1
|
Carvalho T, Bártolo R, Correia A, Vilela C, Wang S, Santos HA, Freire CSR. Implantable Patch of Oxidized Nanofibrillated Cellulose and Lysozyme Amyloid Nanofibrils for the Regeneration of Infarcted Myocardium Tissue and Local Delivery of RNA-Loaded Nanoparticles. Macromol Rapid Commun 2024; 45:e2400129. [PMID: 38778746 DOI: 10.1002/marc.202400129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Biopolymeric implantable patches are popular scaffolds for myocardial regeneration applications. Besides being biocompatible, they can be tailored to have required properties and functionalities for this application. Recently, fibrillar biobased nanostructures prove to be valuable in the development of functional biomaterials for tissue regeneration applications. Here, periodate-oxidized nanofibrillated cellulose (OxNFC) is blended with lysozyme amyloid nanofibrils (LNFs) to prepare a self-crosslinkable patch for myocardial implantation. The OxNFC:LNFs patch shows superior wet mechanical properties (60 MPa for Young's modulus and 1.5 MPa for tensile stress at tensile strength), antioxidant activity (70% scavenging activity under 24 h), and bioresorbability ratio (80% under 91 days), when compared to the patches composed solely of NFC or OxNFC. These improvements are achieved while preserving the morphology, required thermal stability for sterilization, and biocompatibility toward rat cardiomyoblast cells. Additionally, both OxNFC and OxNFC:LNFs patches reveal the ability to act as efficient vehicles to deliver spermine modified acetalated dextran nanoparticles, loaded with small interfering RNA, with 80% of delivery after 5 days. This study highlights the value of simply blending OxNFC and LNFs, synergistically combining their key properties and functionalities, resulting in a biopolymeric patch that comprises valuable characteristics for myocardial regeneration applications.
Collapse
Affiliation(s)
- Tiago Carvalho
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Raquel Bártolo
- Department of Biomaterials and Biomedical Technology, PRECISION - Personalized medicine Research Institute, University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Carla Vilela
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomaterials and Biomedical Technology, PRECISION - Personalized medicine Research Institute, University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Carmen S R Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
2
|
De Rubis G, Chakraborty A, Paudel KR, Wang C, Kannaujiya V, Wich PR, Hansbro PM, Samuel CS, Oliver B, Dua K. Exploring the anti-inflammatory and anti-fibrotic activity of NFκB decoy oligodeoxynucleotide-loaded spermine-functionalized acetalated nanoparticles. Chem Biol Interact 2024; 396:111059. [PMID: 38761875 DOI: 10.1016/j.cbi.2024.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Chronic inflammation, oxidative stress, and airway remodelling represent the principal pathophysiological features of chronic respiratory disorders. Inflammation stimuli like lipopolysaccharide (LPS) activate macrophages and dendritic cells, with concomitant M1 polarization and release of pro-inflammatory cytokines. Chronic inflammation and oxidative stress lead to airway remodelling causing irreversible functional and structural alterations of the lungs. Airway remodelling is multifactorial, however, the hormone transforming growth factor-β (TGF-β) is one of the main contributors to fibrotic changes. The signalling pathways mediating inflammation and remodelling rely both on the transcription factor nuclear factor-κB (NFκB), underlying the potential of NFκB inhibition as a therapeutic strategy for chronic respiratory disorders. In this study, we encapsulated an NFκB-inhibiting decoy oligodeoxynucleotide (ODN) in spermine-functionalized acetalated dextran (SpAcDex) nanoparticles and tested the in vitro anti-inflammatory and anti-remodelling activity of this formulation. We show that NF-κB ODN nanoparticles counteract inflammation by reversing LPS-induced expression of the activation marker CD40 in myeloid cells and counteracts remodelling features by reversing the TGF-β-induced expression of collagen I and α-smooth muscle actin in human dermal fibroblast. In summary, our study highlights the great potential of inhibiting NFκB via decoy ODN as a therapeutic strategy tackling multiple pathophysiological features underlying chronic respiratory conditions.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Amlan Chakraborty
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK; Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Chao Wang
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Vinod Kannaujiya
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peter Richard Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Brian Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
3
|
De Rubis G, Paudel KR, Corrie L, Mehndiratta S, Patel VK, Kumbhar PS, Manjappa AS, Disouza J, Patravale V, Gupta G, Manandhar B, Rajput R, Robinson AK, Reyes RJ, Chakraborty A, Chellappan DK, Singh SK, Oliver BGG, Hansbro PM, Dua K. Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2793-2833. [PMID: 37991539 DOI: 10.1007/s00210-023-02830-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Vyoma K Patel
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Arehalli Sidramappa Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
- Department of Pharmaceutics, Vasantidevi Patil Institute of Pharmacy, Kodoli, Kolkapur, Maharashtra, 416114, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Rashi Rajput
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Alexandra Kailie Robinson
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Ruby-Jean Reyes
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Amlan Chakraborty
- Division of Immunology, Immunity to Infection and Respiratory Medicine (DIIIRM), School of Biological Sciences I Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
4
|
Ma Y, Morozova SM, Kumacheva E. From Nature-Sourced Polysaccharide Particles to Advanced Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312707. [PMID: 38391153 DOI: 10.1002/adma.202312707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Polysaccharides constitute over 90% of the carbohydrate mass in nature, which makes them a promising feedstock for manufacturing sustainable materials. Polysaccharide particles (PSPs) are used as effective scavengers, carriers of chemical and biological cargos, and building blocks for the fabrication of macroscopic materials. The biocompatibility and degradability of PSPs are advantageous for their uses as biomaterials with more environmental friendliness. This review highlights the progresses in PSP applications as advanced functional materials, by describing PSP extraction, preparation, and surface functionalization with a variety of functional groups, polymers, nanoparticles, and biologically active species. This review also outlines the fabrication of PSP-derived macroscopic materials, as well as their applications in soft robotics, sensing, scavenging, water harvesting, drug delivery, and bioengineering. The paper is concluded with an outlook providing perspectives in the development and applications of PSP-derived materials.
Collapse
Affiliation(s)
- Yingshan Ma
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Sofia M Morozova
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Center of Fluid Physics and Soft Matter, N.E. Bauman Moscow State Technical University, 5/1 2-nd Baumanskaya street, Moscow, 105005, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
5
|
Moazzam M, Zhang M, Hussain A, Yu X, Huang J, Huang Y. The landscape of nanoparticle-based siRNA delivery and therapeutic development. Mol Ther 2024; 32:284-312. [PMID: 38204162 PMCID: PMC10861989 DOI: 10.1016/j.ymthe.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/01/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
Five small interfering RNA (siRNA)-based therapeutics have been approved by the Food and Drug Administration (FDA), namely patisiran, givosiran, lumasiran, inclisiran, and vutrisiran. Besides, siRNA delivery to the target site without toxicity is a big challenge for researchers, and naked-siRNA delivery possesses several challenges, including membrane impermeability, enzymatic degradation, mononuclear phagocyte system (MPS) entrapment, fast renal excretion, endosomal escape, and off-target effects. The siRNA therapeutics can silence any disease-specific gene, but their intracellular and extracellular barriers limit their clinical applications. For this purpose, several modifications have been employed to siRNA for better transfection efficiency. Still, there is a quest for better delivery systems for siRNA delivery to the target site. In recent years, nanoparticles have shown promising results in siRNA delivery with minimum toxicity and off-target effects. Patisiran is a lipid nanoparticle (LNP)-based siRNA formulation for treating hereditary transthyretin-mediated amyloidosis that ultimately warrants the use of nanoparticles from different classes, especially lipid-based nanoparticles. These nanoparticles may belong to different categories, including lipid-based, polymer-based, and inorganic nanoparticles. This review briefly discusses the lipid, polymer, and inorganic nanoparticles and their sub-types for siRNA delivery. Finally, several clinical trials related to siRNA therapeutics are addressed, followed by the future prospects and conclusions.
Collapse
Affiliation(s)
- Muhammad Moazzam
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaotong Yu
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing 100191, China.
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China; Rigerna Therapeutics Co. Ltd., Suzhou 215127, China.
| |
Collapse
|
6
|
Li SA, Meng XY, Zhang YJ, Chen CL, Jiao YX, Zhu YQ, Liu PP, Sun W. Progress in pH-Sensitive sensors: essential tools for organelle pH detection, spotlighting mitochondrion and diverse applications. Front Pharmacol 2024; 14:1339518. [PMID: 38269286 PMCID: PMC10806205 DOI: 10.3389/fphar.2023.1339518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
pH-sensitive fluorescent proteins have revolutionized the field of cellular imaging and physiology, offering insight into the dynamic pH changes that underlie fundamental cellular processes. This comprehensive review explores the diverse applications and recent advances in the use of pH-sensitive fluorescent proteins. These remarkable tools enable researchers to visualize and monitor pH variations within subcellular compartments, especially mitochondria, shedding light on organelle-specific pH regulation. They play pivotal roles in visualizing exocytosis and endocytosis events in synaptic transmission, monitoring cell death and apoptosis, and understanding drug effects and disease progression. Recent advancements have led to improved photostability, pH specificity, and subcellular targeting, enhancing their utility. Techniques for multiplexed imaging, three-dimensional visualization, and super-resolution microscopy are expanding the horizon of pH-sensitive protein applications. The future holds promise for their integration into optogenetics and drug discovery. With their ever-evolving capabilities, pH-sensitive fluorescent proteins remain indispensable tools for unravelling cellular dynamics and driving breakthroughs in biological research. This review serves as a comprehensive resource for researchers seeking to harness the potential of pH-sensitive fluorescent proteins.
