1
|
Reagle T, Xie Y, Li Z, Carnero W, Baumgart T. Methyl-β-cyclodextrin asymmetrically extracts phospholipid from bilayers, granting tunable control over differential stress in lipid vesicles. SOFT MATTER 2024; 20:4291-4307. [PMID: 38758097 PMCID: PMC11135146 DOI: 10.1039/d3sm01772a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Lipid asymmetry - that is, a nonuniform lipid distribution between the leaflets of a bilayer - is a ubiquitous feature of biomembranes and is implicated in several cellular phenomena. Differential tension - that is, unequal lateral monolayer tensions comparing the leaflets of a bilayer- is closely associated with lipid asymmetry underlying these varied roles. Because differential tension is not directly measurable in combination with the fact that common methods to adjust this quantity grant only semi-quantitative control over it, a detailed understanding of lipid asymmetry and differential tension are impeded. To overcome these challenges, we leveraged reversible complexation of phospholipid by methyl-β-cyclodextrin (mbCD) to tune the direction and magnitude of lipid asymmetry in synthetic vesicles. Lipid asymmetry generated in our study induced (i) vesicle shape changes and (ii) gel-liquid phase coexistence in 1-component vesicles. By applying mass-action considerations to interpret our findings, we discuss how this approach provides access to phospholipid thermodynamic potentials in bilayers containing lipid asymmetry (which are coupled to the differential tension of a bilayer). Because lipid asymmetry yielded by our approach is (i) tunable and (ii) maintained over minute to hour timescales, we anticipate that this approach will be a valuable addition to the experimental toolbox for systematic investigation into the biophysical role(s) of lipid asymmetry (and differential tension).
Collapse
Affiliation(s)
- Tyler Reagle
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Yuxin Xie
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Zheyuan Li
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Warner Carnero
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Tobias Baumgart
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Luo X, Zhao Y, Cai Y, Chen J, Zhao L, Lan T, Chen Y, Ruan XZ. Dual-monomer solvatochromic probe system (DSPS) for effectively differentiating lipid raft cholesterol and active membrane cholesterol in the inner-leaflet plasma membrane. J Mater Chem B 2024; 12:2547-2558. [PMID: 38358131 DOI: 10.1039/d3tb02857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Monitoring active membrane cholesterol and lipid raft cholesterol in the inner leaflet of the plasma membrane is significant for understanding the membrane function and cellular physiopathological processes. Limited by existing methods, it is difficult to differentiate active membrane cholesterol and lipid raft cholesterol. A novel dual-monomer solvatochromic probe system (DSPS) that targets two types of cholesterol was developed. Acrylodan-BG/SNAP-D4 composed of SNAP-D4 cholesterol-recognizing monomers and solvatochromic acrylodan-BG-sensing monomers exhibits excellent cholesterol detecting properties in terms of selectivity, accuracy, convenience and economic benefits. Cell imaging revealed that lipid raft cholesterol emitted blue fluorescence, whereas active membrane cholesterol (which partially bobbed in aqueous cytosol) displayed green fluorescence; both the fluorescence emissions increased or decreased in a cholesterol-dependent manner. This system provides a new technology for the determination of two types of cholesterol, which is beneficial for the further study of membrane function, intracellular cholesterol trafficking, and cell signaling.
Collapse
Affiliation(s)
- Xuan Luo
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Yunfei Zhao
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016, Chongqing, China
| | - Yang Cai
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016, Chongqing, China
| | - Jun Chen
- Department of Pediatrics, Women and Children' Hospital of Chongging Medical University, 400016, Chongqing, China
| | - Lulu Zhao
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016, Chongqing, China
| | - Tianlan Lan
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Yaxi Chen
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Xiong Z Ruan
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London NW3 2PF, UK
| |
Collapse
|
3
|
Foo CX, Fessler MB, Ronacher K. Oxysterols in Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:125-147. [PMID: 38036878 DOI: 10.1007/978-3-031-43883-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols have emerged as important bioactive lipids in the immune response to infectious diseases. This chapter discusses our current knowledge of oxysterols and their receptors in bacterial and viral infections of the respiratory and gastrointestinal tracts. Oxysterols are produced in response to infections and have multiple roles including chemotaxis of immune cells to the site of infection and regulation of inflammation. Some oxysterols have been shown to possess antiviral or antibacterial activity.Lastly, we delve into the emerging mechanisms of action of oxysterols. Oxysterols can enhance host cell resistance via reduction of membrane accessible cholesterol, modulate membrane immune signalling, and impact inflammasome activation and efferocytosis.
