1
|
McKenzie SD, Puthiyaveetil S. Protein phosphorylation and oxidative protein modification promote plant photosystem II disassembly for repair. PLANT COMMUNICATIONS 2025; 6:101202. [PMID: 39639769 PMCID: PMC11956111 DOI: 10.1016/j.xplc.2024.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
The light-driven water-splitting reaction of photosystem II exposes its key reaction center core protein subunits to irreversible oxidative photodamage. A rapid repair cycle replaces the photodamaged core subunits in plants, but how the large antenna-core supercomplex structures of plant photosystem II disassemble for repair is not currently understood. Here, we report the specific involvement of phosphorylation in removal of the peripheral antenna from the core and monomerization of the dimeric cores. However, monomeric cores disassemble further into smaller subcomplexes, even in the absence of phosphorylation, suggesting that there are other unknown mechanisms of disassembly. In this regard, we show that oxidative modifications of amino acids in core protein subunits of photosystem II are active mediators of monomeric core disassembly. Oxidative modifications thus likely disassemble only the damaged monomeric cores, ensuring an economical photosystem disassembly process. Taken together, our results suggest that phosphorylation and oxidative modification play distinct roles in photosystem II disassembly and repair.
Collapse
Affiliation(s)
- Steven D McKenzie
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Xu J, Chen L, Wang S, Zhang W, Liang J, Ran L, Deng Z, Zhou Y. Chemoproteomic Profiling Reveals Chlorogenic Acid as a Covalent Inhibitor of Arabidopsis Dehydroascorbate Reductase 1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:908-918. [PMID: 39704675 DOI: 10.1021/acs.jafc.4c07955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Chlorogenic acid (CA) is an abundant plant secondary metabolite with promising allelopathic effects on weed growth. However, the molecular targets and mechanism of action of CA in plants remain elusive. Here, we report the employment of a clickable photoaffinity probe in identifying the protein targets of CA in Arabidopsis seedling proteomes. CA specifically binds Arabidopsis dehydroascorbate reductase 1 (AtDHAR1), an enzyme responsible for ascorbate regeneration in plants, by covalent alkylating Cys20 within the catalytic center, thereby inhibiting its activity. In vivo application of CA reduced the pool size and redox state of ascorbate, leading to H2O2 accumulation in Arabidopsis seedlings. In agreement with these results, CA significantly induced the upregulation of antioxidant enzymes and downregulation of proteins involved in water transport and photosynthesis, as evidenced by quantitative proteomics. Taken together, this study revealed DHAR1 as a functional target underlying CA's allelopathic activity in plants, which opens new opportunities for the development of novel herbicides from naturally existing resources.
Collapse
Affiliation(s)
- Jingyuan Xu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Lijun Chen
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Shanshan Wang
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wen Zhang
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jianjia Liang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Lu Ran
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Calderon RH, de Vitry C, Wollman FA, Niyogi KK. Rubredoxin 1 promotes the proper folding of D1 and is not required for heme b 559 assembly in Chlamydomonas photosystem II. J Biol Chem 2023; 299:102968. [PMID: 36736898 PMCID: PMC9986647 DOI: 10.1016/j.jbc.2023.102968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Photosystem II (PSII), the water:plastoquinone oxidoreductase of oxygenic photosynthesis, contains a heme b559 iron whose axial ligands are provided by histidine residues from the α (PsbE) and β (PsbF) subunits. PSII assembly depends on accessory proteins that facilitate the step-wise association of its protein and pigment components into a functional complex, a process that is challenging to study due to the low accumulation of assembly intermediates. Here, we examined the putative role of the iron[1Fe-0S]-containing protein rubredoxin 1 (RBD1) as an assembly factor for cytochrome b559, using the RBD1-lacking 2pac mutant from Chlamydomonas reinhardtii, in which the accumulation of PSII was rescued by the inactivation of the thylakoid membrane FtsH protease. To this end, we constructed the double mutant 2pac ftsh1-1, which harbored PSII dimers that sustained its photoautotrophic growth. We purified PSII from the 2pac ftsh1-1 background and found that α and β cytochrome b559 subunits are still present and coordinate heme b559 as in the WT. Interestingly, immunoblot analysis of dark- and low light-grown 2pac ftsh1-1 showed the accumulation of a 23-kDa fragment of the D1 protein, a marker typically associated with structural changes resulting from photodamage of PSII. Its cleavage occurs in the vicinity of a nonheme iron which binds to PSII on its electron acceptor side. Altogether, our findings demonstrate that RBD1 is not required for heme b559 assembly and point to a role for RBD1 in promoting the proper folding of D1, possibly via delivery or reduction of the nonheme iron during PSII assembly.
Collapse
Affiliation(s)
- Robert H Calderon
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| |
Collapse
|
4
|
Ezequiel J, Nitschke MR, Laviale M, Serôdio J, Frommlet JC. Concurrent bioimaging of microalgal photophysiology and oxidative stress. PHOTOSYNTHESIS RESEARCH 2023; 155:177-190. [PMID: 36463555 DOI: 10.1007/s11120-022-00989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The production of reactive oxygen species (ROS) is an unavoidable consequence of oxygenic photosynthesis and represents a major cause of oxidative stress in phototrophs, having detrimental effects on the photosynthetic apparatus, limiting cell growth, and productivity. Several methods have been developed for the quantification of cellular ROS, however, most are invasive, requiring the destruction of the sample. Here, we present a new methodology that allows the concurrent quantification of ROS and photosynthetic activity, using the fluorochrome dichlorofluorescein (DCF) and in vivo chlorophyll a fluorescence, respectively. Both types of fluorescence were measured using an imaging Pulse Amplitude Modulation (PAM) fluorometer, modified by adding a UVA-excitation light source (385 nm) and a green bandpass emission filter (530 nm) to enable the sequential capture of red chlorophyll fluorescence and green DCF fluorescence in the same sample. The method was established on Phaeodactylum tricornutum Bohlin, an important marine model diatom species, by determining protocol conditions that permitted the detection of ROS without impacting photosynthetic activity. The utility of the method was validated by quantifying the effects of two herbicides (DCMU and methyl viologen) on the photosynthetic activity and ROS production in P. tricornutum and of light acclimation state in Navicula cf. recens Lange-Bertalot, a common benthic diatom. The developed method is rapid and non-destructive, allowing for the high-throughput screening of multiple samples over time.
Collapse
Affiliation(s)
- João Ezequiel
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- RAIZ - Forest and Paper Research Institute, Quinta de S. Francisco, Apartado 15, 3801-501, Eixo, Portugal
| | - Matthew R Nitschke
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- School of Biological Sciences , Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Martin Laviale
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | - João Serôdio
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Jörg C Frommlet
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
5
|
Singh G, Goldberg S, Schaefer D, Zhang F, Sharma S, Mishra V, Xu J. Biochemical, gas exchange, and chlorophyll fluorescence analysis of maize genotypes under drought stress reveals important insights into their interaction and homeostasis. PHOTOSYNTHETICA 2022; 60:376-388. [PMID: 39650104 PMCID: PMC11558602 DOI: 10.32615/ps.2022.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/25/2022] [Indexed: 12/11/2024]
Abstract
Many studies have been conducted on maize to study the effect of drought on yield at the flowering stage, but understanding biochemical and photosynthetic response against drought at the seedling stage needs to be well established. Thus, to understand differential changes and interaction of biochemical and photosynthetic parameters at the seedling stage under drought, a greenhouse experiment with twelve maize genotypes under severe drought (30% field capacity) and irrigated (90-100% field capacity) conditions were performed. Drought differentially altered biochemical and photosynthetic parameters in all genotypes. A sharp increase in hydrogen peroxide, malondialdehyde (MDA), and total antioxidant capacity (TAOC) were seen and a positive association between H2O2 and TAOC, and MDA and transpiration rate (E) was observed under drought. Nonphotochemical quenching increased under drought to avoid the photosystem damage. PCA biplot analysis showed that reducing E and increasing photosynthetic efficiency would be a better drought adaptation mechanism in maize at the seedling stage.
Collapse
Affiliation(s)
- G.M. Singh
- MARA-CABI Joint Laboratory for Biosafety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, 650201 Kunming, Yunnan, China
| | - S. Goldberg
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, 650201 Kunming, Yunnan, China
- East and Central Asia Regional Office, World Agroforestry, 650201 Kunming, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - D. Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, 650201 Kunming, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - F. Zhang
- MARA-CABI Joint Laboratory for Biosafety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, 734000 Gansu, China
| | - S. Sharma
- Department of Genetics and Plant Breeding, Banaras Hindu University, 221005 Varanasi, India
| | - V.K. Mishra
- Department of Genetics and Plant Breeding, Banaras Hindu University, 221005 Varanasi, India
| | - J. Xu
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, 650201 Kunming, Yunnan, China
- East and Central Asia Regional Office, World Agroforestry, 650201 Kunming, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| |
Collapse
|
6
|
Weliwatte NS, Grattieri M, Minteer SD. Rational design of artificial redox-mediating systems toward upgrading photobioelectrocatalysis. Photochem Photobiol Sci 2021; 20:1333-1356. [PMID: 34550560 PMCID: PMC8455808 DOI: 10.1007/s43630-021-00099-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Photobioelectrocatalysis has recently attracted particular research interest owing to the possibility to achieve sunlight-driven biosynthesis, biosensing, power generation, and other niche applications. However, physiological incompatibilities between biohybrid components lead to poor electrical contact at the biotic-biotic and biotic-abiotic interfaces. Establishing an electrochemical communication between these different interfaces, particularly the biocatalyst-electrode interface, is critical for the performance of the photobioelectrocatalytic system. While different artificial redox mediating approaches spanning across interdisciplinary research fields have been developed in order to electrically wire biohybrid components during bioelectrocatalysis, a systematic understanding on physicochemical modulation of artificial redox mediators is further required. Herein, we review and discuss the use of diffusible redox mediators and redox polymer-based approaches in artificial redox-mediating systems, with a focus on photobioelectrocatalysis. The future possibilities of artificial redox mediator system designs are also discussed within the purview of present needs and existing research breadth.