Collapse
Affiliation(s)
- Shu-Ang Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Yan Meng
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Jie Zhang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Cai-Li Chen
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yu-Xue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong-Qing Zhu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pei-Pei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Sun
- Department of Burn and Repair Reconstruction, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Hughes KA, Misra B, Maghareh M, Samart P, Nguyen E, Hussain S, Geldenhuys WJ, Bobbala S. Flash nanoprecipitation allows easy fabrication of pH-responsive acetalated dextran nanoparticles for intracellular release of payloads. DISCOVER NANO 2024; 19:4. [PMID: 38175336 PMCID: PMC10766584 DOI: 10.1186/s11671-023-03947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Acetalated dextran (Ac-Dex) nanoparticles are currently of immense interest due to their sharp pH-responsive nature and high biodegradability. Ac-Dex nanoparticles are often formulated through single- or double-emulsion methods utilizing polyvinyl alcohol as the stabilizer. The emulsion methods utilize toxic organic solvents such as dichloromethane or chloroform and require multi-step processing to form stable Ac-Dex nanoparticles. Here, we introduce a simple flash nanoprecipitation (FNP) approach that utilizes a confined impinging jet mixer and a non-toxic solvent, ethanol, to form Ac-Dex nanoparticles rapidly. Ac-Dex nanoparticles were stabilized using nonionic PEGylated surfactants, D-α-Tocopherol polyethylene glycol succinate (TPGS), or Pluronic (F-127). Ac-Dex nanoparticles formed using FNP were highly monodisperse and stably encapsulated a wide range of payloads, including hydrophobic, hydrophilic, and macromolecules. When lyophilized, Ac-Dex TPGS nanoparticles remained stable for at least one year with greater than 80% payload retention. Ac-Dex nanoparticles were non-toxic to cells and achieved intracellular release of payloads into the cytoplasm. In vivo studies demonstrated a predominant biodistribution of Ac-Dex TPGS nanoparticles in the liver, lungs, and spleen after intravenous administration. Taken together, the FNP technique allows easy fabrication and loading of Ac-Dex nanoparticles that can precisely release payloads into intracellular environments for diverse therapeutic applications. pH-responsive Acetalateddextran can be formulated using nonionic surfactants, such as TPGS or F-127, for intracellular release of payloads. Highly monodisperse and stable nanoparticles can be created through the simple, scalable flash nanoprecipitation technique, which utilizes a confined impingement jet mixer.
Collapse
Affiliation(s)
- Krystal A Hughes
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26505, USA
| | - Bishal Misra
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26505, USA
| | - Maryam Maghareh
- Department of Clinical Pharmacy, West Virginia University School of Pharmacy, Morgantown, WV, 26505, USA
| | - Parinya Samart
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26505, USA
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ethan Nguyen
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26505, USA
| | - Salik Hussain
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26505, USA
- Department of Physiology, Pharmacology and Toxicology, West Virginia University, Morgantown, WV, 26505, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26505, USA
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26505, USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26505, USA.
| |
Collapse
|
8
|
Datsyuk JK, Paudel KR, Rajput R, Kokkinis S, El Sherkawi T, Singh SK, Gupta G, Chellappan DK, Yeung S, Hansbro PM, Oliver BGG, Santos HA, Dua K, De Rubis G. Emerging applications and prospects of NFκB decoy oligodeoxynucleotides in managing respiratory diseases. Chem Biol Interact 2023; 385:110737. [PMID: 37774998 DOI: 10.1016/j.cbi.2023.110737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Chronic respiratory diseases like asthma and Chronic Obstructive Pulmonary Disease (COPD) have been a burden to society for an extended period. Currently, there are only preventative treatments in the form of mono- or multiple-drug therapy available to patients who need to utilize it daily. Hence, throughout the years there has been a substantial amount of research in understanding what causes inflammation in the context of these diseases. For example, the transcription factor NFκB has a pivotal role in causing chronic inflammation. Subsequent research has been exploring ways to block the activation of NFκB as a potential therapeutic strategy for many inflammatory diseases. One of the possible ways through which this is probable is the utilisation of decoy oligodeoxynucleotides, which are synthetic, short, single-stranded DNA fragments that mimic the consensus binding site of a targeted transcription factor, thereby functionally inactivating it. However, limitations to the implementation of decoy oligodeoxynucleotides include their rapid degradation by intracellular nucleases and the lack of targeted tissue specificity. An advantageous approach to overcome these limitations involves using nanoparticles as a vessel for drug delivery. In this review, all of those key elements will be explored as to how they come together as an application to treat chronic inflammation in respiratory diseases.
Collapse
Affiliation(s)
- Jessica Katrine Datsyuk
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Rashi Rajput
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Tammam El Sherkawi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Jaipur, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Hélder A Santos
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
9
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
10
|
Lisina S, Inam W, Huhtala M, Howaili F, Zhang H, Rosenholm JM. Nano Differential Scanning Fluorimetry as a Rapid Stability Assessment Tool in the Nanoformulation of Proteins. Pharmaceutics 2023; 15:pharmaceutics15051473. [PMID: 37242715 DOI: 10.3390/pharmaceutics15051473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/20/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The development and production of innovative protein-based therapeutics is a complex and challenging avenue. External conditions such as buffers, solvents, pH, salts, polymers, surfactants, and nanoparticles may affect the stability and integrity of proteins during formulation. In this study, poly (ethylene imine) (PEI) functionalized mesoporous silica nanoparticles (MSNs) were used as a carrier for the model protein bovine serum albumin (BSA). To protect the protein inside MSNs after loading, polymeric encapsulation with poly (sodium 4-styrenesulfonate) (NaPSS) was used to seal the pores. Nano differential scanning fluorimetry (NanoDSF) was used to assess protein thermal stability during the formulation process. The MSN-PEI carrier matrix or conditions used did not destabilize the protein during loading, but the coating polymer NaPSS was incompatible with the NanoDSF technique due to autofluorescence. Thus, another pH-responsive polymer, spermine-modified acetylated dextran (SpAcDEX), was applied as a second coating after NaPSS. It possessed low autofluorescence and was successfully evaluated with the NanoDSF method. Circular dichroism (CD) spectroscopy was used to determine protein integrity in the case of interfering polymers such as NaPSS. Despite this limitation, NanoDSF was found to be a feasible and rapid tool to monitor protein stability during all steps needed to create a viable nanocarrier system for protein delivery.
Collapse
Affiliation(s)
- Sofia Lisina
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Wali Inam
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Mikko Huhtala
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20500 Turku, Finland
| | - Fadak Howaili
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| |
Collapse
|
11
|
Kannaujiya VK, De Rubis G, Paudel KR, Manandhar B, Chellappan DK, Singh SK, MacLoughlin R, Gupta G, Xenaki D, Kumar P, Hansbro PM, Oliver BGG, Wich PR, Dua K. Anticancer activity of NFκB decoy oligonucleotide-loaded nanoparticles against human lung cancer. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
12
|
Nanotechnology for DNA and RNA delivery. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
13
|
Rennick JJ, Nowell CJ, Pouton CW, Johnston APR. Resolving subcellular pH with a quantitative fluorescent lifetime biosensor. Nat Commun 2022; 13:6023. [PMID: 36224168 PMCID: PMC9556823 DOI: 10.1038/s41467-022-33348-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Changes in sub-cellular pH play a key role in metabolism, membrane transport, and triggering cargo release from therapeutic delivery systems. Most methods to measure pH rely on intensity changes of pH sensitive fluorophores, however, these measurements are hampered by high uncertainty in the inferred pH and the need for multiple fluorophores. To address this, here we combine pH dependant fluorescent lifetime imaging microscopy (pHLIM) with deep learning to accurately quantify sub-cellular pH in individual vesicles. We engineer the pH sensitive protein mApple to localise in the cytosol, endosomes, and lysosomes, and demonstrate that pHLIM can rapidly detect pH changes induced by drugs such as bafilomycin A1 and chloroquine. We also demonstrate that polyethylenimine (a common transfection reagent) does not exhibit a proton sponge effect and had no measurable impact on the pH of endocytic vesicles. pHLIM is a simple and quantitative method that will help to understand drug action and disease progression.
Collapse
Affiliation(s)
- Joshua J Rennick
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
14
|
Zhang X, Xiong W, Kong G, Zhen Y, Zeng Q, Wang S, Chen S, Gu J, Li C, Guo K. Paclitaxel-incorporated nanoparticles improve functional recovery after spinal cord injury. Front Pharmacol 2022; 13:957433. [PMID: 36016549 PMCID: PMC9397142 DOI: 10.3389/fphar.2022.957433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
As a worldwide medical problem, spinal cord injury has no clear and effective treatment to improve its prognosis. Hence, new treatment strategies for spinal cord injury with good therapeutic efficacy have been actively pursued. As a new drug loading system, acetal dextran nanoparticles (SAD) have good biocompatibility and biodegradability. Therefore, we designed spermine-functionalized acetal-dextran (SAD) nanoparticles and encapsulated paclitaxel (PCL) into them. This design can ensure the sustained release of paclitaxel in the injured area for 4 days and promote the extension of nerve processes in vitro. In our experiment, we found that paclitaxel-loaded SAD nanoparticles (PCL@SAD) decreased the level of chondroitin sulfate proteoglycan in the rat spinal cord injury model, which reduced the scar repair of the injured site and changed the inhibitory environment after spinal cord injury. This reveals that PCL@SAD can effectively protect the injured spinal cord and ultimately improve the functional recovery of the injured spinal cord. One single injection of PCL@SAD shows better therapeutic effect than that of PCL. This study opens an exciting perspective toward the application of neuroprotective PCL@SAD for the treatment of severe neurological diseases.
