticles can stimulate RIG-I-dependent IFN responses in these cells. Conclusions The constitutive and bacteria-induced expression of RIG-I by human glia and its ability to mediate IFN responses to bacterial RNA and DNA and nucleic acid nanoparticles raises the intriguing possibility that RIG-I may be a potential target for therapeutic intervention during bacterial infections of the CNS, and that the use of engineered nucleic acid nanoparticles that engage this sensor might be a method to achieve this goal.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Justin R Halman
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Amanda R Burmeister
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Saralynn Currin
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | | | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA.
| |
Collapse
|
23
|
Halman JR, Kim KT, Gwak SJ, Pace R, Johnson MB, Chandler MR, Rackley L, Viard M, Marriott I, Lee JS, Afonin KA. A cationic amphiphilic co-polymer as a carrier of nucleic acid nanoparticles (Nanps) for controlled gene silencing, immunostimulation, and biodistribution. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 23:102094. [PMID: 31669854 PMCID: PMC6942546 DOI: 10.1016/j.nano.2019.102094] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022]
Abstract
Programmable nucleic acid nanoparticles (NANPs) provide controlled coordination of therapeutic nucleic acids (TNAs) and other biological functionalities. Beyond multivalence, recent reports demonstrate that NANP technology can also elicit a specific immune response, adding another layer of customizability to this innovative approach. While the delivery of nucleic acids remains a challenge, new carriers are introduced and tested continuously. Polymeric platforms have proven to be efficient in shielding nucleic acid cargos from nuclease degradation while promoting their delivery and intracellular release. Here, we venture beyond the delivery of conventional TNAs and combine the stable cationic poly-(lactide-co-glycolide)-graft-polyethylenimine with functionalized NANPs. Furthermore, we compare several representative NANPs to assess how their overall structures influence their delivery with the same carrier. An extensive study of various formulations both in vitro and in vivo reveals differences in their immunostimulatory activity, gene silencing efficiency, and biodistribution, with fibrous NANPs advancing for TNA delivery.
Collapse
Affiliation(s)
- Justin R Halman
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ki-Taek Kim
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - So-Jung Gwak
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Richard Pace
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, USA
| | - Morgan R Chandler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Lauren Rackley
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Mathias Viard
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, USA
| | - Jeoung Soo Lee
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA.
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
24
|
Dobrovolskaia MA. Nucleic Acid Nanoparticles at a Crossroads of Vaccines and Immunotherapies. Molecules 2019; 24:molecules24244620. [PMID: 31861154 PMCID: PMC6943637 DOI: 10.3390/molecules24244620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Vaccines and immunotherapies involve a variety of technologies and act through different mechanisms to achieve a common goal, which is to optimize the immune response against an antigen. The antigen could be a molecule expressed on a pathogen (e.g., a disease-causing bacterium, a virus or another microorganism), abnormal or damaged host cells (e.g., cancer cells), environmental agent (e.g., nicotine from a tobacco smoke), or an allergen (e.g., pollen or food protein). Immunogenic vaccines and therapies optimize the immune response to improve the eradication of the pathogen or damaged cells. In contrast, tolerogenic vaccines and therapies retrain or blunt the immune response to antigens, which are recognized by the immune system as harmful to the host. To optimize the immune response to either improve the immunogenicity or induce tolerance, researchers employ different routes of administration, antigen-delivery systems, and adjuvants. Nanocarriers and adjuvants are of particular interest to the fields of vaccines and immunotherapy as they allow for targeted delivery of the antigens and direct the immune response against these antigens in desirable direction (i.e., to either enhance immunogenicity or induce tolerance). Recently, nanoparticles gained particular attention as antigen carriers and adjuvants. This review focuses on a particular subclass of nanoparticles, which are made of nucleic acids, so-called nucleic acid nanoparticles or NANPs. Immunological properties of these novel materials and considerations for their clinical translation are discussed.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
25
|
Panigaj M, Johnson MB, Ke W, McMillan J, Goncharova EA, Chandler M, Afonin KA. Aptamers as Modular Components of Therapeutic Nucleic Acid Nanotechnology. ACS NANO 2019; 13:12301-12321. [PMID: 31664817 PMCID: PMC7382785 DOI: 10.1021/acsnano.9b06522] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nucleic acids play a central role in all domains of life, either as genetic blueprints or as regulators of various biochemical pathways. The chemical makeup of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA), generally represented by a sequence of four monomers, also provides precise instructions for folding and higher-order assembly of these biopolymers that, in turn, dictate biological functions. The sequence-based specific 3D structures of nucleic acids led to the development of the directed evolution of oligonucleotides, SELEX (systematic evolution of ligands by exponential enrichment), against a chosen target molecule. Among the variety of functions, selected oligonucleotides named aptamers also allow targeting of cell-specific receptors with antibody-like precision and can deliver functional RNAs without a transfection agent. The advancements in the field of customizable nucleic acid nanoparticles (NANPs) opened avenues for the design of nanoassemblies utilizing aptamers for triggering or blocking cell signaling pathways or using aptamer-receptor combinations to activate therapeutic functionalities. A recent selection of fluorescent aptamers enables real-time tracking of NANP formation and interactions. The aptamers are anticipated to contribute to the future development of technologies, enabling an efficient assembly of functional NANPs in mammalian cells or in vivo. These research topics are of top importance for the field of therapeutic nucleic acid nanotechnology with the promises to scale up mass production of NANPs suitable for biomedical applications, to control the intracellular organization of biological materials to enhance the efficiency of biochemical pathways, and to enhance the therapeutic potential of NANP-based therapeutics while minimizing undesired side effects and toxicities.