Collapse
Affiliation(s)
- N Samali Weliwatte
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Matteo Grattieri
- Dipartimento Di Chimica, Università Degli Studi Di Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
- IPCF-CNR Istituto Per I Processi Chimico Fisici, Consiglio Nazionale Delle Ricerche, Via E. Orabona 4, 70125, Bari, Italy.
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
7
|
Yoshikawa K, Ogawa K, Toya Y, Akimoto S, Matsuda F, Shimizu H. Mutations in hik26 and slr1916 lead to high-light stress tolerance in Synechocystis sp. PCC6803. Commun Biol 2021; 4:343. [PMID: 33727624 PMCID: PMC7966805 DOI: 10.1038/s42003-021-01875-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Increased tolerance to light stress in cyanobacteria is a desirable feature for their applications. Here, we obtained a high light tolerant (Tol) strain of Synechocystis sp. PCC6803 through an adaptive laboratory evolution, in which the cells were repeatedly sub-cultured for 52 days under high light stress conditions (7000 to 9000 μmol m-2 s-1). Although the growth of the parental strain almost stopped when exposed to 9000 μmol m-2 s-1, no growth inhibition was observed in the Tol strain. Excitation-energy flow was affected because of photosystem II damage in the parental strain under high light conditions, whereas the damage was alleviated and normal energy flow was maintained in the Tol strain. The transcriptome data indicated an increase in isiA expression in the Tol strain under high light conditions. Whole genome sequence analysis and reverse engineering revealed two mutations in hik26 and slr1916 involved in high light stress tolerance in the Tol strain.
Collapse
Affiliation(s)
- Katsunori Yoshikawa
- grid.136593.b0000 0004 0373 3971Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka Japan
| | - Kenichi Ogawa
- grid.136593.b0000 0004 0373 3971Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka Japan
| | - Yoshihiro Toya
- grid.136593.b0000 0004 0373 3971Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka Japan
| | - Seiji Akimoto
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Hyogo Japan
| | - Fumio Matsuda
- grid.136593.b0000 0004 0373 3971Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka Japan
| | - Hiroshi Shimizu
- grid.136593.b0000 0004 0373 3971Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka Japan
| |
Collapse
|
8
|
Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E. Oxygen and ROS in Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E91. [PMID: 31936893 PMCID: PMC7020446 DOI: 10.3390/plants9010091] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Oxygen is a natural acceptor of electrons in the respiratory pathway of aerobic organisms and in many other biochemical reactions. Aerobic metabolism is always associated with the formation of reactive oxygen species (ROS). ROS may damage biomolecules but are also involved in regulatory functions of photosynthetic organisms. This review presents the main properties of ROS, the formation of ROS in the photosynthetic electron transport chain and in the stroma of chloroplasts, and ROS scavenging systems of thylakoid membrane and stroma. Effects of ROS on the photosynthetic apparatus and their roles in redox signaling are discussed.
Collapse
Affiliation(s)
| | | | | | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland or (S.K.); (V.H.); (H.M.)
| |
Collapse
|
9
|
D1:Glu244 and D1:Tyr246 of the bicarbonate-binding environment of Photosystem II moderate high light susceptibility and electron transfer through the quinone-Fe-acceptor complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148054. [DOI: 10.1016/j.bbabio.2019.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/29/2022]
|
10
|
Liu J, Lu Y, Hua W, Last RL. A New Light on Photosystem II Maintenance in Oxygenic Photosynthesis. FRONTIERS IN PLANT SCIENCE 2019; 10:975. [PMID: 31417592 PMCID: PMC6685048 DOI: 10.3389/fpls.2019.00975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/11/2019] [Indexed: 05/19/2023]
Abstract
Life on earth is sustained by oxygenic photosynthesis, a process that converts solar energy, carbon dioxide, and water into chemical energy and biomass. Sunlight is essential for growth and productivity of photosynthetic organisms. However, exposure to an excessive amount of light adversely affects fitness due to photooxidative damage to the photosynthetic machinery, primarily to the reaction center of the oxygen-evolving photosystem II (PSII). Photosynthetic organisms have evolved diverse photoprotective and adaptive strategies to avoid, alleviate, and repair PSII damage caused by high-irradiance or fluctuating light. Rapid and harmless dissipation of excess absorbed light within antenna as heat, which is measured by chlorophyll fluorescence as non-photochemical quenching (NPQ), constitutes one of the most efficient protective strategies. In parallel, an elaborate repair system represents another efficient strategy to maintain PSII reaction centers in active states. This article reviews both the reaction center-based strategy for robust repair of photodamaged PSII and the antenna-based strategy for swift control of PSII light-harvesting (NPQ). We discuss evolutionarily and mechanistically diverse strategies used by photosynthetic organisms to maintain PSII function for growth and productivity under static high-irradiance light or fluctuating light environments. Knowledge of mechanisms underlying PSII maintenance would facilitate bioengineering photosynthesis to enhance agricultural productivity and sustainability to feed a growing world population amidst climate change.
Collapse
Affiliation(s)
- Jun Liu
- Department of Functional Genomics and Molecular Biology, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- *Correspondence: Jun Liu,
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Wei Hua
- Department of Functional Genomics and Molecular Biology, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Wei Hua
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Kato S, Soshino M, Takaichi S, Ishikawa T, Nagata N, Asahina M, Shinomura T. Suppression of the phytoene synthase gene (EgcrtB) alters carotenoid content and intracellular structure of Euglena gracilis. BMC PLANT BIOLOGY 2017; 17:125. [PMID: 28716091 PMCID: PMC5513367 DOI: 10.1186/s12870-017-1066-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/23/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Photosynthetic organisms utilize carotenoids for photoprotection as well as light harvesting. Our previous study revealed that high-intensity light increases the expression of the gene for phytoene synthase (EgcrtB) in Euglena gracilis (a unicellular phytoflagellate), the encoded enzyme catalyzes the first committed step of the carotenoid biosynthesis pathway. To examine carotenoid synthesis of E. gracilis in response to light stress, we analyzed carotenoid species and content in cells grown under various light intensities. In addition, we investigated the effect of suppressing EgcrtB with RNA interference (RNAi) on growth and carotenoid content. RESULTS After cultivation for 7 days under continuous light at 920 μmol m-2 s-1, β-carotene, diadinoxanthin (Ddx), and diatoxanthin (Dtx) content in cells was significantly increased compared with standard light intensity (55 μmol m-2 s-1). The high-intensity light (920 μmol m-2 s-1) increased the pool size of diadinoxanthin cycle pigments (i.e., Ddx + Dtx) by 1.2-fold and the Dtx/Ddx ratio from 0.05 (control) to 0.09. In contrast, the higher-intensity light treatment caused a 58% decrease in chlorophyll (a + b) content and diminished the number of thylakoid membranes in chloroplasts by approximately half compared with control cells, suggesting that the high-intensity light-induced accumulation of carotenoids is associated with an increase in both the number and size of lipid globules in chloroplasts and the cytoplasm. Transient suppression of EgcrtB in this alga by RNAi resulted in significant decreases in cell number, chlorophyll, and total major carotenoid content by 82, 82 and 86%, respectively, relative to non-electroporated cells. Furthermore, suppression of EgcrtB decreased the number of chloroplasts and thylakoid membranes and increased the Dtx/Ddx ratio by 1.6-fold under continuous illumination even at the standard light intensity, indicating that blocking carotenoid synthesis increased the susceptibility of cells to light stress. CONCLUSIONS Our results indicate that suppression of EgcrtB causes a significant decrease in carotenoid and chlorophyll content in E. gracilis accompanied by changes in intracellular structures, suggesting that Dtx (de-epoxidized form of diadinoxanthin cycle pigments) contributes to photoprotection of this alga during the long-term acclimation to light-induced stress.
Collapse
Affiliation(s)
- Shota Kato
- Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551 Japan
- Plant Molecular and Cellular Biology Laboratory, Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551 Japan
| | - Mika Soshino
- Plant Molecular and Cellular Biology Laboratory, Graduate School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551 Japan
| | - Shinichi Takaichi
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023 Japan
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502 Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| | - Noriko Nagata
- Faculty of Science, Japan Women’s University, Bunkyo-ku, Tokyo, 112-8681 Japan
| | - Masashi Asahina
- Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551 Japan
| | - Tomoko Shinomura
- Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551 Japan
- Plant Molecular and Cellular Biology Laboratory, Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551 Japan
| |
Collapse
|
12
|
Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II. Proc Natl Acad Sci U S A 2017; 114:2988-2993. [PMID: 28265052 DOI: 10.1073/pnas.1618922114] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Photosystem II reaction center is vulnerable to photoinhibition. The D1 and D2 proteins, lying at the core of the photosystem, are susceptible to oxidative modification by reactive oxygen species that are formed by the photosystem during illumination. Using spin probes and EPR spectroscopy, we have determined that both O2•- and HO• are involved in the photoinhibitory process. Using tandem mass spectroscopy, we have identified a number of oxidatively modified D1 and D2 residues. Our analysis indicates that these oxidative modifications are associated with formation of HO• at both the Mn4O5Ca cluster and the nonheme iron. Additionally, O2•- appears to be formed by the reduction of O2 at either PheoD1 or QA Early oxidation of D1:332H, which is coordinated with the Mn1 of the Mn4O5Ca cluster, appears to initiate a cascade of oxidative events that lead to the oxidative modification of numerous residues in the C termini of the D1 and D2 proteins on the donor side of the photosystem. Oxidation of D2:244Y, which is a bicarbonate ligand for the nonheme iron, induces the propagation of oxidative reactions in residues of the D-de loop of the D2 protein on the electron acceptor side of the photosystem. Finally, D1:130E and D2:246M are oxidatively modified by O2•- formed by the reduction of O2 either by PheoD1•- or QA•- The identification of specific amino acid residues oxidized by reactive oxygen species provides insights into the mechanism of damage to the D1 and D2 proteins under light stress.