Collapse
Affiliation(s)
- Xinzhu Zhang
- Nanjing Medical University, Nanjing, China
- Department of Orthopedics, The First Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wu Xiong
- Nanjing Medical University, Nanjing, China
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guang Kong
- Nanjing Medical University, Nanjing, China
- Gusu School, Nanjing Medical University, Suzhou, China
- Department of Orthopedics, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Yushan Zhen
- Medical College of Jiangsu University, Zhenjiang, China
| | - Qiang Zeng
- Nanjing Medical University, Nanjing, China
| | - Siming Wang
- Nanjing Medical University, Nanjing, China
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Chen
- Department of Orthopedics, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Gu
- Department of Orthopedics, Xishan People’s Hospital, Wuxi, China
| | - Cong Li
- Nanjing Medical University, Nanjing, China
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kaijin Guo
- Nanjing Medical University, Nanjing, China
- Department of Orthopedics, The First Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Shen J, Liu C, Yan P, Wang M, Guo L, Liu S, Chen J, Rosenholm JM, Huang H, Wang R, Zhang H. Helper T Cell (CD4 +) Targeted Tacrolimus Delivery Mediates Precise Suppression of Allogeneic Humoral Immunity. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9794235. [PMID: 35958106 PMCID: PMC9343082 DOI: 10.34133/2022/9794235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 01/15/2023]
Abstract
Antibody-mediated rejection (ABMR) is a major cause of dysfunction and loss of transplanted kidney. The current treatments for ABMR involve nonspecific inhibition and clearance of T/B cells or plasma cells. However, the prognosis of patients following current treatment is poor. T follicular helper cells (Tfh) play an important role in allograft-specific antibodies secreting plasma cell (PC) development. Tfh cells are therefore considered to be important therapeutic targets for the treatment of antibody hypersecretion disorders, such as transplant rejection and autoimmune diseases. Tacrolimus (Tac), the primary immunosuppressant, prevents rejection by reducing T cell activation. However, its administration should be closely monitored to avoid serious side effects. In this study, we investigated whether Tac delivery to helper T (CD4+) cells using functionalized mesoporous nanoparticles can block Tfh cell differentiation after alloantigen exposure. Results showed that Tac delivery ameliorated humoral rejection injury in rodent kidney graft by suppressing Tfh cell development, PC, and donor-specific antibody (DSA) generation without causing severe side effects compared with delivery through the drug administration pathway. This study provides a promising therapeutic strategy for preventing humoral rejection in solid organ transplantation. The specific and controllable drug delivery avoids multiple disorder risks and side effects observed in currently used clinical approaches.
Collapse
Affiliation(s)
- Jia Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Chang Liu
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Pengpeng Yan
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Meifang Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Luying Guo
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Shuaihui Liu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Hongfeng Huang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Rending Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
- Organ Donation and Coordination Office, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
16
|
Inam W, Bhadane R, Akpolat RN, Taiseer RA, Filippov SK, Salo‐Ahen OMH, Rosenholm JM, Zhang H. Interactions between polymeric nanoparticles and different buffers as investigated by zeta potential measurements and molecular dynamics simulations. VIEW 2022. [DOI: 10.1002/viw.20210009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Wali Inam
- Pharmaceutical Sciences Laboratory Faculty of Science and Engineering Åbo Akademi University Turku Finland
- Turku Bioscience Centre University of Turku and Åbo Akademi University Turku Finland
| | - Rajendra Bhadane
- Pharmaceutical Sciences Laboratory Faculty of Science and Engineering Åbo Akademi University Turku Finland
- Structural Bioinformatics Laboratory Faculty of Science and Engineering Åbo Akademi University Turku Finland
| | - Rukiye Nur Akpolat
- Pharmaceutical Sciences Laboratory Faculty of Science and Engineering Åbo Akademi University Turku Finland
- Department of Pharmacy Ministry of Health Alaca Public Hospital Alaca Corum Turkey
| | - Rifahul Abrar Taiseer
- Pharmaceutical Sciences Laboratory Faculty of Science and Engineering Åbo Akademi University Turku Finland
| | - Sergey K. Filippov
- Pharmaceutical Sciences Laboratory Faculty of Science and Engineering Åbo Akademi University Turku Finland
| | - Outi M. H. Salo‐Ahen
- Pharmaceutical Sciences Laboratory Faculty of Science and Engineering Åbo Akademi University Turku Finland
- Structural Bioinformatics Laboratory Faculty of Science and Engineering Åbo Akademi University Turku Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory Faculty of Science and Engineering Åbo Akademi University Turku Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory Faculty of Science and Engineering Åbo Akademi University Turku Finland
- Turku Bioscience Centre University of Turku and Åbo Akademi University Turku Finland
| |
Collapse
|
17
|
Khedri M, Afsharchi F, Souderjani AH, Rezvantalab S, Didandeh M, Maleki R, Musaie K, Santos HA, Shahbazi M. Molecular scale study on the interactions of biocompatible nanoparticles with macrophage membrane and blood proteins. NANO SELECT 2022. [DOI: 10.1002/nano.202200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG) Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Fatemeh Afsharchi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan Iran
| | - Amirhosein Hasanpour Souderjani
- Department of Pharmaceutical Engineering, School of Chemical Engineering College of Engineering, University of Tehran Tehran Iran
| | - Sima Rezvantalab
- Renewable Energies Department Faculty of Chemical Engineering Urmia University of Technology Urmia Iran
| | - Mohsen Didandeh
- Department of Chemical Engineering Tarbiat Modares University Tehran Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG) Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Kiyan Musaie
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan Iran
| | - Hélder A. Santos
- Department of Biomedical Engineering University Medical Center Groningen University of Groningen Groningen The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science University of Groningen/University Medical Center Groningen Groningen The Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki Finland
| | - Mohammad‐Ali Shahbazi
- Department of Biomedical Engineering University Medical Center Groningen University of Groningen Groningen The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science University of Groningen/University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
18
|
Konhäuser M, Kannaujiya VK, Steiert E, Schwickert K, Schirmeister T, Wich PR. Co-Encapsulation of l-Asparaginase and Etoposide in Dextran Nanoparticles for Synergistic Effect in Chronic Myeloid Leukemia Cells. Int J Pharm 2022; 622:121796. [PMID: 35525474 DOI: 10.1016/j.ijpharm.2022.121796] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/02/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022]
Abstract
Co-encapsulation of multiple therapeutic drugs in a single nanocarrier has the potential to enable synergistic interactions, increase drug efficacy, and reduce side effects. The enzyme l-asparaginase and the small molecule drug etoposide have a known synergistic effect against selected cancer types. However, both drugs differ significantly in size, molecular weight, and solubility, which often results in challenges when a simultaneous delivery is required. In this study, we present the co-encapsulation of a large hydrophilic enzyme l-asparaginase and the small hydrophobic drug etoposide into a biodegradable, biocompatible, and acid-responsive dextran-based nanoparticle system. These dual drug-loaded nanoparticles show an excellent cellular uptake in chronic myeloid leukemia (CML) K562 cells and a stepwise release of the cytotoxic payloads in a pH-dependent manner. In activity tests, the dual drug-loaded formulation has shown a significant effect on cell viability (down to 31%) compared to those incubated only with l-asparaginase (92%) or etoposide (82%) at a particle concentration of 125 μg∙mL-1. These results show that the simultaneous co-delivery of these two drugs in K562 cells leads to synergistic cytotoxicity, indicating a great potential for the treatment of CML.
Collapse
Affiliation(s)
- M Konhäuser
- Institute of Pharmaceutical and Biomedicinal Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - V K Kannaujiya
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - E Steiert
- Institute of Pharmaceutical and Biomedicinal Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - K Schwickert
- Institute of Pharmaceutical and Biomedicinal Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - T Schirmeister
- Institute of Pharmaceutical and Biomedicinal Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - P R Wich
- Institute of Pharmaceutical and Biomedicinal Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany; School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
19
|
Varma DM, Batty CJ, Stiepel RT, Graham-Gurysh EG, Roque JA, Pena ES, Hasan Zahid MS, Qiu K, Anselmo A, Hill DB, Ross TM, Bachelder EM, Ainslie KM. Development of an Intranasal Gel for the Delivery of a Broadly Acting Subunit Influenza Vaccine. ACS Biomater Sci Eng 2022; 8:1573-1582. [PMID: 35353486 PMCID: PMC9627116 DOI: 10.1021/acsbiomaterials.2c00015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Influenza virus is a major cause of death on a global scale. Seasonal vaccines have been developed to combat influenza; however, they are not always highly effective. One strategy to develop a more broadly active influenza vaccine is the use of multiple rounds of layered consensus buildings to generate recombinant antigens, termed computationally optimized broadly reactive antigen (COBRA). Immunization with the COBRA hemagglutinin (HA) can elicit broad protection against multiple strains of a single influenza subtype (e.g., H1N1). We formulated a COBRA H1 HA with a stimulator of interferon genes agonist cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) into a nasal gel for vaccination against influenza. The gel formulation was designed to increase mucoadhesion and nasal retention of the antigen and adjuvant to promote a strong mucosal response. It consisted of a Schiff base-crosslinked hydrogel between branched polyethyleneimine and oxidized dextran. Following a prime-boost-boost schedule, an intranasal gel containing cGAMP and model antigen ovalbumin (OVA) led to the faster generation of serum IgG, IgG1, and IgG2c and significantly greater serum IgG1 levels on day 42 compared to soluble controls. Additionally, OVA-specific IgA was detected in nasal, vaginal, and fecal samples for all groups, except the vehicle control. When the COBRA HA was given intranasally in a prime-boost schedule, the mice receiving the gel containing the COBRA and cGAMP had significantly higher serum IgG and IgG2c at day 41 compared to all groups, and only this group had IgA levels above the background in vaginal, nasal, and fecal samples. Overall, this study indicates the utility of an intranasal gel for the delivery of COBRAs for the generation of serum and mucosal humoral responses.
Collapse
Affiliation(s)
- Devika M Varma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cole J Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rebeca T Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elizabeth G Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John A Roque
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erik S Pena
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - M Shamim Hasan Zahid
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David B Hill
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30605, United States.,Department of Infectious Diseases, University of Georgia, Athens, Georgia 30605, United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States.,Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
20
|
Shen J, Ma M, Shafiq M, Yu H, Lan Z, Chen H. Microfluidics-Assisted Engineering of pH/Enzyme Dual-Activatable ZIF@Polymer Nanosystem for Co-Delivery of Proteins and Chemotherapeutics with Enhanced Deep-Tumor Penetration. Angew Chem Int Ed Engl 2022; 61:e202113703. [PMID: 34989079 DOI: 10.1002/anie.202113703] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Indexed: 01/05/2023]
Abstract
The impermeable barriers of solid tumors restrict the co-delivery of protein-based drugs and chemotherapeutics for cancer treatment. Therefore, we developed a ZIF-DOX/RA@DG nanosystem that encapsulates ribonuclease A (RA) and doxorubicin (DOX) in a zeolitic imidazolate framework (ZIF-8) core, with a dextran-based coating (DG). The nanosystem exhibits dual-responsiveness due to γ-glutamyl transpeptidase-activatable cationization and acidic microenvironment-triggered degradation. The DG-coating process was achieved using a microfluidic approach, which stabilized the polymer responsiveness, ZIF-8-based structure, and bioactivity of the encapsulated therapeutics. In vivo results confirmed that the nanosystem could co-deliver RA and DOX to deep impermeable lesions with a synergistic anticancer therapeutic effects. Such a multi-drug delivery system based on an intelligent-responsive design and a microfluidics-assisted synthesis strategy shows great clinical prospects.
