1
|
Pichon M, Hollenstein M. Controlled enzymatic synthesis of oligonucleotides. Commun Chem 2024; 7:138. [PMID: 38890393 PMCID: PMC11189433 DOI: 10.1038/s42004-024-01216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Oligonucleotides are advancing as essential materials for the development of new therapeutics, artificial genes, or in storage of information applications. Hitherto, our capacity to write (i.e., synthesize) oligonucleotides is not as efficient as that to read (i.e., sequencing) DNA/RNA. Alternative, biocatalytic methods for the de novo synthesis of natural or modified oligonucleotides are in dire need to circumvent the limitations of traditional synthetic approaches. This Perspective article summarizes recent progress made in controlled enzymatic synthesis, where temporary blocked nucleotides are incorporated into immobilized primers by polymerases. While robust protocols have been established for DNA, RNA or XNA synthesis is more challenging. Nevertheless, using a suitable combination of protected nucleotides and polymerase has shown promises to produce RNA oligonucleotides even though the production of long DNA/RNA/XNA sequences (>1000 nt) remains challenging. We surmise that merging ligase- and polymerase-based synthesis would help to circumvent the current shortcomings of controlled enzymatic synthesis.
Collapse
Affiliation(s)
- Maëva Pichon
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue du Docteur Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
2
|
Zhou J, Liu Y, Du X, Gui Y, He J, Xie F, Cai J. Recent Advances in Design and Application of Nanomaterials-Based Colorimetric Biosensors for Agri-food Safety Analysis. ACS OMEGA 2023; 8:46346-46361. [PMID: 38107919 PMCID: PMC10720297 DOI: 10.1021/acsomega.3c06409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023]
Abstract
A colorimetric sensor detects an analyte by utilizing the optical properties of the sensor unit, such as absorption or reflection, to generate a structural color that serves as the output signal to detect an analyte. Detecting the refractive index of an analyte by recording the color change of the sensor structure on its surface has several advantages, including simple operation, low cost, suitability for onsite analysis, and real-time detection. Colorimetric sensors have drawn much attention owing to their rapidity, simplicity, high sensitivity and selectivity. This Review discusses the use of colorimetric sensors in the food industry, including their applications for detecting food contaminants. The Review also provides insight into the scope of future research in this area.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuantao Liu
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoping Du
- Ankang
R&D Center for Se-enriched Products, Key Laboratory of Se-enriched
Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang Shaanxi 725000, China
| | - Yue Gui
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fang Xie
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key
Laboratory for Deep Processing of Major Grain and Oil, Ministry of
Education, Hubei Key Laboratory for Processing and Transformation
of Agricultural Products, Wuhan Polytechnic
University, Wuhan 430023, China
| |
Collapse
|
3
|
Suprun EV, Khmeleva SA, Bibik KV, Ptitsyn KG, Kurbatov LK, Radko SP. Polymerase incorporation of fluorescein or rhodamine modified 2'-deoxyuridine-5'-triphosphates into double-stranded DNA for direct electrochemical detection. J Pharm Biomed Anal 2023; 236:115737. [PMID: 37774487 DOI: 10.1016/j.jpba.2023.115737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
The 2'-deoxyuridine-5'-triphosphates modified with fluorescein (dUTP-Fl) or rhodamine (dUTP-Rh) were tested as bearers of electroactive labels and as proper substrates for polymerases used in polymerase chain reaction (PCR) and isothermal recombinase polymerase amplification (RPA) with the aim of electrochemical detection of double-stranded DNA (dsDNA) amplification products. For this purpose, electrochemical behavior of free fluorescein and rhodamine as well as the modified nucleotides, dUTP-Fl and dUTP-Rh, was studied by cyclic (CV) and square wave (SWV) voltammetry on carbon screen printed electrodes. Both free fluorescein and dUTP-Fl underwent a two-step oxidation at the peak potentials (Ep) of 0.6-0.7 V and 0.8-0.9 V (phosphate buffer, pH 7.4). The reduction peaks of fluorescein and dUTP-Fl were registered between -0.9 V and -1 V, but they did not depend on concentration. The free rhodamine and dUTP-Rh have demonstrated the well-defined oxidation peaks at 0.8-0.9 V. In addition, the distinct reduction peaks at Ep between -0.8 V and -0.9 V were registered for both rhodamine and dUTP-Rh. The dUTP-Fl and dUTP-Rh were further tested as substrates to incorporate an electroactive label into 210 or 206 base pair long dsDNA amplicons generated either by PCR or RPA. Among two dUTP derivatives tested, dUTP-Fl revealed significantly better compatibility with PCR and RPA, producing the full-size amplicons at 50-90% substitution of dTTP in the reaction mixture. In the PCR, the best compromise between amplicon output and labeling was achieved at the dUTP-Fl : dTTP and dUTP-Rh : dTTP molar ratios of 70% : 30% and 20% : 80% in the PCR mixture, respectively, allowing the direct electrochemical detection of amplicons at micromolar concentrations. Alongside with fluorescence DNA assays, the fluorescein and rhodamine modified dUTP appear as promising electroactive labels to develop direct electrochemical DNA assays for detecting PCR and RPA products.
Collapse
Affiliation(s)
- Elena V Suprun
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia.
| | - Svetlana A Khmeleva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Konstantin V Bibik
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Konstantin G Ptitsyn
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Leonid K Kurbatov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Sergey P Radko
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| |
Collapse
|
4
|
Ortiz M, Jauset-Rubio M, Trummer O, Foessl I, Kodr D, Acero JL, Botero ML, Biggs P, Lenartowicz D, Trajanoska K, Rivadeneira F, Hocek M, Obermayer-Pietsch B, O’Sullivan CK. Generic Platform for the Multiplexed Targeted Electrochemical Detection of Osteoporosis-Associated Single Nucleotide Polymorphisms Using Recombinase Polymerase Solid-Phase Primer Elongation and Ferrocene-Modified Nucleoside Triphosphates. ACS CENTRAL SCIENCE 2023; 9:1591-1602. [PMID: 37637735 PMCID: PMC10450878 DOI: 10.1021/acscentsci.3c00243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 08/29/2023]
Abstract
Osteoporosis is a multifactorial disease influenced by genetic and environmental factors, which contributes to an increased risk of bone fracture, but early diagnosis of this disease cannot be achieved using current techniques. We describe a generic platform for the targeted electrochemical genotyping of SNPs identified by genome-wide association studies to be associated with a genetic predisposition to osteoporosis. The platform exploits isothermal solid-phase primer elongation with ferrocene-labeled nucleoside triphosphates. Thiolated reverse primers designed for each SNP were immobilized on individual gold electrodes of an array. These primers are designed to hybridize to the SNP site at their 3'OH terminal, and primer elongation occurs only where there is 100% complementarity, facilitating the identification and heterozygosity of each SNP under interrogation. The platform was applied to real blood samples, which were thermally lysed and directly used without the need for DNA extraction or purification. The results were validated using Taqman SNP genotyping assays and Sanger sequencing. The assay is complete in just 15 min with a total cost of 0.3€ per electrode. The platform is completely generic and has immense potential for deployment at the point of need in an automated device for targeted SNP genotyping with the only required end-user intervention being sample addition.