Collapse
|
13
|
Pospíšil P, Yamamoto Y. Damage to photosystem II by lipid peroxidation products. Biochim Biophys Acta Gen Subj 2017; 1861:457-466. [DOI: 10.1016/j.bbagen.2016.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 11/16/2022]
|
14
|
Fan DY, Ye ZP, Wang SC, Chow WS. Multiple roles of oxygen in the photoinactivation and dynamic repair of Photosystem II in spinach leaves. PHOTOSYNTHESIS RESEARCH 2016; 127:307-319. [PMID: 26297354 DOI: 10.1007/s11120-015-0185-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/13/2015] [Indexed: 06/04/2023]
Abstract
Oxygen effects have long been ambiguous: exacerbating, being indifferent to, or ameliorating the net photoinactivation of Photosystem II (PS II). We scrutinized the time course of PS II photoinactivation (characterized by rate coefficient k i) in the absence of repair, or when recovery (characterized by k r) occurred simultaneously in CO2 ± O2. Oxygen exacerbated photoinactivation per se, but alleviated it by mediating the utilization of electrons. With repair permitted, the gradual net loss of functional PS II during illumination of leaves was better described phenomenologically by introducing τ, the time for an initial k r to decrease by half. At 1500 μmol photons m(-2) s(-1), oxygen decreased the initial k r but increased τ. Similarly, at even higher irradiance in air, there was a further decrease in the initial k r and increase in τ. These observations are consistent with an empirical model that (1) oxygen increased k i via oxidative stress but decreased it by mediating the utilization of electrons; and (2) reactive oxygen species stimulated the degradation of photodamaged D1 protein in PS II (characterized by k d), but inhibited the de novo synthesis of D1 (characterized by k s), and that the balance between these effects determines the net effect of O2 on PS II functionality.
Collapse
Affiliation(s)
- Da-Yong Fan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| | - Zi-Piao Ye
- School of Life Sciences, Jinggangshan University, Ji'an, 343009, China
- College of Mathematics and Physics, Jinggangshan University, Ji'an, 343009, China
| | - Shi-Chang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia.
| |
Collapse
|
15
|
Ding S, Jiang R, Lu Q, Wen X, Lu C. Glutathione reductase 2 maintains the function of photosystem II in Arabidopsis under excess light. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:665-77. [PMID: 26906429 DOI: 10.1016/j.bbabio.2016.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/28/2016] [Accepted: 02/19/2016] [Indexed: 12/18/2022]
Abstract
Glutathione reductase plays a crucial role in the elimination of H(2)O(2) molecules via the ascorbate-glutathione cycle. In this study, we used transgenic Arabidopsis plants with decreased glutathione reductase 2 (GR2) levels to investigate whether this GR2 activity protects the photosynthetic machinery under excess light. The transgenic plants were highly sensitive to excess light and accumulated high levels of H(2)O(2). Photosystem II (PSII) activity was significantly decreased in transgenic plants. Flash-induced fluorescence relaxation and thermoluminescence measurements demonstrated inhibition of electron transfer between Q(A) and Q(B) and decreased redox potential of Q(B) in transgenic plants. Immunoblot and blue native gel analysis showed that the levels of PSII proteins and PSII complexes were decreased in transgenic plants. Analyses of the repair of photodamaged PSII and in vivo pulse labeling of thylakoid proteins showed that the repair of photodamaged PSII is inhibited due to the inhibition of the synthesis of the D1 protein de novo in transgenic plants. Taken together, our results suggest that under excess light conditions, GR2 plays an important role in maintaining both the function of the acceptor side of PSII and the repair of photodamaged PSII by preventing the accumulation of H(2)O(2). In addition, our results provide details of the role of H(2)O(2) in vivo accumulation in photoinhibition in plants.
Collapse
Affiliation(s)
- Shunhua Ding
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rui Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingtao Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
16
|
Gururani MA, Venkatesh J, Tran LSP. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition. MOLECULAR PLANT 2015; 8:1304-20. [PMID: 25997389 DOI: 10.1016/j.molp.2015.05.005] [Citation(s) in RCA: 392] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 05/18/2023]
Abstract
Plants as sessile organisms are continuously exposed to abiotic stress conditions that impose numerous detrimental effects and cause tremendous loss of yield. Abiotic stresses, including high sunlight, confer serious damage on the photosynthetic machinery of plants. Photosystem II (PSII) is one of the most susceptible components of the photosynthetic machinery that bears the brunt of abiotic stress. In addition to the generation of reactive oxygen species (ROS) by abiotic stress, ROS can also result from the absorption of excessive sunlight by the light-harvesting complex. ROS can damage the photosynthetic apparatus, particularly PSII, resulting in photoinhibition due to an imbalance in the photosynthetic redox signaling pathways and the inhibition of PSII repair. Designing plants with improved abiotic stress tolerance will require a comprehensive understanding of ROS signaling and the regulatory functions of various components, including protein kinases, transcription factors, and phytohormones, in the responses of photosynthetic machinery to abiotic stress. Bioenergetics approaches, such as chlorophyll a transient kinetics analysis, have facilitated our understanding of plant vitality and the assessment of PSII efficiency under adverse environmental conditions. This review discusses the current understanding and indicates potential areas of further studies on the regulation of the photosynthetic machinery under abiotic stress.
Collapse
Affiliation(s)
| | - Jelli Venkatesh
- Department of Bioresource and Food Science, Konkuk University, Seoul 143-701, Korea
| | - Lam Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
17
|
Simultaneous measurements of photocurrents and H2O2 evolution from solvent exposed photosystem 2 complexes. Biointerphases 2015; 11:019001. [PMID: 26700470 DOI: 10.1116/1.4938090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In plants, algae, and cyanobacteria, photosystem 2 (PS2) catalyzes the light driven oxidation of water. The main products of this reaction are protons and molecular oxygen. In vitro, however, it was demonstrated that reactive oxygen species like hydrogen peroxide are obtained as partially reduced side products. The transition from oxygen to hydrogen peroxide evolution might be induced by light triggered degradation of PS2's active center. Herein, the authors propose an analytical approach to investigate light induced bioelectrocatalytic processes such as PS2 catalyzed water splitting. By combining chronoamperometry and fluorescence microscopy, the authors can simultaneously monitor the photocurrent and the hydrogen peroxide evolution of light activated, solvent exposed PS2 complexes, which have been immobilized on a functionalized gold electrode. The authors show that under limited electron mediation PS2 displays a lower photostability that correlates with an enhanced H2O2 generation as a side product of the light induced water oxidation.
Collapse
|
18
|
Yaakoubi H, Hamdani S, Bekalé L, Carpentier R. Protective action of spermine and spermidine against photoinhibition of photosystem I in isolated thylakoid membranes. PLoS One 2014; 9:e112893. [PMID: 25420109 PMCID: PMC4242612 DOI: 10.1371/journal.pone.0112893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022] Open
Abstract
The photo-stability of photosystem I (PSI) is of high importance for the photosynthetic processes. For this reason, we studied the protective action of two biogenic polyamines (PAs) spermine (Spm) and spermidine (Spd) on PSI activity in isolated thylakoid membranes subjected to photoinhibition. Our results show that pre-loading thylakoid membranes with Spm and Spd reduced considerably the inhibition of O2 uptake rates, P700 photooxidation and the accumulation of superoxide anions (O2(-)) induced by light stress. Spm seems to be more effective than Spd in preserving PSI photo-stability. The correlation of the extent of PSI protection, photosystem II (PSII) inhibition and O2(-) generation with increasing Spm doses revealed that PSI photo-protection is assumed by two mechanisms depending on the PAs concentration. Given their antioxidant character, PAs scavenge directly the O2(-) generated in thylakoid membranes at physiological concentration (1 mM). However, for non-physiological concentration, the ability of PAs to protect PSI is due to their inhibitory effect on PSII electron transfer.