Collapse
Affiliation(s)
- Jie Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Muhammad Shafiq
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Huizhu Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Zhengyi Lan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| |
Collapse
|
21
|
Küçüktürkmen B, Inam W, Howaili F, Gouda M, Prabhakar N, Zhang H, Rosenholm JM. Microfluidic-Assisted Fabrication of Dual-Coated pH-Sensitive Mesoporous Silica Nanoparticles for Protein Delivery. BIOSENSORS 2022; 12:181. [PMID: 35323451 PMCID: PMC8946851 DOI: 10.3390/bios12030181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 05/08/2023]
Abstract
Microfluidics has become a popular method for constructing nanosystems in recent years, but it can also be used to coat other materials with polymeric layers. The polymeric coating may serve as a diffusion barrier against hydrophilic compounds, a responsive layer for controlled release, or a functional layer introduced to a nanocomposite for achieving the desired surface chemistry. In this study, mesoporous silica nanoparticles (MSNs) with enlarged pores were synthesized to achieve high protein loading combined with high protein retention within the MSN system with the aid of a microfluidic coating. Thus, MSNs were first coated with a cationic polyelectrolyte, poly (diallyldimethylammonium chloride) (PDDMA), and to potentially further control the protein release, a second coating of a pH-sensitive polymer (spermine-modified acetylated dextran, SpAcDEX) was deposited by a designed microfluidic device. The protective PDDMA layer was first formed under aqueous conditions, whereby the bioactivity of the protein could be maintained. The second coating polymer, SpAcDEX, was preferred to provide pH-sensitive protein release in the intracellular environment. The optimized formulation was effectively taken up by the cells along with the loaded protein cargo. This proof-of-concept study thus demonstrated that the use of microfluidic technologies for the design of protein delivery systems has great potential in terms of creating multicomponent systems and preserving protein stability.
Collapse
Affiliation(s)
- Berrin Küçüktürkmen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (W.I.); (F.H.); (M.G.); (N.P.); (J.M.R.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| | - Wali Inam
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (W.I.); (F.H.); (M.G.); (N.P.); (J.M.R.)
| | - Fadak Howaili
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (W.I.); (F.H.); (M.G.); (N.P.); (J.M.R.)
| | - Mariam Gouda
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (W.I.); (F.H.); (M.G.); (N.P.); (J.M.R.)
| | - Neeraj Prabhakar
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (W.I.); (F.H.); (M.G.); (N.P.); (J.M.R.)
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (W.I.); (F.H.); (M.G.); (N.P.); (J.M.R.)
- Turku Bioscience Center, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (W.I.); (F.H.); (M.G.); (N.P.); (J.M.R.)
| |
Collapse
|
22
|
Zheng T, Wang W, Mohammadniaei M, Ashley J, Zhang M, Zhou N, Shen J, Sun Y. Anti-MicroRNA-21 Oligonucleotide Loaded Spermine-Modified Acetalated Dextran Nanoparticles for B1 Receptor-Targeted Gene Therapy and Antiangiogenesis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103812. [PMID: 34936240 PMCID: PMC8844571 DOI: 10.1002/advs.202103812] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/22/2021] [Indexed: 05/10/2023]
Abstract
The use of nanoparticles (NPs) to deliver small inhibiting microRNAs (miRNAs) has shown great promise for treating cancer. However, constructing a miRNA delivery system that targets brain cancers, such as glioblastoma multiforme (GBM), remains technically challenging due to the existence of the blood-tumor barrier (BTB). In this work, a novel targeted antisense miRNA-21 oligonucleotide (ATMO-21) delivery system is developed for GBM treatment. Bradykinin ligand agonist-decorated spermine-modified acetalated dextran NPs (SpAcDex NPs) could temporarily open the BTB by activating G-protein-coupled receptors that are expressed in tumor blood vessels and tumor cells, which increase transportation to and accumulation in tumor sites. ATMO-21 achieves high loading in the SpAcDex NPs (over 90%) and undergoes gradual controlled release with the degradation of the NPs in acidic lysosomal compartments. This allows for cell apoptosis and inhibition of the expression of vascular endothelial growth factor by downregulating hypoxia-inducible factor (HIF-1α) protein. An in vivo orthotopic U87MG glioma model confirms that the released ATMO-21 shows significant therapeutic efficacy in inhibiting tumor growth and angiogenesis, demonstrating that agonist-modified SpAcDex NPs represent a promising strategy for GBM treatment combining targeted gene therapy and antiangiogenic therapy.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDK‐2800Denmark
| | - Wentao Wang
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDK‐2800Denmark
| | - Mohsen Mohammadniaei
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDK‐2800Denmark
| | - Jon Ashley
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDK‐2800Denmark
| | - Ming Zhang
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDK‐2800Denmark
- Jiangsu Collaborative Innovation Center for Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center for Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Yi Sun
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDK‐2800Denmark
| |
Collapse
|
23
|
Shen J, Ma M, Shafiq M, Yu H, Lan Z, Chen H. Microfluidics‐Assisted Engineering of pH/Enzyme Dual‐Activatable ZIF@Polymer Nanosystem for Co‐Delivery of Proteins and Chemotherapeutics with Enhanced Deep‐Tumor Penetration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jie Shen
- Shanghai Institute of Ceramics State Key Laboratory of High Performance Ceramics and Superfine Microstructures CHINA
| | - Ming Ma
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High Performance Ceramics and Superfine Microstructures CHINA
| | - Muhammad Shafiq
- University of Central Punjab Department of Biotechnology, Faculty of Life Sciences PAKISTAN
| | - Huizhu Yu
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High performance Ceramics and Superfine Microstructures CHINA
| | - Zhengyi Lan
- Shanghai Institute of Ceramics State Key Laboratory of High Performance Ceramics and Superfine Microstructures CHINA
| | - Hangrong Chen
- Shanghai Institute of Ceramics State Key Laboratory of High Performance Ceramics and Superfine Microstructure No. 1295, Dingxi Road 200050 Shanghai CHINA
| |
Collapse
|
24
|
Zhang P, Li C, Huang T, Bai Y, Quan P, Li W, Zhang Z, Zhang F, Liu Z, Wan B, Correia A, Zhang J, Wu X, Hirvonen JT, Santos HA, Fan J, Cai T, Liu D. Inhibiting Phase Transfer of Protein Nanoparticles by Surface Camouflage-A Versatile and Efficient Protein Encapsulation Strategy. NANO LETTERS 2021; 21:9458-9467. [PMID: 34780176 DOI: 10.1021/acs.nanolett.1c02438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Engineering a system with a high mass fraction of active ingredients, especially water-soluble proteins, is still an ongoing challenge. In this work, we developed a versatile surface camouflage strategy that can engineer systems with an ultrahigh mass fraction of proteins. By formulating protein molecules into nanoparticles, the demand of molecular modification was transformed into a surface camouflage of protein nanoparticles. Thanks to electrostatic attractions and van der Waals interactions, we camouflaged the surface of protein nanoparticles through the adsorption of carrier materials. The adsorption of carrier materials successfully inhibited the phase transfer of insulin, albumin, β-lactoglobulin, and ovalbumin nanoparticles. As a result, the obtained microcomposites featured with a record of protein encapsulation efficiencies near 100% and a record of protein mass fraction of 77%. After the encapsulation in microcomposites, the insulin revealed a hypoglycemic effect for at least 14 d with one single injection, while that of insulin solution was only ∼4 h.
Collapse
Affiliation(s)
- Pei Zhang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Cong Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tianhe Huang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Yuancheng Bai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Quan
- Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Zifan Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Zhang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Bowen Wan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Jie Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Xuri Wu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing 210009, China
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ting Cai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Dongfei Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
25
|
Gao Y, Zhao Q, Dong H, Xiao M, Huang X, Wu X. Developing Acid-Responsive Glyco-Nanoplatform Based Vaccines for Enhanced Cytotoxic T-lymphocyte Responses Against Cancer and SARS-CoV-2. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2105059. [PMID: 34512228 PMCID: PMC8420391 DOI: 10.1002/adfm.202105059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/04/2021] [Indexed: 05/05/2023]
Abstract
Cytotoxic T-lymphocytes (CTLs) are central for eliciting protective immunity against malignancies and infectious diseases. Here, for the first time, partially oxidized acetalated dextran nanoparticles (Ox-AcDEX NPs) with an average diameter of 100 nm are fabricated as a general platform for vaccine delivery. To develop effective anticancer vaccines, Ox-AcDEX NPs are conjugated with a representative CTL peptide epitope (CTLp) from human mucin-1 (MUC1) with the sequence of TSAPDTRPAP (referred to as Mp1) and an immune-enhancing adjuvant R837 (referred to as R) via imine bond formation affording AcDEX-(imine)-Mp1-R NPs. Administration of AcDEX-(imine)-Mp1-R NPs results in robust and long-lasting anti-MUC1 CTL immune responses, which provides mice with superior protection from the tumor. To verify its universality, this nanoplatform is also exploited to deliver epitopes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to prevent coronavirus disease 2019 (COVID-19). By conjugating Ox-AcDEX NPs with the potential CTL epitope of SARS-CoV-2 (referred to as Sp) and R837, AcDEX-(imine)-Sp-R NPs are fabricated for anti-SARS-CoV-2 vaccine candidates. Several epitopes potentially contributing to the induction of potent and protective anti-SARS-CoV-2 CTL responses are examined and discussed. Collectively, these findings shed light on the universal use of Ox-AcDEX NPs to deliver both tumor-associated and virus-associated epitopes.