Collapse
Affiliation(s)
- Martin Panigaj
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice 04154, Slovak Republic
| | - M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Jessica McMillan
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Ekaterina A. Goncharova
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 191002, Russian Federation
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
26
|
Calkins ER, Zakrevsky P, Keleshian VL, Aguilar EG, Geary C, Jaeger L. Deducing putative ancestral forms of GNRA/receptor interactions from the ribosome. Nucleic Acids Res 2019; 47:480-494. [PMID: 30418638 PMCID: PMC6326782 DOI: 10.1093/nar/gky1111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/22/2018] [Indexed: 01/02/2023] Open
Abstract
Stable RNAs rely on a vast repertoire of long-range interactions to assist in the folding of complex cellular machineries such as the ribosome. The universally conserved L39/H89 interaction is a long-range GNRA-like/receptor interaction localized in proximity to the peptidyl transferase center of the large subunit of the ribosome. Because of its central location, L39/H89 likely originated at an early evolutionary stage of the ribosome and played a significant role in its early function. However, L39/H89 self-assembly is impaired outside the ribosomal context. Herein, we demonstrate that structural modularity principles can be used to re-engineer L39/H89 to self-assemble in vitro. The new versions of L39/H89 improve affinity and loop selectivity by several orders of magnitude and retain the structural and functional features of their natural counterparts. These versions of L39/H89 are proposed to be ancestral forms of L39/H89 that were capable of assembling and folding independently from proteins and post-transcriptional modifications. This work demonstrates that novel RNA modules can be rationally designed by taking advantage of the modular syntax of RNA. It offers the prospect of creating new biochemical models of the ancestral ribosome and increases the tool kit for RNA nanotechnology and synthetic biology.
Collapse
Affiliation(s)
- Erin R Calkins
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Paul Zakrevsky
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Vasken L Keleshian
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Eduardo G Aguilar
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Cody Geary
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| |
Collapse
|
27
|
Oliver RC, Rolband LA, Hutchinson-Lundy AM, Afonin KA, Krueger JK. Small-Angle Scattering as a Structural Probe for Nucleic Acid Nanoparticles (NANPs) in a Dynamic Solution Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E681. [PMID: 31052508 PMCID: PMC6566709 DOI: 10.3390/nano9050681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Nucleic acid-based technologies are an emerging research focus area for pharmacological and biological studies because they are biocompatible and can be designed to produce a variety of scaffolds at the nanometer scale. The use of nucleic acids (ribonucleic acid (RNA) and/or deoxyribonucleic acid (DNA)) as building materials in programming the assemblies and their further functionalization has recently established a new exciting field of RNA and DNA nanotechnology, which have both already produced a variety of different functional nanostructures and nanodevices. It is evident that the resultant architectures require detailed structural and functional characterization and that a variety of technical approaches must be employed to promote the development of the emerging fields. Small-angle X-ray and neutron scattering (SAS) are structural characterization techniques that are well placed to determine the conformation of nucleic acid nanoparticles (NANPs) under varying solution conditions, thus allowing for the optimization of their design. SAS experiments provide information on the overall shapes and particle dimensions of macromolecules and are ideal for following conformational changes of the molecular ensemble as it behaves in solution. In addition, the inherent differences in the neutron scattering of nucleic acids, lipids, and proteins, as well as the different neutron scattering properties of the isotopes of hydrogen, combined with the ability to uniformly label biological macromolecules with deuterium, allow one to characterize the conformations and relative dispositions of the individual components within an assembly of biomolecules. This article will review the application of SAS methods and provide a summary of their successful utilization in the emerging field of NANP technology to date, as well as share our vision on its use in complementing a broad suite of structural characterization tools with some simulated results that have never been shared before.
Collapse
Affiliation(s)
- Ryan C Oliver
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Lewis A Rolband
- UNC Charlotte Chemistry Department, Charlotte, NC 28223, USA.
| | | | - Kirill A Afonin
- UNC Charlotte Chemistry Department, Charlotte, NC 28223, USA.
| | | |
Collapse
|
28
|
Jasinski DL, Binzel DW, Guo P. One-Pot Production of RNA Nanoparticles via Automated Processing and Self-Assembly. ACS NANO 2019; 13:4603-4612. [PMID: 30888787 PMCID: PMC6542271 DOI: 10.1021/acsnano.9b00649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
From the original sequencing of the human genome, it was found that about 98.5% of the genome did not code for proteins. Subsequent studies have now revealed that a much larger portion of the genome is related to short or long noncoding RNAs that regulate cellular activities. In addition to the milestones of chemical and protein drugs, it has been proposed that RNA drugs or drugs targeting RNA will become the third milestone in drug development ( Shu , Y. ; Adv. Drug Deliv. Rev. 2014 , 66 , 74 . ). Currently, the yield and cost for RNA nanoparticle or RNA drug production requires improvement in order to advance the RNA field in both research and clinical translation by reducing the multiple tedious manufacturing steps. For example, with 98.5% incorporation efficiency of chemical synthesis of a 100 nucleotide RNA strand, RNA oligos will result with 78% contamination of aborted byproducts. Thus, RNA nanotechnology is one of the remedies, because large RNA can be assembled from small RNA fragments via bottom-up self-assembly. Here we report the one-pot production of RNA nanoparticles via automated processing and self-assembly. The continuous production of RNA by rolling circle transcription (RCT) using a circular dsDNA template is coupled with self-cleaving ribozymes encoded in the concatemeric RNA transcripts. Production was monitored in real-time. Automatic production of RNA fragments enabled their assembly either in situ or via one-pot co-transcription to obtain RNA nanoparticles of desired motifs and functionalities from bottom-up assembly of multiple RNA fragments. In combination with the RNA nanoparticle construction process, a purification method using a large-scale electrophoresis column was also developed.
Collapse
Affiliation(s)
| | | | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; Dorothy M. Davis Heart and Lung Research Institute; and James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
29
|
Yourston LE, Lushnikov AY, Shevchenko OA, Afonin KA, Krasnoslobodtsev AV. First Step Towards Larger DNA-Based Assemblies of Fluorescent Silver Nanoclusters: Template Design and Detailed Characterization of Optical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E613. [PMID: 31013933 PMCID: PMC6523636 DOI: 10.3390/nano9040613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
Besides being a passive carrier of genetic information, DNA can also serve as an architecture template for the synthesis of novel fluorescent nanomaterials that are arranged in a highly organized network of functional entities such as fluorescent silver nanoclusters (AgNCs). Only a few atoms in size, the properties of AgNCs can be tuned using a variety of templating DNA sequences, overhangs, and neighboring duplex regions. In this study, we explore the properties of AgNCs manufactured on a short DNA sequence-an individual element designed for a construction of a larger DNA-based functional assembly. The effects of close proximity of the double-stranded DNA, the directionality of templating single-stranded sequence, and conformational heterogeneity of the template are presented. We observe differences between designs containing the same AgNC templating sequence-twelve consecutive cytosines, (dC)12. AgNCs synthesized on a single "basic" templating element, (dC)12, emit in "red". The addition of double-stranded DNA core, required for the larger assemblies, changes optical properties of the silver nanoclusters by adding a new population of clusters emitting in "green". A new population of "blue" emitting clusters forms only when ssDNA templating sequence is placed on the 5' end of the double-stranded core. We also compare properties of silver nanoclusters, which were incorporated into a dimeric structure-a first step towards a larger assembly.