Collapse
Affiliation(s)
- Cheng X Foo
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Katharina Ronacher
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Schiffmann A, Ahlswede L, Gimpl G. Reversible translocation of acyl-CoA:cholesterol acyltransferase (ACAT) between the endoplasmic reticulum and vesicular structures. Front Mol Biosci 2023; 10:1258799. [PMID: 38028547 PMCID: PMC10667705 DOI: 10.3389/fmolb.2023.1258799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The enzyme acyl-CoA:cholesterol acyltransferase (ACAT) is normally localized in the endoplasmic reticulum (ER) where it can esterify cholesterol for storage in lipid droplets and/or the formation of lipoproteins. Here, we report that ACAT can translocate from the ER into vesicular structures in response to different ACAT inhibitors. The translocation was fast (within minutes), reversible and occurred in different cell types. Interestingly, oleic acid was able to fasten the re-translocation from vesicles back into the reticular ER network. The process of ACAT translocation could also be induced by cyclodextrins, cholesterol, lanosterol (but not 4-cholestene-3 one), 25-hydroxycholesterol, and by certain stress stimuli such as hyperosmolarity (sucrose treatment), temperature change, or high-density cultivation. In vitro esterification showed that ACAT remains fully active after it has been translocated to vesicles in response to hyperosmotic sucrose treatment of the cells. The translocation process was not accompanied by changes in the electrophoretic mobility of ACAT, even after chemical crosslinking. Interestingly, the protein synthesis inhibitor cycloheximide showed a stimulating effect on ACAT activity and prevented the translocation of ACAT from the ER into vesicles.
Collapse
Affiliation(s)
| | | | - Gerald Gimpl
- Department of Chemistry and Biochemistry, Biocenter II, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
5
|
Koh DHZ, Naito T, Na M, Yeap YJ, Rozario P, Zhong FL, Lim KL, Saheki Y. Visualization of accessible cholesterol using a GRAM domain-based biosensor. Nat Commun 2023; 14:6773. [PMID: 37880244 PMCID: PMC10600248 DOI: 10.1038/s41467-023-42498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Cholesterol is important for membrane integrity and cell signaling, and dysregulation of the distribution of cellular cholesterol is associated with numerous diseases, including neurodegenerative disorders. While regulated transport of a specific pool of cholesterol, known as "accessible cholesterol", contributes to the maintenance of cellular cholesterol distribution and homeostasis, tools to monitor accessible cholesterol in live cells remain limited. Here, we engineer a highly sensitive accessible cholesterol biosensor by taking advantage of the cholesterol-sensing element (the GRAM domain) of an evolutionarily conserved lipid transfer protein, GRAMD1b. Using this cholesterol biosensor, which we call GRAM-W, we successfully visualize in real time the distribution of accessible cholesterol in many different cell types, including human keratinocytes and iPSC-derived neurons, and show differential dependencies on cholesterol biosynthesis and uptake for maintaining levels of accessible cholesterol. Furthermore, we combine GRAM-W with a dimerization-dependent fluorescent protein (ddFP) and establish a strategy for the ultrasensitive detection of accessible plasma membrane cholesterol. These tools will allow us to obtain important insights into the molecular mechanisms by which the distribution of cellular cholesterol is regulated.
Collapse
Affiliation(s)
- Dylan Hong Zheng Koh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Minyoung Na
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Pritisha Rozario
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Franklin L Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- Skin Research Institute of Singapore (SRIS), Singapore, 308232, Singapore
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, 308433, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
6
|
Naito T, Yang H, Koh DHZ, Mahajan D, Lu L, Saheki Y. Regulation of cellular cholesterol distribution via non-vesicular lipid transport at ER-Golgi contact sites. Nat Commun 2023; 14:5867. [PMID: 37735529 PMCID: PMC10514280 DOI: 10.1038/s41467-023-41213-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Abnormal distribution of cellular cholesterol is associated with numerous diseases, including cardiovascular and neurodegenerative diseases. Regulated transport of cholesterol is critical for maintaining its proper distribution in the cell, yet the underlying mechanisms remain unclear. Here, we show that lipid transfer proteins, namely ORP9, OSBP, and GRAMD1s/Asters (GRAMD1a/GRAMD1b/GRAMD1c), control non-vesicular cholesterol transport at points of contact between the ER and the trans-Golgi network (TGN), thereby maintaining cellular cholesterol distribution. ORP9 localizes to the TGN via interaction between its tandem α-helices and ORP10/ORP11. ORP9 extracts PI4P from the TGN to prevent its overaccumulation and suppresses OSBP-mediated PI4P-driven cholesterol transport to the Golgi. By contrast, GRAMD1s transport excess cholesterol from the Golgi to the ER, thereby preventing its build-up. Cells lacking ORP9 exhibit accumulation of cholesterol at the Golgi, which is further enhanced by additional depletion of GRAMD1s with major accumulation in the plasma membrane. This is accompanied by chronic activation of the SREBP-2 signalling pathway. Our findings reveal the importance of regulated lipid transport at ER-Golgi contacts for maintaining cellular cholesterol distribution and homeostasis.
