1
|
Shinde AS, Patel AK, Mahapatra NR, Kar S, Santra TS. Enhanced Intracellular Delivery via a Titanium-Coated TiO 2 Microstructure Device: Leveraging an Infrared Laser for Optimal Efficiency. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39869542 DOI: 10.1021/acsami.4c17618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
This study presents a novel optoporation technique using a titanium-coated TiO2 microstructure (TMS) device activated by an infrared diode laser for highly efficient intracellular delivery. The TMS device, fabricated with 120 nm titanium coating on a titanium dioxide (TiO2) microstructure containing microneedles (height ∼2 μm and width ∼4.5 μm), demonstrates enhanced biocompatibility and thermal conductivity compared to the conventional TiO2 microstructure (MS). Exposure to the TMS device with an IR diode laser (980 nm) generates heat, forming photothermal bubbles that disrupt the cell membrane and create transient pores for biomolecular delivery. Unlike traditional optoporation methods, which rely on large, vibration-sensitive lasers, the IR diode laser-assisted TMS device-based optoporation technique offers a compact, cost-effective, and portable alternative, making it suitable for clinical and research applications in resource-constrained environments. The performance of the TMS and MS devices was compared in various cancer cell lines (HeLa, L929, and N2a), with the TMS device showing superior delivery success rates for biomolecules of varying molecular sizes. Notably, the TMS device achieved a 99.30% delivery success rate for the smallest molecule, PI dye, and an 85.17% success rate for the largest studied molecule, β-galactosidase enzyme-Cy5. Furthermore, the TMS device consistently provided a higher delivery success rate at lower laser power, minimizing cellular stress and preserving cell survivability. Moreover, using Western Blot analysis, the TMS device demonstrated lower levels of apoptosis compared to the MS device, with statistically significant differences, highlighting its potential for efficient intracellular delivery while minimizing cellular stress and damage. These results highlight the potential of the TMS device as an advanced tool for large-size intracellular biomolecular delivery, offering significant improvements in stability, efficiency, and cell survivability.
Collapse
Affiliation(s)
- Ashwini S Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Anand Kumar Patel
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Srabani Kar
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502285, India
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Ngo KH, Distler ME, Evangelopoulos M, Ocampo TA, Ma Y, Minorik AJ, Mirkin CA. DNA Dendron Tagging as a Universal Way to Deliver Proteins to Cells. J Am Chem Soc 2025; 147:2129-2136. [PMID: 39812088 PMCID: PMC11755410 DOI: 10.1021/jacs.4c16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted. Indeed, DNA surface density and sequence have been correlated with scavenger-receptor engagement, the first step of cellular internalization. Here, we report how branched DNA dendrons with dibenzocyclooctyne groups and proteins genetically engineered to include the noncanonical amino acid azido-phenylalanine for click chemistry can be used to synthesize hybrid DNA dendron-protein architectures that exhibit outstanding cellular internalization properties, without the need for extensive surface modification. In a head-to-head comparison, protein-DNA dendron structures (where DNA is concentrated in a local area) are taken up by cells more rapidly and to a greater extent than proSNAs (where the DNA is evenly distributed). Also, protein-G-rich dendron structures show enhanced uptake compared to protein-T-rich dendron structures, highlighting the importance of oligonucleotide sequence on nanoconjugate uptake. Finally, a generalizable method for chemically tagging proteins with dendrons that does not require mutagenesis is described. When a range of proteins, spanning 42 to 464 kDa, were modified through surface lysines with this method, a significant increase in their cellular uptake (up to 17-fold) compared to proteins that are not coupled to a DNA dendron was observed.
Collapse
Affiliation(s)
- Kathleen H. Ngo
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Max E. Distler
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Michael Evangelopoulos
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Tonatiuh A. Ocampo
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Yinglun Ma
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Andrew J. Minorik
- Department of Neurobiology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| |
Collapse
|
3
|
Kuriyama M, Hirose H, Kawaguchi Y, Michibata J, Maekawa M, Futaki S. KCNN4 as a genomic determinant of cytosolic delivery by the attenuated cationic lytic peptide L17E. Mol Ther 2025:S1525-0016(24)00850-5. [PMID: 39748507 DOI: 10.1016/j.ymthe.2024.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/19/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
The development of a cytosolic delivery strategy for biopharmaceuticals is one of the central issues in drug development. Knowledge of the mechanisms underlying these processes may also pave the way for the discovery of novel delivery systems. L17E is an attenuated cationic amphiphilic lytic (ACAL) peptide developed by our research group that shows promise for cytosolic antibody delivery. In this study, given the high efficacy of L17E in cytosolic delivery, we investigated the mechanism of action of L17E in detail. L17E was found to achieve cytosolic delivery predominantly by transient disruption of the plasma membrane without the need for endocytosis. Importantly, the cell-line selectivity studies of L17E revealed a strong correlation between the efficiency of L17E-mediated delivery and the expression level of KCNN4, the gene encoding the calcium-activated potassium channel KCa3.1. Genetic and pharmacological regulation of KCNN4 expression and KCa3.1 activity, respectively, correlate closely with the efficiency of L17E-mediated cytosolic delivery, suggesting the importance of membrane-potential regulation by extracellular Ca2+ influx. Therefore, the activity of the L17E is relevant to the calcium-activated potassium channel.
Collapse
Affiliation(s)
- Masashi Kuriyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Junya Michibata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
4
|
Zhao C, Jiang X, Wang M, Gui S, Yan X, Dong Y, Liu D. Constructing protein-functionalized DNA origami nanodevices for biological applications. NANOSCALE 2024; 17:142-157. [PMID: 39564893 DOI: 10.1039/d4nr03599b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In living systems, proteins participate in various physiological processes and the clustering of multiple proteins is essential for efficient signaling. Therefore, understanding the effects of the number, distance and orientation of proteins is of great significance. With programmability and addressability, DNA origami technology has enabled fabrication of sophisticated nanostructures with precise arrangement and orientation control of proteins to investigate the effects of these parameters on protein-involved cellular processes. Herein, we highlight the construction and applications of protein-functionalized DNA origami nanodevices. After the introduction of the structural design principles of DNA origami and the strategies of protein-DNA conjugation, the emerging applications of protein-functionalized DNA origami nanodevices with controlled key parameters are mainly discussed, including the regulation of enzyme cascade reactions, modulation of cellular behaviours, drug delivery therapy and protein structural analysis. Finally, the current challenges and potential directions of protein-functionalized DNA origami nanodevices are also presented, advancing their applications in biomedicine, cell biology and structural biology.
Collapse
Affiliation(s)
- Chuangyuan Zhao
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinran Jiang
- School of Life Sciences Fudan University, Shanghai, 200433, China
| | - Miao Wang
- Chemistry and chemical biology, Cornell university, 122 Baker Laboratory, Ithaca, NY 14853, USA
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100071, Beijing, China.
| | - Xin Yan
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China.
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dongsheng Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Søgaard AB, Hansson RF, Tvilum AS, Zelikin AN. Artificial Internalizing Receptors: Intracellular Delivery of Cargo Through Bio-Orthogonal Recognition. Adv Healthc Mater 2024; 13:e2402472. [PMID: 39434478 DOI: 10.1002/adhm.202402472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Indexed: 10/23/2024]
Abstract
Drug targeting is a methodology that helps to overcome the side effects of therapeutic molecules. However, insufficient targeting specificity and the on-target/off-site delivery leave much room for improvement in the targeting endeavors. One approach to enhance the specificity of drug targeting is to engineer artificial receptors with recognition ligands not observed in nature. To this end, artificial internalizing receptors that feature cholesterylamine as the artificial pull-in mechanism, and an anti-fluorescein antibody as the exofacial recognition and capture tool are developed. Fluorescein labeling is among the most routine techniques in biochemistry and can readily provide a way to make cognate derivatives for receptor-mediated endocytosis using these artificial receptors. Herein, the synthesis and the structure-activity relationship for these artificial receptors are detailed, their potency and efficacy in mediating drug delivery for the antibody-drug conjugates are illustrated, and the scope and limitations of targeting the chemically engineered cells via artificial receptors are investigated. Taken together, the presented data explore an innovative approach to drug targeting and contribute to the development of techniques in cell engineering using the tools of chemistry.
Collapse
Affiliation(s)
- Ane Bretschneider Søgaard
- iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, 8000, Denmark
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| | | | | | - Alexander N Zelikin
- iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, 8000, Denmark
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| |
Collapse
|
6
|
Wang Z, Wang X, He Y, Wu H, Mao R, Wang H, Qiu L. Exploring Framework Nucleic Acids: A Perspective on Their Cellular Applications. JACS AU 2024; 4:4110-4128. [PMID: 39610738 PMCID: PMC11600171 DOI: 10.1021/jacsau.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/30/2024]
Abstract
Cells are fundamental units of life. The coordination of cellular functions and behaviors relies on a cascade of molecular networks. Technologies that enable exploration and manipulation of specific molecular events in living cells with high spatiotemporal precision would be critical for pathological study, disease diagnosis, and treatment. Framework nucleic acids (FNAs) represent a novel class of nucleic acid materials characterized by their monodisperse and rigid nanostructure. Leveraging their exceptional programmability, convenient modification property, and predictable atomic-level architecture, FNAs have attracted significant attention in diverse cellular applications such as cell recognition, imaging, manipulation, and therapeutic interventions. In this perspective, we will discuss the utilization of FNAs in living cell systems while critically assessing the opportunities and challenges presented in this burgeoning field.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Xin Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yao He
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Wu
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Rui Mao
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Haiyuan Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
7
|
Shin K, Rodriguez-Parks A, Kim C, Silaban IM, Xia Y, Sun J, Dong C, Keles S, Wang J, Cao J, Kang J. Harnessing the regenerative potential of interleukin11 to enhance heart repair. Nat Commun 2024; 15:9666. [PMID: 39516197 PMCID: PMC11549343 DOI: 10.1038/s41467-024-54060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Balancing between regenerative processes and fibrosis is crucial for heart repair, yet strategies regulating this balance remain a barrier to developing therapies. The role of Interleukin 11 (IL11) in heart regeneration remains controversial, as both regenerative and fibrotic functions have been reported. We uncovered that il11a, an Il11 homolog in zebrafish, can trigger robust regenerative programs in zebrafish hearts, including cardiomyocytes proliferation and coronary expansion, even in the absence of injury. Notably, il11a induction in uninjured hearts also activates the quiescent epicardium to produce epicardial progenitor cells, which later differentiate into cardiac fibroblasts. Consequently, prolonged il11a induction indirectly leads to persistent fibroblast emergence, resulting in cardiac fibrosis. While deciphering the regenerative and fibrotic effects of il11a, we found that il11-dependent fibrosis, but not regeneration, is mediated through ERK activity, suggesting to potentially uncouple il11a dual effects on regeneration and fibrosis. To harness the il11a's regenerative ability, we devised a combinatorial treatment through il11a induction with ERK inhibition. This approach enhances cardiomyocyte proliferation with mitigated fibrosis, achieving a balance between regenerative processes and fibrosis. Thus, we unveil the mechanistic insights into regenerative il11 roles, offering therapeutic avenues to foster cardiac repair without exacerbating fibrosis.
