1
|
Tang F, Pang J, Yang J, Kuang X, Mao A. Two-dimensional functionalized MBene Mg 2B 3T (T = O, H, and F) monolayers as anode materials for high-performance K-ion batteries. Phys Chem Chem Phys 2024; 26:25623-25631. [PMID: 39344897 DOI: 10.1039/d4cp02402h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Two-dimensional metal borides have received attention as high performance battery anode materials. During the practical application, the 2D surface terminalization is an inevitable problem. This study employs first-principles calculations to investigate the termination of the Mg2B3 monolayer with O, H, F, and Cl groups. These structures' stabilities are examined through energetic, mechanical, kinetic and thermodynamic stability studies. Electronic property analysis shows that Mg2B3T (T = O, H, F, and Cl) monolayers are all metallic. Calculated results reveal that the Mg2B3O, Mg2B3H, and Mg2B3F monolayers exhibit high K ion storage capacities (up to 826 mA h g-1, 980 mA h g-1, and 804 mA h g-1, respectively), with diffusion barriers of 0.338 eV, 0.490 eV, and 0.507 eV, respectively. More importantly, the calculated in-plane lattice constants of the substrate materials exhibit a minimal variation and the observed volume expansion is almost negligible (less than 0.08%) during the entire potassization process, which is much lower than that of the pristine Mg2B3 monolayer. This structural stability is attributed to the presence of surface functional groups. These results provide helpful insights into designing and discovering other high-capacity anode materials for batteries.
Collapse
Affiliation(s)
- Fengzhang Tang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Jiafei Pang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Jinni Yang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Xiaoyu Kuang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Aijie Mao
- College of Physics, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
2
|
Ruiz-Hitzky E, Ounis M, Younes MK, Pérez-Carvajal J. Silica-Ti 3C 2T x MXene Nanoarchitectures with Simultaneous Adsorption and Photothermal Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4273. [PMID: 39274661 PMCID: PMC11396753 DOI: 10.3390/ma17174273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/16/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024]
Abstract
Layered Ti3C2Tx MXene has been successfully intercalated and exfoliated with the simultaneous generation of a 3D silica network by treating its cationic surfactant intercalation compound (MXene-CTAB) with an alkoxysilane (TMOS), resulting in a MXene-silica nanoarchitecture, which has high porosity and specific surface area, together with the intrinsic properties of MXene (e.g., photothermal response). The ability of these innovative MXene silica materials to induce thermal activation reactions of previously adsorbed compounds is demonstrated here using NIR laser irradiation. For this purpose, the pinacol rearrangement reaction has been selected as a first model example, testing the effectiveness of NIR laser-assisted photothermal irradiation in these processes. This work shows that Ti3C2Tx-based nanoarchitectures open new avenues for applications that rely on the combined properties inherent to their integrated nanocomponents, which could be extended to the broader MXene family.
Collapse
Affiliation(s)
- Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid (ICMM-CSIC), c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Mabrouka Ounis
- Materials Science Institute of Madrid (ICMM-CSIC), c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
- Laboratory of Materials Chemistry and Catalysis, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Mohamed Kadri Younes
- Laboratory of Materials Chemistry and Catalysis, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Javier Pérez-Carvajal
- Materials Science Institute of Madrid (ICMM-CSIC), c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
3
|
Hassan T, Kim J, Manh HN, Iqbal A, Gao Z, Kim H, Hussain N, Naqvi SM, Zaman S, Narayanasamy M, Lee SU, Kang J, Koo CM. Semiconducting Properties of Delaminated Titanium Nitride Ti 4N 3T x MXene with Gate-Tunable Electrical Conductivity. ACS NANO 2024; 18:23477-23488. [PMID: 39133538 DOI: 10.1021/acsnano.4c06966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
MXenes have garnered significant attention due to their atomically thin two-dimensional structure with metallic electronic properties. However, it has not yet been fully achieved to discover semiconducting MXenes to implement them into gate-tunable electronics such as field-effect transistors and phototransistors. Here, a semiconducting Ti4N3Tx MXene synthesized by using a modified oxygen-assisted molten salt etching method under ambient conditions, is reported. The oxygen-rich synthesis environment significantly enhances the etching reaction rate and selectivity of Al from a Ti4AlN3 MAX phase, resulting in well-delaminated and highly crystalline Ti4N3Tx MXene with minimal defects and high content of F and O, which led to its improved hydrophobicity and thermal stability. Notably, the synthesized Ti4N3Tx MXene exhibited p-type semiconducting characteristics, including gate-tunable electrical conductivity, with a current on-off ratio of 5 × 103 and a hole mobility of ∼0.008 cm2 V-1 s-1 at 243 K. The semiconducting property crucial for thin-film transistor applications is evidently associated with the surface terminations and the partial substitution of oxygen in the nitrogen lattice, as corroborated by density functional theory (DFT) calculations. Furthermore, the synthesized Ti4N3Tx exhibits strong light absorption characteristics and photocurrent generation. These findings highlight the delaminated Ti4N3Tx as an emerging two-dimensional semiconducting material for potential electronic and optoelectronic applications.
Collapse
Affiliation(s)
- Tufail Hassan
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jihyun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Hung Ngo Manh
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Aamir Iqbal
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Zhenguo Gao
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Hyerim Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Noushad Hussain
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Shabbir Madad Naqvi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Shakir Zaman
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Mugilan Narayanasamy
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Sang Uck Lee
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Joohoon Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Chong Min Koo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
4
|
Wang H, Ning M, Sun M, Li B, Liang Y, Li Z. Research progress of functional MXene in inhibiting lithium/zinc metal battery dendrites. RSC Adv 2024; 14:26837-26856. [PMID: 39184006 PMCID: PMC11343041 DOI: 10.1039/d4ra05220j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
The layered two-dimensional (2D) MXene has great promise for applications in supercapacitors, batteries, and electrocatalysis due to its large layer spacing, excellent electrical conductivity, good chemical stability, good hydrophilicity, and adjustable layer spacing. Since its discovery in 2011, MXene has been widely used to inhibit the growth of anode dendrites of lithium metal. In the past two years, researchers have used MXene and MXene based materials in the anodes of zinc metal batteries and zinc ion hybrid capacitors, respectively, and made a series of important progressive steps in the inhibition of zinc dendrite growth. In this review, we summarize the research progress of functional MXenes in inhibiting the growth of lithium and zinc metal anode dendrites, and provide a brief overview and outlook on the current challenges of MXene materials, which will help researchers to further understand the methods and their mechanisms, thus to develop novel electrochemical energy storage systems to meet the needs of rapidly developing electric vehicles and wearable/portable electronics.
Collapse
Affiliation(s)
- Haiyan Wang
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Mengxin Ning
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Min Sun
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Bin Li
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Yachuan Liang
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Zijiong Li
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| |
Collapse
|
5
|
Ahmed T, Piya AA, Daula Shamim SU. Recent advances in Zr and Hf-based MXenes and their hetero-structure as novel anode materials for Ca-ion batteries: theoretical insights from DFT approach. NANOSCALE ADVANCES 2024; 6:3441-3449. [PMID: 38933860 PMCID: PMC11197427 DOI: 10.1039/d4na00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
Recently, MXenes have been widely investigated for use as electrodes in various ion storage batteries. In this study, Zr2N, Hf2N and ZrHfN were explored as potential anode materials for Ca-ion batteries. AIMD simulations predict higher structural stability for our proposed MXenes at a temperature of 300 K. The adsorption energies at the most favourable adsorption sites are 1.31, 1.33 and 1.27 eV for Zr2N, Hf2N and ZrHfN, respectively. During the adsorption process, a significant amount of charge transfer occurs from the Ca atom to the nanosheets. DOS and PDOS analyses reveal that the adsorption of Ca atoms enhances the conductivity of the nanosheets. Moreover, the low diffusion barriers are found to be 0.076, 0.073 and 0.097 eV when the Ca atom migrates from its favourable adsorption site to a nearby site on Zr2N, Hf2N and ZrHfN nanosheets, resulting in high charging rates. The theoretical capacities of Zr2N, Hf2N and ZrHfN nanosheets are 1034, 561 and 707 mA h g-1, respectively. All the results from this study suggest that our proposed nanosheets can be potential anode materials for Ca-ion batteries. Among them, the Zr2N nanosheet shows superior anodic properties for Ca-ion batteries, which is also confirmed by specific capacity, diffusion barrier and open circuit voltage calculations.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Afiya Akter Piya
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Siraj Ud Daula Shamim
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| |
Collapse
|
6
|
Rasheed T, Ferry DB, Iqbal ZF, Imran M, Usman M. Cutting-edge developments in MXene-derived functional hybrid nanostructures: A promising frontier for next-generation water purification membranes. CHEMOSPHERE 2024; 357:141955. [PMID: 38614403 DOI: 10.1016/j.chemosphere.2024.141955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
A novel family of multifunctional nanomaterials called MXenes is quickly evolving, and it has potential applications that are comparable to those of graphene. This article provides a current explanation of the design and performance assessment of MXene-based membranes. The production of MXenes nanosheets are first described, with an emphasis on exfoliation, dispersion stability, and processability, which are essential elements for membrane construction. Further, critical discussion is also given to MXenes potential applications in Vacuum assisted filtration, casting method, Hot press method, electrospinning and electrochemical deposition and layer-by-layer assembly for the creation of MXene and MXene derived nanocomposite membranes. Additionally, the discussion is carried forward to give an insight to the modification methods for the construction of MXene-based membrane are described in the literature, including pure or intercalated nanomaterials, surface modifiers and miscellaneous two-dimensional nanomaterials. Furthermore, the review article highlights the potential utilization of MXene and MXene based membranes in separation and purification processes including removal of small organic molecules, heavy metals, oil-water separation and desalination. Finally, the perspective use of MXenes strong catalytic activity and electrical conductivity for specialized applications that are difficult for other nanomaterials to accomplish are discussed in conclusion and future prospectus section of the manuscript. Overall, important information is given to help the communities of materials science and membranes to better understand the potential of MXenes for creating cutting-edge separation and purification membranes.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Darim Badur Ferry
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Zeenat Fatima Iqbal
- Department of Chemistry, The University of Engineering and Technology, Lahore-54000, Punjab, Pakistan
| | - Muhammad Imran
- Research center for Advanced Materials Science (RCAMS), Department of chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
7
|
Cong Y, Tao B, Lu X, Liu X, Wang Y, Yin H. Effect of point defects on the band alignment and transport properties of 1T-MoS 2/2H-MoS 2/1T-MoS 2 heterojunctions. Phys Chem Chem Phys 2024; 26:13230-13238. [PMID: 38634402 DOI: 10.1039/d4cp00707g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Defects, which are an unavoidable component of the material preparation process, can have a significant impact on the properties of two-dimensional devices. In this work, we investigated theoretically the effects of different types and positions of point defects on band alignment and transport properties of metallic 1T-phase MoS2/semiconducting 2H-phase MoS2 junctions. We found that the Schottky barriers of junctions depend on the type of defects and their locations while showing anisotropic characteristics along the zigzag and armchair directions of 2H-phase MoS2. Moreover, defects in the central scattering region can generate local impurity states and introduce new transmission peaks, while defects at the interface do not generate impurity-state-related transmission peaks. Together, these defect-related peaks and Schottky barriers jointly affect the transport properties of the junctions. Understanding the complex behaviors of defects in devices can make the process of material preparation more efficient by avoiding harm.