Collapse
Affiliation(s)
- Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Haoning Yang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Dylan Hong Zheng Koh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Divyanshu Mahajan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
7
|
Abstract
Ligands of the Hedgehog (HH) pathway are paracrine signaling molecules that coordinate tissue development in metazoans. A remarkable feature of HH signaling is the repeated use of cholesterol in steps spanning ligand biogenesis, secretion, dispersal, and reception on target cells. A cholesterol molecule covalently attached to HH ligands is used as a molecular baton by transfer proteins to guide their secretion, spread, and reception. On target cells, a signaling circuit composed of a cholesterol transporter and sensor regulates transmission of HH signals across the plasma membrane to the cytoplasm. The repeated use of cholesterol in signaling supports the view that the HH pathway likely evolved by coopting ancient systems to regulate the abundance or organization of sterol-like lipids in membranes.
Collapse
Affiliation(s)
- Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom;
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
8
|
Shaw TR, Wisser KC, Schaffner TA, Gaffney AD, Machta BB, Veatch SL. Chemical potential measurements constrain models of cholesterol-phosphatidylcholine interactions. Biophys J 2023; 122:1105-1117. [PMID: 36785512 PMCID: PMC10111267 DOI: 10.1016/j.bpj.2023.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Bilayer membranes composed of cholesterol and phospholipids exhibit diverse forms of nonideal mixing. In particular, many previous studies document macroscopic liquid-liquid phase separation as well as nanometer-scale heterogeneity in membranes of phosphatidylcholine (PC) lipids and cholesterol. Here, we present experimental measurements of cholesterol chemical potential (μc) in binary membranes containing dioleoyl PC (DOPC), 1-palmitoyl-2-oleoyl PC (POPC), or dipalmitoyl PC (DPPC), and in ternary membranes of DOPC and DPPC, referenced to crystalline cholesterol. μc is the thermodynamic quantity that dictates the availability of cholesterol to bind other factors, and notably must be equal between coexisting phases of a phase separated mixture. It is simply related to concentration under conditions of ideal mixing, but is far from ideal for the majority of lipid mixtures investigated here. Measurements of μc can vary with phospholipid composition by 1.5 kBT at constant cholesterol mole fraction implying a more than fivefold change in its availability for binding receptors and other reactions. Experimental measurements are fit to thermodynamic models including cholesterol-DPPC complexes or pairwise interactions between lipid species to provide intuition about the magnitude of interactions. These findings reinforce that μc depends on membrane composition overall, suggesting avenues for cells to alter the availability of cholesterol without varying cholesterol concentration.
Collapse
Affiliation(s)
- Thomas R Shaw
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan; Program in Applied Physics, University of Michigan, Ann Arbor, Michigan
| | | | | | - Anna D Gaffney
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan
| | | | - Sarah L Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan; Program in Applied Physics, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
9
|
Lange Y, Tabei SMA, Steck TL. A basic model for the association of ligands with membrane cholesterol: application to cytolysin binding. J Lipid Res 2023; 64:100344. [PMID: 36791915 PMCID: PMC10119614 DOI: 10.1016/j.jlr.2023.100344] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Almost all the cholesterol in cellular membranes is associated with phospholipids in simple stoichiometric complexes. This limits the binding of sterol ligands such as filipin and Perfringolysin O (PFO) to a small fraction of the total. We offer a simple mathematical model that characterizes this complexity. It posits that the cholesterol accessible to ligands has two forms: active cholesterol, which is that not complexed with phospholipids; and extractable cholesterol, that which ligands can capture competitively from the phospholipid complexes. Simulations based on the model match published data for the association of PFO oligomers with liposomes, plasma membranes and the isolated endoplasmic reticulum. The model shows how the binding of a probe greatly underestimates cholesterol abundance when its affinity for the sterol is so weak that it competes poorly with the membrane phospholipids. Two examples are the under-staining of plasma membranes by filipin and the failure of domain D4 of PFO to label their cytoplasmic leaflets. Conversely, the exaggerated staining of endolysosomes suggests that their cholesterol, being uncomplexed, is readily available. The model is also applicable to the association of cholesterol with intrinsic membrane proteins. For example, it supports the hypothesis that the sharp threshold in the regulation of homeostatic ER proteins by cholesterol derives from the cooperativity of their binding to the sterol weakly held by the phospholipid. § Thus, the model explicates the complexity inherent in the binding of ligands like PFO and filipin to the small accessible fraction of membrane cholesterol.