Collapse
Affiliation(s)
- Mayreli Ortiz
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Miriam Jauset-Rubio
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Olivia Trummer
- Division
of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Ines Foessl
- Division
of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - David Kodr
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo namesti 2, CZ 16610 Prague 6, Czech Republic
| | - Josep Lluís Acero
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Mary Luz Botero
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Phil Biggs
- Labman
Automation
Ltd., Seamer Hill, Stokesley, North Yorkshire, TS9 5NQ U.K.
| | - Daniel Lenartowicz
- Labman
Automation
Ltd., Seamer Hill, Stokesley, North Yorkshire, TS9 5NQ U.K.
| | - Katerina Trajanoska
- Department
of Internal Medicine, Erasmus MC, 40 3015 Rotterdam, The Netherlands
| | | | - Michal Hocek
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo namesti 2, CZ 16610 Prague 6, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Barbara Obermayer-Pietsch
- Division
of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Ciara K. O’Sullivan
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Institució
Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
5
|
Tripathi S, Khatri P, Fatima Z, Pandey RP, Hameed S. A Landscape of CRISPR/Cas Technique for Emerging Viral Disease Diagnostics and Therapeutics: Progress and Prospects. Pathogens 2022; 12:pathogens12010056. [PMID: 36678404 PMCID: PMC9863163 DOI: 10.3390/pathogens12010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Viral diseases have emerged as a serious threat to humanity and as a leading cause of morbidity worldwide. Many viral diagnostic methods and antiviral therapies have been developed over time, but we are still a long way from treating certain infections caused by viruses. Acquired immunodeficiency syndrome (AIDS) is one of the challenges where current medical science advancements fall short. As a result, new diagnostic and treatment options are desperately needed. The CRISPR/Cas9 system has recently been proposed as a potential therapeutic approach for viral disease treatment. CRISPR/Cas9 is a specialised, effective, and adaptive gene-editing technique that can be used to modify, delete, or correct specific DNA sequences. It has evolved into an advanced, configurable nuclease-based single or multiple gene-editing tool with a wide range of applications. It is widely preferred simply because its operational procedures are simple, inexpensive, and extremely efficient. Exploration of infectious virus genomes is required for a comprehensive study of infectious viruses. Herein, we have discussed the historical timeline-based advancement of CRISPR, CRISPR/Cas9 as a gene-editing technology, the structure of CRISPR, and CRISPR as a diagnostic tool for studying emerging viral infections. Additionally, utilizing CRISPR/Cas9 technology to fight viral infections in plants, CRISPR-based diagnostics of viruses, pros, and cons, and bioethical issues of CRISPR/Cas9-based genomic modification are discussed.
Collapse
Affiliation(s)
- Shyam Tripathi
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
| | - Purnima Khatri
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
- Department of Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
- Department of Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
- Correspondence: (R.P.P.); (S.H.)
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
- Correspondence: (R.P.P.); (S.H.)
| |
Collapse
|
6
|
Maleki B, Hojati Z. A precise review on NAATs-based diagnostic assays for COVID-19: A motion in fast POC molecular tests. Eur J Clin Invest 2022; 52:e13853. [PMID: 35989561 PMCID: PMC9538879 DOI: 10.1111/eci.13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Diagnosis is one of the main strategies to deal with infectious and deadly diseases such as coronavirus disease 2019 (COVID-19). The global pandemic of COVID-19 has led to an immediate need to expand rapid diagnostic techniques. New isothermal-based methods are being developed for COVID-19 detection aiming to resolve the limitations related to the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method through immediate samples processing and minimizing false-negative or ambiguous results. Advances in nucleic acid amplification techniques (NAATs) can provide affordable and easy-to-use diagnostic platforms with high sensitivity and specificity in order to be available to the public as approved commercial kits. AIMS The development of point-of-care (POC) testing can assist in rapid clinical decision-making and mitigate burdens on health care facilities. Finally, we discussed the different diagnostic methods based on NAATs for COVID-19 in detail. Comparative parameters are addressed for all assays and Emergency Use Authorizations (EUA)-approved commercial tests are cited. CONCLUSIONS Isothermal-coupled methods and LAMP-based molecular methods have been suggested as suitable portable tests with high diagnostic speed for use in POC testing.
Collapse
Affiliation(s)
- Bahareh Maleki
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Zohreh Hojati
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
7
|
Alafeef M, Pan D. Diagnostic Approaches For COVID-19: Lessons Learned and the Path Forward. ACS NANO 2022; 16:11545-11576. [PMID: 35921264 PMCID: PMC9364978 DOI: 10.1021/acsnano.2c01697] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/12/2022] [Indexed: 05/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a transmitted respiratory disease caused by the infection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although humankind has experienced several outbreaks of infectious diseases, the COVID-19 pandemic has the highest rate of infection and has had high levels of social and economic repercussions. The current COVID-19 pandemic has highlighted the limitations of existing virological tests, which have failed to be adopted at a rate to properly slow the rapid spread of SARS-CoV-2. Pandemic preparedness has developed as a focus of many governments around the world in the event of a future outbreak. Despite the largely widespread availability of vaccines, the importance of testing has not diminished to monitor the evolution of the virus and the resulting stages of the pandemic. Therefore, developing diagnostic technology that serves as a line of defense has become imperative. In particular, that test should satisfy three criteria to be widely adopted: simplicity, economic feasibility, and accessibility. At the heart of it all, it must enable early diagnosis in the course of infection to reduce spread. However, diagnostic manufacturers need guidance on the optimal characteristics of a virological test to ensure pandemic preparedness and to aid in the effective treatment of viral infections. Nanomaterials are a decisive element in developing COVID-19 diagnostic kits as well as a key contributor to enhance the performance of existing tests. Our objective is to develop a profile of the criteria that should be available in a platform as the target product. In this work, virus detection tests were evaluated from the perspective of the COVID-19 pandemic, and then we generalized the requirements to develop a target product profile for a platform for virus detection.