Collapse
Affiliation(s)
- Yanan Gao
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
| | - Qingyu Zhao
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
| | - Huiling Dong
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
| | - Min Xiao
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
| | - Xuefei Huang
- Departments of Chemistry and Biomedical EngineeringInstitute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Xuanjun Wu
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
- Suzhou Research InstituteShandong UniversitySuzhouJiangsu215123China
| |
Collapse
|
26
|
Wang S, Fontana F, Shahbazi MA, Santos HA. Acetalated dextran based nano- and microparticles: synthesis, fabrication, and therapeutic applications. Chem Commun (Camb) 2021; 57:4212-4229. [PMID: 33913978 DOI: 10.1039/d1cc00811k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acetalated dextran (Ac-DEX) is a pH-responsive dextran derivative polymer. Prepared by a simple acetalation reaction, Ac-DEX has tunable acid-triggered release profile. Despite its relatively short research history, Ac-DEX has shown great potential in various therapeutic applications. Furthermore, the recent functionalization of Ac-DEX makes versatile derivatives with additional properties. Herein, we summarize the cutting-edge development of Ac-DEX and related polymers. Specifically, we focus on the chemical synthesis, nano- and micro-particle fabrication techniques, the controlled-release mechanisms, and the rational design Ac-DEX-based of drug delivery systems in various biomedical applications. Finally, we briefly discuss the challenges and future perspectives in the field.
Collapse
Affiliation(s)
- Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland. and Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland. and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
27
|
Fu D, Fang Q, Yuan F, Liu J, Ding H, Chen X, Cui C, Ding J. Thrombolysis Combined Therapy Using CuS@SiO 2-PEG/uPA Nanoparticles. Front Chem 2021; 9:643411. [PMID: 33777903 PMCID: PMC7991581 DOI: 10.3389/fchem.2021.643411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/18/2021] [Indexed: 11/25/2022] Open
Abstract
Massive hemorrhage caused by the uncontrolled release of thrombolysis drugs is a key issue of thrombolysis therapy in clinical practice. In this study, we report a near-infrared (NIR) light-triggered drug delivery system, i.e., CuS@mSiO2-PEG (CSP) nanoparticles, for the loading of a thrombolytic drug (urokinase plasminogen activators, uPA). CSP nanoparticles with the CuS nanoparticles as photothermal agents and mesoporous SiO2 for the loading of uPA were synthesized using a facile hydrothermal method. The CSP core-shell nanoparticles were demonstrated to possess excellent photothermal performance, exhibiting a photothermal conversion efficiency of up to 52.8%. Due to the mesoporous SiO2 coating, the CSP core-shell nanoparticles exhibited appropriate pore size, high pore volume, and large surface area; thus, they showed great potential to be used as drug carriers. Importantly, the release of uPA from CuS@mSiO2-PEG/uPA (CSPA) carriers can be promoted by the NIR laser irradiation. The drug loading content of uPA for the as-prepared NIR-triggered drug delivery system was calculated to be 8.2%, and the loading efficiency can be determined to be as high as 89.6%. Due to the excellent photothermal effect of CSP nanocarriers, the NIR-triggered drug delivery system can be used for infrared thermal imaging in vivo. The in vivo thrombolysis assessment demonstrated that the NIR-triggered drug delivery system showed excellent thrombolytic ability under the irradiation of an 808 nm laser, showing the combined therapy for thrombolysis. As far as we know, the CSPA core-shell nanoparticles used as NIR-triggered drug delivery systems for thrombolysis have not been reported.
Collapse
Affiliation(s)
- Dapeng Fu
- Department of Vascular Surgery, The Second People's Hospital of Anhui, Province, Hefei, China
| | - Qingbo Fang
- Department of Vascular Surgery, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Fukang Yuan
- Department of Vascular Surgery, Fengcheng Hospital of Fengxian District, Shanghai, China.,Department of Vascular Surgery, Fengcheng Branch, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery of Xuzhou Central Hospital, Xuzhou, China.,Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junle Liu
- Department of Vascular Surgery, Karamay Central Hospital, Karamay, China
| | - Heyi Ding
- Department of Vascular Surgery, Karamay Central Hospital, Karamay, China
| | - Xuan Chen
- Department of Vascular Surgery, Karamay Central Hospital, Karamay, China
| | - Chaoyi Cui
- Department of Vascular Surgery, Fengcheng Hospital of Fengxian District, Shanghai, China.,Department of Vascular Surgery, Fengcheng Branch, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhui Ding
- Department of Vascular Surgery, The Second People's Hospital of Anhui, Province, Hefei, China
| |
Collapse
|
28
|
CO2 Adsorption Capacity of Organic Alkali Sorbent CPEI from Polyethyleneimine. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/6629365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Support-free cross-linked polyethyleneimine sorbent (CPEI) for CO2 capture was evaluated as the regenerable sorbent. The total amines available for the CO2 capture on CPEI were determined by the polyethyleneimine/glutaraldehyde ratio for the synthesis of CPEI. The CO2 capacity of CPEI in the slurry bubble column reactor reached 4.92 mmol/g, which is 1.97 times higher than that obtained under anhydrous conditions. The adsorption kinetics of CPEI in the reactor were investigated in terms of the CPEI amount, the CO2 fraction, the gas flow rate, temperature, and the total amines available. The experimental breakthrough curves for the sorbent were well-fitted with a fractional-order kinetic model. The modeling analysis found the influence of diffusion resistance on the adsorption is more significant than that of the driving force. The CO2 capacity of CPEI remained almost constant during the temperature swing adsorption/desorption cycles.
Collapse
|
29
|
Plucinski A, Lyu Z, Schmidt BVKJ. Polysaccharide nanoparticles: from fabrication to applications. J Mater Chem B 2021; 9:7030-7062. [DOI: 10.1039/d1tb00628b] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present review highlights the developments in polysaccharide nanoparticles with a particular focus on applications in biomedicine, cosmetics and food.
Collapse
Affiliation(s)
| | - Zan Lyu
- School of Chemistry, University of Glasgow, G12 8QQ Glasgow, UK
| | | |
Collapse
|
30
|
Recent Advances and Challenges in Controlling the Spatiotemporal Release of Combinatorial Anticancer Drugs from Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12121156. [PMID: 33261219 PMCID: PMC7759840 DOI: 10.3390/pharmaceutics12121156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
To overcome cancer, various chemotherapeutic studies are in progress; among these, studies on nano-formulated combinatorial drugs (NFCDs) are being actively pursued. NFCDs function via a fusion technology that includes a drug delivery system using nanoparticles as a carrier and a combinatorial drug therapy using two or more drugs. It not only includes the advantages of these two technologies, such as ensuring stability of drugs, selectively transporting drugs to cancer cells, and synergistic effects of two or more drugs, but also has the additional benefit of enabling the spatiotemporal and controlled release of drugs. This spatial and temporal drug release from NFCDs depends on the application of nanotechnology and the composition of the combination drug. In this review, recent advances and challenges in the control of spatiotemporal drug release from NFCDs are provided. To this end, the types of combinatorial drug release for various NFCDs are classified in terms of time and space, and the detailed programming techniques used for this are described. In addition, the advantages of the time and space differences in drug release in terms of anticancer efficacy are introduced in depth.
Collapse
|
31
|
Shen J, Ma M, Zhang H, Yu H, Xue F, Hao N, Chen H. Microfluidics-Assisted Surface Trifunctionalization of a Zeolitic Imidazolate Framework Nanocarrier for Targeted and Controllable Multitherapies of Tumors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45838-45849. [PMID: 32956582 DOI: 10.1021/acsami.0c14021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Metal-organic framework (MOF)-based drug delivery nanosystems with both precise drug release and multidrug codelivery capabilities have emerged as promising candidates for cancer treatment. However, challenges are posed by the limited number of suitable payload types, uncontrollable drug leakage, and lack of chemical groups for postmodification. To overcome those challenges, we developed a core-shell nanocomposite composed of zeolitic imidazolate framework-90 (ZIF-90) coated with spermine-modified acetalated dextran (SAD) by a facile microfluidics-based nanoprecipitation method. This nanocomposite could serve as a multidrug storage reservoir for the loading of two drugs with distinct properties, where the hydrophilic doxorubicin (DOX) was coordinately attached to the ZIF-90 framework, and hydrophobic photosensitizer IR780 was loaded into the SAD shell, enabling the combination therapy of photodynamic treatment with chemotherapy. Meanwhile, equipping ZIF-90 with a SAD shell not only substantially improved the pH-responsive drug release of ZIF-90 but also enabled the postformation conjugation of ZIF-90 with hyaluronic acid for specific CD44 recognition, thereby facilitating precise drug delivery to CD44-overexpressed tumor. Such a simple microfluidics-based strategy can efficiently overcome the limitations of solely MOF-based DDSs and greatly extend the flexibility of MOF biomedical applications.
Collapse
Affiliation(s)
- Jie Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, FI-20520 Turku, Finland
| | - Huizhu Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fengfeng Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Nanjing Hao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
32
|
Yao M, Shi X, Zuo C, Ma M, Zhang L, Zhang H, Li X, Yang GY, Tang Y, Wu R. Engineering of SPECT/Photoacoustic Imaging/Antioxidative Stress Triple-Function Nanoprobe for Advanced Mesenchymal Stem Cell Therapy of Cerebral Ischemia. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37885-37895. [PMID: 32806884 DOI: 10.1021/acsami.0c10500] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The precise transplantation, long-term tracking, and maintenance of stem cells with maximizing therapeutic effect are significant challenges in stem cell-based therapy for stroke treatment. In this study, a unique core-shell labeling nanoagent was prepared by encapsulating a cobalt protoporphyrin IX (CoPP)-loaded mesoporous silica nanoparticle (CPMSN) into a 125I-conjugated/spermine-modified dextran polymer (125I-SD) by microfluidics for mesenchymal stem cell (MSC) tracking and activity maintenance. The CPMSN core not only exhibits excellent photoacoustic (PA) imaging performance induced by the intermolecular aggregation of CoPP within the mesopores but also protects the MSCs against oxidative stress by sustained release of CoPP. Meanwhile, the addition of a 125I-SD shell can increase the uptake efficiency in MSCs without inducing cell variability and enable the single-photon-emission computed tomography (SPECT) nuclear imaging. In vivo results indicated that CPMSN@125I-SD labeling could allow for an optimal combination of instant imaging of MSCs, with PA to guide intracerebral injection, followed by multiple time point SPECT imaging to consecutively track the cell homing. Importantly, the sustained release of CoPP from CPMSN@125I-SD significantly increased the survival of MSCs after injection into an ischemic mouse brain and promoted neurobehavioral recovery in ischemic mice. Thus, CPMSN@125I-SD represents a robust theranostic probe for both MSC tracking and maintaining their therapeutic effect in the treatment of brain ischemia.