Collapse
Affiliation(s)
- Liam E Yourston
- Department of Physics, University of Nebraska Omaha, Omaha, NE 68182, USA.
| | - Alexander Y Lushnikov
- Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Oleg A Shevchenko
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Alexey V Krasnoslobodtsev
- Department of Physics, University of Nebraska Omaha, Omaha, NE 68182, USA.
- Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
30
|
Chandler M, Afonin KA. Smart-Responsive Nucleic Acid Nanoparticles (NANPs) with the Potential to Modulate Immune Behavior. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E611. [PMID: 31013847 PMCID: PMC6523571 DOI: 10.3390/nano9040611] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
Nucleic acids are programmable and biocompatible polymers that have beneficial uses in nanotechnology with broad applications in biosensing and therapeutics. In some cases, however, the development of the latter has been impeded by the unknown immunostimulatory properties of nucleic acid-based materials, as well as a lack of functional dynamicity due to stagnant structural design. Recent research advancements have explored these obstacles in tandem via the assembly of three-dimensional, planar, and fibrous cognate nucleic acid-based nanoparticles, called NANPs, for the conditional activation of embedded and otherwise quiescent functions. Furthermore, a library of the most representative NANPs was extensively analyzed in human peripheral blood mononuclear cells (PBMCs), and the links between the programmable architectural and physicochemical parameters of NANPs and their immunomodulatory properties have been established. This overview will cover the recent development of design principles that allow for fine-tuning of both the physicochemical and immunostimulatory properties of dynamic NANPs and discuss the potential impacts of these novel strategies.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
31
|
Hong E, Halman JR, Shah A, Cedrone E, Truong N, Afonin KA, Dobrovolskaia MA. Toll-Like Receptor-Mediated Recognition of Nucleic Acid Nanoparticles (NANPs) in Human Primary Blood Cells. Molecules 2019; 24:E1094. [PMID: 30897721 PMCID: PMC6470694 DOI: 10.3390/molecules24061094] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
Infusion reactions (IRs) create a translational hurdle for many novel therapeutics, including those utilizing nanotechnology. Nucleic acid nanoparticles (NANPs) are a novel class of therapeutics prepared by rational design of relatively short oligonucleotides to self-assemble into various programmable geometric shapes. While cytokine storm, a common type of IR, has halted clinical development of several therapeutic oligonucleotides, NANP technologies hold tremendous potential to bring these reactions under control by tuning the particle's physicochemical properties to the desired type and magnitude of the immune response. Recently, we reported the very first comprehensive study of the structure⁻activity relationship between NANPs' shape, size, composition, and their immunorecognition in human cells, and identified the phagolysosomal pathway as the major route for the NANPs' uptake and subsequent immunostimulation. Here, we explore the molecular mechanism of NANPs' recognition by primary immune cells, and particularly the contributing role of the Toll-like receptors. Our current study expands the understanding of the immune recognition of engineered nucleic acid-based therapeutics and contributes to the improvement of the nanomedicine safety profile.
Collapse
Affiliation(s)
- Enping Hong
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by The National Cancer Institute, Frederick, MD 21702, USA.
| | - Justin R Halman
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Ankit Shah
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by The National Cancer Institute, Frederick, MD 21702, USA.
| | - Edward Cedrone
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by The National Cancer Institute, Frederick, MD 21702, USA.
| | - Nguyen Truong
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by The National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
32
|
Ke W, Hong E, Saito RF, Rangel MC, Wang J, Viard M, Richardson M, Khisamutdinov EF, Panigaj M, Dokholyan NV, Chammas R, Dobrovolskaia MA, Afonin KA. RNA-DNA fibers and polygons with controlled immunorecognition activate RNAi, FRET and transcriptional regulation of NF-κB in human cells. Nucleic Acids Res 2019; 47:1350-1361. [PMID: 30517685 PMCID: PMC6379676 DOI: 10.1093/nar/gky1215] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022] Open
Abstract
Nucleic acid-based assemblies that interact with each other and further communicate with the cellular machinery in a controlled manner represent a new class of reconfigurable materials that can overcome limitations of traditional biochemical approaches and improve the potential therapeutic utility of nucleic acids. This notion enables the development of novel biocompatible 'smart' devices and biosensors with precisely controlled physicochemical and biological properties. We extend this novel concept by designing RNA-DNA fibers and polygons that are able to cooperate in different human cell lines and that have defined immunostimulatory properties confirmed by ex vivo experiments. The mutual intracellular interaction of constructs results in the release of a large number of different siRNAs while giving a fluorescent response and activating NF-κB decoy DNA oligonucleotides. This work expands the possibilities of nucleic acid technologies by (i) introducing very simple design principles and assembly protocols; (ii) potentially allowing for a simultaneous release of various siRNAs together with functional DNA sequences and (iii) providing controlled rates of reassociation, stabilities in human blood serum, and immunorecognition.
Collapse
Affiliation(s)
- Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Enping Hong
- Nanotechnology Characterization Lab., Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Renata F Saito
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil
| | - Maria Cristina Rangel
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil
| | - Jian Wang
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Mathias Viard
- Basic Science Program, Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Melina Richardson
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | - Martin Panigaj
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice, Slovak Republic
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Roger Chammas
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab., Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
33
|
Sajja S, Chandler M, Fedorov D, Kasprzak WK, Lushnikov A, Viard M, Shah A, Dang D, Dahl J, Worku B, Dobrovolskaia MA, Krasnoslobodtsev A, Shapiro BA, Afonin KA. Dynamic Behavior of RNA Nanoparticles Analyzed by AFM on a Mica/Air Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15099-15108. [PMID: 29669419 PMCID: PMC6207479 DOI: 10.1021/acs.langmuir.8b00105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
RNA is an attractive biopolymer for engineering self-assembling materials suitable for biomedical applications. Previously, programmable hexameric RNA rings were developed for the controlled delivery of up to six different functionalities. To increase the potential for functionalization with little impact on nanoparticle topology, we introduce gaps into the double-stranded regions of the RNA rings. Molecular dynamic simulations are used to assess the dynamic behavior and the changes in the flexibility of novel designs. The changes suggested by simulations, however, cannot be clearly confirmed by the conventional techniques such as nondenaturing polyacrylamide gel electrophoresis (native-PAGE) and dynamic light scattering (DLS). Also, an in vitro analysis in primary cultures of human peripheral blood mononuclear cells does not reveal any discrepancy in the immunological recognition of new assemblies. To address these deficiencies, we introduce a computer-assisted quantification strategy. This strategy is based on an algorithmic atomic force microscopy (AFM)-resolved deformation analysis of the RNA nanoparticles studied on a mica/air interface. We validate this computational method by manual image analysis and fitting it to the simulation-predicted results. The presented nanoparticle modification strategy and subsequent AFM-based analysis are anticipated to provide a broad spectrum approach for the future development of nucleic acid-based nanotechnology.