Collapse
Affiliation(s)
- Maha Alafeef
- Department of Chemical, Biochemical and Environmental
Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250,
United States
- Departments of Diagnostic Radiology and Nuclear
Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis,
University of Maryland Baltimore School of Medicine, Health Sciences
Research Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
- Department of Bioengineering, the
University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,
United States
- Biomedical Engineering Department, Jordan
University of Science and Technology, Irbid 22110,
Jordan
| | - Dipanjan Pan
- Department of Chemical, Biochemical and Environmental
Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250,
United States
- Departments of Diagnostic Radiology and Nuclear
Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis,
University of Maryland Baltimore School of Medicine, Health Sciences
Research Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
- Department of Bioengineering, the
University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,
United States
| |
Collapse
|
8
|
Cao S, Tang X, Chen T, Chen G. Types and Applications of Nicking Enzyme-Combined Isothermal Amplification. Int J Mol Sci 2022; 23:ijms23094620. [PMID: 35563012 PMCID: PMC9100243 DOI: 10.3390/ijms23094620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Due to the sudden outbreak of COVID-19 at the end of 2019, rapid detection has become an urgent need for community clinics and hospitals. The rapid development of isothermal amplification detection technology for nucleic acids in the field of molecular diagnostic point-of-care testing (POCT) has gained a great deal of attention in recent years. Thanks to intensive research on nicking enzymes, nicking enzyme-combined isothermal amplification has become a promising platform for rapid detection. This is a novel technique that uses nicking enzymes to improve ordinary isothermal amplification. It has garnered significant interest as it overcomes the complexity of traditional molecular diagnostics and is not subject to temperature limitations, relying on cleavage enzymes to efficiently amplify targets in a very short time to provide a high level of amplification efficiency. In recent years, several types of nicking enzyme-combined isothermal amplification have been developed and they have shown great potential in molecular diagnosis, immunodiagnosis, biochemical identification, and other fields. However, this kind of amplification has some disadvantages. In this review, the principles, advantages and disadvantages, and applications of several nicking enzyme-combined isothermal amplification techniques are reviewed and the prospects for the development of these techniques are also considered.
Collapse
Affiliation(s)
- Siyu Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Tianshu Chen
- Department of Clinical Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
- Correspondence: (T.C.); (G.C.)
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China;
- Correspondence: (T.C.); (G.C.)
| |
Collapse
|
9
|
Solid-phase recombinase polymerase amplification using ferrocene-labelled dNTPs for electrochemical detection of single nucleotide polymorphisms. Biosens Bioelectron 2022; 198:113825. [PMID: 34838372 DOI: 10.1016/j.bios.2021.113825] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022]
Abstract
Hypertrophic cardiomyopathies (HCM) are the principal cause of sudden cardiac death in young athletes and it is estimated that 1 in 500 people have HCM. The aim of this work was to develop an electrochemical platform for the detection of HCM-associated SNP in the Myosin Heavy Chain 7 (MYH7) gene, in fingerprick blood samples. The platform exploits isothermal solid-phase primer elongation using recombinase polymerase amplification with either individual or a combination of four ferrocene-labelled nucleoside triphosphates. Four thiolated reverse primers containing a variable base at their 3' end were immobilised on individual gold electrodes of an array. Following hybridisation with target DNA, solid phase recombinase polymerase amplification was carried out and primer elongation incorporating the ferrocene labelled oligonucleotides was only detected at one of the electrodes, thus facilitating identification of the SNP under interrogation. The assay was applied to the direct detection of the SNP in fingerprick blood samples from eight different individuals, with the results obtained corroborating with next generation sequencing. The ability to be able to robustly identify the SNP using a 10 μL fingerprick sample, demonstrates that SNP discrimination is achieved using low femtomolar (ca. 8 × 105 copies DNA) levels of DNA.
Collapse
|
10
|
Ortiz M, Jauset-Rubio M, Skouridou V, Machado D, Viveiros M, Clark TG, Simonova A, Kodr D, Hocek M, O’Sullivan CK. Electrochemical Detection of Single-Nucleotide Polymorphism Associated with Rifampicin Resistance in Mycobacterium tuberculosis Using Solid-Phase Primer Elongation with Ferrocene-Linked Redox-Labeled Nucleotides. ACS Sens 2021; 6:4398-4407. [PMID: 34797987 PMCID: PMC8715531 DOI: 10.1021/acssensors.1c01710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Here, we report the
electrochemical detection of single-point mutations
using solid-phase isothermal primer elongation with redox-labeled
oligonucleotides. A single-base mutation associated with resistance
to rifampicin, an antibiotic commonly used for the treatment of Mycobacterium tuberculosis, was used as a model system
to demonstrate a proof-of-concept of the approach. Four 5′-thiolated
primers, designed to be complementary with the same fragment of the
target sequence and differing only in the last base, addressing the
polymorphic site, were self-assembled via chemisorption on individual
gold electrodes of an array. Following hybridization with single-stranded
DNA, Klenow (exo-) DNA polymerase-mediated primer extension with ferrocene-labeled
2′-deoxyribonucleoside triphosphates (dNFcTPs) was
only observed to proceed at the electrode where there was full complementarity
between the surface-tethered probe and the target DNA being interrogated.
We tested all four ferrocenylethynyl-linked dNTPs and optimized the
ratio of labeled/natural nucleotides to achieve maximum sensitivity.
Following a 20 min hybridization step, Klenow (exo-) DNA polymerase-mediated
primer elongation at 37 °C for 5 min was optimal for the enzymatic
incorporation of a ferrocene-labeled nucleotide, achieving unequivocal
electrochemical detection of a single-point mutation in 14 samples
of genomic DNA extracted from Mycobacterium tuberculosis strains. The approach is rapid, cost-effective, facile, and can
be extended to multiplexed electrochemical single-point mutation genotyping.
Collapse
Affiliation(s)
- Mayreli Ortiz
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Miriam Jauset-Rubio
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Vasso Skouridou
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Diana Machado
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
| | - Taane G. Clark
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, WC1E 7HT London, U.K
| | - Anna Simonova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam.2, 16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Prague 2, Czech Republic
| | - David Kodr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam.2, 16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam.2, 16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Prague 2, Czech Republic
| | - Ciara K. O’Sullivan
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
11
|
Suprun EV, Khmeleva SA, Kutdusova GR, Ptitsyn KG, Kuznetsova VE, Lapa SA, Chudinov AV, Radko SP. Deoxyuridine triphosphates modified with tyrosine aromatic groups for direct electrochemical detection of double-stranded DNA products of isothermal recombinase polymerase amplification. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
12
|
Zyrina NV, Antipova VN. Nonspecific Synthesis in the Reactions of Isothermal Nucleic Acid Amplification. BIOCHEMISTRY (MOSCOW) 2021; 86:887-897. [PMID: 34284713 DOI: 10.1134/s0006297921070099] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The review focuses on the main factors involved in the formation of nonspecific products in isothermal nucleic acid amplification, such as mispriming, ab initio DNA synthesis, and additional activities of DNA polymerases, and discusses approaches to prevent formation of such nonspecific products in LAMP, RPA, NASBA, RCA, SDA, LSDA, NDA, and EXPAR.