Collapse
Affiliation(s)
- Minghua Yao
- Department of Medical Ultrasound, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Xiaojing Shi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Lu Zhang
- Department of Nuclear Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, FI-20520 Turku, Finland
| | - Xin Li
- Department of Medical Ultrasound, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
| | - Yaohui Tang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
| | - Rong Wu
- Department of Medical Ultrasound, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| |
Collapse
|
33
|
Bauleth-Ramos T, Feijão T, Gonçalves A, Shahbazi MA, Liu Z, Barrias C, Oliveira MJ, Granja P, Santos HA, Sarmento B. Colorectal cancer triple co-culture spheroid model to assess the biocompatibility and anticancer properties of polymeric nanoparticles. J Control Release 2020; 323:398-411. [PMID: 32320816 DOI: 10.1016/j.jconrel.2020.04.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is the third most common and the second deadliest type of cancer worldwide, urging the development of more comprehensive models and of more efficient treatments. Although the combination of nanotechnology with chemo- and immuno-therapy has represented a promising treatment approach, its translation to the clinic has been hampered by the absence of cellular models that can provide reliable and predictive knowledge about the in vivo efficiency of the formulation. Herein, a 3D model based on CRC multicellular tumor spheroids (MCTS) model was developed by combining epithelial colon cancer cells (HCT116), human intestinal fibroblasts and monocytes. The developed MCTS 3D model mimicked several tumor features with cells undergoing spatial organization and producing extracellular matrix, forming a mass of tissue with a necrotic core. Furthermore, monocytes were differentiated into macrophages with an anti-inflammatory, pro-tumor M2-like phenotype. For a combined chemoimmunotherapy effect, spermine-modified acetalated dextran nanoparticles (NPs) loaded with the chemotherapeutic Nutlin-3a (Nut3a) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were produced and tested in 2D cultures and in the MCTS 3D model. NPs were successfully taken-up by the cells in 2D, but in a significant less extent in the 3D model. However, these NPs were able to induce an anti-proliferative effect both in the 2D and in the 3D models. Moreover, Nut3a was able to partially shift the polarization of the macrophages present in the MCTS 3D model towards an anti-tumor M1-like phenotype. Overall, the developed MCTS 3D model showed to recapitulate key features of tumors, while representing a valuable model to assess the effect of combinatorial nano-therapeutic strategies in CRC. In addition, the developed NPs could represent a promising approach for CRC treatment.
Collapse
Affiliation(s)
- Tomás Bauleth-Ramos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Tália Feijão
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - André Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 56184-45139 Zanjan, Iran
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Cristina Barrias
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal
| | - Maria José Oliveira
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Departmento de Patologia e Oncologia, Faculdade de Medicina, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Pedro Granja
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central da Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
34
|
Braga CB, Kido LA, Lima EN, Lamas CA, Cagnon VHA, Ornelas C, Pilli RA. Enhancing the Anticancer Activity and Selectivity of Goniothalamin Using pH-Sensitive Acetalated Dextran (Ac-Dex) Nanoparticles: A Promising Platform for Delivery of Natural Compounds. ACS Biomater Sci Eng 2020; 6:2929-2942. [PMID: 33463303 DOI: 10.1021/acsbiomaterials.0c00057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Goniothalamin (GTN), a natural compound isolated from Goniothalamus species, has previously demonstrated cytotoxic activity against several cancer cell lines. However, similarly to many natural and synthetic anticancer compounds, GTN presents toxicity toward some healthy cells and low aqueous solubility, decreasing its bioavailability and precluding its application as an antineoplastic drug. In our efforts to improve the pharmacokinetic behavior and selectivity of GTN against cancer cells, we developed a polymeric nanosystem, in which rac-GTN was encapsulated in pH-responsive acetalated dextran (Ac-Dex) nanoparticles (NPs) with high loadings of the bioactive compound. Dynamic light scattering (DLS) analysis showed that the nanoparticles obtained presented a narrow size distribution of around 100 nm in diameter, whereas electron microscopy (EM) images showed nanoparticles with a regular spherical morphology in agreement with the size range obtained by DLS. Stability and release studies indicated that the GTN@Ac-Dex NPs presented high stability under physiological conditions (pH 7.4) and disassembled under slightly acidic conditions (pH 5.5), releasing the rac-GTN in a sustained manner. In vitro assays showed that GTN@Ac-Dex NPs significantly increased cytotoxicity and selectivity against cancer cells when compared with the empty Ac-Dex NPs and the free rac-GNT. Cellular uptake and morphology studies using MCF-7 cells demonstrated that GTN@Ac-Dex NPs are rapidly internalized into the cancer cells, causing cell death. In vivo investigation confirmed the efficient release of rac-GTN from GTN@Ac-Dex NPs, resulting in the delay of prostate cancer progression in transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Furthermore, liver histopathology evaluation after treatment with GTN@Ac-Dex NPs showed no evidence of toxicity. Therefore, the in vitro and in vivo findings suggest that the Ac-Dex NPs are a promising nanosystem for the sustained delivery of rac-GTN into tumors.
Collapse
Affiliation(s)
- Carolyne B Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Larissa A Kido
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, CEP 13083-865 Campinas, São Paulo, Brazil
| | - Ellen N Lima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, CEP 13083-865 Campinas, São Paulo, Brazil
| | - Celina A Lamas
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, CEP 13083-865 Campinas, São Paulo, Brazil
| | - Valéria H A Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, CEP 13083-865 Campinas, São Paulo, Brazil
| | - Catia Ornelas
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
35
|
Gericke M, Schulze P, Heinze T. Nanoparticles Based on Hydrophobic Polysaccharide Derivatives-Formation Principles, Characterization Techniques, and Biomedical Applications. Macromol Biosci 2020; 20:e1900415. [PMID: 32090505 DOI: 10.1002/mabi.201900415] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/09/2020] [Indexed: 12/13/2022]
Abstract
Polysaccharide (PS) nanoparticles (NP) are fascinating materials that combine huge application potential with the unique beneficial features of natural biopolymers. Different types of PS-NP can be distinguished depending on the basic preparation principles (top-down vs bottom-up vs coating of nanomaterials) and the material from which they are obtained (native PS vs chemically modified PS derivatives vs nanocomposites). This review provides a comprehensive overview of an approach towards PS-NP that has gained rapidly increasing interest within the last decade; the nanoself-assembling of hydrophobic PS derivatives. This facile process is easy to perform and offers a broad structural diversity in terms of the PS backbone and the additional functionalities that can be introduced. Fundamental principles of different NP preparation techniques along with useful characterization methods are presented in this work. A comprehensive summary of PS-NP prepared by different techniques and with various PS backbones and types/amounts of hydrophobic substituents is given. The intention is to demonstrate how different parameters determine the size, size distribution, and zeta-potential of the particles. Moreover, application trends in biomedical areas are highlighted in which tailored functional PS-NP are evaluated and constantly developed further.
Collapse
Affiliation(s)
- Martin Gericke
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Peter Schulze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Thomas Heinze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| |
Collapse
|
36
|
Torrieri G, Fontana F, Figueiredo P, Liu Z, Ferreira MPA, Talman V, Martins JP, Fusciello M, Moslova K, Teesalu T, Cerullo V, Hirvonen J, Ruskoaho H, Balasubramanian V, Santos HA. Dual-peptide functionalized acetalated dextran-based nanoparticles for sequential targeting of macrophages during myocardial infarction. NANOSCALE 2020; 12:2350-2358. [PMID: 31930241 DOI: 10.1039/c9nr09934d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The advent of nanomedicine has recently started to innovate the treatment of cardiovascular diseases, in particular myocardial infarction. Although current approaches are very promising, there is still an urgent need for advanced targeting strategies. In this work, the exploitation of macrophage recruitment is proposed as a novel and synergistic approach to improve the addressability of the infarcted myocardium achieved by current peptide-based heart targeting strategies. For this purpose, an acetalated dextran-based nanosystem is designed and successfully functionalized with two different peptides, atrial natriuretic peptide (ANP) and linTT1, which target, respectively, cardiac cells and macrophages associated with atherosclerotic plaques. The biocompatibility of the nanocarrier is screened on both macrophage cell lines and primary macrophages, showing high safety, in particular after functionalization of the nanoparticles' surface. Furthermore, the system shows higher association versus uptake ratio towards M2-like macrophages (approximately 2-fold and 6-fold increase in murine and human primary M2-like macrophages, respectively, compared to M1-like). Overall, the results demonstrate that the nanosystem has potential to exploit the "hitchhike" effect on M2-like macrophages and potentially improve, in a dual targeting strategy, the ability of the ANP peptide to target infarcted heart.