Collapse
Affiliation(s)
- Yvonne Lange
- 1Department of Pathology, Rush University Medical Center, Chicago, Il 60612, USA.
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls, Iowa 50614, USA
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Il 60637, USA
| |
Collapse
|
10
|
Kennelly JP, Tontonoz P. Cholesterol Transport to the Endoplasmic Reticulum. Cold Spring Harb Perspect Biol 2023; 15:cshperspect.a041263. [PMID: 35940908 PMCID: PMC9899650 DOI: 10.1101/cshperspect.a041263] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Most cholesterol in mammalian cells is stored in the plasma membrane (PM). Cholesterol transport from the PM to low-sterol regulatory regions of the endoplasmic reticulum (ER) controls cholesterol synthesis and uptake, and thereby influences the rates of cholesterol flux between tissues of complex organisms. Cholesterol transfer to the ER is also required for steroidogenesis, oxysterol and bile acid synthesis, and cholesterol esterification. The ER-resident Aster proteins (Aster-A, -B, and -C) form contacts with the PM to move cholesterol to the ER in mammals. Mice lacking Aster-B have low adrenal cholesteryl ester stores and impaired steroidogenesis because of a defect in cholesterol transport from high-density lipoprotein (HDL) to the ER. This work reviews the molecular characteristics of Asters, their role in HDL- and low-density lipoprotein (LDL)-cholesterol movement, and how cholesterol transferred to the ER is utilized by cells. The roles of other lipid transporters and of membrane lipid organization in maintaining aspects of cholesterol homeostasis are also highlighted.
Collapse
Affiliation(s)
- John P Kennelly
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
11
|
Heisler DB, Johnson KA, Ma DH, Ohlson MB, Zhang L, Tran M, Corley CD, Abrams ME, McDonald JG, Schoggins JW, Alto NM, Radhakrishnan A. A concerted mechanism involving ACAT and SREBPs by which oxysterols deplete accessible cholesterol to restrict microbial infection. eLife 2023; 12:e83534. [PMID: 36695568 PMCID: PMC9925056 DOI: 10.7554/elife.83534] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Most of the cholesterol in the plasma membranes (PMs) of animal cells is sequestered through interactions with phospholipids and transmembrane domains of proteins. However, as cholesterol concentration rises above the PM's sequestration capacity, a new pool of cholesterol, called accessible cholesterol, emerges. The transport of accessible cholesterol between the PM and the endoplasmic reticulum (ER) is critical to maintain cholesterol homeostasis. This pathway has also been implicated in the suppression of both bacterial and viral pathogens by immunomodulatory oxysterols. Here, we describe a mechanism of depletion of accessible cholesterol from PMs by the oxysterol 25-hydroxycholesterol (25HC). We show that 25HC-mediated activation of acyl coenzyme A: cholesterol acyltransferase (ACAT) in the ER creates an imbalance in the equilibrium distribution of accessible cholesterol between the ER and PM. This imbalance triggers the rapid internalization of accessible cholesterol from the PM, and this depletion is sustained for long periods of time through 25HC-mediated suppression of SREBPs and continued activation of ACAT. In support of a physiological role for this mechanism, 25HC failed to suppress Zika virus and human coronavirus infection in ACAT-deficient cells, and Listeria monocytogenes infection in ACAT-deficient cells and mice. We propose that selective depletion of accessible PM cholesterol triggered by ACAT activation and sustained through SREBP suppression underpins the immunological activities of 25HC and a functionally related class of oxysterols.
Collapse
Affiliation(s)
- David B Heisler
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Kristen A Johnson
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Duo H Ma
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Maikke B Ohlson
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Lishu Zhang
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Michelle Tran
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Chase D Corley
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Michael E Abrams
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Jeffrey G McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - John W Schoggins
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Neal M Alto
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Arun Radhakrishnan
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
12
|
Manzano JI, Perea-Martínez A, García-Hernández R, Andrés-León E, Terrón-Camero LC, Poveda JA, Gamarro F. Modulation of Cholesterol Pathways in Human Macrophages Infected by Clinical Isolates of Leishmania infantum. Front Cell Infect Microbiol 2022; 12:878711. [PMID: 35573792 PMCID: PMC9106381 DOI: 10.3389/fcimb.2022.878711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/07/2022] [Indexed: 12/05/2022] Open
Abstract
To increase our understanding of factors contributing to therapeutic failure (TF) in leishmaniasis, we have studied some plasma membrane features of host THP-1 cells infected with clinical isolates of Leishmania infantum from patients with leishmaniasis and TF. The fluorescent probes DPH and TMA-DPH were used to measure changes in membrane fluidity at various depths of the plasma membranes. Steady-state fluorescence anisotropy of DPH embedded in the infected THP-1 membranes showed a significant increase, thereby suggesting a substantial decrease in plasma membrane fluidity relative to controls. Considering that cholesterol affects membrane fluidity and permeability, we determined the cholesterol content in plasma membrane fractions of human macrophages infected with these L. infantum lines and observed a significant increase in cholesterol content that correlates with the measured decrease in plasma membrane fluidity. In order to define the pathways that could explain the increase in cholesterol content, we studied the transcriptomics of the cholesterol-enriched pathways in host THP-1 cells infected with TF clinical isolates by RNA-seq. Specifically, we focused on four enriched Gene Ontology (GO) terms namely cholesterol efflux, cholesterol transport, cholesterol metabolic process and cholesterol storage. Additionally, we analyzed the genes involved in these pathways. Overall, this study shows that these clinical isolates are able to modulate the expression of specific genes in host cells, thereby modifying the cholesterol content in plasma membranes and inducing changes in plasma membrane fluidity that could be associated with the parasite’s ability to survive in the host macrophages, thereby possibly contributing to immune evasion and TF.