Collapse
Affiliation(s)
- Nadezhda V Zyrina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Valeriya N Antipova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
13
|
Renzoni A, Perez F, Ngo Nsoga MT, Yerly S, Boehm E, Gayet-Ageron A, Kaiser L, Schibler M. Analytical Evaluation of Visby Medical RT-PCR Portable Device for Rapid Detection of SARS-CoV-2. Diagnostics (Basel) 2021; 11:813. [PMID: 33947153 PMCID: PMC8146445 DOI: 10.3390/diagnostics11050813] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Extended community testing constitutes one of the main strategic pillars in controlling the COVID-19 pandemic. Reverse transcription PCR (RT-PCR) targeting the SARS-CoV-2 genome on nasopharyngeal swab samples is currently the reference test. While displaying excellent analytical sensitivity and specificity, this test is costly, often requires a substantial turnaround time, and, more importantly, is subject to reagent and other material shortages. To complement this technology, rapid antigen tests have been developed and made available worldwide, allowing cheap, quick, and decentralized SARS-CoV-2 testing. The main drawback of these tests is the reduced sensitivity when RT-PCR is the gold standard. In this study, we evaluate Visby an innovative, portable, easy-to-use RT-PCR point-of-care (POC) diagnostic device. Our retrospective analysis shows that overall, compared to the Cobas 6800 RT-qPCR assay (Roche), this RT-PCR POC technology detects SARS-CoV-2 RNA with 95% sensitivity (95%CI = 86.3-99%) and 100% specificity (95% CI = 80.5-100%). For samples with cycle-threshold values below 31, we observed 100% sensitivity (95% CI = 66.4-100%). While showing an analytical sensitivity slightly below that of a standard RT-qPCR system, the evaluated Visby RT-PCR POC device may prove to be an interesting diagnostic alternative in the COVID-19 pandemic, potentially combining the practical advantages of rapid antigen tests and the robust analytical performances of nucleic acid detection systems.
Collapse
Affiliation(s)
- Adriana Renzoni
- Laboratory of Virology, Laboratory Medicine Division, Diagnostic Department, Geneva University Hospitals, CH-1211 Geneva, Switzerland; (S.Y.); (E.B.); (L.K.); (M.S.)
| | - Francisco Perez
- Faculty of Medicine of Geneva, University of Geneva, CH-1211 Geneva, Switzerland; (F.P.); (M.T.N.N.)
| | - Marie Thérèse Ngo Nsoga
- Faculty of Medicine of Geneva, University of Geneva, CH-1211 Geneva, Switzerland; (F.P.); (M.T.N.N.)
- Division of Infectious Disease, Geneva University Hospitals, CH-1211 Geneva, Switzerland
| | - Sabine Yerly
- Laboratory of Virology, Laboratory Medicine Division, Diagnostic Department, Geneva University Hospitals, CH-1211 Geneva, Switzerland; (S.Y.); (E.B.); (L.K.); (M.S.)
| | - Erik Boehm
- Laboratory of Virology, Laboratory Medicine Division, Diagnostic Department, Geneva University Hospitals, CH-1211 Geneva, Switzerland; (S.Y.); (E.B.); (L.K.); (M.S.)
| | - Angèle Gayet-Ageron
- CRC & Division of Clinical-Epidemiology, Department of Health and Community Medicine, University of Geneva & University Hospitals of Geneva, CH-1211 Geneva, Switzerland;
| | - Laurent Kaiser
- Laboratory of Virology, Laboratory Medicine Division, Diagnostic Department, Geneva University Hospitals, CH-1211 Geneva, Switzerland; (S.Y.); (E.B.); (L.K.); (M.S.)
- Faculty of Medicine of Geneva, University of Geneva, CH-1211 Geneva, Switzerland; (F.P.); (M.T.N.N.)
- Division of Infectious Disease, Geneva University Hospitals, CH-1211 Geneva, Switzerland
| | - Manuel Schibler
- Laboratory of Virology, Laboratory Medicine Division, Diagnostic Department, Geneva University Hospitals, CH-1211 Geneva, Switzerland; (S.Y.); (E.B.); (L.K.); (M.S.)
- Division of Infectious Disease, Geneva University Hospitals, CH-1211 Geneva, Switzerland
| |
Collapse
|
14
|
Pumford EA, Lu J, Spaczai I, Prasetyo ME, Zheng EM, Zhang H, Kamei DT. Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics. Biosens Bioelectron 2020; 170:112674. [PMID: 33035900 PMCID: PMC7529604 DOI: 10.1016/j.bios.2020.112674] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023]
Abstract
Early disease detection through point-of-care (POC) testing is vital for quickly treating patients and preventing the spread of harmful pathogens. Disease diagnosis is generally accomplished using quantitative polymerase chain reaction (qPCR) to amplify nucleic acids in patient samples, permitting detection even at low target concentrations. However, qPCR requires expensive equipment, trained personnel, and significant time. These resources are not available in POC settings, driving researchers to instead utilize isothermal amplification, conducted at a single temperature, as an alternative. Common isothermal amplification methods include loop-mediated isothermal amplification, recombinase polymerase amplification, rolling circle amplification, nucleic acid sequence-based amplification, and helicase-dependent amplification. There has been a growing interest in combining such amplification methods with POC detection methods to enable the development of diagnostic tests that are well suited for resource-limited settings as well as developed countries performing mass screenings. Exciting developments have been made in the integration of these two research areas due to the significant impact that such approaches can have on healthcare. This review will primarily focus on advances made by North American research groups between 2015 and June 2020, and will emphasize integrated approaches that reduce user steps, reliance on expensive equipment, and the system's time-to-result.