Collapse
Grants
- R01HL166518 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL142762 NHLBI NIH HHS
- P30 CA014520 NCI NIH HHS
- R01 HL155607 NHLBI NIH HHS
- R01HL151522 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL142762 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P30CA014520 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- R01HL155607 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35GM137878 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R35 GM137878 NIGMS NIH HHS
- R01 HL151522 NHLBI NIH HHS
- R01 HL166518 NHLBI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- University of Wisconsin Institute for Clinical and Translational Research (UW ICTR) pilot grant
- Stem Cell and Regenerative Medicine Center Research Training Award
Collapse
Affiliation(s)
- Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Anjelica Rodriguez-Parks
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Chanul Kim
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Isabella M Silaban
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Yu Xia
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Jisheng Sun
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, USA
| | - Chenyang Dong
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, USA
| | - Sunduz Keles
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, USA
| | - Jinhu Wang
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA.
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Ma X, Zhang Z, Barba-Bon A, Han D, Qi Z, Ge B, He H, Huang F, Nau WM, Wang X. A small-molecule carrier for the intracellular delivery of a membrane-impermeable protein with retained bioactivity. Proc Natl Acad Sci U S A 2024; 121:e2407515121. [PMID: 39436658 PMCID: PMC11536097 DOI: 10.1073/pnas.2407515121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Intracellular protein delivery has the potential to revolutionize cell-biological research and medicinal therapy, with broad applications in bioimaging, disease treatment, and genome editing. Herein, we demonstrate successful delivery of a functional protein, cytochrome c (CYC), by using a boron cluster anion as molecular carrier of the superchaotropic anion type (B12Br11OPr2-). CYC was delivered into lipid bilayer vesicles as well as living cells, with a cellular uptake ratio approaching 90%. Mechanistic studies showed that CYC was internalized into cells through a permeation pathway directly into the cytoplasm, bypassing endosomal entrapment. Upon carrier-assisted internalization, CYC retained its bioactivity, as reflected by an induced cell apoptosis rate of 25% at low dose (1 µM). This study furbishes a direct protein delivery method by a molecular carrier with high efficiency, confirming the potential of inorganic cluster ions as protein transport vehicles with an extensive range of future cell-biological or biomedical applications.
Collapse
Affiliation(s)
- Xiqi Ma
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Zhixiong Zhang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | | | - Dongxue Han
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Zichun Qi
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Baosheng Ge
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Hua He
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Fang Huang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Werner M. Nau
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
- School of Science, Constructor University, Bremen28759, Germany
| | - Xiaojuan Wang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| |
Collapse
|
9
|
Kawaguchi Y, Futaki S. Finding ways into the cytosol: Peptide-mediated approaches for delivering proteins into cells. Curr Opin Chem Biol 2024; 81:102482. [PMID: 38905721 DOI: 10.1016/j.cbpa.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
The delivery of functional proteins, including antibodies, into cells opens up many opportunities to regulate cellular events, with significant implications for studies in chemical biology and therapeutics. The inside of cells is isolated from the outside by the cell membrane. The hydrophilic nature of proteins prevents direct permeation of proteins through the cell membrane by passive diffusion. Therefore, delivery routes using endocytic uptake followed by endosomal escape have been explored. Alternatively, delivery concepts using transient permeabilization of cell membranes or effective promotion of endocytic uptake and endosomal escape using modified membrane-lytic peptides have been reported in recent years. Non-canonical protein delivery concepts, such as the use of liquid droplets or coacervates, have also been proposed. This review highlights some of the topics in peptide-mediated intracellular protein delivery.
Collapse
Affiliation(s)
- Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
10
|
Qutub SS, Bhat IA, Maatouk BI, Moosa B, Fakim A, Nawaz K, Diaz-Galicia E, Lin W, Grünberg R, Arold ST, Khashab NM. An Amphiphilic Cell-Penetrating Macrocycle for Efficient Cytosolic Delivery of Proteins, DNA, and CRISPR Cas9. Angew Chem Int Ed Engl 2024; 63:e202403647. [PMID: 38752721 DOI: 10.1002/anie.202403647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 07/02/2024]
Abstract
The discovery of safe platforms that can circumvent the endocytic pathway is of great significance for biological therapeutics that are usually degraded during endocytosis. Here we show that a self-assembled and dynamic macrocycle can passively diffuse through the cell membrane and deliver a broad range of biologics, including proteins, CRISPR Cas9, and ssDNA, directly to the cytosol while retaining their bioactivity. Cell-penetrating macrocycle CPM can be easily prepared from the room temperature condensation of diketopyrrolopyrrole lactams with diamines. We attribute the high cellular permeability of CPM to its amphiphilic nature and chameleonic properties. It adopts conformations that partially bury polar groups and expose hydrophobic side chains, thus self-assembling into micellar-like structures. Its superior fluorescence makes CPM trackable inside cells where it follows the endomembrane system. CPM outperformed commercial reagents for biologics delivery and showed high RNA knockdown efficiency of CRISPR Cas9. We envisage that this macrocycle will be an ideal starting point to design and synthesize biomimetic macrocyclic tags that can readily facilitate the interaction and uptake of biomolecules and overcome endosomal digestion.
Collapse
Affiliation(s)
- Somayah S Qutub
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Imtiyaz Ahmad Bhat
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Current Address: Department of Chemistry, Islamic University of Science and Technology, Awantipora, 192122, Jammu and Kashmir, India
| | - Batoul I Maatouk
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aliyah Fakim
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kashif Nawaz
- The Coral Symbiomics Lab, Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Escarlet Diaz-Galicia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Weibin Lin
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Raik Grünberg
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Stefan T Arold
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Alamgir A, Ghosal S, DeLisa MP, Alabi CA. Bioreversible Anionic Cloaking Enables Intracellular Protein Delivery with Ionizable Lipid Nanoparticles. ACS CENTRAL SCIENCE 2024; 10:1179-1190. [PMID: 38947210 PMCID: PMC11212127 DOI: 10.1021/acscentsci.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 07/02/2024]
Abstract
Protein-based therapeutics comprise a rapidly growing subset of pharmaceuticals, but enabling their delivery into cells for intracellular applications has been a longstanding challenge. To overcome the delivery barrier, we explored a reversible, bioconjugation-based approach to modify the surface charge of protein cargos with an anionic "cloak" to facilitate electrostatic complexation and delivery with lipid nanoparticle (LNP) formulations. We demonstrate that the conjugation of lysine-reactive sulfonated compounds can allow for the delivery of various protein cargos using FDA-approved LNP formulations of the ionizable cationic lipid DLin-MC3-DMA (MC3). We apply this strategy to functionally deliver RNase A for cancer cell killing as well as a full-length antibody to inhibit oncogenic β-catenin signaling. Further, we show that LNPs encapsulating cloaked fluorescent proteins distribute to major organs in mice following systemic administration. Overall, our results point toward a generalizable platform that can be employed for intracellular delivery of a wide range of protein cargos.
Collapse
Affiliation(s)
- Azmain Alamgir
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Souvik Ghosal
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Matthew P. DeLisa
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Cornell
Institute of Biotechnology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher A. Alabi
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Shin K, Rodriguez-Parks A, Kim C, Silaban IM, Xia Y, Sun J, Dong C, Keles S, Wang J, Cao J, Kang J. Harnessing the regenerative potential of interleukin11 to enhance heart repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577788. [PMID: 38352555 PMCID: PMC10862709 DOI: 10.1101/2024.01.29.577788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Balancing between regenerative processes and fibrosis is crucial for heart repair, yet strategies regulating this balance remain a barrier to developing therapies. While Interleukin11 (IL11) is known as a fibrotic factor, its contribution to heart regeneration is poorly understood. We uncovered that il11a, an Il11 homolog in zebrafish, can trigger robust regenerative programs in zebrafish hearts, including cardiomyocytes proliferation and coronary expansion, even in the absence of injury. However, prolonged il11a induction in uninjured hearts causes persistent fibroblast emergence, resulting in fibrosis. While deciphering the regenerative and fibrotic effects of il11a, we found that il11-dependent fibrosis, but not regeneration, is mediated through ERK activity, suggesting to potentially uncouple il11a dual effects on regeneration and fibrosis. To harness the il11a's regenerative ability, we devised a combinatorial treatment through il11a induction with ERK inhibition. This approach enhances cardiomyocyte proliferation with mitigated fibrosis, achieving a balance between regenerative processes and fibrosis. Thus, we unveil the mechanistic insights into regenerative il11 roles, offering therapeutic avenues to foster cardiac repair without exacerbating fibrosis.