Collapse
Affiliation(s)
- Hnia Yaakoubi
- Groupe de Recherche en Biologie-Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Saber Hamdani
- Groupe de Recherche en Biologie-Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Laurent Bekalé
- Groupe de Recherche en Biologie-Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Robert Carpentier
- Groupe de Recherche en Biologie-Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- * E-mail:
| |
Collapse
|
19
|
Wang W, Chen J, Li C, Tian W. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts. Nat Commun 2014; 5:4647. [DOI: 10.1038/ncomms5647] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022] Open
|
20
|
Zhan GM, Li RJ, Hu ZY, Liu J, Deng LB, Lu SY, Hua W. Cosuppression of RBCS3B in Arabidopsis leads to severe photoinhibition caused by ROS accumulation. PLANT CELL REPORTS 2014; 33:1091-108. [PMID: 24682522 DOI: 10.1007/s00299-014-1597-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/13/2014] [Accepted: 03/02/2014] [Indexed: 05/08/2023]
Abstract
Cosuppression of an Arabidopsis Rubisco small subunit gene RBCS3B at Arabidopsis resulted in albino or pale green phenotypes which were caused by ROS accumulation As the most abundant protein on Earth, Rubisco has received much attention in the past decades. Even so, its function is still not understood thoroughly. In this paper, four Arabidopsis transgenic lines (RBCS3B-7, 18, 33, and 35) with albino or pale green phenotypes were obtained by transformation with a construct driving expression of sense RBCS3B, a Rubisco small subunit gene. The phenotypes produced in these transgenic lines were found to be caused by cosuppression. Among these lines, RBCS3B-7 displayed the most severe phenotypes including reduced height, developmental arrest and plant mortality before flowering when grown under normal light on soil. Chloroplast numbers in mesophyll cells were decreased compared to WT, and stacked thylakoids of chloroplasts were broken down gradually in RBCS3B-7 throughout development. In addition, the RBCS3B-7 line was light sensitive, and PSII activity measurement revealed that RBCS3B-7 suffered severe photoinhibition, even under normal light. We found that photoinhibition was due to accumulation of ROS, which accelerated photodamage of PSII and inhibited the repair of PSII in RBCS3B-7.
Collapse
Affiliation(s)
- Gao-Miao Zhan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Gutiérrez J, González-Pérez S, García-García F, Daly CT, Lorenzo O, Revuelta JL, McCabe PF, Arellano JB. Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3081-95. [PMID: 24723397 PMCID: PMC4071827 DOI: 10.1093/jxb/eru151] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Light-grown Arabidopsis thaliana cell suspension culture (ACSC) were subjected to mild photooxidative damage with Rose Bengal (RB) with the aim of gaining a better understanding of singlet oxygen-mediated defence responses in plants. Additionally, ACSC were treated with H2O2 at concentrations that induced comparable levels of protein oxidation damage. Under low to medium light conditions, both RB and H2O2 treatments activated transcriptional defence responses and inhibited photosynthetic activity, but they differed in that programmed cell death (PCD) was only observed in cells treated with RB. When dark-grown ACSC were subjected to RB in the light, PCD was suppressed, indicating that the singlet oxygen-mediated signalling pathway in ACSC requires functional chloroplasts. Analysis of up-regulated transcripts in light-grown ACSC, treated with RB in the light, showed that both singlet oxygen-responsive transcripts and transcripts with a key role in hormone-activated PCD (i.e. ethylene and jasmonic acid) were present. A co-regulation analysis proved that ACSC treated with RB exhibited higher correlation with the conditional fluorescence (flu) mutant than with other singlet oxygen-producing mutants or wild-type plants subjected to high light. However, there was no evidence for the up-regulation of EDS1, suggesting that activation of PCD was not associated with the EXECUTER- and EDS1-dependent signalling pathway described in the flu mutant. Indigo Carmine and Methylene Violet, two photosensitizers unable to enter chloroplasts, did not activate transcriptional defence responses in ACSC; however, whether this was due to their location or to their inherently low singlet oxygen quantum efficiencies was not determined.
Collapse
Affiliation(s)
- Jorge Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, 37008 Salamanca, Spain Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Sergio González-Pérez
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, 37008 Salamanca, Spain
| | - Francisco García-García
- Functional Genomics Node, INB, Computational Medicine, Prince Felipe Research Centre, Av. Autopista del Saler 16, Camino de las Moreras, 46012 Valencia, Spain
| | - Cara T Daly
- School of Science, Department of Chemical and Life Sciences, Waterford Institute of Technology, Cork Road, Waterford, Ireland School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Oscar Lorenzo
- Departamento de Fisiología Vegetal, Centro Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - José L Revuelta
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Juan B Arellano
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, 37008 Salamanca, Spain
| |
Collapse
|
22
|
Zhang G, Liu Y, Ni Y, Meng Z, Lu T, Li T. Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves. PLoS One 2014; 9:e97322. [PMID: 24828275 PMCID: PMC4020824 DOI: 10.1371/journal.pone.0097322] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/16/2014] [Indexed: 11/29/2022] Open
Abstract
The effect of exogenous CaCl2 on photosystem I and II (PSI and PSII) activities, cyclic electron flow (CEF), and proton motive force of tomato leaves under low night temperature (LNT) was investigated. LNT stress decreased the net photosynthetic rate (Pn), effective quantum yield of PSII [Y(II)], and photochemical quenching (qP), whereas CaCl2 pretreatment improved Pn, Y(II), and qP under LNT stress. LNT stress significantly increased the non-regulatory quantum yield of energy dissipation [Y(NO)], whereas CaCl2 alleviated this increase. Exogenous Ca2+ enhanced stimulation of CEF by LNT stress. Inhibition of oxidized PQ pools caused by LNT stress was alleviated by CaCl2 pretreatment. LNT stress reduced zeaxanthin formation and ATPase activity, but CaCl2 pretreatment reversed both of these effects. LNT stress caused excess formation of a proton gradient across the thylakoid membrane, whereas CaCl2 pretreatment decreased the said factor under LNT. Thus, our results showed that photoinhibition of LNT-stressed plants could be alleviated by CaCl2 pretreatment. Our findings further revealed that this alleviation was mediated in part by improvements in carbon fixation capacity, PQ pools, linear and cyclic electron transports, xanthophyll cycles, and ATPase activity.
Collapse
Affiliation(s)
- Guoxian Zhang
- Horticulture Department, Shenyang Agricultural University, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| | - Yufeng Liu
- Horticulture Department, Shenyang Agricultural University, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| | - Yang Ni
- Horticulture Department, Shenyang Agricultural University, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| | - Zhaojuan Meng
- Horticulture Department, Shenyang Agricultural University, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| | - Tao Lu
- Horticulture Department, Shenyang Agricultural University, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| | - Tianlai Li
- Horticulture Department, Shenyang Agricultural University, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| |
Collapse
|
23
|
Pospíšil P. The Role of Metals in Production and Scavenging of Reactive Oxygen Species in Photosystem II. ACTA ACUST UNITED AC 2014; 55:1224-32. [DOI: 10.1093/pcp/pcu053] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Tyystjärvi E. Photoinhibition of Photosystem II. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:243-303. [PMID: 23273864 DOI: 10.1016/b978-0-12-405210-9.00007-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Photoinhibition of Photosystem II (PSII) is the light-induced loss of PSII electron-transfer activity. Although photoinhibition has been studied for a long time, there is no consensus about its mechanism. On one hand, production of singlet oxygen ((1)O(2)) by PSII has promoted models in which this reactive oxygen species (ROS) is considered to act as the agent of photoinhibitory damage. These chemistry-based models have often not taken into account the photophysical features of photoinhibition-like light response and action spectrum. On the other hand, models that reproduce these basic photophysical features of the reaction have not considered the importance of data about ROS. In this chapter, it is shown that the evidence behind the chemistry-based models and the photophysically oriented models can be brought together to build a mechanism that confirms with all types of experimental data. A working hypothesis is proposed, starting with inhibition of the manganese complex by light. Inability of the manganese complex to reduce the primary donor promotes recombination between the oxidized primary donor and Q(A), the first stable quinone acceptor of PSII. (1)O(2) production due to this recombination may inhibit protein synthesis or spread the photoinhibitory damage to another PSII center. The production of (1)O(2) is transient because loss of activity of the oxygen-evolving complex induces an increase in the redox potential of Q(A), which lowers (1)O(2) production.
Collapse
Affiliation(s)
- Esa Tyystjärvi
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland.
| |
Collapse
|
25
|
Abstract
Photosystem II uses light to drive water oxidation and plastoquinone (PQ) reduction. PQ reduction involves two PQ cofactors, Q(A) and Q(B), working in series. Q(A) is a one-electron carrier, whereas Q(B) undergoes sequential reduction and protonation to form Q(B)H(2). Q(B)H(2) exchanges with PQ from the pool in the membrane. Based on the atomic coordinates of the Photosystem II crystal structure, we analyzed the proton transfer (PT) energetics adopting a quantum mechanical/molecular mechanical approach. The potential-energy profile suggests that the initial PT to Q(B)(•-) occurs from the protonated, D1-His252 to Q(B)(•)(-) via D1-Ser264. The second PT is likely to occur from D1-His215 to Q(B)H(-) via an H-bond with an energy profile with a single well, resulting in the formation of Q(B)H(2) and the D1-His215 anion. The pathway for reprotonation of D1-His215(-) may involve bicarbonate, D1-Tyr246 and water in the Q(B) site. Formate ligation to Fe(2+) did not significantly affect the protonation of reduced Q(B), suggesting that formate inhibits Q(B)H(2) release rather than its formation. The presence of carbonate rather than bicarbonate seems unlikely because the calculations showed that this greatly perturbed the potential of the nonheme iron, stabilizing the Fe(3+) state in the presence of Q(B)(•-), a situation not encountered experimentally. H-bonding from D1-Tyr246 and D2-Tyr244 to the bicarbonate ligand of the nonheme iron contributes to the stability of the semiquinones. A detailed mechanistic model for Q(B) reduction is presented.