Collapse
Affiliation(s)
- Sameer Sajja
- Nanoscale Science Program, Department of Chemistry
| | | | - Dmitry Fedorov
- ViQi Inc., Santa Barbara, California 93109, United States
| | | | - Alexander Lushnikov
- Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Mathias Viard
- Basic Science Program, Leidos Biomedical Research Inc and
- RNA Biology Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ankit Shah
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Dylan Dang
- Nanoscale Science Program, Department of Chemistry
| | - Jared Dahl
- Nanoscale Science Program, Department of Chemistry
| | | | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Alexey Krasnoslobodtsev
- Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Physics, University of Nebraska at Omaha, Omaha, Nebraska 68182, United States
| | - Bruce A. Shapiro
- RNA Biology Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
34
|
Chandler M, Lyalina T, Halman J, Rackley L, Lee L, Dang D, Ke W, Sajja S, Woods S, Acharya S, Baumgarten E, Christopher J, Elshalia E, Hrebien G, Kublank K, Saleh S, Stallings B, Tafere M, Striplin C, Afonin KA. Broccoli Fluorets: Split Aptamers as a User-Friendly Fluorescent Toolkit for Dynamic RNA Nanotechnology. Molecules 2018; 23:E3178. [PMID: 30513826 PMCID: PMC6321606 DOI: 10.3390/molecules23123178] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
RNA aptamers selected to bind fluorophores and activate their fluorescence offer a simple and modular way to visualize native RNAs in cells. Split aptamers which are inactive until the halves are brought within close proximity can become useful for visualizing the dynamic actions of RNA assemblies and their interactions in real time with low background noise and eliminated necessity for covalently attached dyes. Here, we design and test several sets of F30 Broccoli aptamer splits, that we call fluorets, to compare their relative fluorescence and physicochemical stabilities. We show that the splits can be simply assembled either through one-pot thermal annealing or co-transcriptionally, thus allowing for direct tracking of transcription reactions via the fluorescent response. We suggest a set of rules that enable for the construction of responsive biomaterials that readily change their fluorescent behavior when various stimuli such as the presence of divalent ions, exposure to various nucleases, or changes in temperature are applied. We also show that the strand displacement approach can be used to program the controllable fluorescent responses in isothermal conditions. Overall, this work lays a foundation for the future development of dynamic systems for molecular computing which can be used to monitor real-time processes in cells and construct biocompatible logic gates.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Tatiana Lyalina
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova St. 9, 191002 St. Petersburg, Russia.
| | - Justin Halman
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Lauren Rackley
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Lauren Lee
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Dylan Dang
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Sameer Sajja
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Steven Woods
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Shrija Acharya
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Elijah Baumgarten
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Jonathan Christopher
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Emman Elshalia
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Gabriel Hrebien
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kinzey Kublank
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Saja Saleh
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Bailey Stallings
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Michael Tafere
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Caryn Striplin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
35
|
Rackley L, Stewart JM, Salotti J, Krokhotin A, Shah A, Halman JR, Juneja R, Smollett J, Lee L, Roark K, Viard M, Tarannum M, Vivero-Escoto J, Johnson PF, Dobrovolskaia MA, Dokholyan NV, Franco E, Afonin KA. RNA Fibers as Optimized Nanoscaffolds for siRNA Coordination and Reduced Immunological Recognition. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1805959. [PMID: 31258458 PMCID: PMC6599627 DOI: 10.1002/adfm.201805959] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 05/20/2023]
Abstract
RNA is a versatile biomaterial that can be used to engineer nanoassemblies for personalized treatment of various diseases. Despite promising advancements, the design of RNA nanoassemblies with minimal recognition by the immune system remains a major challenge. Here, an approach is reported to engineer RNA fibrous structures to operate as a customizable platform for efficient coordination of siRNAs and for maintaining low immunostimulation. Functional RNA fibers are studied in silico and their formation is confirmed by various experimental techniques and visualized by atomic force microscopy (AFM). It is demonstrated that the RNA fibers offer multiple advantages among which are: i) programmability and modular design that allow for simultaneous controlled delivery of multiple siRNAs and fluorophores, ii) reduced immunostimulation when compared to other programmable RNA nanoassemblies, and iii) simple production protocol for endotoxin-free fibers with the option of their cotranscriptional assembly. Furthermore, it is shown that functional RNA fibers can be efficiently delivered with various organic and inorganic carriers while retaining their structural integrity in cells. Specific gene silencing triggered by RNA fibers is assessed in human breast cancer and melanoma cell lines, with the confirmed ability of functional fibers to selectively target single nucleotide mutations.