Collapse
Affiliation(s)
- Yifei Cong
- Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Bairui Tao
- College of Communications and Electronics Engineering, Qiqihar University, Qiqihar, 161006, China.
| | - Xinzhu Lu
- Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Xiaojie Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Yin Wang
- Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, Shanghai, 200444, China.
| | - Haitao Yin
- Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
8
|
Wang M, Zhang S, Li Q, Li Y, Duan E, Wen C, Yu S, Wang X. Insights into enhanced immobilization of uranyl carbonate from seawater by Fe-doped MXene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170850. [PMID: 38342456 DOI: 10.1016/j.scitotenv.2024.170850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Extracting uranium from seawater not only reduces radioactive contamination in seawater but also provides a source of uranium energy. However, due to the low concentration of uranium in seawater and the high salinity of seawater, extraction of uranium from seawater is challenging. In this work, we demonstrated a simple strategy to synthesize Fe-doped MXene (Fe@Ti3C2Tx) via a hydrothermal method and applied for uranium enrichment in seawater. The Fe@Ti3C2Tx exhibited excellent adsorption performance in high salinity environments. The removal capacity of Fe@Ti3C2Tx was determined to be 526.6 mg/g for UO2(CO3)22- at 328 K with quick reaction equilibrium (∼ 30 min). Kinetic and thermodynamic analyses of UO2(CO3)22- elimination process on Fe@Ti3C2Tx surface revealed it to be a spontaneous and endothermic single-phase elimination process. FT-IR and XPS analyses further indicated that the removal mechanism of UO2(CO3)22- by Fe@Ti3C2Tx was surface complexation. Our study suggests that Fe@Ti3C2Tx can provide a feasible solution for uranium enrichment in seawater.
Collapse
Affiliation(s)
- Min Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Shu Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Qi Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Yuanpeng Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Enzhe Duan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Caimei Wen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Shujun Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China.
| |
Collapse
|
9
|
Li S, Ye Y, Liu X, Yang X, Fang S, Zhou N. Preparation of carbon-coated Fe 2 O 3 @Ti 3 C 2 T x composites by mussel-like modifications as high-performance anodes for lithium-ion batteries. Chemistry 2024; 30:e202302768. [PMID: 38171767 DOI: 10.1002/chem.202302768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Indexed: 01/05/2024]
Abstract
Fe2 O3 with high theoretical capacity (1007 mA h g-1 ) and low cost is a potential anode material for lithium-ion batteries (LIBs), but its practical application is restricted by its low electrical conductivity and large volume changes during lithiation/delithiation. To solve these problems, Fe2 O3 @Ti3 C2 Tx composites were synthesized by a mussel-like modification method, which relies on the self-polymerization of dopamine under mild conditions. During polymerization, the electronegative group (-OH) on dopamine can easily coordinate with Fe3+ ions as well as form hydrogen bonds with the -OH terminal group on the surface of Ti3 C2 Tx , which induces a uniform distribution of Fe2 O3 on the Ti3 C2 Tx surface and mitigates self-accumulation of MXene nanosheets. In addition, the polydopamine-derived carbon layer protects Ti3 C2 Tx from oxidation during the hydrothermal process, which can further improve the electrical conductivity of the composites and buffer the volume expansion and particle agglomeration of Fe2 O3 . As a result, Fe2 O3 @Ti3 C2 Tx anodes exhibit ~100 % capacity retention with almost no capacity loss at 0.5 A g-1 after 250 cycles, and a stable capacity of 430 mA h g-1 at 2 A g-1 after 500 cycles. The unique structural design of this work provides new ideas for the development of MXene-based composites in energy storage applications.
Collapse
Affiliation(s)
- Shaoqing Li
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, P. R. China
| | - Yong Ye
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiang Liu
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, P. R. China
- Ganfeng Lithium Group Co., Ltd., Xinyu, 338015, P. R. China
| | - Xuerui Yang
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, P. R. China
| | - Shan Fang
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, P. R. China
| | - Naigen Zhou
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
10
|
Huang H, Yang W. MXene-Based Micro-Supercapacitors: Ink Rheology, Microelectrode Design and Integrated System. ACS NANO 2024. [PMID: 38307615 DOI: 10.1021/acsnano.3c10246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
MXenes have shown great potential for micro-supercapacitors (MSCs) due to the high metallic conductivity, tunable interlayer spacing and intercalation pseudocapacitance. In particular, the negative surface charge and high hydrophilicity of MXenes make them suitable for various solution processing strategies. Nevertheless, a comprehensive review of solution processing of MXene MSCs has not been conducted. In this review, we present a comprehensive summary of the state-of-the-art of MXene MSCs in terms of ink rheology, microelectrode design and integrated system. The ink formulation and rheological behavior of MXenes for different solution processing strategies, which are essential for high quality printed/coated films, are presented. The effects of MXene and its compounds, 3D electrode structure, and asymmetric design on the electrochemical properties of MXene MSCs are discussed in detail. Equally important, we summarize the integrated system and intelligent applications of MXene MSCs and present the current challenges and prospects for the development of high-performance MXene MSCs.
Collapse
Affiliation(s)
- Haichao Huang
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Weiqing Yang
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
11
|
Tambe AB, Arbuj SS, Umarji GG, Kulkarni SK, Kale BB. In situ synthesis of g-C 3N 4/Ti 3C 2T x nano-heterostructures for enhanced photocatalytic H 2 generation via water splitting. RSC Adv 2023; 13:35369-35378. [PMID: 38053692 PMCID: PMC10695007 DOI: 10.1039/d3ra07321a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Herein, we demonstrated the in situ synthesis of g-C3N4/Ti3C2Tx nano-heterostructures for hydrogen generation under UV visible light irradiation. The formation of the g-C3N4/Ti3C2Tx nano-heterostructures was confirmed via powder X-ray diffraction and supported by XPS. The FE-SEM images indicated the formation of layered structures of MXene and g-C3N4. HR-TEM images and SAED patterns confirmed the presence of g-C3N4 together with Ti3C2Tx nanosheets, i.e., the formation of nano-heterostructures of g-C3N4/Ti3C2Tx. The absorption spectra clearly showed the distinct band gaps of g-C3N4 and Ti3C2Tx in the nano-heterostructure. The increase in PL intensity and broadening of the peak with an increase in g-C3N4 indicated the suppression of electron-hole recombination. Furthermore, the nano-heterostructure was used as a photocatalyst for H2 generation from water and methylene blue dye degradation. The highest H2 evolution (1912.25 μmol/0.1 g) with good apparent quantum yield (3.1%) and an efficient degradation of MB were obtained for gCT-0.75, which was much higher compared to that of the pristine materials. The gCT-0.75 nano-heterostructure possessed a high surface area and abundant vacancy defects, facilitating the separation of charge carriers, which was ultimately responsible for this high photocatalytic activity. Additionally, TRPL clearly showed a higher decay time, which supports the enhancement in the photocatalytic activity of the gCT-0.75 nano-heterostructure. The nano-heterostructure with the optimum concentration of g-C3N4 formed a hetero-junction with the linked catalytic system, which facilitated efficient charge carrier separation also responsible for the enhanced photocatalytic activity.