Collapse
Affiliation(s)
- Giulia Torrieri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Patrícia Figueiredo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Mónica P A Ferreira
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Virpi Talman
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FI-00140, Helsinki, Finland and National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - João P Martins
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Manlio Fusciello
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00140, Helsinki, Finland
| | - Karina Moslova
- Department of Chemistry, University of Helsinki, FI-00014, Helsinki, Finland
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Tartu, 50411, Estonia and Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | - Vincenzo Cerullo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00140, Helsinki, Finland and Helsinki Institute of Life Science, HiLIFE, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Heikki Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FI-00140, Helsinki, Finland
| | - Vimalkumar Balasubramanian
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland. and Helsinki Institute of Life Science, HiLIFE, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
37
|
Luan T, Cheng L, Cheng J, Zhang X, Cao Y, Zhang X, Cui H, Zhao G. Tailored Design of an ROS-Responsive Drug Release Platform for Enhanced Tumor Therapy via "Sequential Induced Activation Processes". ACS APPLIED MATERIALS & INTERFACES 2019; 11:25654-25663. [PMID: 31246402 DOI: 10.1021/acsami.9b01433] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The reactive oxygen species (ROS)-responsive intelligent drug delivery system has developed rapidly in recent years. However, because of the low concentration of ROS in most types of tumor cells, it is not possible to rapidly and effectively stimulate the drug delivery system to release the active drug. Here, we introduced "sequential induced activation processes" for efficient tumor therapy by designing a new ROS-responsive drug release platform. β-Lapachone, a positively charged nitrogen mustard (NM) prodrug, and two diblock molecules (mPEG-AcMH and PAsp-AcMH) are self-assembled to form prodrug primary micelles, which are further aggregated into nanoparticles that facilitate drug codelivery. When administered by intravenous injection, the nanoparticles reach the tumor site and enter the tumor cells by endocytosis. The β-lapachone released in the tumor cells induces a large amount of H2O2, and the ROS-responsive NM prodrug is activated to form activated NM, quinone methide, and boric acid under the induction of H2O2. The activated NM leads to tumor cell apoptosis.
Collapse
|
38
|
Wang H, Ding S, Zhang Z, Wang L, You Y. Cationic micelle: A promising nanocarrier for gene delivery with high transfection efficiency. J Gene Med 2019; 21:e3101. [PMID: 31170324 DOI: 10.1002/jgm.3101] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Micelles have demonstrated an excellent ability to deliver several different types of therapeutic agents, including chemotherapy drugs, proteins, small-interfering RNA and DNA, into tumor cells. Cationic micelles, comprising self-assemblies of amphiphilic cationic polymers, have exhibited tremendous promise with respect to the delivery of therapy genes and gene transfection. To date, research in the field has focused on achieving an enhanced stability of the micellar assembly, prolonged circulation times and controlled release of the gene. This review focuses on the micelles as a nanosized carrier system for gene delivery, the system-related modifications for cytoplasm release, stability and biocompatibility, and clinic trials. In accordance with the development of synthetic chemistry and self-assembly technology, the structures and functionalities of micelles can be precisely controlled, and hence the synthetic micelles not only efficiently condense DNA, but also facilitate DNA endocytosis, endosomal escape, DNA uptake and nuclear transport, resulting in a comparable gene transfection of virus.
Collapse
Affiliation(s)
- Haili Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Longhai Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
39
|
Ma X, Zhang Y, Weisensee K. Conducting Polymeric Nanocomposites with a Three-Dimensional Co-flow Microfluidics Platform. MICROMACHINES 2019; 10:mi10060383. [PMID: 31181652 PMCID: PMC6630245 DOI: 10.3390/mi10060383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022]
Abstract
The nanoprecipitation of polymers is of great interest in biological and medicinal applications. Many approaches are available, but few generalized methods can fabricate structurally different biocompatible polymers into nanosized particles with a narrow distribution in a high-throughput manner. We simply integrate a glass slide, capillary, and metal needle into a simple microfluidics device. Herein, a detailed protocol is provided for using the glass capillary and slides to fabricate the microfluidics devices used in this work. To demonstrate the generality of our nanoprecipitation approach and platform, four (semi)natural polymers—acetalated dextran (Ac-DEX), spermine acetalated dextran (Sp-Ac-DEX), poly(lactic-co-glycolic acid) (PLGA), and chitosan—were tested and benchmarked by the polymeric particle size and polydispersity. More importantly, the principal objective was to explore the influence of some key parameters on nanoparticle size due to its importance for a variety of applications. The polymer concentration, the solvent/non-solvent volume rate/ratio, and opening of the inner capillary were varied so as to obtain polymeric nanoparticles (NPs). Dynamic light scattering (DLS), transmission electron microscopy (TEM), and optical microscopy are the main techniques used to evaluate the nanoprecipitation output. It turns out that the concentration of polymer most strongly determines the particle size and distribution, followed by the solvent/non-solvent volume rate/ratio, whereas the opening of the inner capillary shows a minor effect. The obtained NPs were smooth spheres with adjustable particle diameters and polymer-dependent surface potentials, both negative and positive.
Collapse
Affiliation(s)
- Xiaodong Ma
- Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China.
| | - Yuezhou Zhang
- Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China.
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520 Turku, Finland.
| | - Korbinian Weisensee
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520 Turku, Finland.
| |
Collapse
|
40
|
Butzbach K, Konhäuser M, Fach M, Bamberger DN, Breitenbach B, Epe B, Wich PR. Receptor-mediated Uptake of Folic Acid-functionalized Dextran Nanoparticles for Applications in Photodynamic Therapy. Polymers (Basel) 2019; 11:polym11050896. [PMID: 31100893 PMCID: PMC6572481 DOI: 10.3390/polym11050896] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 01/26/2023] Open
Abstract
In photodynamic therapy (PDT), photosensitizers and light are used to cause photochemically induced cell death. The selectivity and the effectiveness of the phototoxicity in cancer can be increased by a specific uptake of the photosensitizer into tumor cells. A promising target for this goal is the folic acid receptor α (FRα), which is overexpressed on the surface of many tumor cells and mediates an endocytotic uptake. Here, we describe a polysaccharide-based nanoparticle system suitable for targeted uptake and its photochemical and photobiological characterization. The photosensitizer 5, 10, 15, 20-tetraphenyl-21H, 23H-porphyrine (TPP) was encapsulated in spermine- and acetal-modified dextran (SpAcDex) nanoparticles and conjugated with folic acid (FA) on the surface [SpAcDex(TPP)-FA]. The particles are successfully taken up by human HeLa-KB cells, and a light-induced cytotoxicity is observable. An excess of free folate as the competitor for the FRα-mediated uptake inhibits the phototoxicity. In conclusion, folate-modified SpAcDex particles are a promising drug delivery system for a tumor cell targeted photodynamic therapy.
Collapse
Affiliation(s)
- Kathrin Butzbach
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany
| | - Matthias Konhäuser
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany
| | - Matthias Fach
- Department of Health Technology, Technical University of Denmark, Produktionstorvet Building 423, 2800 Lyngby, Denmark
| | - Denise N Bamberger
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany
| | - Benjamin Breitenbach
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany
| | - Peter R Wich
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany.
- School of Chemical Engineering, University of New South Wales, Science and Engineering Building, Sydney, NSW 2052, Australia.
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
41
|
Gim S, Zhu Y, Seeberger PH, Delbianco M. Carbohydrate-based nanomaterials for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1558. [PMID: 31063240 DOI: 10.1002/wnan.1558] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Carbohydrates are abundant biomolecules, with a strong tendency to form supramolecular networks. A host of carbohydrate-based nanomaterials have been exploited for biomedical applications. These structures are based on simple mono- or disaccharides, as well as on complex, polymeric systems. Chemical modifications serve to tune the shapes and properties of these materials. In particular, carbohydrate-based nanoparticles and nanogels were used for drug delivery, imaging, and tissue engineering applications. Due to the reversible nature of the assembly, often based on a combination of hydrogen bonding and hydrophobic interactions, carbohydrate-based materials are valuable substrates for the creations of responsive systems. Herein, we review the current research on carbohydrate-based nanomaterials, with a particular focus on carbohydrate assembly. We will discuss how these systems are formed and how their properties are tuned. Particular emphasis will be placed on the use of carbohydrates for biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soeun Gim
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Yuntao Zhu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
42
|
Chen C, Wang Z, Zhang J, Fan X, Xu L, Tang X. Dextran-Conjugated Caged siRNA Nanoparticles for Photochemical Regulation of RNAi-Induced Gene Silencing in Cells and Mice. Bioconjug Chem 2019; 30:1459-1465. [DOI: 10.1021/acs.bioconjchem.9b00204] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Changmai Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhongyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jinhao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Luzheng Xu
- Medical and Health Analytical Center, Peking University, Beijing, 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
43
|
Braga CB, Perli G, Becher TB, Ornelas C. Biodegradable and pH-Responsive Acetalated Dextran (Ac-Dex) Nanoparticles for NIR Imaging and Controlled Delivery of a Platinum-Based Prodrug into Cancer Cells. Mol Pharm 2019; 16:2083-2094. [PMID: 30901218 DOI: 10.1021/acs.molpharmaceut.9b00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanoparticles (NPs) based on the biodegradable acetalated dextran polymer (Ac-Dex) were used for near-infrared (NIR) imaging and controlled delivery of a PtIV prodrug into cancer cells. The Ac-Dex NPs loaded with the hydrophobic PtIV prodrug 3 (PtIV/Ac-Dex NPs) and with the novel hydrophobic NIR-fluorescent dye 9 (NIR-dye 9/Ac-Dex NPs), as well as Ac-Dex NPs coloaded with both compounds (coloaded Ac-Dex NPs), were assembled using a single oil-in-water nanoemulsion method. Dynamic light scattering measurements and scanning electron microscopy images showed that the resulting Ac-Dex NPs are spherical with an average diameter of 100 nm, which is suitable for accumulation in tumors via the enhanced permeation and retention effect. The new nanosystems exhibited high drug-loading capability, high encapsulation efficiency, high stability in physiological conditions, and pH responsiveness. Drug-release studies clearly showed that the PtIV prodrug 3 release from Ac-Dex NPs was negligible at pH 7.4, whereas at pH 5.5, this compound was completely released with a controlled rate. Confocal laser scanning microscopy unambiguously showed that the NIR-dye 9/Ac-Dex NPs were efficiently taken up by MCF-7 cells, and cytotoxicity assays against several cell lines showed no significant toxicity of blank Ac-Dex NPs up to 1 mg mL-1. The IC50 values obtained for the PtIV prodrug encapsulated in Ac-Dex NPs were much lower when compared with the IC50 values obtained for the free PtIV complex and cisplatin in all cell lines tested. Overall, our results demonstrate, for the first time, that Ac-Dex NPs constitute a promising drug delivery platform for cancer therapy.