Collapse
|
26
|
Almoguera C, Prieto-Dapena P, Personat JM, Tejedor-Cano J, Lindahl M, Diaz-Espejo A, Jordano J. Protection of the photosynthetic apparatus from extreme dehydration and oxidative stress in seedlings of transgenic tobacco. PLoS One 2012; 7:e51443. [PMID: 23227265 PMCID: PMC3515515 DOI: 10.1371/journal.pone.0051443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/01/2012] [Indexed: 02/06/2023] Open
Abstract
A genetic program that in sunflower seeds is activated by Heat Shock transcription Factor A9 (HaHSFA9) has been analyzed in transgenic tobacco seedlings. The ectopic overexpression of the HSFA9 program protected photosynthetic membranes, which resisted extreme dehydration and oxidative stress conditions. In contrast, heat acclimation of seedlings induced thermotolerance but not resistance to the harsh stress conditions employed. The HSFA9 program was found to include the expression of plastidial small Heat Shock Proteins that accumulate only at lower abundance in heat-stressed vegetative organs. Photosystem II (PSII) maximum quantum yield was higher for transgenic seedlings than for non-transgenic seedlings, after either stress treatment. Furthermore, protection of both PSII and Photosystem I (PSI) membrane protein complexes was observed in the transgenic seedlings, leading to their survival after the stress treatments. It was also shown that the plastidial D1 protein, a labile component of the PSII reaction center, and the PSI core protein PsaB were shielded from oxidative damage and degradation. We infer that natural expression of the HSFA9 program during embryogenesis may protect seed pro-plastids from developmental desiccation.
Collapse
Affiliation(s)
- Concepción Almoguera
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Pilar Prieto-Dapena
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - José-María Personat
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Javier Tejedor-Cano
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Marika Lindahl
- Instituto de Biología Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Antonio Diaz-Espejo
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Juan Jordano
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| |
Collapse
|
27
|
Mella-Flores D, Six C, Ratin M, Partensky F, Boutte C, Le Corguillé G, Marie D, Blot N, Gourvil P, Kolowrat C, Garczarek L. Prochlorococcus and Synechococcus have Evolved Different Adaptive Mechanisms to Cope with Light and UV Stress. Front Microbiol 2012; 3:285. [PMID: 23024637 PMCID: PMC3441193 DOI: 10.3389/fmicb.2012.00285] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/19/2012] [Indexed: 11/13/2022] Open
Abstract
Prochlorococcus and Synechococcus, which numerically dominate vast oceanic areas, are the two most abundant oxygenic phototrophs on Earth. Although they require solar energy for photosynthesis, excess light and associated high UV radiations can induce high levels of oxidative stress that may have deleterious effects on their growth and productivity. Here, we compared the photophysiologies of the model strains Prochlorococcus marinus PCC 9511 and Synechococcus sp. WH7803 grown under a bell-shaped light/dark cycle of high visible light supplemented or not with UV. Prochlorococcus exhibited a higher sensitivity to photoinactivation than Synechococcus under both conditions, as shown by a larger drop of photosystem II (PSII) quantum yield at noon and different diel patterns of the D1 protein pool. In the presence of UV, the PSII repair rate was significantly depressed at noon in Prochlorococcus compared to Synechococcus. Additionally, Prochlorococcus was more sensitive than Synechococcus to oxidative stress, as shown by the different degrees of PSII photoinactivation after addition of hydrogen peroxide. A transcriptional analysis also revealed dramatic discrepancies between the two organisms in the diel expression patterns of several genes involved notably in the biosynthesis and/or repair of photosystems, light-harvesting complexes, CO(2) fixation as well as protection mechanisms against light, UV, and oxidative stress, which likely translate profound differences in their light-controlled regulation. Altogether our results suggest that while Synechococcus has developed efficient ways to cope with light and UV stress, Prochlorococcus cells seemingly survive stressful hours of the day by launching a minimal set of protection mechanisms and by temporarily bringing down several key metabolic processes. This study provides unprecedented insights into understanding the distinct depth distributions and dynamics of these two picocyanobacteria in the field.
Collapse
Affiliation(s)
- Daniella Mella-Flores
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de ChileSantiago, Chile
| | - Christophe Six
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
| | - Morgane Ratin
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
| | - Frédéric Partensky
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
| | - Christophe Boutte
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
| | - Gildas Le Corguillé
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- CNRS, FR 2424, Service Informatique et GénomiqueRoscoff, France
| | - Dominique Marie
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
| | - Nicolas Blot
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Laboratoire Microorganismes: Génome et Environnement, CNRS, UMR 6023Aubière, France
| | - Priscillia Gourvil
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
| | - Christian Kolowrat
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
- Center for Doctoral Studies, University of ViennaVienna, Austria
| | - Laurence Garczarek
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
| |
Collapse
|
28
|
Chen L, Jia H, Tian Q, Du L, Gao Y, Miao X, Liu Y. Protecting effect of phosphorylation on oxidative damage of D1 protein by down-regulating the production of superoxide anion in photosystem II membranes under high light. PHOTOSYNTHESIS RESEARCH 2012; 112:141-8. [PMID: 22644478 DOI: 10.1007/s11120-012-9750-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 05/14/2012] [Indexed: 05/03/2023]
Abstract
The physiological significance of photosystem II (PSII) core protein phosphorylation has been suggested to facilitate the migration of oxidative damaged D1 and D2 proteins, but meanwhile the phosphorylation seems to be associated with the suppression of reactive oxygen species (ROS) production, and it also relates to the degradation of PSII reaction center proteins. To more clearly elucidate the possible protecting effect of the phosphorylation on oxidative damage of D1 protein, the degradation of oxidized D1 protein and the production of superoxide anion in the non-phosphorylated and phosphorylated PSII membranes were comparatively detected using the Western blotting and electron spin resonance spin-trapping technique, respectively. Obviously, all of three ROS components, including superoxide anion, hydrogen peroxide and hydroxyl radical are responsible for the degradation of oxidized D1 protein, and the protection of the D1 protein degradation by phosphorylation is accompanied by the inhibition of superoxide anion production. Furthermore, the inhibiting effect of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a competitor to Q(B), on superoxide anion production and its protecting effect on D1 protein degradation are even more obvious than those of phosphorylation. Both DCMU effects are independent of whether PSII membranes are phosphorylated or not, which reasonably implies that the herbicide DCMU and D1 protein phosphorylation probably share the same target site in D1 protein of PSII. So, altogether it can be concluded that the phosphorylation of D1 protein reduces the oxidative damage of D1 protein by decreasing the production of superoxide anion in PSII membranes under high light.
Collapse
Affiliation(s)
- Liangbing Chen
- State Key Lab for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Blot N, Mella-Flores D, Six C, Le Corguillé G, Boutte C, Peyrat A, Monnier A, Ratin M, Gourvil P, Campbell DA, Garczarek L. Light history influences the response of the marine cyanobacterium Synechococcus sp. WH7803 to oxidative stress. PLANT PHYSIOLOGY 2011; 156:1934-54. [PMID: 21670225 PMCID: PMC3149967 DOI: 10.1104/pp.111.174714] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/09/2011] [Indexed: 05/23/2023]
Abstract
Marine Synechococcus undergo a wide range of environmental stressors, especially high and variable irradiance, which may induce oxidative stress through the generation of reactive oxygen species (ROS). While light and ROS could act synergistically on the impairment of photosynthesis, inducing photodamage and inhibiting photosystem II repair, acclimation to high irradiance is also thought to confer resistance to other stressors. To identify the respective roles of light and ROS in the photoinhibition process and detect a possible light-driven tolerance to oxidative stress, we compared the photophysiological and transcriptomic responses of Synechococcus sp. WH7803 acclimated to low light (LL) or high light (HL) to oxidative stress, induced by hydrogen peroxide (H₂O₂) or methylviologen. While photosynthetic activity was much more affected in HL than in LL cells, only HL cells were able to recover growth and photosynthesis after the addition of 25 μM H₂O₂. Depending upon light conditions and H₂O₂ concentration, the latter oxidizing agent induced photosystem II inactivation through both direct damage to the reaction centers and inhibition of its repair cycle. Although the global transcriptome response appeared similar in LL and HL cells, some processes were specifically induced in HL cells that seemingly helped them withstand oxidative stress, including enhancement of photoprotection and ROS detoxification, repair of ROS-driven damage, and regulation of redox state. Detection of putative LexA binding sites allowed the identification of the putative LexA regulon, which was down-regulated in HL compared with LL cells but up-regulated by oxidative stress under both growth irradiances.
Collapse
|
30
|
González-Pérez S, Gutiérrez J, García-García F, Osuna D, Dopazo J, Lorenzo Ó, Revuelta JL, Arellano JB. Early transcriptional defense responses in Arabidopsis cell suspension culture under high-light conditions. PLANT PHYSIOLOGY 2011; 156:1439-56. [PMID: 21531897 PMCID: PMC3135932 DOI: 10.1104/pp.111.177766] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 04/28/2011] [Indexed: 05/18/2023]
Abstract
The early transcriptional defense responses and reactive oxygen species (ROS) production in Arabidopsis (Arabidopsis thaliana) cell suspension culture (ACSC), containing functional chloroplasts, were examined at high light (HL). The transcriptional analysis revealed that most of the ROS markers identified among the 449 transcripts with significant differential expression were transcripts specifically up-regulated by singlet oxygen ((1)O(2)). On the contrary, minimal correlation was established with transcripts specifically up-regulated by superoxide radical or hydrogen peroxide. The transcriptional analysis was supported by fluorescence microscopy experiments. The incubation of ACSC with the (1)O(2) sensor green reagent and 2',7'-dichlorofluorescein diacetate showed that the 30-min-HL-treated cultures emitted fluorescence that corresponded with the production of (1)O(2) but not of hydrogen peroxide. Furthermore, the in vivo photodamage of the D1 protein of photosystem II indicated that the photogeneration of (1)O(2) took place within the photosystem II reaction center. Functional enrichment analyses identified transcripts that are key components of the ROS signaling transduction pathway in plants as well as others encoding transcription factors that regulate both ROS scavenging and water deficit stress. A meta-analysis examining the transcriptional profiles of mutants and hormone treatments in Arabidopsis showed a high correlation between ACSC at HL and the fluorescent mutant family of Arabidopsis, a producer of (1)O(2) in plastids. Intriguingly, a high correlation was also observed with ABA deficient1 and more axillary growth4, two mutants with defects in the biosynthesis pathways of two key (apo)carotenoid-derived plant hormones (i.e. abscisic acid and strigolactones, respectively). ACSC has proven to be a valuable system for studying early transcriptional responses to HL stress.