Collapse
Affiliation(s)
- Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Anjelica Rodriguez-Parks
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Chanul Kim
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Isabella M Silaban
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Yu Xia
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jisheng Sun
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Chenyang Dong
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Sunduz Keles
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Jinhu Wang
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| |
Collapse
|
13
|
Chau CC, Maffeo CM, Aksimentiev A, Radford SE, Hewitt EW, Actis P. Single molecule delivery into living cells. Nat Commun 2024; 15:4403. [PMID: 38782907 PMCID: PMC11116494 DOI: 10.1038/s41467-024-48608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Controlled manipulation of cultured cells by delivery of exogenous macromolecules is a cornerstone of experimental biology. Here we describe a platform that uses nanopipettes to deliver defined numbers of macromolecules into cultured cell lines and primary cells at single molecule resolution. In the nanoinjection platform, the nanopipette is used as both a scanning ion conductance microscope (SICM) probe and an injection probe. The SICM is used to position the nanopipette above the cell surface before the nanopipette is inserted into the cell into a defined location and to a predefined depth. We demonstrate that the nanoinjection platform enables the quantitative delivery of DNA, globular proteins, and protein fibrils into cells with single molecule resolution and that delivery results in a phenotypic change in the cell that depends on the identity of the molecules introduced. Using experiments and computational modeling, we also show that macromolecular crowding in the cell increases the signal-to-noise ratio for the detection of translocation events, thus the cell itself enhances the detection of the molecules delivered.
Collapse
Affiliation(s)
- Chalmers C Chau
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, LS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK
| | - Christopher M Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sheena E Radford
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Eric W Hewitt
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Paolo Actis
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, LS2 9JT, UK.
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK.
| |
Collapse
|
14
|
Huo W, Miki K, Mu H, Osawa T, Yamaguma H, Kasahara Y, Obika S, Kawaguchi Y, Hirose H, Futaki S, Miyazaki Y, Shinoda W, Akai S, Ohe K. Light-controllable cell-membrane disturbance for intracellular delivery. J Mater Chem B 2024; 12:4138-4147. [PMID: 38456552 DOI: 10.1039/d3tb02956e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Highly polar and charged molecules, such as oligonucleotides, face significant barriers in crossing the cell membrane to access the cytoplasm. To address this problem, we developed a light-triggered twistable tetraphenylethene (TPE) derivative, TPE-C-N, to facilitate the intracellular delivery of charged molecules through an endocytosis-independent pathway. The central double bond of TPE in TPE-C-N is planar in the ground state but becomes twisted in the excited state. Under light irradiation, this planar-to-twisted structural change induces continuous cell membrane disturbances. Such disturbance does not lead to permanent damage to the cell membrane. TPE-C-N significantly enhanced the intracellular delivery of negatively charged molecules under light irradiation when endocytosis was inhibited through low-temperature treatment, confirming the endocytosis-independent nature of this delivery method. We have successfully demonstrated that the TPE-C-N-mediated light-controllable method can efficiently promote the intracellular delivery of charged molecules, such as peptides and oligonucleotides, with molecular weights ranging from 1000 to 5000 Da.
Collapse
Affiliation(s)
- Wenting Huo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Takashi Osawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Harumi Yamaguma
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Yuuya Kasahara
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, 565-0871, Japan
| | | | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Yusuke Miyazaki
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| |
Collapse
|
15
|
Chen P, Yang W, Mochida Y, Li S, Hong T, Kinoh H, Kataoka K, Cabral H. Selective Intracellular Delivery of Antibodies in Cancer Cells with Nanocarriers Sensing Endo/Lysosomal Enzymatic Activity. Angew Chem Int Ed Engl 2024; 63:e202317817. [PMID: 38342757 DOI: 10.1002/anie.202317817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
The differential enzymatic activity in the endo/lysosomes of particular cells could trigger targeted endosomal escape functions, enabling selective intracellular protein delivery. However, this strategy may be jeopardized due to protein degradation during endosomal trafficking. Herein, using custom made fluorescent probes to assess the endosomal activity of cathepsin B (CTSB) and protein degradation, we found that certain cancer cells with hyperacidified endosomes grant a spatiotemporal window where CTSB activity surpass protein digestion. This inspired the engineering of antibody-loaded polymeric nanocarriers having CTSB-activatable endosomal escape ability. The nanocarriers selectively escaped from the endo/lysosomes in the cells with high endosomal CTSB activity and delivered active antibodies to intracellular targets. This study provides a viable strategy for cell-specific protein delivery using stimuli-responsive nanocarriers with controlled endosomal escape.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Wenqian Yang
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuki Mochida
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki, 210-0821, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shangwei Li
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taehun Hong
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Kinoh
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki, 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki, 210-0821, Japan
| | - Horacio Cabral
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
16
|
Park SG, Lee HB, Kang S. Development of plug-and-deliverable intracellular protein delivery platforms based on botulinum neurotoxin. Int J Biol Macromol 2024; 261:129622. [PMID: 38266854 DOI: 10.1016/j.ijbiomac.2024.129622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Intracellular protein delivery systems have great potential in the fields of therapeutics development and biomedical research. However, targeted delivery, passing through the cell membrane without damaging the cells, and escaping from endosomal entrapment of endocytosed molecular cargos are major challenges of the system. Here, we present a novel intracellular protein delivery system based on modularly engineered botulinum neurotoxin type A (BoNT/A). LHNA domain, consisting of light chain and endosomal escape machinery of BoNT/A, was genetically fused with SpyCatcher (SC) and EGFR targeting affibody (EGFRAfb) to create SC-LHNA-EGFRAfb, a target-specific and protein cargo-switchable BoNT/A-based intracellular protein delivery platform. SC-LHNA-EGFRAfb was purely purified in large quantities, efficiently ligated with multiple ST-fused protein cargos individually, generating a variety of protein cargo-containing intracellular delivery complexes, and successfully delivered ligated protein cargos into the cytosol of target cells via receptor-mediated endocytosis, followed by endosomal escape and subsequent cytosolic delivery. SC-LHNA-EGFRAfb enhanced intracellular delivery efficiency of protein toxin, gelonin, by approximately 100-fold, highlighting the crucial roles of EGFRAfb and LHNA domain as a targeting ligand and an endosomal escape machinery, respectively, in the delivery process. The BoNT-based plug-and-deliverable intracellular protein delivery system has the potential to expand its applications in protein therapeutics and manipulating cellular processes.
Collapse
Affiliation(s)
- Seong Guk Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun Bin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
17
|
Mariconti M, Dechamboux L, Heckmann M, Gros J, Morel M, Escriou V, Baigl D, Hoffmann C, Rudiuk S. Intracellular Delivery of Functional Proteins with DNA-Protein Nanogels-Lipids Complex. J Am Chem Soc 2024; 146:5118-5127. [PMID: 38363821 PMCID: PMC10910493 DOI: 10.1021/jacs.3c08000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
Using functional proteins for therapeutic purposes due to their high selectivity and/or catalytic properties can enable the control of various cellular processes; however, the transport of active proteins inside living cells remains a major challenge. In contrast, intracellular delivery of nucleic acids has become a routine method for a number of applications in gene therapy, genome editing, or immunization. Here we report a functionalizable platform constituting of DNA-protein nanogel carriers cross-linked through streptavidin-biotin or streptactin-biotin interactions and demonstrate its applicability for intracellular delivery of active proteins. We show that the nanogels can be loaded with proteins bearing either biotin, streptavidin, or strep-tag, and the resulting functionalized nanogels can be delivered into living cells after complexation with cationic lipid vectors. We use this approach for delivery of alkaline phosphatase enzyme, which is shown to keep its catalytic activity after internalization by mouse melanoma B16 cells, as demonstrated by the DDAO-phosphate assay. The resulting functionalized nanogels have dimensions on the order of 100 nm, contain around 100 enzyme molecules, and are shown to be transfectable at low lipid concentrations (charge ratio R± = 0.75). This ensures the low toxicity of our system, which in combination with high local enzyme concentration (∼100 μM) underlines potential interest of this nanoplatform for biomedical applications.
Collapse
Affiliation(s)
- Marina Mariconti
- PASTEUR,
UMR8640, Department of Chemistry, PSL University,
Sorbonne Université, CNRS, Ecole Normale Supérieure, Paris 75005 France
| | | | - Marion Heckmann
- Université
Paris Cité, CNRS, INSERM, UTCBS, Paris 75006, France
| | - Julien Gros
- PASTEUR,
UMR8640, Department of Chemistry, PSL University,
Sorbonne Université, CNRS, Ecole Normale Supérieure, Paris 75005 France
| | - Mathieu Morel
- PASTEUR,
UMR8640, Department of Chemistry, PSL University,
Sorbonne Université, CNRS, Ecole Normale Supérieure, Paris 75005 France
| | | | - Damien Baigl
- PASTEUR,
UMR8640, Department of Chemistry, PSL University,
Sorbonne Université, CNRS, Ecole Normale Supérieure, Paris 75005 France
| | - Céline Hoffmann
- Université
Paris Cité, CNRS, INSERM, UTCBS, Paris 75006, France
| | - Sergii Rudiuk
- PASTEUR,
UMR8640, Department of Chemistry, PSL University,
Sorbonne Université, CNRS, Ecole Normale Supérieure, Paris 75005 France
| |
Collapse
|
18
|
Sun Z, Zhao H, Ma L, Shi Y, Ji M, Sun X, Ma D, Zhou W, Huang T, Zhang D. The quest for nanoparticle-powered vaccines in cancer immunotherapy. J Nanobiotechnology 2024; 22:61. [PMID: 38355548 PMCID: PMC10865557 DOI: 10.1186/s12951-024-02311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Despite recent advancements in cancer treatment, this disease still poses a serious threat to public health. Vaccines play an important role in preventing illness by preparing the body's adaptive and innate immune responses to combat diseases. As our understanding of malignancies and their connection to the immune system improves, there has been a growing interest in priming the immune system to fight malignancies more effectively and comprehensively. One promising approach involves utilizing nanoparticle systems for antigen delivery, which has been shown to potentiate immune responses as vaccines and/or adjuvants. In this review, we comprehensively summarized the immunological mechanisms of cancer vaccines while focusing specifically on the recent applications of various types of nanoparticles in the field of cancer immunotherapy. By exploring these recent breakthroughs, we hope to identify significant challenges and obstacles in making nanoparticle-based vaccines and adjuvants feasible for clinical application. This review serves to assess recent breakthroughs in nanoparticle-based cancer vaccinations and shed light on their prospects and potential barriers. By doing so, we aim to inspire future immunotherapies for cancer that harness the potential of nanotechnology to deliver more effective and targeted treatments.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hui Zhao
- Department of Endodontics, East Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Li Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yanli Shi
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mei Ji
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiaodong Sun
- Department of Endodontics, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Dan Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wei Zhou
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Dongsheng Zhang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
19
|
Lee Y, Kim KM, Nguyen DL, Jannah F, Seong HJ, Kim JM, Kim YP. Cyclized proteins with tags as permeable and stable cargos for delivery into cells and liposomes. Int J Biol Macromol 2023; 252:126520. [PMID: 37625744 DOI: 10.1016/j.ijbiomac.2023.126520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Despite the therapeutic potential of recombinant proteins, their cell permeabilities and stabilities remain significant challenges. Here we demonstrate that cyclized recombinant proteins can be used as universal cargos for permeable and stable delivery into cells and polydiacetylene liposomes. Utilizing a split intein-mediated process, cyclized model fluorescent proteins containing short tetraarginine (R4) and hexahistidine (H6) tags were generated without compromising their native protein functions. Strikingly, as compared to linear R4/H6-tagged proteins, the cyclized counterparts have substantially increased permeabilities in both cancer cells and synthetic liposomes, as well as higher resistances to enzymatic degradation in cancer cells. These properties are likely a consequence of structural constraints imposed on the proteins in the presence of short functional peptides. Additionally, photodynamic therapy by cyclized photoprotein-loaded liposomes in cancer cells was significantly improved in comparison to that by their non-cyclized counterparts. These findings suggest that our strategy will be universally applicable to intercellular delivery of proteins and therapeutics.