Collapse
Affiliation(s)
- José Ignacio Manzano
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Spain
| | - Ana Perea-Martínez
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Spain
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Spain
| | - Eduardo Andrés-León
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Spain
| | - Laura C. Terrón-Camero
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Spain
| | - José Antonio Poveda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Spain
- *Correspondence: Francisco Gamarro,
| |
Collapse
|
13
|
Juhl AD, Wüstner D. Pathways and Mechanisms of Cellular Cholesterol Efflux-Insight From Imaging. Front Cell Dev Biol 2022; 10:834408. [PMID: 35300409 PMCID: PMC8920967 DOI: 10.3389/fcell.2022.834408] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Cholesterol is an essential molecule in cellular membranes, but too much cholesterol can be toxic. Therefore, mammalian cells have developed complex mechanisms to remove excess cholesterol. In this review article, we discuss what is known about such efflux pathways including a discussion of reverse cholesterol transport and formation of high-density lipoprotein, the function of ABC transporters and other sterol efflux proteins, and we highlight their role in human diseases. Attention is paid to the biophysical principles governing efflux of sterols from cells. We also discuss recent evidence for cholesterol efflux by the release of exosomes, microvesicles, and migrasomes. The role of the endo-lysosomal network, lipophagy, and selected lysosomal transporters, such as Niemann Pick type C proteins in cholesterol export from cells is elucidated. Since oxysterols are important regulators of cellular cholesterol efflux, their formation, trafficking, and secretion are described briefly. In addition to discussing results obtained with traditional biochemical methods, focus is on studies that use established and novel bioimaging approaches to obtain insight into cholesterol efflux pathways, including fluorescence and electron microscopy, atomic force microscopy, X-ray tomography as well as mass spectrometry imaging.
Collapse
Affiliation(s)
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Griffiths WJ, Wang Y. Cholesterol metabolism: from lipidomics to immunology. J Lipid Res 2022; 63:100165. [PMID: 34953867 PMCID: PMC8953665 DOI: 10.1016/j.jlr.2021.100165] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Oxysterols, the oxidized forms of cholesterol or of its precursors, are formed in the first steps of cholesterol metabolism. Oxysterols have interested chemists, biologists, and physicians for many decades, but their exact biological relevance in vivo, other than as intermediates in bile acid biosynthesis, has long been debated. However, in the first quarter of this century, a role for side-chain oxysterols and their C-7 oxidized metabolites has been convincingly established in the immune system. 25-Hydroxycholesterol has been shown to be synthesized by macrophages in response to the activation of Toll-like receptors and to offer protection against microbial pathogens, whereas 7α,25-dihydroxycholesterol has been shown to act as a chemoattractant to lymphocytes expressing the G protein-coupled receptor Epstein-Barr virus-induced gene 2 and to be important in coordinating the action of B cells, T cells, and dendritic cells in secondary lymphoid tissue. There is a growing body of evidence that not only these two oxysterols but also many of their isomers are of importance to the proper function of the immune system. Here, we review recent findings related to the roles of oxysterols in immunology.