Collapse
MESH Headings
- Arabidopsis/cytology
- Arabidopsis/genetics
- Arabidopsis/immunology
- Arabidopsis/radiation effects
- Blotting, Western
- Cell Culture Techniques/methods
- Cells, Cultured
- Chloroplasts/drug effects
- Chloroplasts/metabolism
- Chloroplasts/radiation effects
- Cluster Analysis
- Gene Expression Profiling
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/radiation effects
- Hydrogen Peroxide/pharmacology
- Light
- Mutation/genetics
- Oligonucleotide Array Sequence Analysis
- Photosystem II Protein Complex/metabolism
- Plant Growth Regulators/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reproducibility of Results
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Stress, Physiological/radiation effects
- Transcription, Genetic/drug effects
- Transcription, Genetic/radiation effects
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Juan B. Arellano
- Instituto de Recursos Naturales y Agrobiología de Salamanca-Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), 37071 Salamanca, Spain (S.G.-P., J.G., J.B.A.); Functional Genomics Node, National Institute for Bioinformatics, Centro de Investigación Príncipe Felipe, Camino de las Moreras, 46012 Valencia, Spain (F.G.-G., J.D.); Departamento de Fisiología Vegetal, Centro Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, 37185 Salamanca, Spain (D.O., O.L.); Departamento de Microbiología y Genética, Instituto de Microbiología Bioquímica, Universidad de Salamanca-Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain (J.L.R.)
| |
Collapse
|
31
|
Zhang Y, Ding S, Lu Q, Yang Z, Wen X, Zhang L, Lu C. Characterization of photosystem II in transgenic tobacco plants with decreased iron superoxide dismutase. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:391-403. [PMID: 21256108 DOI: 10.1016/j.bbabio.2011.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/07/2011] [Accepted: 01/14/2011] [Indexed: 12/23/2022]
Abstract
Iron superoxide dismutases (FeSODs) play an important role in preventing the oxidative damage associated with photosynthesis. To investigate the mechanisms of FeSOD in protection against photooxidative stress, we obtained transgenic tobacco (Nicotiana tabacum) plants with severely decreased FeSOD by using a gene encoding tobacco chloroplastic FeSOD for the RNAi construct. Transgenic plants were highly sensitive to photooxidative stress and accumulated increased levels of O₂•⁻ under normal light conditions. Spectroscopic analysis and electron transport measurements showed that PSII activity was significantly reduced in transgenic plants. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed that there was a slow electron transfer between Q(A) and Q(B) and decreased redox potential of Q(B) in transgenic plants, whereas the donor side function of PSII was not affected. Immunoblot and blue native gel analyses showed that PSII protein accumulation was also decreased in transgenic plants. PSII photodamage and D1 protein degradation under high light treatment was increased in transgenic plants, whereas the PSII repair was not affected, indicating that the stability of the PSII complex was decreased in transgenic plants. The results in this study suggest that FeSOD plays an important role in maintaining PSII function by stabilizing PSII complexes in tobacco plants.
Collapse
Affiliation(s)
- Yan Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | | | | | | | | | | | | |
Collapse
|
32
|
Apel W, Schulze WX, Bock R. Identification of protein stability determinants in chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:636-50. [PMID: 20545891 PMCID: PMC2988409 DOI: 10.1111/j.1365-313x.2010.04268.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/05/2010] [Accepted: 05/27/2010] [Indexed: 05/17/2023]
Abstract
Although chloroplast protein stability has long been recognised as a major level of post-translational regulation in photosynthesis and gene expression, the factors determining protein stability in plastids are largely unknown. Here, we have identified stability determinants in vivo by producing plants with transgenic chloroplasts that express a reporter protein whose N- and C-termini were systematically modified. We found that major stability determinants are located in the N-terminus. Moreover, testing of all 20 amino acids in the position after the initiator methionine revealed strong differences in protein stability and indicated an important role of the penultimate N-terminal amino acid residue in determining the protein half life. We propose that the stability of plastid proteins is largely determined by three factors: (i) the action of methionine aminopeptidase (the enzyme that removes the initiator methionine and exposes the penultimate N-terminal amino acid residue), (ii) an N-end rule-like protein degradation pathway, and (iii) additional sequence determinants in the N-terminal region.
Collapse
Affiliation(s)
- Wiebke Apel
- Max-Planck-Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Waltraud X Schulze
- Max-Planck-Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
33
|
Pospísil P. Production of reactive oxygen species by photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1151-60. [PMID: 19463778 DOI: 10.1016/j.bbabio.2009.05.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 11/29/2022]
Abstract
Photosysthetic cleavage of water molecules to molecular oxygen is a crucial process for all aerobic life on the Earth. Light-driven oxidation of water occurs in photosystem II (PSII) - a pigment-protein complex embedded in the thylakoid membrane of plants, algae and cyanobacteria. Electron transport across the thylakoid membrane terminated by NADPH and ATP formation is inadvertently coupled with the formation of reactive oxygen species (ROS). Reactive oxygen species are mainly produced by photosystem I; however, under certain circumstances, PSII contributes to the overall formation of ROS in the thylakoid membrane. Under limitation of electron transport reaction between both photosystems, photoreduction of molecular oxygen by the reducing side of PSII generates a superoxide anion radical, its dismutation to hydrogen peroxide and the subsequent formation of a hydroxyl radical terminates the overall process of ROS formation on the PSII electron acceptor side. On the PSII electron donor side, partial or complete inhibition of enzymatic activity of the water-splitting manganese complex is coupled with incomplete oxidation of water to hydrogen peroxide. The review points out the mechanistic aspects in the production of ROS on both the electron acceptor and electron donor side of PSII.
Collapse
Affiliation(s)
- Pavel Pospísil
- Laboratory of Biophysics, Department of Experimental Physics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
34
|
Yamashita A, Nijo N, Pospísil P, Morita N, Takenaka D, Aminaka R, Yamamoto Y, Yamamoto Y. Quality control of photosystem II: reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress. J Biol Chem 2008; 283:28380-91. [PMID: 18664569 PMCID: PMC2661399 DOI: 10.1074/jbc.m710465200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 07/25/2008] [Indexed: 01/01/2023] Open
Abstract
Moderate heat stress (40 degrees C for 30 min) on spinach thylakoid membranes induced cleavage of the reaction center-binding D1 protein of photosystem II, aggregation of the D1 protein with the neighboring polypeptides D2 and CP43, and release of three extrinsic proteins, PsbO, -P, and -Q. These heat-induced events were suppressed under anaerobic conditions or by the addition of sodium ascorbate, a general scavenger of reactive oxygen species. In accordance with this, singlet oxygen and hydroxyl radicals were detected in spinach photosystem II membranes incubated at 40 degrees C for 30 min with electron paramagnetic resonance spin-trapping spectroscopy. The moderate heat stress also induced significant lipid peroxidation under aerobic conditions. We suggest that the reactive oxygen species are generated by heat-induced inactivation of a water-oxidizing manganese complex and through lipid peroxidation. Although occurring in the dark, the damages caused by the moderate heat stress to photosystem II are quite similar to those induced by excessive illumination where reactive oxygen species are involved.
Collapse
Affiliation(s)
- Amu Yamashita
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Nishiyama Y, Allakhverdiev SI, Murata N. Regulation by Environmental Conditions of the Repair of Photosystem II in Cyanobacteria. PHOTOPROTECTION, PHOTOINHIBITION, GENE REGULATION, AND ENVIRONMENT 2008. [DOI: 10.1007/1-4020-3579-9_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
36
|
Šnyrychová I, Kós PB, Hideg É. Hydroxyl radicals are not the protagonists of UV-B-induced damage in isolated thylakoid membranes. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 34:1112-1121. [PMID: 32689441 DOI: 10.1071/fp07151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 10/17/2007] [Indexed: 06/11/2023]
Abstract
The production of reactive oxygen species (ROS) was studied in isolated thylakoid membranes exposed to 312 nm UV-B irradiation. Hydroxyl radicals (•OH) and hydrogen peroxide were measured directly, using a newly developed method based on hydroxylation of terephthalic acid and the homovanillic acid/peroxidase assay, respectively. At the early stage of UV-B stress (doses lower than 2.0 J cm-2), •OH were derived from superoxide radicals via hydrogen peroxide. Production of these ROS was dependent on photosynthetic electron transport and was not exclusive to UV-B. Both ROS were found in samples exposed to the same doses of PAR, suggesting that the observed ROS are by-products of the UV-B-driven electron transport rather than specific initiators of the UV-B-induced damage. After longer exposure of thylakoids to UV-B, leading to the inactivation of PSII centres, a small amount of •OH was still observed in thylakoids, even though no free hydrogen peroxide was detected. At this late stage of UV-B stress, •OH may also be formed by the direct cleavage of organic peroxides by UV-B. Immunodetection showed that the presence of the observed ROS alone was not sufficient to achieve the degradation of the D1 protein of PSII centres.