Collapse
Affiliation(s)
- Elizabeth A Pumford
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Jiakun Lu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Iza Spaczai
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Matthew E Prasetyo
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Elaine M Zheng
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Hanxu Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Daniel T Kamei
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
15
|
Ondruš M, Sýkorová V, Bednárová L, Pohl R, Hocek M. Enzymatic synthesis of hypermodified DNA polymers for sequence-specific display of four different hydrophobic groups. Nucleic Acids Res 2020; 48:11982-11993. [PMID: 33152081 PMCID: PMC7708046 DOI: 10.1093/nar/gkaa999] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
A set of modified 2'-deoxyribonucleoside triphosphates (dNTPs) bearing a linear or branched alkane, indole or phenyl group linked through ethynyl or alkyl spacer were synthesized and used as substrates for polymerase synthesis of hypermodified DNA by primer extension (PEX). Using the alkyl-linked dNTPs, the polymerase synthesized up to 22-mer fully modified oligonucleotide (ON), whereas using the ethynyl-linked dNTPs, the enzyme was able to synthesize even long sequences of >100 modified nucleotides in a row. In PCR, the combinations of all four modified dNTPs showed only linear amplification. Asymmetric PCR or PEX with separation or digestion of the template strand can be used for synthesis of hypermodified single-stranded ONs, which are monodispersed polymers displaying four different substituents on DNA backbone in sequence-specific manner. The fully modified ONs hybridized with complementary strands and modified DNA duplexes were found to exist in B-type conformation (B- or C-DNA) according to CD spectral analysis. The modified DNA can be replicated with high fidelity to natural DNA through PCR and sequenced. Therefore, this approach has a promising potential in generation and selection of hypermodified aptamers and other functional polymers.
Collapse
Affiliation(s)
- Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
16
|
Kilic T, Weissleder R, Lee H. Molecular and Immunological Diagnostic Tests of COVID-19: Current Status and Challenges. iScience 2020; 23:101406. [PMID: 32771976 PMCID: PMC7381402 DOI: 10.1016/j.isci.2020.101406] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Rapid spread of coronavirus disease 2019 (COVID-19) is ravaging the globe. Since its first report in December 2019, COVID-19 cases have exploded to over 14 million as of July 2020, claiming more than 600,000 lives. Implementing fast and widespread diagnostic tests is paramount to contain COVID-19, given the current lack of an effective therapeutic or vaccine. This review focuses on a broad description of currently available diagnostic tests to detect either the virus (SARS-CoV-2) or virus-induced immune responses. We specifically explain the working mechanisms of these tests and compare their analytical performance. These analyses will assist in selecting most effective tests for a given application, for example, epidemiology or global pandemic research, population screening, hospital-based testing, home-based and point-of-care testing, and therapeutic trials. Finally, we lay out the shortcomings of certain tests and future needs.
Collapse
Affiliation(s)
- Tugba Kilic
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114 USA
| | - Ralph Weissleder
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114 USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hakho Lee
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114 USA.
| |
Collapse
|
17
|
Špaček J, Eksin E, Havran L, Erdem A, Fojta M. Fast enzyme-linked electrochemical sensing of DNA hybridization at pencil graphite electrodes. Application to detect gene deletion in a human cell culture. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Hocek M. Enzymatic Synthesis of Base-Functionalized Nucleic Acids for Sensing, Cross-linking, and Modulation of Protein-DNA Binding and Transcription. Acc Chem Res 2019; 52:1730-1737. [PMID: 31181911 DOI: 10.1021/acs.accounts.9b00195] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-DNA interactions are important in replication, transcription, repair, as well as epigenetic modifications of DNA, which involve methylation and demethylation of DNA resulting in regulation of gene expression. Understanding of these processes and chemical tools for studying and perhaps even modulating them could be of great relevance and importance not only in chemical biology but also in real diagnostics and treatment of diseases. In the past decade, we have been working on development of synthesis of base-modified 2'-deoxyribo- or ribonucleoside triphosphates (dNTPs or NTPs) and their use in enzymatic synthesis of modified nucleic acids using DNA or RNA polymerases. These synthetic and enzymatic methods are briefly summarized with focus on recent development and outlining of scope, limitations, and further challenges. The main focus of this Account is on applications of base-modified nucleic acids in sensing of protein-DNA interactions, in covalent cross-linking to DNA-binding proteins ,and in modulation of protein-DNA binding and transcription. Several environment-sensitive fluorescent nucleotides were incorporated to DNA probes which responded to protein binding by light-up, changing of color, or lifetime of fluorescence. Using a cyclodextrin-peptide transporter, fluorescent nucleotides can be transported through the cell membrane and incorporated to genomic DNA. Several dNTPs bearing reactive groups (i.e., vinylsulfonamide or chloroacetamide) were used for polymerase synthesis of DNA reactive probes which cross-link to Cys, His, or Lys in peptides or proteins. An attractive challenge is to use DNA modifications and bioorthogonal reactions in the major groove of DNA for modulation and switching of protein-DNA interactions. We have systematically explored the influence of major-groove modifications on recognition and cleavage of DNA by restriction endonucleases and constructed simple chemical switches of DNA cleavage. Systematic study of the influence of major-groove modifications on transcription with bacterial RNA polymerases revealed not only that some modified bases are tolerated, but also that the presence of 5-hydroxymethyluracil or -cytosine can even enhance the transcription (350 or 250% compared to native DNA). Based on these results, we have constructed the first chemical switch of transcription based on photocaging of hydroxymethylpyrimidines in DNA by 2-nitrobenzyl protection (transcription off), photochemical deprotection of the DNA (transcription on), and enzymatic phosphorylation (only for 5-hydroxymethyluracil, transcription off). Although it has been so far demonstrated only in vitro, it is the proof-of-principle first step toward chemical epigenetics.
Collapse
Affiliation(s)
- Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
19
|
Qian C, Wang R, Wu H, Ji F, Wu J. Nicking enzyme-assisted amplification (NEAA) technology and its applications: A review. Anal Chim Acta 2019; 1050:1-15. [DOI: 10.1016/j.aca.2018.10.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023]
|
20
|
Sarac I, Hollenstein M. Terminal Deoxynucleotidyl Transferase in the Synthesis and Modification of Nucleic Acids. Chembiochem 2019; 20:860-871. [PMID: 30451377 DOI: 10.1002/cbic.201800658] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Indexed: 12/26/2022]
Abstract
The terminal deoxynucleotidyl transferase (TdT) belongs to the X family of DNA polymerases. This unusual polymerase catalyzes the template-independent addition of random nucleotides on 3'-overhangs during V(D)J recombination. The biological function and intrinsic biochemical properties of the TdT have spurred the development of numerous oligonucleotide-based tools and methods, especially if combined with modified nucleoside triphosphates. Herein, we summarize the different applications stemming from the incorporation of modified nucleotides by the TdT. The structural, mechanistic, and biochemical properties of this polymerase are also discussed.