Collapse
Affiliation(s)
- Lauren Rackley
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jaimie Marie Stewart
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Jacqueline Salotti
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Andrey Krokhotin
- Department of Biochemistry and Biophysics, University of North Carolina Chapel Hill, NC 27514, USA
| | - Ankit Shah
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Justin R Halman
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Ridhima Juneja
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jaclyn Smollett
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Lauren Lee
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kyle Roark
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Mathias Viard
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mubin Tarannum
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Juan Vivero-Escoto
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina Chapel Hill, NC 27514, USA
| | - Elisa Franco
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
36
|
Cruz-Acuña M, Halman JR, Afonin KA, Dobson J, Rinaldi C. Magnetic nanoparticles loaded with functional RNA nanoparticles. NANOSCALE 2018; 10:17761-17770. [PMID: 30215080 DOI: 10.1039/c8nr04254c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
RNA is now widely acknowledged not only as a multifunctional biopolymer but also as a dynamic material for constructing nanostructures with various biological functions. Programmable RNA nanoparticles (NPs) allow precise control over their formulation and activation of multiple functionalities, with the potential to self-assemble in biological systems. These attributes make them attractive for drug delivery and therapeutic applications. In the present study, we demonstrate the ability of iron oxide magnetic nanoparticles (MNPs) to deliver different types of RNA NPs functionalized with dicer substrate RNAs inside human cells. Our results show that use of functionalized RNA NPs result in statistically higher transfection efficiency compared to the use of RNA duplexes. Furthermore, we show that the nucleic acids in the MNP/RNA NP complexes are protected from nuclease degradation and that they can achieve knockdown of target protein expression, which is amplified by magnetic stimulus. The current work represents the very first report indicating that iron oxide nanoparticles may efficiently protect and deliver programmable RNA NPs to human cells.
Collapse
Affiliation(s)
- Melissa Cruz-Acuña
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, Florida 32611, USA.
| | | | | | | | | |
Collapse
|
37
|
Torelli E, Kozyra JW, Gu JY, Stimming U, Piantanida L, Voïtchovsky K, Krasnogor N. Isothermal folding of a light-up bio-orthogonal RNA origami nanoribbon. Sci Rep 2018; 8:6989. [PMID: 29725066 PMCID: PMC5934368 DOI: 10.1038/s41598-018-25270-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/12/2018] [Indexed: 12/27/2022] Open
Abstract
RNA presents intringuing roles in many cellular processes and its versatility underpins many different applications in synthetic biology. Nonetheless, RNA origami as a method for nanofabrication is not yet fully explored and the majority of RNA nanostructures are based on natural pre-folded RNA. Here we describe a biologically inert and uniquely addressable RNA origami scaffold that self-assembles into a nanoribbon by seven staple strands. An algorithm is applied to generate a synthetic De Bruijn scaffold sequence that is characterized by the lack of biologically active sites and repetitions larger than a predetermined design parameter. This RNA scaffold and the complementary staples fold in a physiologically compatible isothermal condition. In order to monitor the folding, we designed a new split Broccoli aptamer system. The aptamer is divided into two nonfunctional sequences each of which is integrated into the 5' or 3' end of two staple strands complementary to the RNA scaffold. Using fluorescence measurements and in-gel imaging, we demonstrate that once RNA origami assembly occurs, the split aptamer sequences are brought into close proximity forming the aptamer and turning on the fluorescence. This light-up 'bio-orthogonal' RNA origami provides a prototype that can have potential for in vivo origami applications.
Collapse
Affiliation(s)
- Emanuela Torelli
- Interdisciplinary Computing and Complex BioSystems (ICOS), School of Computing Science, Centre for Synthetic Biology and Bioeconomy (CSBB), Centre for Bacterial Cell Biology (CBCB), Newcastle University, Newcastle upon Tyne, NE4 5TG, United Kingdom.
| | - Jerzy Wieslaw Kozyra
- Interdisciplinary Computing and Complex BioSystems (ICOS), School of Computing Science, Centre for Synthetic Biology and Bioeconomy (CSBB), Centre for Bacterial Cell Biology (CBCB), Newcastle University, Newcastle upon Tyne, NE4 5TG, United Kingdom
| | - Jing-Ying Gu
- School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Ulrich Stimming
- School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Luca Piantanida
- Department of Physics, Durham University, Durham, DH1 3LE, United Kingdom
| | - Kislon Voïtchovsky
- Department of Physics, Durham University, Durham, DH1 3LE, United Kingdom
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex BioSystems (ICOS), School of Computing Science, Centre for Synthetic Biology and Bioeconomy (CSBB), Centre for Bacterial Cell Biology (CBCB), Newcastle University, Newcastle upon Tyne, NE4 5TG, United Kingdom.
| |
Collapse
|
38
|
Churkin A, Retwitzer MD, Reinharz V, Ponty Y, Waldispühl J, Barash D. Design of RNAs: comparing programs for inverse RNA folding. Brief Bioinform 2018; 19:350-358. [PMID: 28049135 PMCID: PMC6018860 DOI: 10.1093/bib/bbw120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Computational programs for predicting RNA sequences with desired folding properties have been extensively developed and expanded in the past several years. Given a secondary structure, these programs aim to predict sequences that fold into a target minimum free energy secondary structure, while considering various constraints. This procedure is called inverse RNA folding. Inverse RNA folding has been traditionally used to design optimized RNAs with favorable properties, an application that is expected to grow considerably in the future in light of advances in the expanding new fields of synthetic biology and RNA nanostructures. Moreover, it was recently demonstrated that inverse RNA folding can successfully be used as a valuable preprocessing step in computational detection of novel noncoding RNAs. This review describes the most popular freeware programs that have been developed for such purposes, starting from RNAinverse that was devised when formulating the inverse RNA folding problem. The most recently published ones that consider RNA secondary structure as input are antaRNA, RNAiFold and incaRNAfbinv, each having different features that could be beneficial to specific biological problems in practice. The various programs also use distinct approaches, ranging from ant colony optimization to constraint programming, in addition to adaptive walk, simulated annealing and Boltzmann sampling. This review compares between the various programs and provides a simple description of the various possibilities that would benefit practitioners in selecting the most suitable program. It is geared for specific tasks requiring RNA design based on input secondary structure, with an outlook toward the future of RNA design programs.
Collapse
Affiliation(s)
- Alexander Churkin
- Shamoon College of Engineering and Physics Department at Ben-Gurion University, Beer-Sheva, Israel
| | | | - Vladimir Reinharz
- Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
- School of Computer Science, McGill University, Montréal QC, Canada
| | - Yann Ponty
- Laboratoire d’informatique, École Polytechnique, Palaiseau, France
| | | | - Danny Barash
- Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
39
|
Geary C, Chworos A, Verzemnieks E, Voss NR, Jaeger L. Composing RNA Nanostructures from a Syntax of RNA Structural Modules. NANO LETTERS 2017; 17:7095-7101. [PMID: 29039189 PMCID: PMC6363482 DOI: 10.1021/acs.nanolett.7b03842] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Natural stable RNAs fold and assemble into complex three-dimensional architectures by relying on the hierarchical formation of intricate, recurrent networks of noncovalent tertiary interactions. These sequence-dependent networks specify RNA structural modules enabling orientational and topological control of helical struts to form larger self-folding domains. Borrowing concepts from linguistics, we defined an extended structural syntax of RNA modules for programming RNA strands to assemble into complex, responsive nanostructures under both thermodynamic and kinetic control. Based on this syntax, various RNA building blocks promote the multimolecular assembly of objects with well-defined three-dimensional shapes as well as the isothermal folding of long RNAs into complex single-stranded nanostructures during transcription. This work offers a glimpse of the limitless potential of RNA as an informational medium for designing programmable and functional nanomaterials useful for synthetic biology, nanomedicine, and nanotechnology.