Collapse
Affiliation(s)
- Amol B Tambe
- Centre for Materials for Electronics Technology Off Pashan Road, Panchwati Pune-411008 Maharashtra India
| | - Sudhir S Arbuj
- Centre for Materials for Electronics Technology Off Pashan Road, Panchwati Pune-411008 Maharashtra India
| | - Govind G Umarji
- Centre for Materials for Electronics Technology Off Pashan Road, Panchwati Pune-411008 Maharashtra India
| | - Sulbha K Kulkarni
- Centre for Materials for Electronics Technology Off Pashan Road, Panchwati Pune-411008 Maharashtra India
| | - Bharat B Kale
- Centre for Materials for Electronics Technology Off Pashan Road, Panchwati Pune-411008 Maharashtra India
- MIT World Peace University (MIT-WPU) Paud Rd, Kothrud Pune Maharashtra 411038 India
| |
Collapse
|
12
|
Aravind AM, Tomy M, Kuttapan A, Kakkassery Aippunny AM, Suryabai XT. Progress of 2D MXene as an Electrode Architecture for Advanced Supercapacitors: A Comprehensive Review. ACS OMEGA 2023; 8:44375-44394. [PMID: 38046319 PMCID: PMC10688139 DOI: 10.1021/acsomega.3c02002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Supercapacitors, designed to store more energy and be proficient in accumulating more energy than conventional batteries with numerous charge-discharge cycles, have been developed in response to the growing demand for energy. Transition metal carbides/nitrides called MXenes have been the focus of researchers' cutting-edge research in energy storage. The 2D-layered MXenes are a hopeful contender for the electrode material due to their unique properties, such as high conductivity, hydrophilicity, tunable surface functional groups, better mechanical properties, and outstanding electrochemical performance. This newly developed pseudocapacitive substance benefits electrochemical energy storage because it is rich in interlayer ion diffusion pathways and ion storage sites. Making MXene involves etching the MAX phase precursor with suitable etchants, but different etching methods have distinct effects on the morphology and electrochemical properties. It is an overview of the recent progress of MXene and its structure, synthesis, and unique properties. There is a strong emphasis on the effects of shape, size, electrode design, electrolyte behavior, and other variables on the charge storage mechanism and electrochemical performance of MXene-based supercapacitors. The electrochemical application of MXene and the remarkable research achievements in MXene-based composites are an intense focus. Finally, in light of further research and potential applications, the challenges and future perspectives that MXenes face and the prospects that MXenes present have been highlighted.
Collapse
Affiliation(s)
- Anu Mini Aravind
- Centre
for Advanced Materials Research, Department of Physics, Government
College for Women, University of Kerala, Thiruvananthapuram, Kerala 695014, India
| | - Merin Tomy
- Centre
for Advanced Materials Research, Department of Physics, Government
College for Women, University of Kerala, Thiruvananthapuram, Kerala 695014, India
| | | | | | - Xavier Thankappan Suryabai
- Centre
for Advanced Materials Research, Department of Physics, Government
College for Women, University of Kerala, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
13
|
Atkare S, Kaushik SD, Jagtap S, Rout CS. Room-temperature chemiresistive ammonia sensors based on 2D MXenes and their hybrids: recent developments and future prospects. Dalton Trans 2023; 52:13831-13851. [PMID: 37724340 DOI: 10.1039/d3dt02401f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Detection of ammonia (NH3) gas at room temperature is essential in a variety of sectors, including pollution monitoring, commercial safety and medical services, etc. Two-dimensional (2D) materials have emerged as fascinating candidates for gas-sensing applications due to their distinct properties. MXenes, a type of 2D transition metal carbides/nitrides/carbonotrides, have drawn the interest of researchers due to their high conductivity, large surface area, and changing surface chemistry. The review begins by describing the NH3 gas-detecting methods of 2D materials and then concentrates on MXene-based sensors, emphasising the benefits that MXenes provide in this context. The study also explains the prime factors involved in evaluating sensor performance, which include sensor response, sensitivity, selectivity, stability, charge transfer values, adsorption energy and response/recovery times. Subsequently, the review covers two main categories: pristine/intercalated MXenes and MXene-based hybrid materials. The review investigates the approaches for improving the sensing characteristics of pristine and intercalated MXenes by introducing MXene hybrids like MXene-metal oxide hybrids, MXene-transition metal dichalcogenides hybrid, MXene-other 2D materials hybrid, MXene-polymers and other hybrids and other MXene-derived materials. In summary, this review offers a thorough overview of current advancements and potential applications for room-temperature ammonia sensors based on 2D MXenes and their hybrids. In order to pave the way for future improvements in MXene-based gas-sensing technology for room temperature ammonia detection, the study concludes by outlining potential future scope and conclusions.
Collapse
Affiliation(s)
- Sayali Atkare
- Department of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Som Datta Kaushik
- UGC-DAE Consortium for Scientific Research Mumbai Centre, R-5 Shed, BARC, Mumbai 400085, India
| | - Shweta Jagtap
- Department of Electronic and Instrumentation Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura Road, Bangalore - 562112, Karnataka, India.
| |
Collapse
|
14
|
Wang J, Deng D, Wu Q, Liu M, Wang Y, Jiang J, Zheng X, Zheng H, Bai Y, Chen Y, Xiong X, Lei Y. Insight on Atomically Dispersed Cu Catalysts for Electrochemical CO 2 Reduction. ACS NANO 2023; 17:18688-18705. [PMID: 37725796 DOI: 10.1021/acsnano.3c07307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Electrochemical CO2 reduction (ECO2R) with renewable electricity is an advanced carbon conversion technology. At present, copper is the only metal to selectively convert CO2 into multicarbon (C2+) products. Among them, atomically dispersed (AD) Cu catalysts have received great attention due to the relatively single chemical environment, which are able to minimize the negative impact of morphology, valence state, and crystallographic properties, etc. on product selectivity. Furthermore, the completely exposed atomic Cu sites not only provide space and bonding electrons for the adsorption of reactants in favor of better catalytic activity but also provide an ideal platform for studying its reaction mechanism. This review summarizes the recent progress of AD Cu catalysts as a chemically tunable platform for ECO2R, including the atomic Cu sites dynamic evolution, the catalytic performance, and mechanism. Furthermore, the prospects and challenges of AD Cu catalysts for ECO2R are carefully discussed. We sincerely hope that this review can contribute to the rational design of AD Cu catalysts with enhanced performance for ECO2R.
Collapse
Affiliation(s)
- Jinxian Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Danni Deng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Qiumei Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Mengjie Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Jiabi Jiang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Xinran Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Huanran Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yu Bai
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yingbi Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Xiang Xiong
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
15
|
Fu W, John M, Maddumapatabandi TD, Bussolotti F, Yau YS, Lin M, Johnson Goh KE. Toward Edge Engineering of Two-Dimensional Layered Transition-Metal Dichalcogenides by Chemical Vapor Deposition. ACS NANO 2023; 17:16348-16368. [PMID: 37646426 DOI: 10.1021/acsnano.3c04581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The manipulation of edge configurations and structures in atomically-thin transition metal dichalcogenides (TMDs) for versatile functionalization has attracted intensive interest in recent years. The chemical vapor deposition (CVD) approach has shown promise for TMD edge engineering of atomic edge configurations (1H, 1T or 1T'-zigzag or armchair edges) as well as diverse edge morphologies (1D nanoribbons, 2D dendrites, 3D spirals, etc.). These edge-rich TMD layers offer versatile candidates for probing the physical and chemical properties and exploring potential applications in electronics, optoelectronics, catalysis, sensing, and quantum technologies. In this Review, we present an overview of the current state-of-the-art in the manipulation of TMD atomic edges and edge-rich structures using CVD. We highlight the vast range of distinct properties associated with these edge configurations and structures and provide insights into the opportunities afforded by such edge-functionalized crystals. The objective of this Review is to motivate further research and development efforts to use CVD as a scalable approach to harness the benefits of such crystal-edge engineering.
Collapse
Affiliation(s)
- Wei Fu
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Mark John
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
| | - Thathsara D Maddumapatabandi
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Fabio Bussolotti
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Yong Sean Yau
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Ming Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Kuan Eng Johnson Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| |
Collapse
|
16
|
Wang T, Zhu L, Zhu W, Kanda H. Direct synthesis of hydrogen fluoride-free multilayered Ti 3C 2/TiO 2 composite and its applications in photocatalysis. Heliyon 2023; 9:e18718. [PMID: 37554843 PMCID: PMC10405010 DOI: 10.1016/j.heliyon.2023.e18718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Ti3C2/TiO2 hybrids are environment-friendly and exhibit excellent photocatalytic and hydrogen-generating power characteristics. Herein, a novel single-step method is proposed for fabricating multilayer structures in which TiO2, generated from (NH4)2TiF6, wraps the Ti3C2 MXene by etching Ti3AlC2 with (NH4)2TiF6. The optimal reaction conditions for the etching of Ti3AlC2 with (NH4)2TiF6 were systematically studied. The phase composition, morphology, and photophysical properties of the Ti3C2/TiO2 hybrids were investigated using X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and UV-vis spectrophotometry. The thermal stability of the hybrids was investigated using thermogravimetric and differential thermal analyses. Along with the formation of Ti3C2 MXene, Ti3AlC2 reacted with (NH4)2TiF6 at 60 °C for 24 h to form hybrids surrounded by NH4TiOF3 crystals. Subsequent reactions of these hybrids with H3BO3 resulted in the conversion of NH4TiOF3 crystals into TiO2 and eventually into Ti3C2/TiO2 hybrids. Furthermore, the photocatalytic activity of the Ti3C2/TiO2 hybrids was measured by monitoring the photodegradation of methylene blue under ultraviolet light, which showed that the photocatalytic activity of the Ti3C2/TiO2 hybrids was higher than that of the commercial anatase TiO2 nanoparticles.