Collapse
Affiliation(s)
| | - Yuqin Wang
- Swansea University Medical School, Swansea, Wales, United Kingdom.
| |
Collapse
|
15
|
Barrantes FJ. Fluorescence sensors for imaging membrane lipid domains and cholesterol. CURRENT TOPICS IN MEMBRANES 2021; 88:257-314. [PMID: 34862029 DOI: 10.1016/bs.ctm.2021.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lipid membrane domains are supramolecular lateral heterogeneities of biological membranes. Of nanoscopic dimensions, they constitute specialized hubs used by the cell as transient signaling platforms for a great variety of biologically important mechanisms. Their property to form and dissolve in the bulk lipid bilayer endow them with the ability to engage in highly dynamic processes, and temporarily recruit subpopulations of membrane proteins in reduced nanometric compartments that can coalesce to form larger mesoscale assemblies. Cholesterol is an essential component of these lipid domains; its unique molecular structure is suitable for interacting intricately with crevices and cavities of transmembrane protein surfaces through its rough β face while "talking" to fatty acid acyl chains of glycerophospholipids and sphingolipids via its smooth α face. Progress in the field of membrane domains has been closely associated with innovative improvements in fluorescence microscopy and new fluorescence sensors. These advances enabled the exploration of the biophysical properties of lipids and their supramolecular platforms. Here I review the rationale behind the use of biosensors over the last few decades and their contributions towards elucidation of the in-plane and transbilayer topography of cholesterol-enriched lipid domains and their molecular constituents. The challenges introduced by super-resolution optical microscopy are discussed, as well as possible scenarios for future developments in the field, including virtual ("no staining") staining.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)-National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
16
|
Kinnebrew M, Luchetti G, Sircar R, Frigui S, Viti LV, Naito T, Beckert F, Saheki Y, Siebold C, Radhakrishnan A, Rohatgi R. Patched 1 reduces the accessibility of cholesterol in the outer leaflet of membranes. eLife 2021; 10:e70504. [PMID: 34698632 PMCID: PMC8654371 DOI: 10.7554/elife.70504] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
A long-standing mystery in vertebrate Hedgehog signaling is how Patched 1 (PTCH1), the receptor for Hedgehog ligands, inhibits the activity of Smoothened, the protein that transmits the signal across the membrane. We previously proposed (Kinnebrew et al., 2019) that PTCH1 inhibits Smoothened by depleting accessible cholesterol from the ciliary membrane. Using a new imaging-based assay to directly measure the transport activity of PTCH1, we find that PTCH1 depletes accessible cholesterol from the outer leaflet of the plasma membrane. This transport activity is terminated by binding of Hedgehog ligands to PTCH1 or by dissipation of the transmembrane potassium gradient. These results point to the unexpected model that PTCH1 moves cholesterol from the outer to the inner leaflet of the membrane in exchange for potassium ion export in the opposite direction. Our study provides a plausible solution for how PTCH1 inhibits SMO by changing the organization of cholesterol in membranes and establishes a general framework for studying how proteins change cholesterol accessibility to regulate membrane-dependent processes in cells.
Collapse
Affiliation(s)
- Maia Kinnebrew
- Department of Biochemistry and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Giovanni Luchetti
- Department of Biochemistry and Medicine, Stanford University School of MedicineStanfordUnited States
- Department of Physiological Chemistry, GenentechSouth San FranciscoUnited States
| | - Ria Sircar
- Department of Biochemistry and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Sara Frigui
- Department of Biochemistry and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Lucrezia Vittoria Viti
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
| | - Francis Beckert
- Department of Biochemistry and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Rajat Rohatgi
- Department of Biochemistry and Medicine, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
17
|
Naito T, Saheki Y. GRAMD1-mediated accessible cholesterol sensing and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158957. [PMID: 33932585 DOI: 10.1016/j.bbalip.2021.158957] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 01/19/2023]
Abstract
Cholesterol, an essential lipid for cell signaling and structural integrity of cellular membranes, is highly enriched in the plasma membrane (PM). However, the regulatory mechanisms that control its biosynthesis and uptake both reside in the endoplasmic reticulum (ER). Thus, the ER needs to constantly monitor the levels of PM cholesterol. This is in part mediated by regulated transport of a biochemically defined pool of cholesterol, termed "accessible" cholesterol, from the PM to the ER via evolutionarily conserved ER-anchored lipid transfer proteins, the GRAMD1s/Asters (GRAMD1a/1b/1c) (Lam/Ltc proteins in yeast). GRAMD1s possess cytosolically exposed GRAM domain and StART-like domain followed by a transmembrane ER anchor. They form homo- and hetero-meric complexes and move to the contacts formed between the ER and the PM by sensing a transient expansion of the accessible pool of cholesterol in the PM via the GRAM domain and facilitate its extraction and transport to the ER via the StART-like domain. The GRAMD1b GRAM domain possesses distinct, but synergistic sites, for recognizing accessible cholesterol and anionic lipids, including phosphatidylserine, within the PM. This property of the GRAM domain contributes to regulated tethering of the PM to ER membrane where GRAMD1s are anchored and fine-tunes StART-like domain-dependent accessible cholesterol transport. Thus, cells use GRAMD1s to sense the levels of cholesterol in the PM and regulate transport of accessible PM cholesterol to the ER in order to maintain cholesterol homeostasis.