Collapse
Affiliation(s)
- Cody Geary
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106-9510, United States
| | - Arkadiusz Chworos
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106-9510, United States
| | - Erik Verzemnieks
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106-9510, United States
| | - Neil R. Voss
- Biological, Chemical, and Physical Sciences Department, Roosevelt University, 1400 North Roosevelt Blvd., Schaumburg, Illinois 60173, United States
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
40
|
Johnson MB, Halman JR, Satterwhite E, Zakharov AV, Bui MN, Benkato K, Goldsworthy V, Kim T, Hong E, Dobrovolskaia MA, Khisamutdinov EF, Marriott I, Afonin KA. Programmable Nucleic Acid Based Polygons with Controlled Neuroimmunomodulatory Properties for Predictive QSAR Modeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201701255. [PMID: 28922553 PMCID: PMC6258062 DOI: 10.1002/smll.201701255] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/14/2017] [Indexed: 05/13/2023]
Abstract
In the past few years, the study of therapeutic RNA nanotechnology has expanded tremendously to encompass a large group of interdisciplinary sciences. It is now evident that rationally designed programmable RNA nanostructures offer unique advantages in addressing contemporary therapeutic challenges such as distinguishing target cell types and ameliorating disease. However, to maximize the therapeutic benefit of these nanostructures, it is essential to understand the immunostimulatory aptitude of such tools and identify potential complications. This paper presents a set of 16 nanoparticle platforms that are highly configurable. These novel nucleic acid based polygonal platforms are programmed for controllable self-assembly from RNA and/or DNA strands via canonical Watson-Crick interactions. It is demonstrated that the immunostimulatory properties of these particular designs can be tuned to elicit the desired immune response or lack thereof. To advance the current understanding of the nanoparticle properties that contribute to the observed immunomodulatory activity and establish corresponding designing principles, quantitative structure-activity relationship modeling is conducted. The results demonstrate that molecular weight, together with melting temperature and half-life, strongly predicts the observed immunomodulatory activity. This framework provides the fundamental guidelines necessary for the development of a new library of nanoparticles with predictable immunomodulatory activity.
Collapse
Affiliation(s)
- M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Justin R. Halman
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Emily Satterwhite
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - My N. Bui
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Kheiria Benkato
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | | | - Taejin Kim
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Enping Hong
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
41
|
Alibakhshi MA, Halman JR, Wilson J, Aksimentiev A, Afonin KA, Wanunu M. Picomolar Fingerprinting of Nucleic Acid Nanoparticles Using Solid-State Nanopores. ACS NANO 2017; 11:9701-9710. [PMID: 28841287 PMCID: PMC5959297 DOI: 10.1021/acsnano.7b04923] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nucleic acid nanoparticles (NANPs) are an emerging class of programmable structures with tunable shape and function. Their promise as tools for fundamental biophysics studies, molecular sensing, and therapeutic applications necessitates methods for their detection and characterization at the single-particle level. In this work, we study electrophoretic transport of individual ring-shaped and cube-shaped NANPs through solid-state nanopores. In the optimal nanopore size range, the particles must deform to pass through, which considerably increases their residence time within the pore. Such anomalously long residence times permit detection of picomolar amounts of NANPs when nanopore measurements are carried out at a high transmembrane bias. In the case of a NANP mixture, the type of individual particle passing through nanopores can be efficiently determined from analysis of a single electrical pulse. Molecular dynamics simulations provide insight into the mechanical barrier to transport of the NANPs and corroborate the difference in the signal amplitudes observed for the two types of particles. Our study serves as a basis for label-free analysis of soft programmable-shape nanoparticles.
Collapse
Affiliation(s)
| | - Justin R. Halman
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - James Wilson
- Department of Physics, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
42
|
Halman J, Satterwhite E, Smollett J, Bindewald E, Parlea L, Viard M, Zakrevsky P, Kasprzak WK, Afonin KA, Shapiro BA. Triggerable RNA nanodevices. RNA & DISEASE 2017; 4:e1349. [PMID: 34307841 PMCID: PMC8301261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The targeted and conditional activation of pharmaceuticals is an increasingly important feature in modern personalized medicine. Nucleic acid nanoparticles show tremendous potential in this exploit due to their programmability and biocompatibility. Among the most powerful nucleic acid specific treatments is RNA interference-based therapeutics. RNA interference is a naturally occurring phenomenon in which specific genes are effectively silenced. Recently we have developed two different strategies based on customized multivalent nucleic acid nanoparticles with the ability to conditionally activate RNA interference in diseased cells as well as elicit detectable fluorescent responses.[1,2] These novel technologies can be further utilized for the simultaneous delivery and conditional intracellular activation of multiple therapeutic and biosensing functions to combat various diseases.