Collapse
Affiliation(s)
- Tao Wang
- Department of Materials Process Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Li Zhu
- Department of Materials Process Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Wanying Zhu
- Department of Materials Process Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Hideki Kanda
- Department of Materials Process Engineering, Nagoya University, Nagoya, 464-8603, Japan
| |
Collapse
|
17
|
Sarfraz B, Mehran MT, Shahzad F, Hussain S, Naqvi SR, Khan HA, Mahmood K. Bifunctional CuS/Cl-terminated greener MXene electrocatalyst for efficient hydrogen production by water splitting. RSC Adv 2023; 13:22017-22028. [PMID: 37483669 PMCID: PMC10359762 DOI: 10.1039/d3ra02581k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023] Open
Abstract
Metal sulfides and 2D materials are the propitious candidates for numerous electrochemical applications, due to their superior conductivity and ample active sites. Herein, CuS nanoparticles were fabricated on 2D greener HF-free Cl-terminated MXene (Ti3C2Cl2) sheets by the hydrothermal process as a proficient electrocatalyst for the hydrogen evolution reaction (HER) and overall water splitting. CuS/Ti3C2Cl2 showed an overpotential of 163 mV and a Tafel slope of 77 mV dec-1 at 10 mA cm-2 for the HER. In the case of the OER, CuS/Ti3C2Cl2 exhibited an overpotential of 334 mV at 50 mA cm-2 and a Tafel slope of 42 mV dec-1. Moreover, the assembled CuS/Ti3C2Cl2||CuS/Ti3C2Cl2 electrolyzer delivered current density of 20 mA cm-2 at 1.87 V for overall water splitting. The CuS/Ti3C2Cl2 electrocatalyst showed excellent stability to retain 96% of its initial value for about 48 hours at 100 mA cm-2 current density. The synthesis of CuS/Ti3C2Cl2 enriches the applications of MXene/metal sulfides in efficient bifunctional electrocatalysis for alkaline water splitting.
Collapse
Affiliation(s)
- Bilal Sarfraz
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan
| | - Muhammad Taqi Mehran
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan
| | - Faisal Shahzad
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad 45650 Pakistan
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Republic of Korea
| | - Salman Raza Naqvi
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan
| | - Hassnain Abbas Khan
- Clean Combustion Research Center, King Abdullah University of Science and Technology Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Khalid Mahmood
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore Faisalabad Campus, Khurrianwala Faisalabad Pakistan
| |
Collapse
|
18
|
Papadopoulou K, G. Christopoulos SR. Transition Metal Layer Substitution in Mo 2CS 2 MXene for Improving Li Ion Surface Kinetics. ACS OMEGA 2023; 8:22992-22997. [PMID: 37396219 PMCID: PMC10308511 DOI: 10.1021/acsomega.3c02080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
We study the adsorption and mobility of a Li ion on the surface of the Mo2CS2 MXene by means of Density Functional Theory. We find that by substituting the Mo atoms of the upper MXene layer with V the mobility of the Li ion can be improved up to 95% while the material retains its metallic character. This fact indicates that MoVCS2 is a promising candidate for anode electrode in Li-ion batteries, where the materials need to be conductive and the Li ion needs to have a small migration barrier.
Collapse
Affiliation(s)
- Konstantina
A. Papadopoulou
- Department
of Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QL, U.K.
- Faculty
of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry CV1 5FB, U.K.
| | - Stavros-Richard G. Christopoulos
- Department
of Computer Science, School of Computing and Engineering, University of Huddersfield, Huddersfield HD4 6DJ, U.K.
- Centre
for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 2TU, U.K.
| |
Collapse
|
19
|
Snyder RM, Juelsholt M, Kalha C, Holm J, Mansfield E, Lee TL, Thakur PK, Riaz AA, Moss B, Regoutz A, Birkel CS. Detailed Analysis of the Synthesis and Structure of MAX Phase (Mo 0.75V 0.25) 5AlC 4 and Its MXene Sibling (Mo 0.75V 0.25) 5C 4. ACS NANO 2023. [PMID: 37368981 DOI: 10.1021/acsnano.3c03395] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
MAX phases with the general formula Mn+1AXn are layered carbides, nitrides, and carbonitrides with varying stacking sequence of layers of M6X octahedra and the A element depending on n. While "211" MAXphases (n = 1) are very common, MAX phases with higher n, especially n ≥ 3, have hardly been prepared. This work addresses open questions regarding the synthesis conditions, structure, and chemical composition of the "514" MAX phase. In contrast to literature reports, no oxide is needed to form the MAX phase, yet multiple heating steps at 1,600 °C are required. Using high-resolution X-ray diffraction, the structure of (Mo1-xVx)5AlC4 is thoroughly investigated, and Rietveld refinement suggests P-6c2 as the most fitting space group. SEM/EDS and XPS show that the chemical composition of the MAX phase is (Mo0.75V0.25)5AlC4. It was also exfoliated into its MXene sibling (Mo0.75V0.25)5C4 using two different techniques (using HF and an HF/HCl mixture) that lead to different surface terminations as shown by XPS/HAXPES measurements. Initial investigations of the electrocatalytic properties of both MXene versions show that, depending on the etchant, (Mo0.75V0.25)5C4 can reduce hydrogen at 10 mA cm-2 with an overpotential of 166 mV (HF only) or 425 mV (HF/HCl) after cycling the samples, which makes them a potential candidate as an HER catalyst.
Collapse
Affiliation(s)
- Rose M Snyder
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Mikkel Juelsholt
- Department of Materials, University of Oxford, Oxford, OX1 3PH, U.K
| | - Curran Kalha
- Department of Chemistry, University College London, London, WC1H 0AJ, U.K
| | - Jason Holm
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Elisabeth Mansfield
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Tien-Lin Lee
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, U.K
| | - Pardeep K Thakur
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, U.K
| | - Aysha A Riaz
- Department of Chemistry, University College London, London, WC1H 0AJ, U.K
| | - Benjamin Moss
- Department of Chemistry, Molecular Science Research Hub, White City Campus, Imperial College London, London W12 0BZ, U.K
| | - Anna Regoutz
- Department of Chemistry, University College London, London, WC1H 0AJ, U.K
| | - Christina S Birkel
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- Department of Chemistry and Biochemistry, Technische Universitaet Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
20
|
Liang C, He J, Cao Y, Liu G, Zhang C, Qi Z, Fu C, Hu Y. Advances in the application of Mxene nanoparticles in wound healing. J Biol Eng 2023; 17:39. [PMID: 37291625 DOI: 10.1186/s13036-023-00355-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Skin is the largest organ of the human body. It plays a vital role as the body's first barrier: stopping chemical, radiological damage and microbial invasion. The importance of skin to the human body can never be overstated. Delayed wound healing after a skin injury has become a huge challenge in healthcare. In some situations, this can have very serious and even life-threatening effects on people's health. Various wound dressings have been developed to promote quicker wound healing, including hydrogels, gelatin sponges, films, and bandages, all work to prevent the invasion of microbial pathogens. Some of them are also packed with bioactive agents, such as antibiotics, nanoparticles, and growth factors, that help to improve the performance of the dressing it is added to. Recently, bioactive nanoparticles as the bioactive agent have become widely used in wound dressings. Among these, functional inorganic nanoparticles are favored due to their ability to effectively improve the tissue-repairing properties of biomaterials. MXene nanoparticles have attracted the interest of scholars due to their unique properties of electrical conductivity, hydrophilicity, antibacterial properties, and biocompatibility. The potential for its application is very promising as an effective functional component of wound dressings. In this paper, we will review MXene nanoparticles in skin injury repair, particularly its synthesis method, functional properties, biocompatibility, and application.
Collapse
Affiliation(s)
- Chengzhi Liang
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Shandong, 266000, PR China
| | - Jing He
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Shandong, 266000, PR China
| | - Yuan Cao
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Shandong, 266000, PR China
| | - Guoming Liu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Shandong, 266000, PR China
| | - Chengdong Zhang
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Shandong, 266000, PR China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Chuangchun, 130041, China
| | - Chuan Fu
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, PR China.
| | - Yanling Hu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Shandong, 266000, PR China.
| |
Collapse
|
21
|
Solangi NH, Mubarak NM, Karri RR, Mazari SA, Jatoi AS. Advanced growth of 2D MXene for electrochemical sensors. ENVIRONMENTAL RESEARCH 2023; 222:115279. [PMID: 36706895 DOI: 10.1016/j.envres.2023.115279] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Over the last few years, electroanalysis has made significant advancements, particularly in developing electrochemical sensors. Electrochemical sensors generally include emerging Photoelectrochemical and Electrochemiluminescence sensors, which combine optical techniques and traditional electrochemical bio/non-biosensors. Numerous EC-detecting methods have also been designed for commercial applications to detect biological and non-biological markers for various diseases. Analytical applications have recently focused significantly on one of the novel nanomaterials, the MXene. This material is being extensively investigated for applications in electrochemical sensors due to its unique mechanical, electronic, optical, active functional groups and thermal characteristics. This study extensively discusses the salient features of MXene-based electrochemical sensors, photoelectrochemical sensors, enzyme-based biosensors, immunosensors, aptasensors, electrochemiluminescence sensors, and electrochemical non-biosensors. In addition, their performance in detecting various substances and contaminants is thoroughly discussed. Furthermore, the challenges and prospects the MXene-based electrochemical sensors are elaborated.