Collapse
Affiliation(s)
- Carolyne B Braga
- Institute of Chemistry , University of Campinas-UNICAMP , 13083-970 Campinas , SP , Brazil
| | - Gabriel Perli
- Institute of Chemistry , University of Campinas-UNICAMP , 13083-970 Campinas , SP , Brazil
| | - Tiago B Becher
- Institute of Chemistry , University of Campinas-UNICAMP , 13083-970 Campinas , SP , Brazil
| | - Catia Ornelas
- Institute of Chemistry , University of Campinas-UNICAMP , 13083-970 Campinas , SP , Brazil
| |
Collapse
|
44
|
Deirram N, Zhang C, Kermaniyan SS, Johnston APR, Such GK. pH‐Responsive Polymer Nanoparticles for Drug Delivery. Macromol Rapid Commun 2019; 40:e1800917. [DOI: 10.1002/marc.201800917] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/31/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Nayeleh Deirram
- School of Chemistry The University of Melbourne Parkville Victoria 3010 Australia
| | - Changhe Zhang
- School of Chemistry The University of Melbourne Parkville Victoria 3010 Australia
| | - Sarah S. Kermaniyan
- School of Chemistry The University of Melbourne Parkville Victoria 3010 Australia
| | - Angus P. R. Johnston
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
| | - Georgina K. Such
- School of Chemistry The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
45
|
Lee S, Stubelius A, Hamelmann N, Tran V, Almutairi A. Inflammation-Responsive Drug-Conjugated Dextran Nanoparticles Enhance Anti-Inflammatory Drug Efficacy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40378-40387. [PMID: 30067018 PMCID: PMC7170936 DOI: 10.1021/acsami.8b08254] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stimuli-responsive nanoparticles (NPs) are especially interesting to enhance the drug delivery specificity for biomedical applications. With the aim to achieve a highly stable and inflammation-specific drug release, we designed a reactive oxygen species (ROS)-responsive dextran-drug conjugate (Nap-Dex). By blending Nap-Dex with the acid-sensitive acetalated dextran polymer, we achieved a dual-responsive NP with high specificity toward the inflammatory environment. The inflammatory environment not only has elevated ROS levels but also has a lower pH than healthy tissues, making pH and ROS highly suitable triggers to target inflammatory diseases. The anti-inflammatory cyclooxygenase inhibitor naproxen was modified with an ROS-responsive phenylboronic acid (PBA) and conjugated onto dextran. The dextran units were functionalized with up to 87% modified naproxen. This resulted in a complete drug release from the polymer within 20 min at 10 mM H2O2. The dual-responsive NPs reduced the levels of the proinflammatory cytokine IL-6 120 times more efficiently and TNFα 6 times more efficiently than free naproxen from lipopolysaccharide (LPS)-activated macrophages. These additional anti-inflammatory effects were found to be mainly attributed to ROS-scavenging effects. In addition, the model cargo fluorescein diacetate was released in an LPS-induced inflammatory response in vitro. We believe that drug conjugation using PBA can be applied to various drugs and dextran-based materials for enhanced drug efficacy, where this work demonstrates the significance of functionalized carbohydrates polymer-drug conjugates.
Collapse
Affiliation(s)
| | | | - Naomi Hamelmann
- Department of Biomolecular Nanotechnology, MESA+ Institute of Nanotechnology, Faculty of Science and Technology , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | | | | |
Collapse
|
46
|
Paßlick D, Piradashvili K, Bamberger D, Li M, Jiang S, Strand D, R. Wich P, Landfester K, Bros M, Grabbe S, Mailänder V. Delivering all in one: Antigen-nanocapsule loaded with dual adjuvant yields superadditive effects by DC-directed T cell stimulation. J Control Release 2018; 289:23-34. [DOI: 10.1016/j.jconrel.2018.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
|
47
|
Whitfield R, Anastasaki A, Truong NP, Cook AB, Omedes-Pujol M, Loczenski Rose V, Nguyen TAH, Burns JA, Perrier S, Davis TP, Haddleton DM. Efficient Binding, Protection, and Self-Release of dsRNA in Soil by Linear and Star Cationic Polymers. ACS Macro Lett 2018; 7:909-915. [PMID: 35650964 DOI: 10.1021/acsmacrolett.8b00420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Double stranded RNA (dsRNA) exhibits severe degradation within 3 days in live soil, limiting its potential application in crop protection. Herein we report the efficient binding, protection, and self-release of dsRNA in live soil through the usage of a cationic polymer. Soil stability assays show that linear poly(2-(dimethylamino)ethyl acrylate) can delay the degradation of dsRNA by up to 1 week while the star shaped analogue showed an increased stabilization of dsRNA by up to 3 weeks. Thus, the architecture of the polymer can significantly affect the lifetime of dsRNA in soil. In addition, the hydrolysis and dsRNA binding and release profiles of these polymers were carefully evaluated and discussed. Importantly, hydrolysis could occur independently of environmental conditions (e.g., different pH, different temperature) showing the potential for many opportunities in agrochemicals where protection and subsequent self-release of dsRNA in live soil is required.
Collapse
Affiliation(s)
- Richard Whitfield
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
| | - Athina Anastasaki
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
| | - Nghia P. Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Alexander B. Cook
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
| | - Marta Omedes-Pujol
- Formulation Technology Group, Syngenta, Jealotts Hill international Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Vanessa Loczenski Rose
- Formulation Technology Group, Syngenta, Jealotts Hill international Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Tuan A. H. Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James A. Burns
- Formulation Technology Group, Syngenta, Jealotts Hill international Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Sébastien Perrier
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
| | - Thomas P. Davis
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - David M. Haddleton
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| |
Collapse
|
48
|
Glutathione responsive chitosan-thiolated dextran conjugated miR-145 nanoparticles targeted with AS1411 aptamer for cancer treatment. Carbohydr Polym 2018; 201:131-140. [PMID: 30241804 DOI: 10.1016/j.carbpol.2018.08.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/04/2018] [Accepted: 08/15/2018] [Indexed: 01/12/2023]
Abstract
miR-145 is a tumor suppressive miRNA which is abnormally reduced in different cancers. miR-145 overexpression reduces cancer migration, invasion, and cell adhesion. Increasing miR-145 level using suitable and efficient gene delivery systems could be valuable in cancer treatment. In this study, a redox-responsive miR-145 conjugated thiolated dextran (TD-miR) was prepared. Also, polyelectrolyte complexes (PECs) of TD-miR and chitosan were fabricated and decorated with anti nucleolin aptamer, AS1411 (apt-PEC). The size of the PECs was between 40-270 nm, and the zeta potential was varied according to the TD-miR to chitosan molar ratio. The outcomes of cellular studies indicated the excellence of the apt-PEC as a duel targeted delivery system and the PECs composed of chitosan 18 kDa with TD-miR to chitosan ratio of 5. TD-miR and the PECs are appropriate as the smart gene delivery systems which preserve and transfect the cargo and release it in cytoplasm.
Collapse
|
49
|
Liu Z, Li Y, Li W, Xiao C, Liu D, Dong C, Zhang M, Mäkilä E, Kemell M, Salonen J, Hirvonen JT, Zhang H, Zhou D, Deng X, Santos HA. Multifunctional Nanohybrid Based on Porous Silicon Nanoparticles, Gold Nanoparticles, and Acetalated Dextran for Liver Regeneration and Acute Liver Failure Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703393. [PMID: 29024054 DOI: 10.1002/adma.201703393] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/24/2017] [Indexed: 05/17/2023]
Abstract
Herein, a novel nanohybrid based on porous silicon, gold nanoparticles (Au NPs), and acetalated dextran (DPSi/DAu@AcDEX) is reported to encapsulate and deliver one drug and increase the computer tomography (CT) signal for acute-liver-failure (ALF) theranostics. A microfluidic-assisted method is used to co-encapsulate different NPs in a single step. By alternating the surface properties of different NPs and by modulating the composition of the organic phase, both PSi and Au NPs are effectively encapsulated into the polymer matrix simultaneously, thus further achieving a multifunctional application. This system can be used to identify pathologically changes in the tissues and selectively deliver drugs to these sites. The loading of a therapeutic compound (XMU-MP-1) improves the drug solubility, precise, in situ drug delivery, and the drug-functioning time. In vivo results confirm a superior treatment effect and better compliance of this newly developed nanoformulation than free compound. This nanosystem plays a crucial role in targeting the lesion area, thus increasing the local drug concentration important for ALF reverse-effect. Moreover, the residence of Au NPs within the matrix further endows our system for CT-imaging. Altogether, these results support that this nanohybrid is a potential theranostic platform for ALF.
Collapse
Affiliation(s)
- Zehua Liu
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Yunzhan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling, Network, School of Life Sciences, Xiamen University, 361101, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, 361101, Fujian, China
| | - Wei Li
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Chen Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling, Network, School of Life Sciences, Xiamen University, 361101, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, 361101, Fujian, China
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| | - Chao Dong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling, Network, School of Life Sciences, Xiamen University, 361101, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, 361101, Fujian, China
| | - Ming Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling, Network, School of Life Sciences, Xiamen University, 361101, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, 361101, Fujian, China
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics, University of Turku, FI-20014, Turku, Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics, University of Turku, FI-20014, Turku, Finland
| | - Jouni T Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hongbo Zhang
- Department of Pharmaceutical Science, Åbo Akademi University, FI-20520, Turku, Finland
- Turku Center of Biotechnology, Åbo Akademi University, FI-20520, Turku, Finland
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling, Network, School of Life Sciences, Xiamen University, 361101, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, 361101, Fujian, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling, Network, School of Life Sciences, Xiamen University, 361101, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, 361101, Fujian, China
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
50
|
Cai L, Gu Z, Zhong J, Wen D, Chen G, He L, Wu J, Gu Z. Advances in glycosylation-mediated cancer-targeted drug delivery. Drug Discov Today 2018; 23:1126-1138. [DOI: 10.1016/j.drudis.2018.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/22/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022]
|