Collapse
Affiliation(s)
- Iva Šnyrychová
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Péter B Kós
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Éva Hideg
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
37
|
Mohanty P, Allakhverdiev SI, Murata N. Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. PHOTOSYNTHESIS RESEARCH 2007; 94:217-24. [PMID: 17554634 DOI: 10.1007/s11120-007-9184-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 04/19/2007] [Indexed: 05/15/2023]
Abstract
Recent investigations of photoinhibition have revealed that photodamage to photosystem II (PSII) involves two temporally separated steps: the first is the inactivation of the oxygen-evolving complex by light that has been absorbed by the manganese cluster and the second is the impairment of the photochemical reaction center by light that has been absorbed by chlorophyll. Our studies of photoinhibition in Synechocystis sp. PCC 6803 at various temperatures demonstrated that the first step in photodamage is not completed at low temperatures, such as 10 degrees C. Further investigations suggested that an intermediate state, which is stabilized at low temperatures, might exist at the first stage of photodamage. The repair of PSII involves many steps, including degradation and removal of the D1 protein, synthesis de novo of the precursor to the D1 protein, assembly of the PSII complex, and processing of the precursor to the D1 protein. Detailed analysis of photodamage and repair at various temperatures has demonstrated that, among these steps, only the synthesis of the precursor to D1 appears to proceed at low temperatures. Investigations of photoinhibition at low temperatures have also indicated that prolonged exposure of cyanobacterial cells or plant leaves to strong light diminishes their ability to repair PSII. Such non-repairable photoinhibition is caused by inhibition of the processing of the precursor to the D1 protein after prolonged illumination with strong light at low temperatures.
Collapse
|
38
|
Kreslavski VD, Carpentier R, Klimov VV, Murata N, Allakhverdiev SI. Molecular mechanisms of stress resistance of the photosynthetic apparatus. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2007. [DOI: 10.1134/s1990747807030014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Lupínková L, Komenda J. Oxidative Modifications of the Photosystem II D1 Protein by Reactive Oxygen Species: From Isolated Protein to Cyanobacterial Cells¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2004.tb00005.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Ganesh AB, Manoharan PT, Suraishkumar GK. Responses of the photosynthetic machinery ofSpirulina maxima to induced reactive oxygen species. Biotechnol Bioeng 2007; 96:1191-8. [PMID: 17013943 DOI: 10.1002/bit.21217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The photosynthetic machinery of Spirulina maxima was studied when subjected to induced reactive oxygen species (ROS) to examine the organism's responses to stress. Significant decreases in both photosynthetic efficiency and growth rate were observed. Exposure to 0.01 mmol H(2)O(2)/(g cell), which induced the lowest specific intracellular ROS level (siROS) led to a 15% decrease in specific growth rate; an increase in siROS by 70-fold led to a 25% decrease in specific growth rate. Similarly, siROS induced by 0.01 mmol H(2)O(2)/(g cell) led to 15% inhibition in photosynthetic efficiency, while an increase in siROS by 40- or 70-fold led to about 60% inhibition in photosynthetic efficiency. To further understand the effects of induced ROS on photosynthetic machinery, we performed a detailed pigmentation analysis as well as analyzed Phycobilisomes (PBS), Photosystem II (PSII), and Photosystem I (PSI), the three important components of cyanobacterial photosynthetic apparatus. We found carotenoids (beta-carotene and lutein) to be most sensitive to siROS. Also, specific levels of phycocyanin and allophycocyanin, which are important PBS pigments, decreased significantly in response to H(2)O(2). Further, electron transport assays revealed that ROS cause damage primarily to PSII, whereas they do not significantly affect PSI in comparison; siROS induced by 0.01 mmol H(2)O(2)/(g cell) led to a 15% inhibition of PSII, and increase in siROS by 9-, 40-, and 70-fold led to 22%, 36%, and 46% inhibition, respectively.
Collapse
Affiliation(s)
- Aparna B Ganesh
- Biotechnology Department, Indian Institute of Technology Madras, Chennai 600 036, India
| | | | | |
Collapse
|
41
|
Nishiyama Y, Allakhverdiev SI, Murata N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:742-9. [PMID: 16784721 DOI: 10.1016/j.bbabio.2006.05.013] [Citation(s) in RCA: 415] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 05/02/2006] [Accepted: 05/04/2006] [Indexed: 11/16/2022]
Abstract
Inhibition of the activity of photosystem II (PSII) under strong light is referred to as photoinhibition. This phenomenon is due to the imbalance between the rate of photodamage to PSII and the rate of the repair of damaged PSII. Photodamage is initiated by the direct effects of light on the oxygen-evolving complex and, thus, photodamage to PSII is unavoidable. Studies of the effects of oxidative stress on photodamage and subsequent repair have revealed that reactive oxygen species (ROS) act primarily by inhibiting the repair of photodamaged PSII and not by damaging PSII directly. Thus, strong light has two distinct effects on PSII; it damages PSII directly and it inhibits the repair of PSII via production of ROS. Investigations of the ROS-induced inhibition of repair have demonstrated that ROS suppress the synthesis de novo of proteins and, in particular, of the D1 protein, that are required for the repair of PSII. Moreover, a primary target for inhibition by ROS appears to be the elongation step of translation. Inhibition of the repair of PSII by ROS is accelerated by the deceleration of the Calvin cycle that occurs when the availability of CO(2) is limited. In this review, we present a new paradigm for the action of ROS in photoinhibition.
Collapse
Affiliation(s)
- Yoshitaka Nishiyama
- Cell-Free Science and Technology Research Center and Satellite Venture Business Laboratory, Ehime University, Bunkyo-cho, Matsuyama, Japan.
| | | | | |
Collapse
|
42
|
Becker M, Asch F. Iron toxicity in rice—conditions and management concepts. JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE 2005. [PMID: 0 DOI: 10.1002/jpln.200520504] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Mathias Becker
- Institute of Plant Nutrition, Karlrobert‐Kreiten‐Str. 13, D‐53115 Bonn, Germany
| | - Folkard Asch
- Institute of Plant Nutrition, Karlrobert‐Kreiten‐Str. 13, D‐53115 Bonn, Germany
| |
Collapse
|
43
|
Arató A, Bondarava N, Krieger-Liszkay A. Production of reactive oxygen species in chloride- and calcium-depleted photosystem II and their involvement in photoinhibition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1608:171-80. [PMID: 14871495 DOI: 10.1016/j.bbabio.2003.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 12/04/2003] [Accepted: 12/10/2003] [Indexed: 11/25/2022]
Abstract
Mixed photosystem II (PSII) samples consisting of Cl(-)-depleted and active, or Ca(2+)-depleted and active PSII enriched membrane fragments, respectively, were investigated with respect to their susceptibility to light. In the presence of Cl(-)-depleted PSII, active centers were damaged more severely, most likely caused by a higher amount of reactive oxygen species formed in the nonfunctional centers. Cl(-) depletion led to an increased H(2)O(2) production, which seemed to be responsible for the stimulation of PSII activity loss. To distinguish between direct H(2)O(2) formation by partial water oxidation and indirect H(2)O(2) formation by oxygen reduction involving the prior formation of O(2)(-?), the production of reactive oxygen species was followed by spin trapping EPR spectroscopy. All samples investigated, i.e. PSII with a functional water splitting complex, Ca(2+)- and Cl(-)-depleted PSII, produced upon illumination O(2)(-?) and OH(?) radicals on the acceptor side, while Cl(-)-depleted PSII produced additionally OH(?) radicals originating from H(2)O(2) formed on the donor side of PSII.
Collapse
Affiliation(s)
- András Arató
- Institut für Biologie II, Biochemie der Pflanzen, Universität Freiburg, Schänzlestr 1, 79104 Freiburg, Germany
| | | | | |
Collapse
|
44
|
Lupínková L, Komenda J. Oxidative modifications of the Photosystem II D1 protein by reactive oxygen species: from isolated protein to cyanobacterial cells. Photochem Photobiol 2004; 79:152-62. [PMID: 15068028 DOI: 10.1562/0031-8655(2004)079<0152:omotpi>2.0.co;2] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Action of reactive oxygen species (ROS) on the isolated D1 protein, a key component of Photosystem II (PSII) complex, was studied and compared with the effect of high irradiance on this protein in mildly solubilized photosynthetic membranes and cells of the cyanobacterium Synechocystis. Whereas singlet oxygen caused mainly protein modification reflected by shift of its electrophoretic mobility, action of hydrogen peroxide and superoxide resulted in generation of specific fragments. Hydroxyl radicals as the most ROS induced fast disappearance of the protein. The results substantiate the ability of ROS to cause direct scission of the D1 peptide bonds. Similar D1 modification, fragmentation and additionally cross-linking with other PSII subunits were observed during illumination or hydrogen peroxide treatment of mildly solubilized thylakoids. Peroxide-induced fragmentation did not occur in thylakoids of the strain lacking a ligand to the nonheme iron, confirming the role of this prosthetic group in the D1-specific cleavage. The D1 modification, fragmentation and cross-linking were suppressed by ROS scavengers, supporting the direct role of ROS in these phenomena. Identical symptoms of the ROS-induced D1 damage were detected in illuminated cells of Synechocystis mutants with a higher probability of ROS formation, documenting the relevance of the in vitro results for the situation in vivo.