Collapse
Affiliation(s)
- Nadeem Hussain Solangi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan.
| | - Abdul Sattar Jatoi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| |
Collapse
|
22
|
Tian S, Wang M, Fornasiero P, Yang X, Ramakrishna S, Ho SH, Li F. Recent advances in MXenes-based glucose biosensors. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
23
|
Solangi NH, Mubarak NM, Karri RR, Mazari SA, Kailasa SK, Alfantazi A. Applications of advanced MXene-based composite membranes for sustainable water desalination. CHEMOSPHERE 2023; 314:137643. [PMID: 36581116 DOI: 10.1016/j.chemosphere.2022.137643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
MXenes are an innovative class of 2D nanostructured materials gaining popularity for various uses in medicine, chemistry, and the environment. A larger outer layer area, exceptional stability and conductivity of heat, high porosity, and environmental friendliness are all characteristics of MXenes and their composites. As a result, MXenes have been used to produce Li-ion batteries, semiconductors, water desalination membranes, and hydrogen storage. MXenes have recently been used in many environmental remediations, frequently surpassing conventional materials, to treat groundwater contamination, surface waters, industrial and municipal wastewaters, and desalination. Due to their outstanding structural characteristics and the enormous specific surface area, they are widely utilized as adsorbents or membrane materials for the desalination of seawater. When used for electrochemical applications, MXene-composites can deionize via Faradaic capacitive deionization (CDI) and adsorb various organic and inorganic pollutants to treat the water. In general, as compared to other 2D nanomaterials, MXene has superb characteristics; because of their magnificent characteristics and they exhibit strong desalination capability. The current review paper discusses the desalination capability of MXenes and their composites. Focusing on the desalination capacity of MXene-based nanomaterials, this study discusses the characteristics and synthesis techniques of MXenes their composites along with their ion-rejection capability and pervaporation desalination of water via MXene-based membranes, capacitive deionization capability, solar desalination capability. Furthermore, the challenges and prospects of MXenes and their composites are highlighted.
Collapse
Affiliation(s)
- Nadeem Hussain Solangi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan.
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395 007, Gujarat, India
| | - Akram Alfantazi
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
24
|
Cathode materials for lithium-sulfur battery: a review. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AbstractLithium-sulfur batteries (LSBs) are considered to be one of the most promising candidates for becoming the post-lithium-ion battery technology, which would require a high level of energy density across a variety of applications. An increasing amount of research has been conducted on LSBs over the past decade to develop fundamental understanding, modelling, and application-based control. In this study, the advantages and disadvantages of LSB technology are discussed from a fundamental perspective. Then, the focus shifts to intermediate lithium polysulfide adsorption capacity and the challenges involved in improving LSBs by using alternative materials besides carbon for cathode construction. Attempted alternative materials include metal oxides, metal carbides, metal nitrides, MXenes, graphene, quantum dots, and metal organic frameworks. One critical issue is that polar material should be more favorable than non-polar carbonaceous materials in the aspect of intermediate lithium polysulfide species adsorption and suppress shuttle effect. It will be also presented that by preparing cathode with suitable materials and morphological structure, high-performance LSB can be obtained.
Graphical abstract
Collapse
|
25
|
Zhao J, Xiong Z, Zhao Y, Chen X, Zhang J. Two-dimensional heterostructures for photocatalytic CO 2 reduction. ENVIRONMENTAL RESEARCH 2023; 216:114699. [PMID: 36351474 DOI: 10.1016/j.envres.2022.114699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The photocatalysis conversion of CO2 into fuels has become an encouraging method to address climate and energy issues as a long-term solution. Single material suffers poor yield due to low light energy utilization and high recombination rate of photoinduced electron-hole pairs. It is an efficient approach to construct heterojunction through two or three materials to improve the photocatalytic performance. Recently, 2D-based heterojunction is getting popular for outstanding properties, such as special light collecting structure to enhance light harvest, intimate interface to facilitate charge transfer and separation, and large specific surface area to provide abundant reactive sites. Recently, some new 2D-based heterostructures materials (both structure and composition) have been developed with excellent performance. 2D materials exert structural and functional advantages in these fine composite photocatalysts. In this review, the literatures about the photocatalytic conversion of CO2 are mainly summarized based on overall structure, interface type and material type of 2D-based heterojunction, with special attention given to the preparation, characterization, structural advantages and reaction mechanism of novel 2D-based heterojunction. This work is in hope of offering a basis for designing improved composite photocatalyst for CO2 photoreduction.
Collapse
Affiliation(s)
- Jiangting Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhuo Xiong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yongchun Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaobo Chen
- Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO, 64110, United States.
| | - Junying Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
26
|
Shen J, Yang G, Duan G, Guo X, Li L, Cao B. NiFe-LDH/MXene nano-array hybrid architecture for exceptional capacitive lithium storage. Dalton Trans 2022; 51:18462-18472. [PMID: 36416750 DOI: 10.1039/d2dt03024a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Layered double hydroxides (LDHs) have great advantages in the domain of energy storage because of their exchangeable anions and large specific surface area. Nevertheless, the shortcomings of their poor electrical conductivity, easy stacking of nanosheets, and large volume variation in the cycling processes lead to unsatisfactory cycling stability and rate performance, which severely limits their further application. Therefore, we generated homogeneous nanoarrays of NiFe-LDH on the surface of Ti3C2Tx-MXene by a refluxing process. The resulting NiFe-LDH/MXene-500 hybrid material was applied as an anode of a lithium-ion battery (LIB) and exhibited a discharge capacity of 894.8 mA h g-1 at 200 mA g-1 (over 300 cycles) and could maintain a reversible capacity of 547.1 mA h g-1 even at 1 A g-1. With the addition of MXene, the volume increases of the NiFe-LDH/MXene hybrid materials were also significantly alleviated. The thickness of the NiFe-LDH/MXene-500 electrode only increased by 31% after 50 cycles, which was far better than the prepared NiFe-LDH electrode. On the hand, the synergistic interaction of NiFe-LDH and MXene could stabilize the structure, reduce the activation barrier of ion/electron diffusion, and promote electron transfer in the electrode. MXene with high conductivity can be used as electrical and ionic conductance media to promote the transformation reaction of NiFe-LDH. According to the detailed kinetic analysis, the capacitance control behavior is the main electrochemical reaction of NiFe-LDH/MXene electrodes.
Collapse
Affiliation(s)
- Jian Shen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China.
| | - Guangxu Yang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China.
| | - Guangbin Duan
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China.
| | - Xi Guo
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China.
| | - Li Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China.
| | - Bingqiang Cao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China.
| |
Collapse
|
27
|
Zhang WJ, Li S, Vijayan V, Lee JS, Park SS, Cui X, Chung I, Lee J, Ahn SK, Kim JR, Park IK, Ha CS. ROS- and pH-Responsive Polydopamine Functionalized Ti 3C 2T x MXene-Based Nanoparticles as Drug Delivery Nanocarriers with High Antibacterial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244392. [PMID: 36558246 PMCID: PMC9786132 DOI: 10.3390/nano12244392] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 05/14/2023]
Abstract
Premature drug release and poor controllability is a challenge in the practical application of tumor therapy, which may lead to poor chemotherapy efficacy and severe adverse effects. In this study, a reactive oxygen species (ROS)-cleavable nanoparticle system (MXene-TK-DOX@PDA) was designed for effective chemotherapy drug delivery and antibacterial applications. Doxorubicin (DOX) was conjugated to the surface of (3-aminopropyl)triethoxysilane (APTES)-functionalized MXene via an ROS-cleavable diacetoxyl thioketal (TK) linkage. Subsequently, the surfaces of the MXene nanosheets were coated with pH-responsive polydopamine (PDA) as a gatekeeper. PDA endowed the MXene-TK-DOX@PDA nanoparticles with superior biocompatibility and stability. The MXene-TK-DOX@PDA nanoparticles had an ultrathin planar structure and a small lateral size of approximately 180 nm. The as-synthesized nanoparticles demonstrated outstanding photothermal conversion efficiency, superior photothermal stability, and a remarkable extinction coefficient (23.3 L g-1 cm-1 at 808 nm). DOX exhibited both efficient ROS-responsive and pH-responsive release performance from MXene-TK-DOX@PDA nanoparticles due to the cleavage of the thioketal linker. In addition, MXene-TK-DOX@PDA nanoparticles displayed high antibacterial activity against both Gram-negative Escherichia coli (E. coli) and Gram-positive Bacillus subtilis (B. subtilis) within 5 h. Taken together, we hope that MXene-TK-DOX@PDA nanoparticles will enrich the drug delivery system and significantly expand their applications in the biomedical field.
Collapse
Affiliation(s)
- Wei-Jin Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Shuwei Li
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| | - Jun Seok Lee
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sung Soo Park
- Division of Advanced Materials Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Xiuguo Cui
- School of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Ildoo Chung
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jaejun Lee
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Suk-kyun Ahn
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Correspondence:
| |
Collapse
|
28
|
Kandeel M, Turki Jalil A, hadi Lafta M, Ziyadullaev S, Fakri Mustafa Y. Recent progress in synthesis and applications of MXene-based nanomaterials (MBNs) for (bio)sensing of microbial toxins, pathogenic bacteria in food matrices. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Ahmaruzzaman M. MXenes and MXene-supported nanocomposites: a novel materials for aqueous environmental remediation. RSC Adv 2022; 12:34766-34789. [PMID: 36540274 PMCID: PMC9723541 DOI: 10.1039/d2ra05530a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/22/2022] [Indexed: 08/29/2023] Open
Abstract
Water contamination has become a significant issue on a global scale. Adsorption is a cost-effective way to treat water and wastewater compared to other techniques such as the Advanced Oxidation Processes (AOPs), photocatalytic degradation, membrane filtration etc. Numerous research experts are continuously developing inexpensive substances for the adsorptive removal of organic contaminants from wastewater. A fresh and intriguing area of inquiry has emerged as a result of the development of MXenes. This article aims to provide a preliminary understanding of MXenes from synthesis, structure, and characterization to the scope of further research. The applications of MXenes as a new generation adsorbent for remediation of various kinds of organic pollutants and heavy metals from wastewater are also summarized. MXenes with altered surfaces may make effective adsorbents for wastewater treatment. Lastly, the mechanism of adsorption of organic contaminants and heavy metals on MXenes is also discussed for a better understanding of the readers.