Collapse
Affiliation(s)
- Ivo Sarac
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
21
|
Bazarragchaa E, Okamatsu M, Ulaankhuu A, Twabela AT, Matsuno K, Kida H, Sakoda Y. Evaluation of a rapid isothermal nucleic acid amplification kit, Alere™ i Influenza A&B, for the detection of avian influenza viruses. J Virol Methods 2019; 265:121-125. [PMID: 30633948 DOI: 10.1016/j.jviromet.2019.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 11/16/2022]
Abstract
Rapid and accurate diagnosis of influenza virus infection is essential for quick responses for both human and animal health. The Alere™ i Influenza A&B is a novel isothermal nucleic acid amplification kit that can detect and differentiate between influenza A and B viruses in human specimens in approximately 15 min. In the present study, the performance of the Alere™ i Influenza A&B kit was evaluated for its ability to detect avian influenza virus in chickens. The kit was able to detect representative avian influenza virus strains (hemagglutinin subtypes H1-H16, including the recently isolated H5 and H7 highly pathogenic avian influenza viruses), and the detection limit of the kit for these viruses varied between 10-1.4-102.1 50% egg-infective dose per test, which is higher than the analytical sensitivity of the antigen detection immunochromatography kit ESPLINE® A INFLUENZA. In experimentally infected chickens inoculated with a highly pathogenic avian influenza virus strain A/chicken/Hokkaido/002/2016 (H5N6), viral RNA was detected in the tracheal and cloacal swabs. These results indicate that this kit has the potential to be used as a rapid screening test of influenza A virus infection in chickens.
Collapse
Affiliation(s)
- Enkhbold Bazarragchaa
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Division of Transboundary Animal Diseases Diagnosis and Surveillance, State Central Veterinary Laboratory, Ulaanbaatar 17024, Mongolia
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Ankhanbaatar Ulaankhuu
- Division of Transboundary Animal Diseases Diagnosis and Surveillance, State Central Veterinary Laboratory, Ulaanbaatar 17024, Mongolia
| | - Augustin Tshibwabwa Twabela
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Keita Matsuno
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Global Station of Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Hiroshi Kida
- Global Station of Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Global Station of Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| |
Collapse
|
22
|
Wang L, Qian C, Wu H, Qian W, Wang R, Wu J. Technical aspects of nicking enzyme assisted amplification. Analyst 2019; 143:1444-1453. [PMID: 29469149 DOI: 10.1039/c7an02037f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nicking enzyme assisted amplification (NEAA) is an extremely rapid method for molecular diagnosis. However, this technology is not widely applied for real sample analysis because the overproduced non-specific products limit its sensitivity and raise the threshold of detection methods. Here, we have found that the non-specific amplification is mainly caused by the coexistence of Bst polymerase, nicking primers and dNTP. The highly active nicking enzyme directs and accelerates the non-specific amplification in a way which favors nicking. To suppress the non-specific amplification, the nicking enzyme concentration, reaction temperature, and magnesium ion concentration are optimized. The compatibility of Bst polymerase with the concentration of the monovalent cation is also crucial. Besides, the sensitivity could be enhanced by shortening the target sequences and priming the 3' end of the target.
Collapse
Affiliation(s)
- Liu Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | |
Collapse
|
23
|
Röthlisberger P, Hollenstein M. Aptamer chemistry. Adv Drug Deliv Rev 2018; 134:3-21. [PMID: 29626546 DOI: 10.1016/j.addr.2018.04.007] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA molecules capable of tightly binding to specific targets. These functional nucleic acids are obtained by an in vitro Darwinian evolution method coined SELEX (Systematic Evolution of Ligands by EXponential enrichment). Compared to their proteinaceous counterparts, aptamers offer a number of advantages including a low immunogenicity, a relative ease of large-scale synthesis at affordable costs with little or no batch-to-batch variation, physical stability, and facile chemical modification. These alluring properties have propelled aptamers into the forefront of numerous practical applications such as the development of therapeutic and diagnostic agents as well as the construction of biosensing platforms. However, commercial success of aptamers still proceeds at a weak pace. The main factors responsible for this delay are the susceptibility of aptamers to degradation by nucleases, their rapid renal filtration, suboptimal thermal stability, and the lack of functional group diversity. Here, we describe the different chemical methods available to mitigate these shortcomings. Particularly, we describe the chemical post-SELEX processing of aptamers to include functional groups as well as the inclusion of modified nucleoside triphosphates into the SELEX protocol. These methods will be illustrated with successful examples of chemically modified aptamers used as drug delivery systems, in therapeutic applications, and as biosensing devices.
Collapse
|
24
|
Lee SH, Ahn G, Kim MS, Jeong OC, Lee JH, Kwon HG, Kim YH, Ahn JY. Poly-adenine-Coupled LAMP Barcoding to Detect Apple Scar Skin Viroid. ACS COMBINATORIAL SCIENCE 2018; 20:472-481. [PMID: 30011183 DOI: 10.1021/acscombsci.8b00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apple Scar Skin Viroid (ASSVd), a nonprotein coding, circular RNA pathogen is relatively difficult to detect by immunoassay. We report here a one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to improve selectivity for diagnostic use in detecting ASSVd in plants. ASSVd RT-LAMP was accelerated using loop primers and was found to be highly sensitive with a detection limit of 104 copies of cDNA-ASSVd within 30 min. Real-time LAMP and melting curve analysis could differentiate between the true-positive LAMP amplicons and false-positive nonspecific primer amplification products. The optimized RT-LAMP was then followed by the addition of nonthiolated AuNP:poly-adenine (A10)-ASSVd LAMP barcodes, showing a high authentication capacity with colorimetric changes. This type of barcoding assay is a potential alternative for rapid and multiple viroid diagnosis, providing for visible sensing in the field that can be applied to viroid-free planting.
Collapse
Affiliation(s)
- Se Hee Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Gna Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Myung-Su Kim
- Apple Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Gunwi 39000, Korea
| | - Ok Chan Jeong
- Department of Biomedical Engineering, Inje University, Gimhae, South Korea
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae, South Korea
| | - Jong Hyun Lee
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae, South Korea
| | - Hyuck Gi Kwon
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae, South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| |
Collapse
|
25
|
Simonova A, Havran L, Pohl R, Fojta M, Hocek M. Phenothiazine-linked nucleosides and nucleotides for redox labelling of DNA. Org Biomol Chem 2018; 15:6984-6996. [PMID: 28792547 DOI: 10.1039/c7ob01439b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nucleosides and 2'-deoxyribonucleoside triphosphates (dNTPs) bearing phenothiazine (PT) attached to a nucleobase (cytosine or 7-deazaadenine) either directly or through an acetylene linker were prepared through Suzuki or Sonogashira cross-coupling and triphosphorylation, and were studied as building blocks for polymerase construction of modified DNA. The directly PT-substituted dNTPs were better substrates for polymerases than the alkyne-linked dNTPs but all of them were used in enzymatic synthesis of DNA using primer extension, nicking enzyme amplification, PCR or 3'-tail labelling by terminal deoxynucleotidyl transferase. The phenothiazine served as an oxidizable redox label (giving two analytically useful signals of oxidation on electrode) for nucleosides and DNA and was also used in orthogonal combination with previously developed benzofurazane or nitrophenyl labels for redox coding of DNA bases. Therefore, the title PT-linked dNTPs are useful additions to the portfolio of nucleotides for enzymatic synthesis of redox-labelled DNA for electrochemical analysis.