Collapse
Affiliation(s)
- Lenka Lupínková
- Faculty of Biological Sciences, University of South Bohemia, Ceské Budejovice, Czech Republic
| | | |
Collapse
|
45
|
Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C. Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:940-53. [PMID: 15165186 DOI: 10.1111/j.1365-313x.2004.02092.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Ascorbate peroxidases (APX), localized in the cytosol, peroxisomes, mitochondria and chloroplasts of plant cells, catalyze the reduction of H(2)O(2) to water by using ascorbic acid (ASA) as specific electron donor. The chloroplastic isoenzymes of APX are involved in the water-water cycle, which contributes to the photophosphorylation coupled to the photosynthetic electron transport. In order to better clarify the contribution of thylakoidal APX (tAPX) to the reactive oxygen species (ROS) scavenging activity, as well as to the fine modulation of ROS for signaling, we produced Arabidopsis lines overexpressing tAPX. These lines show an increased resistance to treatment with the O(2)(-) generating herbicide Paraquat (Pq). However, when challenged with photoinhibitory treatments at high light or low temperature, or with iron (Fe) or copper (Cu) overload, the tAPX-overexpressing lines show no increased resistance with respect to controls, indicating that in such experimental conditions, tAPX overexpression does not reinforce plant defenses against the oxidative stresses tested. Interestingly, the nitric oxide (NO)-donor sodium nitroprusside (SNP) represses accumulation of tAPX transcript; SNP also partially inhibits tAPX enzymatic activity. After treatment with SNP, the tAPX-overexpressing lines show reduced symptoms of damage with respect to control plants treated with SNP. These transgenic lines confirm that H(2)O(2) acts in partnership with NO in causing cell death and highlight the important role of tAPX in the fine modulation of H(2)O(2) for signaling.
Collapse
Affiliation(s)
- Irene Murgia
- Sezione di Fisiologia e Biochimica delle Piante, Dip. Biologia, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Henmi T, Miyao M, Yamamoto Y. Release and reactive-oxygen-mediated damage of the oxygen-evolving complex subunits of PSII during photoinhibition. PLANT & CELL PHYSIOLOGY 2004; 45:243-50. [PMID: 14988496 DOI: 10.1093/pcp/pch027] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Under photoinhibitory illumination of spinach PSII membranes, the oxygen-evolving complex subunits, OEC33, 24 and 18, were released from PSII. The liberated OEC33 and also OEC24 to a lesser extent were subsequently damaged and then exhibited smeared bands in SDS/urea-PAGE. Once deteriorated, OEC33 could not bind to PSII. The effects of scavengers and chelating reagents on the damage indicated that hydroxyl radicals generated from superoxide in the presence of metal ions were responsible for the damage. These results suggest that, like the D1 protein of the PSII reaction center complex, OEC subunits suffer oxidative damage and turnover under illumination.
Collapse
Affiliation(s)
- Takahiro Henmi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | | | | |
Collapse
|
47
|
Silva P, Thompson E, Bailey S, Kruse O, Mullineaux CW, Robinson C, Mann NH, Nixon PJ. FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp PCC 6803. THE PLANT CELL 2003; 15:2152-64. [PMID: 12953117 PMCID: PMC181337 DOI: 10.1105/tpc.012609] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2003] [Accepted: 07/10/2003] [Indexed: 05/18/2023]
Abstract
When plants, algae, and cyanobacteria are exposed to excessive light, especially in combination with other environmental stress conditions such as extreme temperatures, their photosynthetic performance declines. A major cause of this photoinhibition is the light-induced irreversible photodamage to the photosystem II (PSII) complex responsible for photosynthetic oxygen evolution. A repair cycle operates to selectively replace a damaged D1 subunit within PSII with a newly synthesized copy followed by the light-driven reactivation of the complex. Net loss of PSII activity occurs (photoinhibition) when the rate of damage exceeds the rate of repair. The identities of the chaperones and proteases involved in the replacement of D1 in vivo remain uncertain. Here, we show that one of the four members of the FtsH family of proteases (cyanobase designation slr0228) found in the cyanobacterium Synechocystis sp PCC 6803 is important for the repair of PSII and is vital for preventing chronic photoinhibition. Therefore, the ftsH gene family is not functionally redundant with respect to the repair of PSII in this organism. Our data also indicate that FtsH binds directly to PSII, is involved in the early steps of D1 degradation, and is not restricted to the removal of D1 fragments. These results, together with the recent analysis of ftsH mutants of Arabidopsis, highlight the critical role played by FtsH proteases in the removal of damaged D1 from the membrane and the maintenance of PSII activity in vivo.
Collapse
Affiliation(s)
- Paulo Silva
- Department of Biological Sciences, Imperial College London, South Kensington Campus SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Henmi T, Yamasaki H, Sakuma S, Tomokawa Y, Tamura N, Shen JR, Yamamoto Y. Dynamic Interaction between the D1 protein, CP43 and OEC33 at the lumenal side of photosystem II in spinach chloroplasts: evidence from light-induced cross-Linking of the proteins in the donor-side photoinhibition. PLANT & CELL PHYSIOLOGY 2003; 44:451-6. [PMID: 12721387 DOI: 10.1093/pcp/pcg049] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During the donor-side photoinhibition of spinach photosystem II, the reaction center D1 protein cross-linked with the antenna chlorophyll binding protein CP43 of photosystem II lacking the oxygen-evolving complex (OEC) subunit proteins. The cross-linking did not occur upon illumination of photosystem II samples that retained the OEC33, nor when OEC33-depleted photosystem II samples were reconstituted with the OEC33 prior to illumination. These results suggest that the D1 protein, CP43 and the OEC33 are located in close proximity at the lumenal side of photosystem II, and that the OEC33 suppresses the unnecessary contact between the D1 protein and CP43. Previously we presented data showing the D1 protein located adjacent to CP43 on the stromal side of photosystem II [Ishikawa et al. (1999) BIOCHIM: Biophys. Acta 1413: 147]. The present data suggest that the spatial arrangement of the D1 protein and CP43 at the lumenal side of photosystem II in spinach chloroplasts is similar to that at the stromal side of photosystem II and is consistent with the assignment of these proteins recently proposed on the crystal structures of the photosystem II complexes from cyanobacteria [Zouni et al. (2001) Nature 409: 739, Kamiya and Shen 2003 PROC: Natl. Acad. Sci. USA, 100: 98]. Moreover, the data suggest that the binding condition and positioning of the OEC33 in the photosystem II complex from higher plants may be different from those in cyanobacteria.
Collapse
Affiliation(s)
- Takahiro Henmi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
During the past two decades, coral reefs have experienced extensive degradation worldwide. One etiology for this global degradation is a syndrome known as coral bleaching. Mass coral bleaching events are correlated with increased sea-surface temperatures, however, the cellular mechanism underlying this phenomenon is uncertain. To determine if oxidative stress plays a mechanistic role in the process of sea-surface temperature-related coral bleaching, we examined corals along a depth transect in the Florida Keys over a single season that was characterized by unusually high sea-surface temperatures. We observed strong positive correlations between accumulation of oxidative damage products and bleaching in corals over a year of sampling. High levels of antioxidant enzymes and small heat-shock proteins were negatively correlated with levels of oxidative damage products. Corals that experienced oxidative stress had higher chaperonin levels and protein turnover activity. Our results indicate that coral bleaching is tightly coupled to the antioxidant and cellular stress capacity of the symbiotic coral, supporting the mechanistic model that coral bleaching (zooxanthellae loss) may be a final strategy to defend corals from oxidative stress.
Collapse
Affiliation(s)
- C A Downs
- EnVirtue Biotechnologies, Inc., Walnut Creek, CA, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Komenda J, Lupínková L, Kopecký J. Absence of the psbH gene product destabilizes photosystem II complex and bicarbonate binding on its acceptor side in Synechocystis PCC 6803. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:610-9. [PMID: 11856320 DOI: 10.1046/j.0014-2956.2001.02693.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The PsbH protein, a small subunit of the photosystem II complex (PSII), was identified as a 6-kDa protein band in the PSII core and subcore (CP47-D1-D2-cyt b-559) from the wild-type strain of the cyanobacterium Synechocystis PCC 6803. The protein was missing in the D1-D2-cytochrome b-559 complex and also in all PSII complexes isolated from IC7, a mutant lacking the psbH gene. The following properties of PSII in the mutant contrasted with those in wild-type: (a) CP47 was released during nondenaturing electrophoresis of the PSII core isolated from IC7; (b) depletion of CO2 resulted in a reversible decrease of the QA- reoxidation rate in the IC7 cells; (c) light-induced decrease in PSII activity, measured as 2,5-dimethyl-benzoquinone-supported Hill reaction, was strongly dependent on the HCO3- concentration in the IC7 cells; and (d) illumination of the IC7 cells lead to an extensive oxidation, fragmentation and cross-linking of the D1 protein. We did not find any evidence for phosphorylation of the PsbH protein in the wild-type strain. The results showed that in the PSII complex of Synechocystis attachment of CP47 to the D1-D2 heterodimer appears weakened and binding of bicarbonate on the PSII acceptor side is destabilized in the absence of the PsbH protein.
Collapse
Affiliation(s)
- Josef Komenda
- Photosynthesis Research Centre, University of South Bohemia, Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|