Collapse
Affiliation(s)
- Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
30
|
Dual (pH- and ROS-) Responsive Antibacterial MXene-Based Nanocarrier for Drug Delivery. Int J Mol Sci 2022; 23:ijms232314925. [PMID: 36499252 PMCID: PMC9739462 DOI: 10.3390/ijms232314925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, a novel MXene (Ti3C2Tx)-based nanocarrier was developed for drug delivery. MXene nanosheets were functionalized with 3, 3'-diselanediyldipropionic acid (DSeDPA), followed by grafting doxorubicin (DOX) as a model drug to the surface of functionalized MXene nanosheets (MXene-Se-DOX). The nanosheets were characterized using scanning electron microscopy, atomic force microscopy (AFM), transmission electron microscopy, energy-dispersive X-ray spectroscopy (EDX), nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and zeta potential techniques. The drug-loading capacity (17.95%) and encapsulation efficiency (41.66%) were determined using ultraviolet-visible spectroscopy. The lateral size and thickness of the MXene nanosheets measured using AFM were 200 nm and 1.5 nm, respectively. The drug release behavior of the MXene-Se-DOX nanosheets was evaluated under different medium conditions, and the nanosheets demonstrated outstanding dual (reactive oxygen species (ROS)- and pH-) responsive properties. Furthermore, the MXene-Se-DOX nanosheets exhibited excellent antibacterial activity against both Gram-negative E. coli and Gram-positive B. subtilis.
Collapse
|
31
|
Tian Z, Tian H, Cao K, Bai S, Peng Q, Wang Y, Zhu Q. Facile preparation of Ti3C2Tx sheets by selectively etching in a H2SO4/H2O2 mixture. Front Chem 2022; 10:962528. [PMID: 36339050 PMCID: PMC9626649 DOI: 10.3389/fchem.2022.962528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
MXenes and MXene-based composite materials have potential applications in a wide range of areas due to their unique physical and chemical characteristics. At present, it is still a major challenge to develop a simple, safe, and efficient route to prepare MXenes without using fluorinated etchants. Herein, we design a facile method to prepare Ti3C2Tx MXene sheets by selectively etching Ti3AlC2 powders in an aqueous diluted H2SO4 solution with H2O2 as an oxidant. In a system of H2SO4 and H2O2, an aqueous H2SO4 solution with a concentration of 6 mol/L is a strongly acidic medium with no volatility, and 30% H2O2 acts as a strong green oxidizer without harmful by-products. The experimental process is safe and convenient to conduct in a beaker under a water bath of 40°C. The etching process can be completed in 1 h under the air atmosphere conditions. The experimental results confirmed that the etched Ti3AlC2 powders can be successfully separated into Ti3C2Tx nanosheets under ultrasound treatment without using any intercalation agent. The relevant etching mechanism is may be attributed to the synergy effect of H2SO4 and H2O2, which triggers sequential selective etching of Al layers from the Ti3AlC2 phase. It may provide a new green way to prepare MXene-based materials without using toxic HF or HF-containing etchants.
Collapse
Affiliation(s)
- Zhengshan Tian
- School of Chemistry and Environmental Engineering, Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, China
- *Correspondence: Zhengshan Tian, ; Suzhen Bai,
| | - Hao Tian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Kesheng Cao
- School of Chemistry and Environmental Engineering, Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, China
| | - Suzhen Bai
- School of Chemistry and Environmental Engineering, Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, China
- *Correspondence: Zhengshan Tian, ; Suzhen Bai,
| | - Qinlong Peng
- School of Chemistry and Environmental Engineering, Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, China
| | - Yabo Wang
- School of Chemistry and Environmental Engineering, Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, China
| | - Qiuxiang Zhu
- College of Information and Electronic Engineering, Hunan City University, Yiyang, China
| |
Collapse
|
32
|
Li Y, Liu K, Wang B, Liu Z, Yang C, Wang J, Ma X, Li H, Sun C. Engineering DNAzyme strategies for fluorescent detection of lead ions based on RNA cleavage-propelled signal amplification. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129712. [PMID: 35952430 DOI: 10.1016/j.jhazmat.2022.129712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 05/07/2023]
Abstract
Based on the high recognition ability and flexible programmability of GR5 DNAzyme, two fluorescent biosensors were engineered for amplified detection of Pb2+ via incorporating Ti3C2TX MXenes and embedding 2-aminopurine (2-AP), respectively. The quencher-required approach relied on the DNA affinity and fluorescence quenching ability of Ti3C2TX MXenes. Benefiting from the low background signal modulated by Ti3C2TX MXenes, the sensitive determination of Pb2+ was achieved in the linear range of 0.2-10 ng mL-1 with the limit of detection (LOD) of 0.05 ng mL-1. The quencher-free approach combined the fluorescent trait of 2-AP embedded in DNA structure, and the RNA cleavage-propelled digestion process of Exonuclease I (Exo I) for signal amplification, indicating the sensitive detection of Pb2+ with the LOD as low as 0.02 ng mL-1 in the linear range of 0.1-10 ng mL-1. Both DNAzyme assays exhibited simple procedures, favorable specificity, rapid analysis, and satisfactory application in standard reference materials (lead in drinking water) and spiked water samples. The two fluorescent biosensors established in this work would not only provide theoretic fundament for DNA adsorption of Ti3C2TX MXenes and the design of 2-AP-embedded DNAzyme assays, but also hold a great potential for on-site monitoring of lead pollution in water samples.
Collapse
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Kai Liu
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Boxu Wang
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Zheng Liu
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Chuanyu Yang
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Junyang Wang
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Xinyue Ma
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Hongxia Li
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China.
| | - Chunyan Sun
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China.
| |
Collapse
|
33
|
Iqbal J, Rasool K, Howari F, Nazzal Y, Sarkar T, Shahzad A. A Hydrofluoric Acid-Free Green Synthesis of Magnetic M.Ti 2CT x Nanostructures for the Sequestration of Cesium and Strontium Radionuclide. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3253. [PMID: 36145041 PMCID: PMC9502560 DOI: 10.3390/nano12183253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
MAX phases are the parent materials used for the formation of MXenes, and are generally obtained by etching using the highly corrosive acid HF. To develop a more environmentally friendly approach for the synthesis of MXenes, in this work, titanium aluminum carbide MAX phase (Ti2AlC) was fabricated and etched using NaOH. Further, magnetic properties were induced during the etching process in a single-step etching process that led to the formation of a magnetic composite. By carefully controlling etching conditions such as etching agent concentration and time, different structures could be produced (denoted as M.Ti2CTx). Magnetic nanostructures with unique physico-chemical characteristics, including a large number of binding sites, were utilized to adsorb radionuclide Sr2+ and Cs+ cations from different matrices, including deionized, tap, and seawater. The produced adsorbents were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The synthesized materials were found to be very stable in the aqueous phase, compared with corrosive acid-etched MXenes, acquiring a distinctive structure with oxygen-containing functional moieties. Sr2+ and Cs+ removal efficiencies of M.Ti2CTx were assessed via conventional batch adsorption experiments. M.Ti2CTx-AIII showed the highest adsorption performance among other M.Ti2CTx phases, with maximum adsorption capacities of 376.05 and 142.88 mg/g for Sr2+ and Cs+, respectively, which are among the highest adsorption capacities reported for comparable adsorbents such as graphene oxide and MXenes. Moreover, in seawater, the removal efficiencies for Sr2+ and Cs+ were greater than 93% and 31%, respectively. Analysis of the removal mechanism validates the electrostatic interactions between M.Ti2C-AIII and radionuclides.