Collapse
Affiliation(s)
- Justin Halman
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte 28223, North Carolina, USA
| | - Emily Satterwhite
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte 28223, North Carolina, USA
| | - Jaclyn Smollett
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte 28223, North Carolina, USA
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Inc., Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick 21702, Maryland, USA
| | - Lorena Parlea
- Gene Regulation Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick 21702, Maryland, USA
| | - Mathias Viard
- Gene Regulation Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick 21702, Maryland, USA
- Basic Science Program, Leidos Biomedical Research, Inc., Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick 21702, Maryland, USA
| | - Paul Zakrevsky
- Gene Regulation Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick 21702, Maryland, USA
| | - Wojciech K. Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick 21702, Maryland, USA
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte 28223, North Carolina, USA
| | - Bruce A. Shapiro
- Gene Regulation Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick 21702, Maryland, USA
| |
Collapse
|
43
|
Bui MN, Brittany Johnson M, Viard M, Satterwhite E, Martins AN, Li Z, Marriott I, Afonin KA, Khisamutdinov EF. Versatile RNA tetra-U helix linking motif as a toolkit for nucleic acid nanotechnology. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:1137-1146. [PMID: 28064006 PMCID: PMC6637421 DOI: 10.1016/j.nano.2016.12.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022]
Abstract
RNA nanotechnology employs synthetically modified ribonucleic acid (RNA) to engineer highly stable nanostructures in one, two, and three dimensions for medical applications. Despite the tremendous advantages in RNA nanotechnology, unmodified RNA itself is fragile and prone to enzymatic degradation. In contrast to use traditionally modified RNA strands e.g. 2'-fluorine, 2'-amine, 2'-methyl, we studied the effect of RNA/DNA hybrid approach utilizing a computer-assisted RNA tetra-uracil (tetra-U) motif as a toolkit to address questions related to assembly efficiency, versatility, stability, and the production costs of hybrid RNA/DNA nanoparticles. The tetra-U RNA motif was implemented to construct four functional triangles using RNA, DNA and RNA/DNA mixtures, resulting in fine-tunable enzymatic and thermodynamic stabilities, immunostimulatory activity and RNAi capability. Moreover, the tetra-U toolkit has great potential in the fabrication of rectangular, pentagonal, and hexagonal NPs, representing the power of simplicity of RNA/DNA approach for RNA nanotechnology and nanomedicine community.
Collapse
Affiliation(s)
- My N Bui
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | - M Brittany Johnson
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Mathias Viard
- Basic Science Program, Leidos Biomedical Research, Inc., RNA Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Emily Satterwhite
- Nanoscale Science Program, University of North Carolina at Charlotte, The Center for Biomedical Engineering and Science, Charlotte, NC 28223, USA
| | - Angelica N Martins
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Zhihai Li
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | - Ian Marriott
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Kirill A Afonin
- Nanoscale Science Program, University of North Carolina at Charlotte, The Center for Biomedical Engineering and Science, Charlotte, NC 28223, USA
| | | |
Collapse
|
44
|
Kireeva ML, Afonin KA, Shapiro BA, Kashlev M. Cotranscriptional Production of Chemically Modified RNA Nanoparticles. Methods Mol Biol 2017; 1632:91-105. [PMID: 28730434 DOI: 10.1007/978-1-4939-7138-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RNA nanoparticles consisting of multiple RNA strands of different sequences forming various three-dimensional structures emerge as promising carriers of siRNAs, RNA aptamers, and ribozymes. In vitro transcription of a mixture of dsDNA templates encoding all the subunits of the RNA nanoparticle may result in cotranscriptional self-assembly of the nanoparticle. Based on our experience with production of RNA nanorings, RNA nanocubes, and RNA three-way junctions, we propose a strategy for optimization of the cotranscriptional production of chemically modified ribonuclease-resistant RNA nanoparticles.
Collapse
Affiliation(s)
- Maria L Kireeva
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Kirill A Afonin
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, USA
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Bruce A Shapiro
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Mikhail Kashlev
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
45
|
Abstract
Molecular dynamics (MD) simulations have been used as one of the main research tools to study a wide range of biological systems and bridge the gap between X-ray crystallography or NMR structures and biological mechanism. In the field of RNA nanostructures, MD simulations have been used to fix steric clashes in computationally designed RNA nanostructures, characterize the dynamics, and investigate the interaction between RNA and other biomolecules such as delivery agents and membranes.In this chapter we present examples of computational protocols for molecular dynamics simulations in explicit and implicit solvent using the Amber Molecular Dynamics Package. We also show examples of post-simulation analysis steps and briefly mention selected tools beyond the Amber package. Limitations of the methods, tools, and protocols are also discussed. Most of the examples are illustrated for a small RNA duplex (helix), but the protocols are applicable to any nucleic acid structure, subject only to the computational speed and memory limitations of the hardware available to the user.
Collapse
Affiliation(s)
- Taejin Kim
- Department of Chemistry, New York University, 10th Floor Silver Center, 100 Washington Square East, New York, NY, 10003, USA
| | - Wojciech K Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Bruce A Shapiro
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| |
Collapse
|
46
|
Roark B, Tan JA, Ivanina A, Chandler M, Castaneda J, Kim HS, Jawahar S, Viard M, Talic S, Wustholz KL, Yingling YG, Jones M, Afonin KA. Fluorescence Blinking as an Output Signal for Biosensing. ACS Sens 2016; 1:1295-1300. [PMID: 30035233 DOI: 10.1021/acssensors.6b00352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate the first biosensing strategy that relies on quantum dot (QD) fluorescence blinking to report the presence of a target molecule. Unlike other biosensors that utilize QDs, our method does not require the analyte to induce any fluorescence intensity or color changes, making it readily applicable to a wide range of target species. Instead, our approach relies on the understanding that blinking, a single particle phenomenon, is obscured when several QDs lie within the detection volume of a confocal microscope. If QDs are engineered to aggregate when they encounter a particular target molecule, the observation of quasi-continuous emission should indicate its presence. As proof of concept, we programmed DNAs to drive rapid isothermal assembly of QDs in the presence of a target strand (oncogene K-ras). The assemblies, confirmed by various gel techniques, contained multiple QDs and were readily distinguished from free QDs by the absence of blinking.