Collapse
Affiliation(s)
- Anna Simonova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
26
|
Hollenstein M. DNA Synthesis by Primer Exchange Reaction Cascades. Chembiochem 2018; 19:422-424. [PMID: 29239531 DOI: 10.1002/cbic.201700639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 12/15/2022]
Abstract
Swap and extend: The autonomous synthesis of single-stranded DNA molecules of arbitrary size and sequence composition can easily be achieved by primer exchange reaction (PER) cascades, in which the sequential polymerase-mediated extension of DNA primers is guided by catalytic hairpins. This highlight illustrates the potential of this method for applications in DNA nanotechnology.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
27
|
Synthesis of two 6-aza-uridines modified by benzoheterocycle as environmentally sensitive fluorescent nucleosides. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
The Effects of Dithiothreitol on DNA. SENSORS 2017; 17:s17061201. [PMID: 28538659 PMCID: PMC5492665 DOI: 10.3390/s17061201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022]
Abstract
With the novel possibilities for detecting molecules of interest with extreme sensitivity also comes the risk of encountering hitherto negligible sources of error. In life science, such sources of error might be the broad variety of additives such as dithiothreitol (DTT) used to preserve enzyme stability during in vitro reactions. Using two different assays that can sense strand interruptions in double stranded DNA, we here show that DTT is able to introduce nicks in the DNA backbone. DTT was furthermore shown to facilitate the immobilization of fluorescent DNA on an NHS-ester functionalized glass surface. Such reactions may in particular impact the readout from single molecule detection studies and other ultrasensitive assays. This was highlighted by the finding that DTT markedly decreased the signal to noise ratio in a DNA sensor based assay with single molecule resolution.
Collapse
|
29
|
Dadová J, Cahová H, Hocek M. Polymerase Synthesis of Base-Modified DNA. MODIFIED NUCLEIC ACIDS 2016. [DOI: 10.1007/978-3-319-27111-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Mačková M, Boháčová S, Perlíková P, Poštová Slavětínská L, Hocek M. Polymerase Synthesis and Restriction Enzyme Cleavage of DNA Containing 7-Substituted 7-Deazaguanine Nucleobases. Chembiochem 2015; 16:2225-36. [PMID: 26382079 DOI: 10.1002/cbic.201500315] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 01/06/2023]
Abstract
Previous studies of polymerase synthesis of base-modified DNAs and their cleavage by restriction enzymes have mostly related only to 5-substituted pyrimidine and 7-substituted 7-deazaadenine nucleotides. Here we report the synthesis of a series of 7-substituted 7-deazaguanine 2'-deoxyribonucleoside 5'-O-triphosphates (dG(R) TPs), their use as substrates for polymerase synthesis of modified DNA and the influence of the modification on their cleavage by type II restriction endonucleases (REs). The dG(R) TPs were generally good substrates for polymerases but the PCR products could not be visualised on agarose gels by intercalator staining, due to fluorescence quenching. The presence of 7-substituted 7-deazaguanine residues in recognition sequences of REs in most cases completely blocked the cleavage.
Collapse
Affiliation(s)
- Michaela Mačková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic.
| |
Collapse
|
31
|
Dadová J, Vrábel M, Adámik M, Brázdová M, Pohl R, Fojta M, Hocek M. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA–Protein Cross‐Linking. Chemistry 2015; 21:16091-102. [DOI: 10.1002/chem.201502209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Jitka Dadová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Milan Vrábel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Matej Adámik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Marie Brázdová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno (Czech Republic)
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2 (Czech Republic)
| |
Collapse
|
32
|
Miao P, Wang B, Meng F, Yin J, Tang Y. Ultrasensitive Detection of MicroRNA through Rolling Circle Amplification on a DNA Tetrahedron Decorated Electrode. Bioconjug Chem 2015; 26:602-7. [DOI: 10.1021/acs.bioconjchem.5b00064] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Miao
- CAS
Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bidou Wang
- CAS
Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Fanyu Meng
- CAS
Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Laboratory
of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Yin
- CAS
Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuguo Tang
- CAS
Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Wang X, Chen X, Liu Y, Zhu J. Primer Extension Reaction Assays for Incorporation of Deoxynucleotide Analogue into DNA. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201400731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Ménová P, Dziuba D, Güixens-Gallardo P, Jurkiewicz P, Hof M, Hocek M. Fluorescence quenching in oligonucleotides containing 7-substituted 7-deazaguanine bases prepared by the nicking enzyme amplification reaction. Bioconjug Chem 2015; 26:361-6. [PMID: 25599383 DOI: 10.1021/acs.bioconjchem.5b00006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we reported the use of the Nicking Enzyme Amplification Reaction (NEAR) for the enzymatic synthesis of short oligonucleotides (ONs) containing 5-substituted pyrimidine or 7-substituted 7-deazaadenine nucleotides. Since no oligonucleotide products were visible on agarose gels stained by an intercalating dye (GelRed), we assumed that the method did not work for 7-substituted 7-deazaguanine deoxyribonucleoside triphosphates. We revisited the work and found that the NEAR method works for 7-deazaguanine nucleotides as well but that the resulting modified ONs quench the fluorescence of DNA intercalators, rendering them invisible on gel electrophoresis stained by them. Here, we report on the modified methodology for the NEAR synthesis and analysis of G-modified ONs and on quantification of the fluorescence quenching.
Collapse
Affiliation(s)
- Petra Ménová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | | | | | | | | | | |
Collapse
|
35
|
Dziuba D, Pohl R, Hocek M. Polymerase synthesis of DNA labelled with benzylidene cyanoacetamide-based fluorescent molecular rotors: fluorescent light-up probes for DNA-binding proteins. Chem Commun (Camb) 2015; 51:4880-2. [DOI: 10.1039/c5cc00530b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fluorescent molecular rotors are for the first time used as light-up probes for sensing of DNA–protein interaction.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| |
Collapse
|
36
|
Dziuba D, Pohl R, Hocek M. Bodipy-labeled nucleoside triphosphates for polymerase synthesis of fluorescent DNA. Bioconjug Chem 2014; 25:1984-95. [PMID: 25290695 DOI: 10.1021/bc5003554] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
New fluorescent nucleosides and nucleoside triphosphate (dNTPs) analogs bearing the F-Bodipy fluorophore linked through a short, flexible nonconjugate tether were synthesized. The Bodipy-labeled dNTPs were substrates for several DNA polymerases which incorporated them into DNA in primer extension, nicking enzyme amplification reaction, and polymerase chain reaction. The fluorescence of F-Bodipy is not quenched upon incorporation in DNA and can be detected both in solutions and on gels.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | | | | |
Collapse
|
37
|
Hocek M. Synthesis of base-modified 2'-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology. J Org Chem 2014; 79:9914-21. [PMID: 25321948 DOI: 10.1021/jo5020799] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of 2'-deoxyribonucleoside triphosphates (dNTPs) either by classical triphosphorylation of nucleosides or by aqueous cross-coupling reactions of halogenated dNTPs is discussed. Different enzymatic methods for synthesis of modified oligonucleotides and DNA by polymerase incorporation of modified nucleotides are summarized, and the applications in redox or fluorescent labeling, as well as in bioconjugations and modulation of interactions of DNA with proteins, are outlined.