Collapse
Affiliation(s)
- Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5824, Qatar
| | - Fares Howari
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Yousef Nazzal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Tapati Sarkar
- Department of Materials Science and Engineering, Uppsala University, Box 35, SE-75103 Uppsala, Sweden
| | - Asif Shahzad
- Department of Materials Science and Engineering, Uppsala University, Box 35, SE-75103 Uppsala, Sweden
| |
Collapse
|
34
|
Mousavi SM, Hashemi SA, Kalashgrani MY, Rahmanian V, Gholami A, Chiang WH, Lai CW. Biomedical Applications of an Ultra-Sensitive Surface Plasmon Resonance Biosensor Based on Smart MXene Quantum Dots (SMQDs). BIOSENSORS 2022; 12:743. [PMID: 36140128 PMCID: PMC9496527 DOI: 10.3390/bios12090743] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
In today's world, the use of biosensors occupies a special place in a variety of fields such as agriculture and industry. New biosensor technologies can identify biological compounds accurately and quickly. One of these technologies is the phenomenon of surface plasmon resonance (SPR) in the development of biosensors based on their optical properties, which allow for very sensitive and specific measurements of biomolecules without time delay. Therefore, various nanomaterials have been introduced for the development of SPR biosensors to achieve a high degree of selectivity and sensitivity. The diagnosis of deadly diseases such as cancer depends on the use of nanotechnology. Smart MXene quantum dots (SMQDs), a new class of nanomaterials that are developing at a rapid pace, are perfect for the development of SPR biosensors due to their many advantageous properties. Moreover, SMQDs are two-dimensional (2D) inorganic segments with a limited number of atomic layers that exhibit excellent properties such as high conductivity, plasmonic, and optical properties. Therefore, SMQDs, with their unique properties, are promising contenders for biomedicine, including cancer diagnosis/treatment, biological sensing/imaging, antigen detection, etc. In this review, SPR biosensors based on SMQDs applied in biomedical applications are discussed. To achieve this goal, an introduction to SPR, SPR biosensors, and SMQDs (including their structure, surface functional groups, synthesis, and properties) is given first; then, the fabrication of hybrid nanoparticles (NPs) based on SMQDs and the biomedical applications of SMQDs are discussed. In the next step, SPR biosensors based on SMQDs and advanced 2D SMQDs-based nanobiosensors as ultrasensitive detection tools are presented. This review proposes the use of SMQDs for the improvement of SPR biosensors with high selectivity and sensitivity for biomedical applications.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nano-Materials and Polymer Nano-Composites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Masoomeh Yari Kalashgrani
- The Center of Biotechnology Research, Shiraz University of Medical Science, Shiraz 71468-64685, Iran
| | - Vahid Rahmanian
- The Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ahmad Gholami
- The Center of Biotechnology Research, Shiraz University of Medical Science, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya (MU), Kuala Lumpur 50603, Malaysia
| |
Collapse
|
35
|
Zhou Z, Pourhashem S, Wang Z, Sun J, Ji X, Zhai X, Duan J, Hou B. Mxene structure: A key parameter in corrosion barrier performance of organic coatings. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Marquis E, Cutini M, Anasori B, Rosenkranz A, Righi MC. Nanoscale MXene Interlayer and Substrate Adhesion for Lubrication: A Density Functional Theory Study. ACS APPLIED NANO MATERIALS 2022; 5:10516-10527. [PMID: 36062064 PMCID: PMC9425433 DOI: 10.1021/acsanm.2c01847] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/25/2022] [Indexed: 05/08/2023]
Abstract
Understanding the interlayer interaction at the nanoscale in two-dimensional (2D) transition metal carbides and nitrides (MXenes) is important to improve their exfoliation/delamination process and application in (nano)-tribology. The layer-substrate interaction is also essential in (nano)-tribology as effective solid lubricants should be resistant against peeling-off during rubbing. Previous computational studies considered MXenes' interlayer coupling with oversimplified, homogeneous terminations while neglecting the interaction with underlying substrates. In our study, Ti-based MXenes with both homogeneous and mixed terminations are modeled using density functional theory (DFT). An ad hoc modified dispersion correction scheme is used, capable of reproducing the results obtained from a higher level of theory. The nature of the interlayer interactions, comprising van der Waals, dipole-dipole, and hydrogen bonding, is discussed along with the effects of MXene sheet's thickness and C/N ratio. Our results demonstrate that terminations play a major role in regulating MXenes' interlayer and substrate adhesion to iron and iron oxide and, therefore, lubrication, which is also affected by an external load. Using graphene and MoS2 as established references, we verify that MXenes' tribological performance as solid lubricants can be significantly improved by avoiding -OH and -F terminations, which can be done by controlling terminations via post-synthesis processing.
Collapse
Affiliation(s)
- Edoardo Marquis
- Department
of Physics and Astronomy, Alma Mater Studiorum
− University of Bologna, Viale Berti Pichat 6/2, Bologna 40127, Italy
| | - Michele Cutini
- Department
of Physics and Astronomy, Alma Mater Studiorum
− University of Bologna, Viale Berti Pichat 6/2, Bologna 40127, Italy
| | - Babak Anasori
- Department
of Mechanical and Energy Engineering, and Integrated Nanosystems Development
Institute, Indiana University-Purdue University
Indianapolis, Indianapolis, Indiana 46202, United States
| | - Andreas Rosenkranz
- Department
of Chemical Engineering, Biotechnology and Materials, University of Chile, Avenida Beaucheff 851, Santiago de Chile 8370456, Chile
| | - Maria Clelia Righi
- Department
of Physics and Astronomy, Alma Mater Studiorum
− University of Bologna, Viale Berti Pichat 6/2, Bologna 40127, Italy
| |
Collapse
|
37
|
Ranjbari S, Darroudi M, Hatamluyi B, Arefinia R, Aghaee-Bakhtiari SH, Rezayi M, Khazaei M. Application of MXene in the diagnosis and treatment of breast cancer: A critical overview. Front Bioeng Biotechnol 2022; 10:984336. [PMID: 36091438 PMCID: PMC9449700 DOI: 10.3389/fbioe.2022.984336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/26/2022] [Indexed: 12/07/2022] Open
Abstract
Breast cancer is the second most common cancer worldwide. Prognosis and timely treatment can reduce the illness or improve it. The use of nanomaterials leads to timely diagnosis and effective treatment. MXenes are a 2D material with a unique composition of attributes, containing significant electrical conductance, high optical characteristics, mechanical consistency, and excellent optical properties. Current advances and insights show that MXene is far more promising in biotechnology applications than current nanobiotechnology systems. MXenes have various applications in biotechnology and biomedicine, such as drug delivery/loading, biosensor, cancer treatment, and bioimaging programs due to their high surface area, excellent biocompatibility, and physicochemical properties. Surface modifications MXenes are not only biocompatible but also have multifunctional properties, such as aiming ligands for preferential agglomeration at the tumor sites for photothermal treatment. Studies have shown that these nanostructures, detection, and breast cancer therapy are more acceptable than present nanosystems in in vivo and in vitro. This review article aims to investigate the structure of MXene, its various synthesis methods, its application to cancer diagnosis, cytotoxicity, biodegradability, and cancer treatment by the photothermal process (in-vivo and in-vitro).
Collapse
Affiliation(s)
- Sara Ranjbari
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdieh Darroudi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran
| | - Behnaz Hatamluyi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Arefinia
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran
- *Correspondence: Majid Rezayi, ; Majid Khazaei,
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran
- *Correspondence: Majid Rezayi, ; Majid Khazaei,
| |
Collapse
|
38
|
Wang Y, Niu N, Huang Y, Song S, Tan H, Wang L, Wang D, Tang BZ. Three-Pronged Attack by Hybrid Nanoplatform Involving MXenes, Upconversion Nanoparticle and Aggregation-Induced Emission Photosensitizer for Potent Cancer Theranostics. SMALL METHODS 2022; 6:e2200393. [PMID: 35657020 DOI: 10.1002/smtd.202200393] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Inspired by the excellent photothermal conversion ability and inherent nanomedicine platform property of MXenes, efficient reactive oxygen species production and prominent fluorescence emission feature of aggregation-induced emission (AIE)-active photosensitizers (PSs), as well as the extending excitation wavelength capability of upconversion nanoparticles (UCNPs), a versatile nanoplatform comprised of Ti3 C2 nanosheets (NSs), AIE-active PSs and UCNPs is intelligently fabricated. This three-pronged strategy takes advantages of each component simultaneously, and realizes fluorescence imaging/photoacoustic imaging/photothermal imaging triple-modal imaging-guided photothermal/photodynamic synergetic therapy under 808 nm laser irradiation. The introduction of UCNPs actualizes the long wavelength-activation of AIE-active PSs, which significantly increases the tissue penetration depth. Spatially isolation of AIE-active PSs and Ti3 C2 NSs is beneficial for suppressing the fluorescence quenching effect of Ti3 C2 NSs, bringing about ultimately brilliant fluorescence. The covalently bonded polymer surface endows the nanoplatform with excellent physiological stability and efficient tumor accumulation. These outputs reveal a win-win cooperation of multiple inorganic/organic nanocomposites for phototheranostics, and present great potential for future clinical translations.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Children's Hospital, Shenzhen, 518034, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Niu Niu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yang Huang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shanliang Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hui Tan
- Shenzhen Children's Hospital, Shenzhen, 518034, P. R. China
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| |
Collapse
|
39
|
Nie Y, Wang P, Ma Q, Su X. Confined Gold Single Atoms-MXene Heterostructure-Based Electrochemiluminescence Functional Material and Its Sensing Application. Anal Chem 2022; 94:11016-11022. [PMID: 35899589 DOI: 10.1021/acs.analchem.2c01480] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, based on electronic metal-support interaction (EMSI), a gold single atom confined MXene (AuSA/MXene) heterostructure was developed as the highly efficient electrochemiluminescence (ECL) functional material, which greatly improved the electrochemical properties and broadened the sensing application of MXenes. Gold single atoms were confined into the vacancy defects of Ti3C2Tx MXene, which could effectively avoid the masking of catalytic active sites. Meanwhile, electron transport could be accelerated with the assistance of titanium dioxide on the MXene nanosheets. Therefore, the AuSA/MXene heterostructure had high catalytic activity and electrical activity to promote hydrogen peroxide to generate free radicals, which achieved high-efficiency ECL. Eventually, the AuSA/MXene heterostructure was used to construct a Faraday cage-type ECL sensor with fluid nanoislands to detect miRNA-187 in triple-negative breast cancer tumor tissues.