Collapse
Affiliation(s)
- Yeonju Lee
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyung-Min Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Duc Long Nguyen
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Fadilatul Jannah
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Jung Seong
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea.
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; Department of HY-KIST Bio-Convergence, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
20
|
Zheng Q, Sheng J, Liu J, Chen X, Wang M. Histidine-Rich Protein Accelerates the Biomineralization of Zeolitic Imidazolate Frameworks for In Vivo Protein Delivery. Biomacromolecules 2023; 24:5132-5141. [PMID: 37859395 DOI: 10.1021/acs.biomac.3c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Biomineralization of metal-organic frameworks (MOFs) provides a powerful approach for intracellular protein delivery, enabling the study of biological function and therapeutic potential of proteins. However, the potency of this approach is largely challenged by the low efficiency of current strategies for interfacing proteins with MOFs for biomineralization and intracellular delivery. Here, we report a versatile and convenient biomineralization strategy for the rapid encapsulation and enhanced delivery of proteins using MOFs, accelerated by histidine-rich proteins. We demonstrate that the histidine-rich green fluorescent protein (H39GFP) can accelerate the biomineralization of MOFs by promoting the coordination between proteins and metal ions, leading to enhanced protein delivery efficiency up to 15-fold. Moreover, we show that the delivery of H39GFP-fused cytotoxic ribonuclease and bacterial-derived RAS protease can effectively inhibit tumor cell growth. The strategy of promoting the biomineralization of MOFs via histidine-rich proteins for enhanced intracellular delivery could be expanded to other biomacromolecules, advancing their therapeutic potential and the biomedical scope of MOFs.
Collapse
Affiliation(s)
- Qizhen Zheng
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinhan Sheng
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianghan Chen
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Liu X, Zhao Z, Li W, Li Y, Yang Q, Liu N, Chen Y, Yin L. Engineering Nucleotidoproteins for Base-Pairing-Assisted Cytosolic Delivery and Genome Editing. Angew Chem Int Ed Engl 2023; 62:e202307664. [PMID: 37718311 DOI: 10.1002/anie.202307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Protein therapeutics targeting intracellular machineries hold profound potential for disease treatment, and hence robust cytosolic protein delivery technologies are imperatively demanded. Inspired by the super-negatively charged, nucleotide-enriched structure of nucleic acids, adenylated pro-proteins (A-proteins) with dramatically enhanced negative surface charges have been engineered for the first time via facile green synthesis. Then, thymidine-modified polyethyleneimine is developed, which exhibits strong electrostatic attraction, complementary base pairing, and hydrophobic interaction with A-proteins to form salt-resistant nanocomplexes with robust cytosolic delivery efficiencies. The acidic endolysosomal environment enables traceless restoration of the A-proteins and consequently promotes the intracellular release of the native proteins. This strategy shows high efficiency and universality for a variety of proteins with different molecular weights and isoelectric points in mammalian cells. Moreover, it enables highly efficient delivery of CRISPR-Cas9 ribonucleoproteins targeting fusion oncogene EWSR1-FLI1, leading to pronounced anti-tumor efficacy against Ewing sarcoma. This study provides a potent and versatile platform for cytosolic protein delivery and gene editing, and may benefit the development of protein pharmaceuticals.
Collapse
Affiliation(s)
- Xun Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
- Department of Thoracic Cancer, The Second Affiliated Hospital of Soochow University, 215123, Suzhou, Jiangsu, China
| | - Ziyin Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Wei Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yajie Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Qiang Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Ningyu Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yongbing Chen
- Department of Thoracic Cancer, The Second Affiliated Hospital of Soochow University, 215123, Suzhou, Jiangsu, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| |
Collapse
|
22
|
Bao Y, Chen H, Xu Z, Gao J, Jiang L, Xia J. Photo-Responsive Phase-Separating Fluorescent Molecules for Intracellular Protein Delivery. Angew Chem Int Ed Engl 2023; 62:e202307045. [PMID: 37648812 DOI: 10.1002/anie.202307045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Cellular membranes, including the plasma and endosome membranes, are barriers to outside proteins. Various vehicles have been devised to deliver proteins across the plasma membrane, but in many cases, the payload gets trapped in the endosome. Here we designed a photo-responsive phase-separating fluorescent molecule (PPFM) with a molecular weight of 666.8 daltons. The PPFM compound condensates as fluorescent droplets in the aqueous solution by liquid-liquid phase separation (LLPS), which disintegrate upon photoirradiation with a 405 nm light-emitting diode (LED) lamp within 20 min or a 405 nm laser within 3 min. The PPFM coacervates recruit a wide range of peptides and proteins and deliver them into mammalian cells. Photolysis disperses the payload from condensates into the cytosolic space. Altogether, a type of small molecules that are photo-responsive and phase separating are discovered; their coacervates can serve as transmembrane vehicles for intracellular delivery of proteins, whereas photo illumination triggers the cytosolic distribution of the payload.
Collapse
Affiliation(s)
- Yishu Bao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hongfei Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhiyi Xu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiayang Gao
- Center for Cell & Developmental Biology, School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Liwen Jiang
- Center for Cell & Developmental Biology, School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
23
|
Zhao Y, Gan L, Ke D, Chen Q, Fu Y. Mechanisms and research advances in mRNA antibody drug-mediated passive immunotherapy. J Transl Med 2023; 21:693. [PMID: 37794448 PMCID: PMC10552228 DOI: 10.1186/s12967-023-04553-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Antibody technology is widely used in the fields of biomedical and clinical therapies. Nonetheless, the complex in vitro expression of recombinant proteins, long production cycles, and harsh storage conditions have limited their applications in medicine, especially in clinical therapies. Recently, this dilemma has been overcome to a certain extent by the development of mRNA delivery systems, in which antibody-encoding mRNAs are enclosed in nanomaterials and delivered to the body. On entering the cytoplasm, the mRNAs immediately bind to ribosomes and undergo translation and post-translational modifications. This process produces monoclonal or bispecific antibodies that act directly on the patient. Additionally, it eliminates the cumbersome process of in vitro protein expression and extends the half-life of short-lived proteins, which significantly reduces the cost and duration of antibody production. This review focuses on the benefits and drawbacks of mRNA antibodies compared with the traditional in vitro expressed antibodies. In addition, it elucidates the progress of mRNA antibodies in the prevention of infectious diseases and oncology therapy.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China
| | - Linchuan Gan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China
| | - Dangjin Ke
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China.
| | - Yajuan Fu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China.
| |
Collapse
|
24
|
Lu T, Hu X, van Haren MHI, Spruijt E, Huck WTS. Structure-Property Relationships Governing Membrane-Penetrating Behaviour of Complex Coacervates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303138. [PMID: 37218010 DOI: 10.1002/smll.202303138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Complex coacervates are phase-separated liquid droplets composed of oppositely charged multivalent molecules. The unique material properties of the complex coacervate interior favours the sequestration of biomolecules and facilitates reactions. Recently, it is shown that coacervates can be used for direct cytosolic delivery of sequestered biomolecules in living cells. Here, it is studied that the physical properties required for complex coacervates composed of oligo-arginine and RNA to cross phospholipid bilayers and enter liposomes penetration depends on two main parameters: the difference in ζ-potential between the complex coacervates and the liposomes, and the partitioning coefficient (Kp ) of lipids into the complex coacervates. Following these guidelines, a range of complex coacervates is found that is able to penetrate the membrane of living cells, thus paving the way for further development of coacervates as delivery vehicles of therapeutic agents.
Collapse
Affiliation(s)
- Tiemei Lu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, the Netherlands
| | - Xinyu Hu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, the Netherlands
| | - Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, the Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, the Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, the Netherlands
| |
Collapse
|
25
|
Altuntaş E, Özkan B, Güngör S, Özsoy Y. Biopolymer-Based Nanogel Approach in Drug Delivery: Basic Concept and Current Developments. Pharmaceutics 2023; 15:1644. [PMID: 37376092 DOI: 10.3390/pharmaceutics15061644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their increased surface area, extent of swelling and active substance-loading capacity and flexibility, nanogels made from natural and synthetic polymers have gained significant interest in scientific and industrial areas. In particular, the customized design and implementation of nontoxic, biocompatible, and biodegradable micro/nano carriers makes their usage very feasible for a range of biomedical applications, including drug delivery, tissue engineering, and bioimaging. The design and application methodologies of nanogels are outlined in this review. Additionally, the most recent advancements in nanogel biomedical applications are discussed, with particular emphasis on applications for the delivery of drugs and biomolecules.