Collapse
Affiliation(s)
- Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore; Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
18
|
Ercan B, Naito T, Koh DHZ, Dharmawan D, Saheki Y. Molecular basis of accessible plasma membrane cholesterol recognition by the GRAM domain of GRAMD1b. EMBO J 2021; 40:e106524. [PMID: 33604931 PMCID: PMC7957428 DOI: 10.15252/embj.2020106524] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 12/25/2022] Open
Abstract
Cholesterol is essential for cell physiology. Transport of the "accessible" pool of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) by ER-localized GRAMD1 proteins (GRAMD1a/1b/1c) contributes to cholesterol homeostasis. However, how cells detect accessible cholesterol within the PM remains unclear. We show that the GRAM domain of GRAMD1b, a coincidence detector for anionic lipids, including phosphatidylserine (PS), and cholesterol, possesses distinct but synergistic sites for sensing accessible cholesterol and anionic lipids. We find that a mutation within the GRAM domain of GRAMD1b that is associated with intellectual disability in humans specifically impairs cholesterol sensing. In addition, we identified another point mutation within this domain that enhances cholesterol sensitivity without altering its PS sensitivity. Cell-free reconstitution and cell-based assays revealed that the ability of the GRAM domain to sense accessible cholesterol regulates membrane tethering and determines the rate of cholesterol transport by GRAMD1b. Thus, cells detect the codistribution of accessible cholesterol and anionic lipids in the PM and fine-tune the non-vesicular transport of PM cholesterol to the ER via GRAMD1s.
Collapse
Affiliation(s)
- Bilge Ercan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Dennis Dharmawan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
19
|
Radhakrishnan A, Rohatgi R, Siebold C. Cholesterol access in cellular membranes controls Hedgehog signaling. Nat Chem Biol 2020; 16:1303-1313. [PMID: 33199907 PMCID: PMC7872078 DOI: 10.1038/s41589-020-00678-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
Abstract
The Hedgehog (Hh) signaling pathway coordinates cell-cell communication in development and regeneration. Defects in this pathway underlie diseases ranging from birth defects to cancer. Hh signals are transmitted across the plasma membrane by two proteins, Patched 1 (PTCH1) and Smoothened (SMO). PTCH1, a transporter-like tumor-suppressor protein, binds to Hh ligands, but SMO, a G-protein-coupled-receptor family oncoprotein, transmits the Hh signal across the membrane. Recent structural, biochemical and cell-biological studies have converged at the surprising model that a specific pool of plasma membrane cholesterol, termed accessible cholesterol, functions as a second messenger that conveys the signal between PTCH1 and SMO. Beyond solving a central puzzle in Hh signaling, these studies are revealing new principles in membrane biology: how proteins respond to and remodel cholesterol accessibility in membranes and how the cholesterol composition of organelle membranes is used to regulate protein function.
Collapse
Affiliation(s)
- Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Lange Y, Steck TL. Active cholesterol 20 years on. Traffic 2020; 21:662-674. [PMID: 32930466 DOI: 10.1111/tra.12762] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
This review considers the following hypotheses, some well-supported and some speculative. Almost all of the sterol molecules in plasma membranes are associated with bilayer phospholipids in complexes of varied strength and stoichiometry. These complexes underlie many of the material properties of the bilayer. The small fraction of cholesterol molecules exceeding the binding capacity of the phospholipids is thermodynamically active and serves diverse functions. It circulates briskly among the cell membranes, particularly through contact sites linking the organelles. Active cholesterol provides the upstream feedback signal to multiple mechanisms governing plasma membrane homeostasis, pegging the sterol level to a threshold set by its phospholipids. Active cholesterol could also be the cargo for various inter-organelle transporters and the form excreted from cells by reverse transport. Furthermore, it is integral to the function of caveolae; a mediator of Hedgehog regulation; and a ligand for the binding of cytolytic toxins to membranes. Active cholesterol modulates a variety of plasma membrane proteins-receptors, channels and transporters-at least in vitro.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Characterization of the molecular packing, thermotropic phase behaviour and critical micellar concentration of a homologous series of N-acyltaurines (n = 9–18). PXRD, DSC and fluorescence spectroscopic studies. Chem Phys Lipids 2020; 230:104929. [DOI: 10.1016/j.chemphyslip.2020.104929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
|
22
|