Collapse
Affiliation(s)
- Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
40
|
Mo2C as Pre-Catalyst for the C-H Allylic Oxygenation of Alkenes and Terpenoids in the Presence of H2O2. ORGANICS 2022. [DOI: 10.3390/org3030014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, commercially available molybdenum carbide (Mo2C) was used, in the presence of H2O2, as an efficient pre-catalyst for the selective C-H allylic oxygenation of several unsaturated molecules into the corresponding allylic alcohols. Under these basic conditions, an air-stable, molybdenum-based polyoxometalate cluster (Mo-POM) was formed in situ, leading to the generation of singlet oxygen (1O2), which is responsible for the oxygenation reactions. X-ray diffraction, SEM/EDX and HRMS analyses support the formation mainly of the Mo6O192− cluster. Following the proposed procedure, a series of cycloalkenes, styrenes, terpenoids and methyl oleate were successfully transformed into hydroperoxides. After subsequent reduction, the corresponding allylic alcohols were produced with good yields and in lab-scale quantities. A mechanistic study excluded a hydrogen atom transfer pathway and supported the twix-selective oxygenation of cycloalkenes on the more sterically hindered side via the 1O2 generation.
Collapse
|
41
|
Gouveia JD, Gomes JR. The determining role of T species in the catalytic potential of MXenes: Water adsorption and dissociation on Mo2CT. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Nanoarchitectonics of vanadium carbide MXenes for separation and catalytic degradation of contaminants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Assad H, Fatma I, Kumar A, Kaya S, Vo DVN, Al-Gheethi A, Sharma A. An overview of MXene-Based nanomaterials and their potential applications towards hazardous pollutant adsorption. CHEMOSPHERE 2022; 298:134221. [PMID: 35276102 DOI: 10.1016/j.chemosphere.2022.134221] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
With the massive development of industrialization, multiple ecological contaminants in gaseous, liquid, and solid forms are vented into habitats, which is currently at the forefront of worldwide attention. Because of the possible damage to public health and eco-diversity, high-efficiency clearance of these environmental contaminants is a serious concern. Improved nanomaterials (NMs) could perform a significant part in the exclusion of contaminants from the atmosphere. MXenes, a class of two-dimensional (2D) compounds that have got tremendous consideration from researchers for a broad array of applications in a variety of industries and are viewed as a potential route for innovative solutions to identify and prevent a variety of obstreperous hazardous pollutants from environmental compartments due to their exceptional innate physicochemical and mechanical features, including high specific surface area, physiological interoperability, sturdy electrodynamics, and elevated wettability. This paper discusses the recent progress in MXene-based nanomaterials' applications such as environmental remediation, with a focus on their adsorption-reduction characteristics. The removal of heavy metals, dyes, and radionuclides by MXenes and MXene-based nanomaterials is depicted in detail, with the adsorption mechanism and regeneration potential highlighted. Finally, suggestions for future research are provided to ensure that MXenes and MXene-based nanomaterials are synthesized and applied more effectively.
Collapse
Affiliation(s)
- Humira Assad
- Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, India
| | - Ishrat Fatma
- Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, India
| | - Ashish Kumar
- Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, India.
| | - Savas Kaya
- Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas, Turkey
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Adel Al-Gheethi
- Faculty of Civil Engineering and Built Environment (FKAAB), Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Batu Pahat, Johor, Malaysia
| | - Ajit Sharma
- Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
44
|
Gao Y, Zhang S, Sun X, Zhao W, Zhuo H, Zhuang G, Wang S, Yao Z, Deng S, Zhong X, Wei Z, Wang JG. Computational screening of O-functional MXenes for electrocatalytic ammonia synthesis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64011-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Majed A, Kothakonda M, Wang F, Tseng EN, Prenger K, Zhang X, Persson POÅ, Wei J, Sun J, Naguib M. Transition Metal Carbo-Chalcogenide "TMCC:" A New Family of 2D Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200574. [PMID: 35419882 DOI: 10.1002/adma.202200574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Here, a new family of 2D transition metal carbo-chalcogenides (TMCCs) is reported, which can be considered a combination of two well-known families, TM carbides (MXenes) and TM dichalcogenides (TMDCs), at the atomic level. Single sheets are successfully obtained from multilayered Nb2 S2 C and Ta2 S2 C using electrochemical lithiation followed by sonication in water. The parent multilayered TMCCs are synthesized using a simple, scalable solid-state synthesis followed by a topochemical reaction. Superconductivity transition is observed at 7.55 K for Nb2 S2 C. The delaminated Nb2 S2 C outperforms both multilayered Nb2 S2 C and delaminated NbS2 as an electrode material for Li-ion batteries. Ab initio calculations predict the elastic constant of TMCC to be over 50% higher than that of TMDC.
Collapse
Affiliation(s)
- Ahmad Majed
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, USA
| | - Manish Kothakonda
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, USA
| | - Fei Wang
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, USA
| | - Eric N Tseng
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, SE-581 83, Sweden
| | - Kaitlyn Prenger
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, USA
| | - Xiaodong Zhang
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Per O Å Persson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, SE-581 83, Sweden
| | - Jiang Wei
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, USA
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, USA
| | - Michael Naguib
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, USA
| |
Collapse
|
46
|
Panda S, Deshmukh K, Khadheer Pasha S, Theerthagiri J, Manickam S, Choi MY. MXene based emerging materials for supercapacitor applications: Recent advances, challenges, and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214518] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
|
48
|
Singh SK, Singh A, Kumar V, Gupta J, Umrao S, Kumar M, Sarma DK, Leja M, Bhandari MP, Verma V. Nanosheets Based Approach to Elevate the Proliferative and Differentiation Efficacy of Human Wharton's Jelly Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:5816. [PMID: 35628625 PMCID: PMC9143505 DOI: 10.3390/ijms23105816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy and tissue repair necessitate the use of an ideal clinical biomaterial capable of increasing cell proliferation and differentiation. Recently, MXenes 2D nanomaterials have shown remarkable potential for improving the functional properties of MSCs. In the present study, we elucidated the potential of Ti2CTx MXene as a biomaterial through its primary biological response to human Wharton's Jelly MSCs (hWJ-MSCs). A Ti2CTx nanosheet was synthesized and thoroughly characterized using various microscopic and spectroscopic tools. Our findings suggest that Ti2CTx MXene nanosheet exposure does not alter the morphology of the hWJ-MSCs; however, it causes a dose-dependent (10-200 µg/mL) increase in cell proliferation, and upon using it with conditional media, it also enhanced its tri-lineage differentiation potential, which is a novel finding of our study. A two-fold increase in cell viability was also noticed at the highest tested dose of the nanosheet. The treated hWJ-MSCs showed no sign of cellular stress or toxicity. Taken together, these findings suggest that the Ti2CTx MXene nanosheet is capable of augmenting the proliferation and differentiation potential of the cells.
Collapse
Affiliation(s)
- Suraj Kumar Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India; (S.K.S.); (A.S.); (V.K.); (J.G.)
| | - Anshuman Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India; (S.K.S.); (A.S.); (V.K.); (J.G.)
| | - Vinod Kumar
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India; (S.K.S.); (A.S.); (V.K.); (J.G.)
| | - Jalaj Gupta
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India; (S.K.S.); (A.S.); (V.K.); (J.G.)
| | - Sima Umrao
- Indian Institute of Science (IISC), Bangalore 560012, India;
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (D.K.S.)
| | - Devojit Kumar Sarma
- ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (D.K.S.)
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia;
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
| | | | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India; (S.K.S.); (A.S.); (V.K.); (J.G.)
| |
Collapse
|
49
|
Shao Y, He Q, Xiang L, Xu Z, Cai X, Chen C. Strengthened Optical Nonlinearity of V2C Hybrids Inlaid with Silver Nanoparticles. NANOMATERIALS 2022; 12:nano12101647. [PMID: 35630869 PMCID: PMC9145371 DOI: 10.3390/nano12101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022]
Abstract
The investigation of nonlinear optical characteristics resulting from the light–matter interactions of two-dimensional (2D) nano materials has contributed to the extensive use of photonics. In this study, we synthesize a 2D MXene (V2C) monolayer nanosheet by the selective etching of Al from V2AlC at room temperature and use the nanosecond Z-scan technique with 532 nm to determine the nonlinear optical characters of the Ag@V2C hybrid. The z-scan experiment reveals that Ag@V2C hybrids usually exhibits saturable absorption owing to the bleaching of the ground state plasma, and the switch from saturable absorption to reverse saturable absorption takes place. The findings demonstrate that Ag@V2C has optical nonlinear characters. The quantitative data of the nonlinear absorption of Ag@V2C varies with the wavelength and the reverse saturable absorption results from the two-photon absorption, which proves that Ag@V2C hybrids have great potential for future ultrathin optoelectronic devices.
Collapse
Affiliation(s)
- Yabin Shao
- School of Jia Yang, Zhejiang Shuren University, Shaoxing 312028, China; (Y.S.); (L.X.); (Z.X.); (X.C.)
| | - Qing He
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China;
| | - Lingling Xiang
- School of Jia Yang, Zhejiang Shuren University, Shaoxing 312028, China; (Y.S.); (L.X.); (Z.X.); (X.C.)
| | - Zibin Xu
- School of Jia Yang, Zhejiang Shuren University, Shaoxing 312028, China; (Y.S.); (L.X.); (Z.X.); (X.C.)
| | - Xiaoou Cai
- School of Jia Yang, Zhejiang Shuren University, Shaoxing 312028, China; (Y.S.); (L.X.); (Z.X.); (X.C.)
| | - Chen Chen
- College of Civil Engineering, East University of Heilongjiang, Harbin 150086, China
- Correspondence:
| |
Collapse
|
50
|
Flaureau A, Weibel A, Chevallier G, Esvan J, Laurent C, Estournès C. Few-layered-graphene/zirconia composites: Single-step powder synthesis, spark plasma sintering, microstructure and properties. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|