Collapse
Affiliation(s)
- Ebru Altuntaş
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Burcu Özkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Sevgi Güngör
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Yıldız Özsoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| |
Collapse
|
26
|
Yu Y, Gao Y, He L, Fang B, Ge W, Yang P, Ju Y, Xie X, Lei L. Biomaterial-based gene therapy. MedComm (Beijing) 2023; 4:e259. [PMID: 37284583 PMCID: PMC10239531 DOI: 10.1002/mco2.259] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/08/2023] Open
Abstract
Gene therapy, a medical approach that involves the correction or replacement of defective and abnormal genes, plays an essential role in the treatment of complex and refractory diseases, such as hereditary diseases, cancer, and rheumatic immune diseases. Nucleic acids alone do not easily enter the target cells due to their easy degradation in vivo and the structure of the target cell membranes. The introduction of genes into biological cells is often dependent on gene delivery vectors, such as adenoviral vectors, which are commonly used in gene therapy. However, traditional viral vectors have strong immunogenicity while also presenting a potential infection risk. Recently, biomaterials have attracted attention for use as efficient gene delivery vehicles, because they can avoid the drawbacks associated with viral vectors. Biomaterials can improve the biological stability of nucleic acids and the efficiency of intracellular gene delivery. This review is focused on biomaterial-based delivery systems in gene therapy and disease treatment. Herein, we review the recent developments and modalities of gene therapy. Additionally, we discuss nucleic acid delivery strategies, with a focus on biomaterial-based gene delivery systems. Furthermore, the current applications of biomaterial-based gene therapy are summarized.
Collapse
Affiliation(s)
- Yi Yu
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yijun Gao
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Liming He
- Department of StomatologyChangsha Stomatological HospitalChangshaChina
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Wenhui Ge
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoyan Xie
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
27
|
Taharabaru T, Kihara T, Onodera R, Kogo T, Wen Y, Li J, Motoyama K, Higashi T. Versatile delivery platform for nucleic acids, negatively charged protein drugs, and genome-editing ribonucleoproteins using a multi-step transformable polyrotaxane. Mater Today Bio 2023; 20:100690. [PMID: 37441133 PMCID: PMC10333717 DOI: 10.1016/j.mtbio.2023.100690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023] Open
Abstract
Various biopharmaceuticals, such as nucleic acids, proteins, and genome-editing molecules, have been developed. Generally, carriers are prepared for each biopharmaceutical to deliver it intracellularly; thus, the applications of individual carriers are limited. Moreover, the development of carriers is laborious and expensive. Therefore, in the present study, versatile and universal delivery carriers were developed for various biopharmaceuticals using aminated polyrotaxane libraries. Step-by-step and logical screening revealed that aminated polyrotaxane, including the carbamate bond between the axile molecule and endcap, is suitable as a backbone polymer. Movable and flexible properties of the amino groups modified on polyrotaxane facilitated efficient complexation with various biopharmaceuticals, such as small interfering RNA, antisense oligonucleotides, messenger RNA, β-galactosidase, and genome-editing ribonucleoproteins. Diethylenetriamine and cystamine modifications of polyrotaxane provided endosomal-escape abilities and drug-release properties in the cytosol, allowing higher delivery efficacies than commercially available high-standard carriers without cytotoxicity. Thus, the resulting polyrotaxane might serve as a versatile and universal delivery platform for various biopharmaceuticals.
Collapse
Affiliation(s)
- Toru Taharabaru
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore, 119276, Singapore
| | - Takuya Kihara
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Tetsuya Kogo
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore, 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore, 119276, Singapore
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
28
|
Porello I, Cellesi F. Intracellular delivery of therapeutic proteins. New advancements and future directions. Front Bioeng Biotechnol 2023; 11:1211798. [PMID: 37304137 PMCID: PMC10247999 DOI: 10.3389/fbioe.2023.1211798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Achieving the full potential of therapeutic proteins to access and target intracellular receptors will have enormous benefits in advancing human health and fighting disease. Existing strategies for intracellular protein delivery, such as chemical modification and nanocarrier-based protein delivery approaches, have shown promise but with limited efficiency and safety concerns. The development of more effective and versatile delivery tools is crucial for the safe and effective use of protein drugs. Nanosystems that can trigger endocytosis and endosomal disruption, or directly deliver proteins into the cytosol, are essential for successful therapeutic effects. This article aims to provide a brief overview of the current methods for intracellular protein delivery to mammalian cells, highlighting current challenges, new developments, and future research opportunities.
Collapse
|
29
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
30
|
Haley RM, Chan A, Billingsley MM, Gong N, Padilla MS, Kim EH, Wang HH, Yin D, Wangensteen KJ, Tsourkas A, Mitchell MJ. Lipid Nanoparticle Delivery of Small Proteins for Potent In Vivo RAS Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21877-21892. [PMID: 37115558 PMCID: PMC10727849 DOI: 10.1021/acsami.3c01501] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutated RAS proteins are potent oncogenic drivers and have long been considered "undruggable". While RAS-targeting therapies have recently shown promise, there remains a clinical need for RAS inhibitors with more diverse targets. Small proteins represent a potential new therapeutic option, including K27, a designed ankyrin repeat protein (DARPin) engineered to inhibit RAS. However, K27 functions intracellularly and is incapable of entering the cytosol on its own, currently limiting its utility. To overcome this barrier, we have engineered a lipid nanoparticle (LNP) platform for potent delivery of functional K27-D30─a charge-modified version of the protein─intracellularly in vitro and in vivo. This system efficiently encapsulates charge-modified proteins, facilitates delivery in up to 90% of cells in vitro, and maintains potency after at least 45 days of storage. In vivo, these LNPs deliver K27-D30 to the cytosol of cancerous cells in the liver, inhibiting RAS-driven growth and ultimately reducing tumor load in an HTVI-induced mouse model of hepatocellular carcinoma. This work shows that K27 holds promise as a new cancer therapeutic when delivered using this LNP platform. Furthermore, this technology has the potential to broaden the use of LNPs to include new cargo types─beyond RNA─for diverse therapeutic applications.
Collapse
Affiliation(s)
- Rebecca M. Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexander Chan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Marshall S. Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Emily H. Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania
| | - Hejia Henry Wang
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania
| | - Dingzi Yin
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55902
| | - Kirk J. Wangensteen
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55902
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
31
|
Wyatt J, Chan YK, Hess M, Tavassoli M, Müller MM. Semisynthesis reveals apoptin as a tumour-selective protein prodrug that causes cytoskeletal collapse. Chem Sci 2023; 14:3881-3892. [PMID: 37035694 PMCID: PMC10074440 DOI: 10.1039/d2sc04481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Apoptin is a small viral protein capable of inducing cell death selectively in cancer cells. Despite its potential as an anticancer agent, relatively little is known about its mechanism of toxicity and cancer-selectivity. Previous experiments suggest that cancer-selective phosphorylation modulates apoptin toxicity, although a lack of chemical tools has hampered the dissection of underlying mechanisms. Here, we describe structure-function studies with site-specifically phosphorylated apoptin (apoptin-T108ph) in living cells which revealed that Thr108 phosphorylation is the selectivity switch for apoptin toxicity. Mechanistic investigations link T108ph to actin binding, cytoskeletal disruption and downstream inhibition of anoikis-resistance as well as cancer cell invasion. These results establish apoptin as a protein pro-drug, selectively activated in cancer cells by phosphorylation, which disrupts the cytoskeleton and promotes cell death. We anticipate that this mechanism provides a framework for the design of next generation anticancer proteins with enhanced selectivity and potency.
Collapse
Affiliation(s)
- Jasmine Wyatt
- Department of Molecular Oncology, King's College London Guy's Hospital Campus, Hodgkin Building London SE1 1UL UK
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Yuen Ka Chan
- Department of Molecular Oncology, King's College London Guy's Hospital Campus, Hodgkin Building London SE1 1UL UK
| | - Mateusz Hess
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Mahvash Tavassoli
- Department of Molecular Oncology, King's College London Guy's Hospital Campus, Hodgkin Building London SE1 1UL UK
| | - Manuel M Müller
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
32
|
Jiang T, Gonzalez KM, Cordova LE, Lu J. Nanotechnology-enabled gene delivery for cancer and other genetic diseases. Expert Opin Drug Deliv 2023; 20:523-540. [PMID: 37017558 PMCID: PMC10164135 DOI: 10.1080/17425247.2023.2200246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/04/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION Despite gene therapy is ideal for genetic abnormality-related diseases, the easy degradation, poor targeting, and inefficiency in entering targeted cells are plaguing the effective delivery of gene therapy. Viral and non-viral vectors have been used for delivering gene therapeutics in vivo by safeguarding nucleic acid agents to target cells and to reach the specific intracellular location. A variety of nanotechnology-enabled safe and efficient systems have been successfully developed to improve the targeting ability for effective therapeutic delivery of genetic drugs. AREAS COVERED In this review, we outline the multiple biological barriers associated with gene delivery process, and highlight recent advances to gene therapy strategy in vivo, including gene correction, gene silencing, gene activation and genome editing. We point out current developments and challenges exist of non-viral and viral vector systems in association with chemical and physical gene delivery technologies and their potential for the future. EXPERT OPINION This review focuses on the opportunities and challenges to various gene therapy strategy, with specific emphasis on overcoming the challenges through the development of biocompatibility and smart gene vectors for potential clinical application.