Collapse
Affiliation(s)
- Brandon Roark
- Department
of Chemistry, University of North Carolina at Charlotte, 9201 University
City Boulevard, Charlotte, North Carolina 28223, United States
| | - Jenna A. Tan
- Department
of Chemistry, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Anna Ivanina
- Department
of Chemistry, University of North Carolina at Charlotte, 9201 University
City Boulevard, Charlotte, North Carolina 28223, United States
| | - Morgan Chandler
- Department
of Chemistry, University of North Carolina at Charlotte, 9201 University
City Boulevard, Charlotte, North Carolina 28223, United States
| | - Jose Castaneda
- Department
of Chemistry, University of North Carolina at Charlotte, 9201 University
City Boulevard, Charlotte, North Carolina 28223, United States
| | - Ho Shin Kim
- Department
of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Shriram Jawahar
- Department
of Chemistry, University of North Carolina at Charlotte, 9201 University
City Boulevard, Charlotte, North Carolina 28223, United States
| | - Mathias Viard
- Basic
Science Program, Leidos Biomedical
Research, Inc., RNA Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Strahinja Talic
- Department
of Chemistry, University of North Carolina at Charlotte, 9201 University
City Boulevard, Charlotte, North Carolina 28223, United States
| | - Kristin L. Wustholz
- Department
of Chemistry, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Yaroslava G. Yingling
- Department
of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Marcus Jones
- Department
of Chemistry, University of North Carolina at Charlotte, 9201 University
City Boulevard, Charlotte, North Carolina 28223, United States
- Nanoscale
Science Program and The Center
for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill A. Afonin
- Department
of Chemistry, University of North Carolina at Charlotte, 9201 University
City Boulevard, Charlotte, North Carolina 28223, United States
- Nanoscale
Science Program and The Center
for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
47
|
Parlea L, Puri A, Kasprzak W, Bindewald E, Zakrevsky P, Satterwhite E, Joseph K, Afonin KA, Shapiro BA. Cellular Delivery of RNA Nanoparticles. ACS COMBINATORIAL SCIENCE 2016; 18:527-47. [PMID: 27509068 PMCID: PMC6345529 DOI: 10.1021/acscombsci.6b00073] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RNA nanostructures can be programmed to exhibit defined sizes, shapes and stoichiometries from naturally occurring or de novo designed RNA motifs. These constructs can be used as scaffolds to attach functional moieties, such as ligand binding motifs or gene expression regulators, for nanobiology applications. This review is focused on four areas of importance to RNA nanotechnology: the types of RNAs of particular interest for nanobiology, the assembly of RNA nanoconstructs, the challenges of cellular delivery of RNAs in vivo, and the delivery carriers that aid in the matter. The available strategies for the design of nucleic acid nanostructures, as well as for formulation of their carriers, make RNA nanotechnology an important tool in both basic research and applied biomedical science.
Collapse
Affiliation(s)
- Lorena Parlea
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Anu Puri
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wojciech Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Paul Zakrevsky
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Emily Satterwhite
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kenya Joseph
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte North Carolina 28223, United States
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte North Carolina 28223, United States
| | - Bruce A. Shapiro
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
48
|
Jeong EH, Kim H, Jang B, Cho H, Ryu J, Kim B, Park Y, Kim J, Lee JB, Lee H. Technological development of structural DNA/RNA-based RNAi systems and their applications. Adv Drug Deliv Rev 2016; 104:29-43. [PMID: 26494399 DOI: 10.1016/j.addr.2015.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/01/2015] [Accepted: 10/12/2015] [Indexed: 01/04/2023]
Abstract
RNA interference (RNAi)-based gene therapy has drawn tremendous attention due to its highly specific gene regulation by selective degradation of any target mRNA. There have been multiple reports regarding the development of various cationic materials for efficient siRNA delivery, however, many studies still suffer from the conventional delivery problems such as suboptimal transfection performance, a lack of tissue specificity, and potential cytotoxicity. Despite the huge therapeutic potential of siRNAs, conventional gene carriers have failed to guarantee successful gene silencing in vivo, thus not warranting clinical trials. The relatively short double-stranded structure of siRNAs has resulted in uncompromising delivery formulations, as well as low transfection efficiency, compared with the conventional nucleic acid drugs such as plasmid DNAs. Recent developments in structural siRNA and RNAi nanotechnology have enabled more refined and reliable in vivo gene silencing with multiple advantages over naked siRNAs. This review focuses on recent progress in the development of structural DNA/RNA-based RNAi systems and their potential therapeutic applications. In addition, an extensive list of prior reports on various RNAi systems is provided and categorized by their distinctive molecular characters.
Collapse
|
49
|
Parlea L, Bindewald E, Sharan R, Bartlett N, Moriarty D, Oliver J, Afonin KA, Shapiro BA. Ring Catalog: A resource for designing self-assembling RNA nanostructures. Methods 2016; 103:128-37. [PMID: 27090005 PMCID: PMC6319925 DOI: 10.1016/j.ymeth.2016.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023] Open
Abstract
Designing self-assembling RNA ring structures based on known 3D structural elements connected via linker helices is a challenging task due to the immense number of motif combinations, many of which do not lead to ring-closure. We describe an in silico solution to this design problem by combinatorial assembly of RNA 3-way junctions, bulges, and kissing loops, and tabulating the cases that lead to ring formation. The solutions found are made available in the form of a web-accessible Ring Catalog. As an example of a potential use of this resource, we chose a predicted RNA square structure consisting of five RNA strands and demonstrate experimentally that the self-assembly of those five strands leads to the formation of a square-like complex. This is a demonstration of a novel "design by catalog" approach to RNA nano-structure generation. The URL https://rnajunction.ncifcrf.gov/ringdb can be used to access the resource.
Collapse
Affiliation(s)
- Lorena Parlea
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Rishabh Sharan
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Nathan Bartlett
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Daniel Moriarty
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Jerome Oliver
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Bruce A Shapiro
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
50
|
Hao Y, Kieft JS. Three-way junction conformation dictates self-association of phage packaging RNAs. RNA Biol 2016; 13:635-45. [PMID: 27217219 DOI: 10.1080/15476286.2016.1190075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The packaging RNA (pRNA) found in the phi29 family of bacteriophage is an essential component of a powerful molecular motor used to package the phage's DNA genome into the capsid. The pRNA forms homomultimers mediated by intermolecular "kissing-loop" interactions, thus it is an example of the unusual phenomenon of a self-associating RNA that can form symmetric higher-order multimers. Previous research showed the pRNAs from phi29 family phages have diverse self-association properties and the kissing-loop interaction is not the sole structural element dictating multimerization. We found that a 3-way junction (3wj) within each pRNA, despite not making direct intermolecular contacts, plays important roles in stabilizing the intermolecular interactions and dictating the size of the multimer formed (dimer, trimer, etc.). Specifically, the 3wj in the pRNA from phage M2 appears to favor a different conformation compared to the 3wj in the phi29 pRNA, and the M2 junction facilitates formation of a higher-order multimer that is more thermostable. This behavior provides insights into the fundamental principles of RNA self-association, and additionally may be useful to engineer fine-tuned properties into pRNAs for nanotechnology.
Collapse
Affiliation(s)
- Yumeng Hao
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver School of Medicine , Aurora , CO , USA
| | - Jeffrey S Kieft
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver School of Medicine , Aurora , CO , USA
| |
Collapse
|