Collapse
Affiliation(s)
- Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center , Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
38
|
Balintová J, Špaček J, Pohl R, Brázdová M, Havran L, Fojta M, Hocek M. Azidophenyl as a click-transformable redox label of DNA suitable for electrochemical detection of DNA-protein interactions. Chem Sci 2014; 6:575-587. [PMID: 28970873 PMCID: PMC5618110 DOI: 10.1039/c4sc01906g] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/09/2014] [Indexed: 12/17/2022] Open
Abstract
A new azido-based DNA redox label which can be transformed into nitrophenyltriazole by a CuAAC click reaction was developed. It was used for the mapping of DNA–protein interactions with electrochemical detection.
New redox labelling of DNA by an azido group which can be chemically transformed to nitrophenyltriazole or silenced to phenyltriazole was developed and applied to the electrochemical detection of DNA–protein interactions. 5-(4-Azidophenyl)-2′-deoxycytidine and 7-(4-azidophenyl)-7-deaza-2′-deoxyadenosine nucleosides were prepared by aqueous-phase Suzuki cross-coupling and converted to nucleoside triphosphates (dNTPs) which served as substrates for incorporation into DNA by DNA polymerase. The azidophenyl-modified nucleotides and azidophenyl-modified DNA gave a strong signal in voltammetric studies, at –0.9 V, due to reduction of the azido function. The Cu-catalyzed click reaction of azidophenyl-modified nucleosides or azidophenyl-modified DNA with 4-nitrophenylacetylene gave nitrophenyl-substituted triazoles, exerting a reduction peak at –0.4 V under voltammetry, whereas the click reaction with phenylacetylene gave electrochemically silent phenyltriazoles. The transformation of the azidophenyl label to nitrophenyltriazole was used for electrochemical detection of DNA–protein interactions (p53 protein) since only those azidophenyl groups in the parts of the DNA not shielded by the bound p53 protein were transformed to nitrophenyltriazoles, whereas those covered by the protein were not.
Collapse
Affiliation(s)
- Jana Balintová
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Jan Špaček
- Institute of Biophysics , v.v.i. Academy of Sciences of the Czech Republic , Kralovopolska 135 , 61265 Brno , Czech Republic .
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Marie Brázdová
- Institute of Biophysics , v.v.i. Academy of Sciences of the Czech Republic , Kralovopolska 135 , 61265 Brno , Czech Republic .
| | - Luděk Havran
- Institute of Biophysics , v.v.i. Academy of Sciences of the Czech Republic , Kralovopolska 135 , 61265 Brno , Czech Republic . .,Central European Institute of Technology , Masaryk University , Kamenice 753/5 , CZ-625 00 Brno , Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics , v.v.i. Academy of Sciences of the Czech Republic , Kralovopolska 135 , 61265 Brno , Czech Republic . .,Central European Institute of Technology , Masaryk University , Kamenice 753/5 , CZ-625 00 Brno , Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic . .,Department of Organic Chemistry , Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| |
Collapse
|
39
|
Ingale SA, Mei H, Leonard P, Seela F. Ethynyl side chain hydration during synthesis and workup of "clickable" oligonucleotides: bypassing acetyl group formation by triisopropylsilyl protection. J Org Chem 2013; 78:11271-82. [PMID: 24138578 DOI: 10.1021/jo401780u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Clickable oligonucleotides with ethynyl residues in the 5-position of pyrimidines ((eth)dC and (eth)dU) or the 7-position of 7-deazaguanine ((eth)c(7)G(d)) are hydrated during solid-phase oligonucleotide synthesis and workup conditions. The side products were identified as acetyl derivatives by MALDI-TOF mass spectra of oligonucleotides and by detection of modified nucleosides after enzymatic phosphodiester hydrolysis. Ethynyl → acetyl group conversion was also studied on ethynylated nucleosides under acidic and basic conditions. It could be shown that side chain conversion depends on the nucleobase structure. Triisopropylsilyl residues were introduced to protect ethynyl residues from hydration. Pure, acetyl group free oligonucleotides were isolated after desilylation in all cases.
Collapse
Affiliation(s)
- Sachin A Ingale
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology , Heisenbergstraße 11, 48149 Münster, Germany
| | | | | | | |
Collapse
|
40
|
Dadová J, Vidláková P, Pohl R, Havran L, Fojta M, Hocek M. Aqueous Heck cross-coupling preparation of acrylate-modified nucleotides and nucleoside triphosphates for polymerase synthesis of acrylate-labeled DNA. J Org Chem 2013; 78:9627-37. [PMID: 23992435 DOI: 10.1021/jo4011574] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aqueous-phase Heck coupling methodology was developed for direct attachment of butyl acrylate to 5-iodoracil, 5-iodocytosine, 7-iodo-7-deazaadenine, and 7-iodo-7-deazaguanine 2'-deoxyribonucleoside 5'-O-monophosphates (dNMPs) and 5'-O-triphosphates (dNTPs) and compared with the classical approach of phosphorylation of the corresponding modified nucleosides. The 7-substituted 7-deazapurine nucleotides (dA(BA)MP, dA(BA)TP, dG(BA)MP, and dG(BA)TP) were prepared by the direct Heck coupling of nucleotides in good yields (35-55%), whereas the pyrimidine nucleotides reacted poorly and the corresponding BA-modified dNTPs were prepared by triphosphorylation of the modified nucleosides. The acrylate-modified dN(BA)TPs (N = A, C, and U) were good substrates for DNA polymerases and were used for enzymatic synthesis of acrylate-modified DNA by primer extension, whereas dG(BA)TP was an inhibitor of polymerases. The butyl acrylate group was found to be a useful redox label giving a strong reduction peak at -1.3 to -1.4 V in cyclic voltammetry.
Collapse
Affiliation(s)
- Jitka Dadová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center , Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | | | | | | | | | | |
Collapse
|