Collapse
Affiliation(s)
- Tong Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Leyla Estrella Cordova
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
- NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona, 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States
| |
Collapse
|
33
|
Rosenkranz AA, Slastnikova TA. Prospects of Using Protein Engineering for Selective Drug Delivery into a Specific Compartment of Target Cells. Pharmaceutics 2023; 15:pharmaceutics15030987. [PMID: 36986848 PMCID: PMC10055131 DOI: 10.3390/pharmaceutics15030987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A large number of proteins are successfully used to treat various diseases. These include natural polypeptide hormones, their synthetic analogues, antibodies, antibody mimetics, enzymes, and other drugs based on them. Many of them are demanded in clinical settings and commercially successful, mainly for cancer treatment. The targets for most of the aforementioned drugs are located at the cell surface. Meanwhile, the vast majority of therapeutic targets, which are usually regulatory macromolecules, are located inside the cell. Traditional low molecular weight drugs freely penetrate all cells, causing side effects in non-target cells. In addition, it is often difficult to elaborate a small molecule that can specifically affect protein interactions. Modern technologies make it possible to obtain proteins capable of interacting with almost any target. However, proteins, like other macromolecules, cannot, as a rule, freely penetrate into the desired cellular compartment. Recent studies allow us to design multifunctional proteins that solve these problems. This review considers the scope of application of such artificial constructs for the targeted delivery of both protein-based and traditional low molecular weight drugs, the obstacles met on the way of their transport to the specified intracellular compartment of the target cells after their systemic bloodstream administration, and the means to overcome those difficulties.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
34
|
Wang R, Li Y, Gao P, Lv J, Cheng Y, Wang H. Piperazine-modified dendrimer achieves efficient intracellular protein delivery via caveolar endocytosis bypassing the endo-lysosomal pathway. Acta Biomater 2023; 158:725-733. [PMID: 36599402 DOI: 10.1016/j.actbio.2022.12.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/02/2023]
Abstract
Intracellular protein delivery has been a major challenge due to various physiological barriers including low proteolytic stability and poor membrane permeability of the biologics. Nanoparticles were widely proposed to deliver cargo proteins into cells by endocytosis, however, the materials and complexes with proteins are often entrapped in endosomes and subject to lysosome degradation. In this study, we report a piperazine modified dendrimer for stabilizing the complexes via a combination of electrostatic interaction and hydrophobic interactions. The complexes show rapid cell internalization and the loaded proteins are released into the cytosols as early as half an hour post incubation. Mechanism study suggests that the complexes are endocytosed into cells via caveolae-based pathways, which could be inhibited by inhibitors such as genistein, filipin III, brefeldin A and nystatin. The phenylpiperazine-modified polymer enables the delivery of cargo proteins with reserved bioactivity and show high permeability in three-dimensional cell spheroids. The results prove the beneficial roles of phenylpiperazine ligands in polymer-mediated cytosolic protein delivery systems. STATEMENT OF SIGNIFICANCE: We synthesized a list of piperazine and derivatives modified dendrimers as cytosolic protein delivery vectors via facile reactions. Phenylpiperazine modification enables the efficient protein binding through the combination of electrostatic, hydrogen bonding and hydrophobic interactions. Phenylpiperazine modified dendrimers were internalized into the cells via a caveolae-based endo/lysosome-independent path and could release the cargo proteins into the cytosols as early as half an hour post incubation. Phenylpiperazine modified dendrimers delivered cargo proteins with reserved bioactivity and showed high permeability in three-dimensional cell spheroids.
Collapse
Affiliation(s)
- Ruijue Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P.R. China
| | - Yuhan Li
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P.R. China
| | - Peng Gao
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P.R. China
| | - Jia Lv
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China.
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P.R. China.
| |
Collapse
|
35
|
Zhang L, Jin M, Pan Y, Yang F, Wu Y, Gao J, Chen T, Tan S, Yang T, Chen Y, Huang J. Sustained release of GLP-1 analog from γ-PGA-PAE copolymers for management of type 2 diabetes. BIOMATERIALS ADVANCES 2023; 148:213352. [PMID: 36867980 DOI: 10.1016/j.bioadv.2023.213352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
GLP-1 has been clinically exploited for treating type 2 diabetes, while its short circulation half-life requires multiple daily injections to maintain effective glycemic control, thus limiting its widespread application. Here we developed a drug delivery system based on self-assembling polymer-amino acid conjugates (γ-PGA-PAE) to provide sustained release of GLP-1 analog (DLG3312). The DLG3312 loaded γ-PGA based nanoparticles (DLG3312@NPs) exhibited a spherical shape with a good monodispersity under transmission electron microscope (TEM) observation. The DLG3312 encapsulation was optimized, and the loading efficiency was as high as 78.4 ± 2.2 %. The transformation of DLG3312@NPs to network structures was observed upon treatment with the fresh serum, resulting in a sustained drug release. The in vivo long-term hypoglycemic assays indicated that DLG3312@NPs significantly reduced blood glucose and glycosylated hemoglobin level. Furthermore, DLG3312@NPs extended the efficacy of DLG3312, leading to a decrease in the dosing schedule that from once a day to once every other day. This approach combined the molecular and materials engineering strategies that offered a unique solution to maximize the availability of anti-diabetic drug and minimize its burdens to type 2 diabetic patients.
Collapse
Affiliation(s)
- Li Zhang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Mingfei Jin
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Yingying Pan
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Fang Yang
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Wu
- Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jianbo Gao
- Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Tao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shiming Tan
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Ting Yang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Yazhou Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, PR China; Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Jing Huang
- School of Life Science, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
36
|
Gouveia MG, Wesseler JP, Ramaekers J, Weder C, Scholten PBV, Bruns N. Polymersome-based protein drug delivery - quo vadis? Chem Soc Rev 2023; 52:728-778. [PMID: 36537575 PMCID: PMC9890519 DOI: 10.1039/d2cs00106c] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Protein-based therapeutics are an attractive alternative to established therapeutic approaches and represent one of the fastest growing families of drugs. While many of these proteins can be delivered using established formulations, the intrinsic sensitivity of proteins to denaturation sometimes calls for a protective carrier to allow administration. Historically, lipid-based self-assembled structures, notably liposomes, have performed this function. After the discovery of polymersome-based targeted drug-delivery systems, which offer manifold advantages over lipid-based structures, the scientific community expected that such systems would take the therapeutic world by storm. However, no polymersome formulations have been commercialised. In this review article, we discuss key obstacles for the sluggish translation of polymersome-based protein nanocarriers into approved pharmaceuticals, which include limitations imparted by the use of non-degradable polymers, the intricacies of polymersome production methods, and the complexity of the in vivo journey of polymersomes across various biological barriers. Considering this complex subject from a polymer chemist's point of view, we highlight key areas that are worthy to explore in order to advance polymersomes to a level at which clinical trials become worthwhile and translation into pharmaceutical and nanomedical applications is realistic.
Collapse
Affiliation(s)
- Micael G Gouveia
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Justus P Wesseler
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Jobbe Ramaekers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Christoph Weder
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Philip B V Scholten
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
37
|
IgG Fc Affinity Ligands and Their Applications in Antibody-Involved Drug Delivery: A Brief Review. Pharmaceutics 2023; 15:pharmaceutics15010187. [PMID: 36678816 PMCID: PMC9862274 DOI: 10.3390/pharmaceutics15010187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Antibodies are not only an important class of biotherapeutic drugs, but also are targeting moieties for achieving active targeting drug delivery. Meanwhile, the rapidly increasing application of antibodies and Fc-fusion proteins has inspired the emerging development of downstream processing technologies. Thus, IgG Fc affinity ligands have come into being and have been widely exploited in antibody purification strategies. Given the high binding affinity and specificity to IgGs, binding stability in physiological medium conditions, and favorable toxicity and immunogenicity profiles, Fc affinity ligands are gradually applied to antibody delivery, non-covalent antibody-drug conjugates or antibody-mediated active-targeted drug delivery systems. In this review, we will briefly introduce IgG affinity ligands that are widely used at present and summarize their diverse applications in the field of antibody-involved drug delivery. The challenges and outlook of these systems are also discussed.
Collapse
|
38
|
Yang Z, Liu B, Huang T, Sun M, Tong li, Duan WJ, Li MM, Chen JX, Dai Z, Chen J. A domino-like localized cascade toehold assembly amplification-based DNA nanowire for microRNA imaging in living cells. Chem Sci 2022; 13:14373-14381. [PMID: 36545151 PMCID: PMC9749110 DOI: 10.1039/d2sc05890a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
High sensitivity and specificity imaging of miRNA in living cells plays an important role in understanding miRNA-related regulation and pathological research. Localized DNA circuits have shown good performance in reaction rate and sensitivity and have been proposed for sensitive imaging of miRNA in living cells. However, most reported localized DNA circuits have a high risk of derailment or a limited loading rate capacity, which hinder their further application. To solve these issues, we herein developed a domino-like localized cascade toehold assembly (LCTA) amplification-based DNA nanowire to achieve highly sensitive and highly specific imaging of miRNAs in living cells by using DNA nanowires as reactant delivery vehicles and confining both reactant probes in a compact space. The LCTA is constructed by interval hybridization of DNA double-stranded probe pairs to a DNA nanowire with multiplex footholds generated by alternating chain hybridization. Due to the localized effect, the LCTA showed high reaction kinetics and sensitivity, and the method could detect miRNAs as low as 51 pM. The LCTA was proven to be able to accurately distinguish the miRNA expression difference between normal cells and cancer cells. In particular, the developed LCTA could be used to construct an OR logic gate to simultaneously image the total amount of multiple miRNAs in living cells. We believe that the developed LCTA can be an effective intracellular nucleic acid imaging tool and can promote the development of nucleic acid-related clinical disease diagnosis and DNA logical sensors.
Collapse
Affiliation(s)
- Zizhong Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou510515P. R. China
| | - Birong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou510515P. R. China
| | - Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou510515P. R. China
| | - Mengxu Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou510515P. R. China
| | - Tong li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou510515P. R. China
| | - Wen-Jun Duan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou510515P. R. China
| | - Min-Min Li
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan UniversityGuangzhou 510632P.R. China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou510515P. R. China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen UniversityShenzhen 518107P. R. China
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou510515P. R. China
| |
Collapse
|
39
|
Kapelner RA, Fisher RS, Elbaum-Garfinkle S, Obermeyer AC. Protein charge parameters that influence stability and cellular internalization of polyelectrolyte complex micelles. Chem Sci 2022; 13:14346-14356. [PMID: 36545145 PMCID: PMC9749388 DOI: 10.1039/d2sc00192f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Proteins are an important class of biologics, but there are several recurring challenges to address when designing protein-based therapeutics. These challenges include: the propensity of proteins to aggregate during formulation, relatively low loading in traditional hydrophobic delivery vehicles, and inefficient cellular uptake. This last criterion is particularly challenging for anionic proteins as they cannot cross the anionic plasma membrane. Here we investigated the complex coacervation of anionic proteins with a block copolymer of opposite charge to form polyelectrolyte complex (PEC) micelles for use as a protein delivery vehicle. Using genetically modified variants of the model protein green fluorescent protein (GFP), we evaluated the role of protein charge and charge localization in the formation and stability of PEC micelles. A neutral-cationic block copolymer, poly(oligoethylene glycol methacrylate-block-quaternized 4-vinylpyridine), POEGMA79-b-qP4VP175, was prepared via RAFT polymerization for complexation and microphase separation with the panel of engineered anionic GFPs. We found that isotropically supercharged proteins formed micelles at higher ionic strength relative to protein variants with charge localized to a polypeptide tag. We then studied GFP delivery by PEC micelles and found that they effectively delivered the protein cargo to mammalian cells. However, cellular delivery varied as a function of protein charge and charge distribution and we found an inverse relationship between the PEC micelle critical salt concentration and delivery efficiency. This model system has highlighted the potential of polyelectrolyte complexes to deliver anionic proteins intracellularly. Using this model system, we have identified requirements for the formation of PEC micelles that are stable at physiological ionic strength and that smaller protein-polyelectrolyte complexes effectively deliver proteins to Jurkat cells.
Collapse
Affiliation(s)
- Rachel A Kapelner
- Department of Chemical Engineering, Columbia University New York NY 10027 USA +1-212-853-1215
| | - Rachel S Fisher
- Department of Chemical Engineering, Columbia University New York NY 10027 USA +1-212-853-1215
- Structural Biology Initiative, CUNY Advanced Science Research Center New York NY USA
| | - Shana Elbaum-Garfinkle
- Structural Biology Initiative, CUNY Advanced Science Research Center New York NY USA
- PhD Programs in Biochemistry and Biology at the Graduate Center, City University of New York NY USA
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University New York NY 10027 USA +1-212-853-1215
| |
Collapse
|
40
|
Chien Y, Hsiao YJ, Chou SJ, Lin TY, Yarmishyn AA, Lai WY, Lee MS, Lin YY, Lin TW, Hwang DK, Lin TC, Chiou SH, Chen SJ, Yang YP. Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. J Nanobiotechnology 2022; 20:511. [DOI: 10.1186/s12951-022-01717-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractInherited Retinal Diseases (IRDs) are considered one of the leading causes of blindness worldwide. However, the majority of them still lack a safe and effective treatment due to their complexity and genetic heterogeneity. Recently, gene therapy is gaining importance as an efficient strategy to address IRDs which were previously considered incurable. The development of the clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has strongly empowered the field of gene therapy. However, successful gene modifications rely on the efficient delivery of CRISPR-Cas9 components into the complex three-dimensional (3D) architecture of the human retinal tissue. Intriguing findings in the field of nanoparticles (NPs) meet all the criteria required for CRISPR-Cas9 delivery and have made a great contribution toward its therapeutic applications. In addition, exploiting induced pluripotent stem cell (iPSC) technology and in vitro 3D retinal organoids paved the way for prospective clinical trials of the CRISPR-Cas9 system in treating IRDs. This review highlights important advances in NP-based gene therapy, the CRISPR-Cas9 system, and iPSC-derived retinal organoids with a focus on IRDs. Collectively, these studies establish a multidisciplinary approach by integrating nanomedicine and stem cell technologies and demonstrate the utility of retina organoids in developing effective therapies for IRDs.
Collapse
|
41
|
Saha A, Mandal S, Arafiles JVV, Gómez‐González J, Hackenberger CPR, Brik A. Structure-Uptake Relationship Study of DABCYL Derivatives Linked to Cyclic Cell-Penetrating Peptides for Live-Cell Delivery of Synthetic Proteins. Angew Chem Int Ed Engl 2022; 61:e202207551. [PMID: 36004945 PMCID: PMC9828537 DOI: 10.1002/anie.202207551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 01/12/2023]
Abstract
Modifying cyclic cell-penetrating deca-arginine (cR10) peptides with 4-(4-dimethylaminophenylazo)benzoic acid (DABCYL) improves the uptake efficiency of synthetic ubiquitin (Ub) cargoes into living cells. To probe the role of the DABCYL moiety, we performed time-lapse microscopy and fluorescence lifetime imaging microscopy (FLIM) of fluorescent DABCYL-R10 to evaluate the impact on cell entry by the formation of nucleation zones. Furthermore, we performed a structure-uptake relationship study with 13 DABCYL derivatives coupled to CPP to examine their effect on the cell-uptake efficiency when conjugated to mono-Ub through disulfide linkages. Our results show that through structure variations of the DABCYL moiety alone we could reach, at nanomolar concentration, an additional threefold increase in the cytosolic delivery of Ub, which will enable studies on various intracellular processes related to Ub signaling.
Collapse
Affiliation(s)
- Abhishek Saha
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Shaswati Mandal
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Jan Vincent V. Arafiles
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 10Berlin13125Germany
| | - Jacobo Gómez‐González
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 10Berlin13125Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 10Berlin13125Germany
- Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Str.2Berlin12489Germany
| | - Ashraf Brik
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| |
Collapse
|
42
|
Cruz LJ, Rezaei S, Grosveld F, Philipsen S, Eich C. Nanoparticles targeting hematopoietic stem and progenitor cells: Multimodal carriers for the treatment of hematological diseases. Front Genome Ed 2022; 4:1030285. [PMID: 36407494 PMCID: PMC9666682 DOI: 10.3389/fgeed.2022.1030285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 10/03/2023] Open
Abstract
Modern-day hematopoietic stem cell (HSC) therapies, such as gene therapy, modify autologous HSCs prior to re-infusion into myelo-conditioned patients and hold great promise for treatment of hematological disorders. While this approach has been successful in numerous clinical trials, it relies on transplantation of ex vivo modified patient HSCs, which presents several limitations. It is a costly and time-consuming procedure, which includes only few patients so far, and ex vivo culturing negatively impacts on the viability and stem cell-properties of HSCs. If viral vectors are used, this carries the additional risk of insertional mutagenesis. A therapy delivered to HSCs in vivo, with minimal disturbance of the HSC niche, could offer great opportunities for novel treatments that aim to reverse disease symptoms for hematopoietic disorders and could bring safe, effective and affordable genetic therapies to all parts of the world. However, substantial unmet needs exist with respect to the in vivo delivery of therapeutics to HSCs. In the last decade, in particular with the development of gene editing technologies such as CRISPR/Cas9, nanoparticles (NPs) have become an emerging platform to facilitate the manipulation of cells and organs. By employing surface modification strategies, different types of NPs can be designed to target specific tissues and cell types in vivo. HSCs are particularly difficult to target due to the lack of unique cell surface markers that can be utilized for cell-specific delivery of therapeutics, and their shielded localization in the bone marrow (BM). Recent advances in NP technology and genetic engineering have resulted in the development of advanced nanocarriers that can deliver therapeutics and imaging agents to hematopoietic stem- and progenitor cells (HSPCs) in the BM niche. In this review we provide a comprehensive overview of NP-based approaches targeting HSPCs to control and monitor HSPC activity in vitro and in vivo, and we discuss the potential of NPs for the treatment of malignant and non-malignant hematological disorders, with a specific focus on the delivery of gene editing tools.
Collapse
Affiliation(s)
- Luis J. Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Somayeh Rezaei
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Grosveld
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, Netherlands
| | - Sjaak Philipsen
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, Netherlands
| | - Christina Eich
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
43
|
Kanu GA, Parambath JBM, Abu Odeh RO, Mohamed AA. Gold Nanoparticle-Mediated Gene Therapy. Cancers (Basel) 2022; 14:5366. [PMID: 36358785 PMCID: PMC9653658 DOI: 10.3390/cancers14215366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Gold nanoparticles (AuNPs) have gained increasing attention as novel drug-delivery nanostructures for the treatment of cancers, infections, inflammations, and other diseases and disorders. They are versatile in design, synthesis, modification, and functionalization. This has many advantages in terms of gene editing and gene silencing, and their application in genetic illnesses. The development of several techniques such as CRISPR/Cas9, TALEN, and ZFNs has raised hopes for the treatment of genetic abnormalities, although more focused experimentation is still needed. AuNPs, however, have been much more effective in trending research on this subject. In this review, we highlight recently well-developed advancements that are relevant to cutting-edge gene therapies, namely gene editing and gene silencing in diseases caused by a single gene in humans by taking an edge of the unique properties of the AuNPs, which will be an important outlook for future research.
Collapse
Affiliation(s)
- Gayathri A. Kanu
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Javad B. M. Parambath
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Raed O. Abu Odeh
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed A. Mohamed
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
44
|
Zhang S, Tan E, Wang R, Gao P, Wang H, Cheng Y. Robust Reversible Cross-Linking Strategy for Intracellular Protein Delivery with Excellent Serum Tolerance. NANO LETTERS 2022; 22:8233-8240. [PMID: 36173109 DOI: 10.1021/acs.nanolett.2c02948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intracellular protein delivery has attracted increasing attentions in biomedical applications. However, current delivery systems usually have poor serum stability due to the competitive binding of serum proteins to the polymers during delivery. Here, we report a reversible cross-linking strategy to improve the serum stability of polymers for robust intracellular protein delivery. In the proposed delivery system, nanoparticles are assembled by cargo proteins and cationic polymers and further stabilized by a glutathione-cleavable and traceless cross-linker. The cross-linked nanoparticles show high stability and efficient cell internalization in serum containing medium and can release the cargo proteins in response to intracellular glutathione and acidic pH in a traceless manner. The generality and versatility of the proposed strategy were demonstrated on different types of cationic polymers, cargo proteins, as well as cell lines. The study provides a facile and efficient method for improving the serum tolerance of cationic polymers in intracellular protein delivery.
Collapse
Affiliation(s)
- Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Echuan Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Ruijue Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Peng Gao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| |
Collapse
|
45
|
Kusmierz CD, Callmann CE, Kudruk S, Distler ME, Mirkin CA. Transferrin Aptamers Increase the In Vivo Blood-Brain Barrier Targeting of Protein Spherical Nucleic Acids. Bioconjug Chem 2022; 33:1803-1810. [PMID: 36194889 PMCID: PMC10424462 DOI: 10.1021/acs.bioconjchem.2c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The systemic delivery of exogenous proteins to cells within the brain and central nervous system (CNS) is challenging due to the selective impermeability of the blood-brain barrier (BBB). Herein, we hypothesized that protein delivery to the brain could be improved via functionalization with DNA aptamers designed to bind transferrin (TfR) receptors present on the endothelial cells that line the BBB. Using β-galactosidase (β-Gal) as a model protein, we synthesized protein spherical nucleic acids (ProSNAs) comprised of β-Gal decorated with TfR aptamers (Transferrin-ProSNAs). The TfR aptamer motif significantly increases the accumulation of β-Gal in brain tissue in vivo following intravenous injection over both the native protein and ProSNAs containing nontargeting DNA sequences. Furthermore, the widespread distribution of β-Gal throughout the brain is only observed for Transferrin-ProSNAs. Together, this work shows that the SNA architecture can be used to selectively deliver protein cargo to the brain and CNS if the appropriate aptamer sequence is employed as the DNA shell. Moreover, this highlights the importance of DNA sequence design and provides a potential new avenue for designing highly targeted protein delivery systems by combining the power of DNA aptamers together with the SNA platform.
Collapse
Affiliation(s)
- Caroline D. Kusmierz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cassandra E. Callmann
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sergej Kudruk
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Max E. Distler
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
46
|
Kubiatowicz LJ, Mohapatra A, Krishnan N, Fang RH, Zhang L. mRNA nanomedicine: Design and recent applications. EXPLORATION (BEIJING, CHINA) 2022; 2:20210217. [PMID: 36249890 PMCID: PMC9539018 DOI: 10.1002/exp.20210217] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022]
Abstract
The rational design and application of mRNA-based medicine have recently yielded some key successes in the clinical management of human diseases. mRNA technology allows for the facile and direct production of proteins in vivo, thus circumventing the need for lengthy drug development cycles and complex production workflows. As such, mRNA formulations can significantly improve upon the biological therapies that have become commonplace in modern medicine. Despite its many advantages, mRNA is inherently fragile and has specific delivery requirements. Leveraging the engineering flexibility of nanobiotechnology, mRNA payloads can be incorporated into nanoformulations such that they do not invoke unwanted immune responses, are targeted to tissues of interest, and can be delivered to the cytosol, resulting in improved safety while enhancing bioactivity. With the rapidly evolving landscape of nanomedicine, novel technologies that are under development have the potential to further improve the clinical utility of mRNA medicine. This review covers the design principles relevant to engineering mRNA-based nanomedicine platforms. It also details the current research on mRNA nanoformulations for addressing viral infections, cancers, and genetic diseases. Given the trends in the field, future mRNA-based nanomedicines have the potential to change how many types of diseases are managed in the clinic.
Collapse
Affiliation(s)
- Luke J. Kubiatowicz
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Animesh Mohapatra
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
47
|
Cheng Z, Li Y, Zhao D, Zhao W, Wu M, Zhang W, Cui Y, Zhang P, Zhang Z. Nanocarriers for intracellular co-delivery of proteins and small-molecule drugs for cancer therapy. Front Bioeng Biotechnol 2022; 10:994655. [PMID: 36147526 PMCID: PMC9485877 DOI: 10.3389/fbioe.2022.994655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In the past few decades, the combination of proteins and small-molecule drugs has made tremendous progress in cancer treatment, but it is still not satisfactory. Because there are great differences in molecular weight, water solubility, stability, pharmacokinetics, biodistribution, and the ways of release and action between macromolecular proteins and small-molecule drugs. To improve the efficacy and safety of tumor treatment, people are committed to developing protein and drug co-delivery systems. Currently, intracellular co-delivery systems have been developed that integrate proteins and small-molecule drugs into one nanocarrier via various loading strategies. These systems significantly improve the blood stability, half-life, and biodistribution of proteins and small-molecule drugs, thus increasing their concentration in tumors. Furthermore, proteins and small-molecule drugs within these systems can be specifically targeted to tumor cells, and are released to perform functions after entering tumor cells simultaneously, resulting in improved effectiveness and safety of tumor treatment. This review summarizes the latest progress in protein and small-molecule drug intracellular co-delivery systems, with emphasis on the composition of nanocarriers, as well as on the loading methods of proteins and small-molecule drugs that play a role in cells into the systems, which have not been summarized by others so far.
Collapse
Affiliation(s)
- Zhihong Cheng
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yongshuang Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meng Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Weilin Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Cui
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
48
|
Gastrointestinal Tract Stabilized Protein Delivery Using Disulfide Thermostable Exoshell System. Int J Mol Sci 2022; 23:ijms23179856. [PMID: 36077259 PMCID: PMC9456531 DOI: 10.3390/ijms23179856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Thermostable exoshells (tES) are engineered proteinaceous nanoparticles used for the rapid encapsulation of therapeutic proteins/enzymes, whereby the nanoplatform protects the payload from proteases and other denaturants. Given the significance of oral delivery as the preferred model for drug administration, we structurally improved the stability of tES through multiple inter-subunit disulfide linkages that were initially absent in the parent molecule. The disulfide-linked tES, as compared to tES, significantly stabilized the activity of encapsulated horseradish peroxidase (HRP) at acidic pH and against the primary human digestive enzymes, pepsin, and trypsin. Furthermore, the disulfide-linked tES (DS-tES) exhibited significant intestinal permeability as evaluated using Caco2 cells. In vivo bioluminescence assay showed that encapsulated Renilla luciferase (rluc) was ~3 times more stable in mice compared to the free enzyme. DS-tES collected mice feces had ~100 times more active enzyme in comparison to the control (free enzyme) after 24 h of oral administration, demonstrating strong intestinal stability. Taken together, the in vitro and in vivo results demonstrate the potential of DS-tES for intraluminal and systemic oral drug delivery applications.
Collapse
|
49
|
Truong TT, Hayn M, Frich CK, Olari L, Ladefoged LK, Jarlstad Olesen MT, Jakobsen JH, Lunabjerg‐Vestergaard CK, Schiøtt B, Münch J, Zelikin AN. Potentiation of Drug Toxicity Through Virus Latency Reversal Promotes Preferential Elimination of HIV Infected Cells. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thanh Tung Truong
- Department of Chemistry Aarhus University Langelandsgade 140 Aarhus C 8000 Denmark
| | - Manuel Hayn
- Institute of Molecular Virology Ulm University Medical Center 89081 Ulm Germany
| | - Camilla Kaas Frich
- Department of Chemistry Aarhus University Langelandsgade 140 Aarhus C 8000 Denmark
| | - Lia‐Raluca Olari
- Institute of Molecular Virology Ulm University Medical Center 89081 Ulm Germany
| | | | | | - Josefine H. Jakobsen
- Department of Chemistry Aarhus University Langelandsgade 140 Aarhus C 8000 Denmark
| | | | - Birgit Schiøtt
- Department of Chemistry Aarhus University Langelandsgade 140 Aarhus C 8000 Denmark
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus 8000 Denmark
| | - Jan Münch
- Institute of Molecular Virology Ulm University Medical Center 89081 Ulm Germany
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus 8000 Denmark
| | - Alexander N. Zelikin
- Department of Chemistry Aarhus University Langelandsgade 140 Aarhus C 8000 Denmark
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus 8000 Denmark
| |
Collapse
|
50
|
Chen P, Yang W, Hong T, Miyazaki T, Dirisala A, Kataoka K, Cabral H. Nanocarriers escaping from hyperacidified endo/lysosomes in cancer cells allow tumor-targeted intracellular delivery of antibodies to therapeutically inhibit c-MYC. Biomaterials 2022; 288:121748. [PMID: 36038419 DOI: 10.1016/j.biomaterials.2022.121748] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Intracellular protein delivery is a powerful strategy for developing innovative therapeutics. Nanocarriers present great potential to deliver proteins inside cells by promoting cellular uptake and overcoming entrapment and degradation in acidic endo/lysosomal compartments. Thus, because cytosolic access is essential for eliciting the function of proteins, significant efforts have been dedicated to engineering nanocarriers with maximal endosomal escape regardless of the cell type. On the other hand, controlling the ability of nanocarriers to escape from the endo/lysosomal compartments of particular cells may offer the opportunity for enhancing delivery precision. To test this hypothesis, we developed pH-sensitive polymeric nanocarriers with adjustable endosomal escape potency for selectively reaching the cytosol of defined cancer cells with dysregulated endo/lysosomal acidification. By loading antibodies against nuclear pore complex in the nanocarriers, we demonstrated the selective delivery into the cytosol and subsequent nucleus targeting of cancer cells rather than non-cancerous cells both in vitro and in vivo. Systemically injected nanocarriers loading anti-c-MYC antibodies suppressed c-MYC in solid tumors and inhibit tumor growth without side effects, confirming the therapeutic potential of our approach. These results indicated that regulating the ability of nanocarriers to escape from endo/lysosomal compartments in particular cells is a practical approach for gaining delivery specificity.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Wenqian Yang
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taehun Hong
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takuya Miyazaki
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina City, Kanagawa, 243-0435, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|