Jackman JA, Cho NJ. Supported Lipid Bilayer Formation: Beyond Vesicle Fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1387-1400. [PMID: 31990559 DOI: 10.1021/acs.langmuir.9b03706] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Supported lipid bilayers (SLBs) are cell-membrane-mimicking platforms that can be formed on solid surfaces and integrated with a wide range of surface-sensitive measurement techniques. SLBs are useful for unravelling details of fundamental membrane biology and biophysics as well as for various medical, biotechnology, and environmental science applications. Thus, there is high interest in developing simple and robust methods to fabricate SLBs. Currently, vesicle fusion is a popular method to form SLBs and involves the adsorption and spontaneous rupture of lipid vesicles on a solid surface. However, successful vesicle fusion depends on high-quality vesicle preparation, and it typically works with a narrow range of material supports and lipid compositions. In this Feature Article, we summarize current progress in developing two new SLB fabrication techniques termed the solvent-assisted lipid bilayer (SALB) and bicelle methods, which have compelling advantages such as simple sample preparation and compatibility with a wide range of material supports and lipid compositions. The molecular self-assembly principles underpinning the two strategies and important experimental parameters are critically discussed, and recent application examples are presented. Looking forward, we envision that these emerging SLB fabrication strategies can be widely adopted by specialists and nonspecialists alike, paving the way to enriching our understanding of lipid membrane properties and realizing new application possibilities.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Chemical Engineering , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| |
Collapse
|
23
|
Naito T, Ercan B, Krshnan L, Triebl A, Koh DHZ, Wei FY, Tomizawa K, Torta FT, Wenk MR, Saheki Y. Movement of accessible plasma membrane cholesterol by the GRAMD1 lipid transfer protein complex. eLife 2019; 8:51401. [PMID: 31724953 PMCID: PMC6905856 DOI: 10.7554/elife.51401] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Cholesterol is a major structural component of the plasma membrane (PM). The majority of PM cholesterol forms complexes with other PM lipids, making it inaccessible for intracellular transport. Transition of PM cholesterol between accessible and inaccessible pools maintains cellular homeostasis, but how cells monitor the accessibility of PM cholesterol remains unclear. We show that endoplasmic reticulum (ER)-anchored lipid transfer proteins, the GRAMD1s, sense and transport accessible PM cholesterol to the ER. GRAMD1s bind to one another and populate ER-PM contacts by sensing a transient expansion of the accessible pool of PM cholesterol via their GRAM domains. They then facilitate the transport of this cholesterol via their StART-like domains. Cells that lack all three GRAMD1s exhibit striking expansion of the accessible pool of PM cholesterol as a result of less efficient PM to ER transport of accessible cholesterol. Thus, GRAMD1s facilitate the movement of accessible PM cholesterol to the ER in order to counteract an acute increase of PM cholesterol, thereby activating non-vesicular cholesterol transport. The human body contains trillions of cells. At the outer edge of each cell is the plasma membrane, which protects the cell from the external environment. This membrane is mostly made of fatty molecules known as lipids and about half of these lipids are specifically cholesterol. Human cells can either take up cholesterol that were obtained via the diet or produce it within a compartment of the cell called the endoplasmic reticulum. Cells need to monitor the cholesterol levels in both the endoplasmic reticulum and the plasma membrane in order to regulate the uptake or production of this lipid. For example, if there is too much of cholesterol in the plasma membrane, then the cell transports some to the endoplasmic reticulum to tell it to shut down cholesterol production. However, how these different areas of the cell communicate with each other, and transport cholesterol, has remained unclear. Naito et al. set out to look for key regulators of cholesterol transport and identified a group of endoplasmic reticulum proteins called GRAMD1 proteins. Cholesterol in the plasma membrane is either accessible or inaccessible, meaning it either can or cannot be moved back into the cell. The GRAMD1 proteins sense accessible cholesterol, and experiments with human cells grown in the laboratory showed that, specifically, the GRAMD1 proteins work together in a complex to sense accessible cholesterol at or near the plasma membrane. One particular part of the protein senses when the amount of accessible cholesterol reaches a certain level at the plasma membrane; when this threshold is reached, the complex flips a switch to start the transport of cholesterol to the endoplasmic reticulum and tell it to shut down cholesterol production. This coupling of sensing and transporting lipids by one protein complex also helps maintain the right ratio of accessible and inaccessible cholesterol in the plasma membrane to prevent cells from activating unwanted cell-signaling events. Getting rid of the GRAMD1 proteins in cells, or removing sensing part of these proteins, leads to inefficient transport of cholesterol. A better understanding of how GRAMD1 proteins sense the accessibility of cholesterol could potentially help identify new approaches to control cholesterol transport inside cells. This may in turn eventually lead to new treatments that counteract the defects in cholesterol metabolism seen in some forms of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.
Collapse
Affiliation(s)
- Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Bilge Ercan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Logesvaran Krshnan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Alexander Triebl
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dylan Hong Zheng Koh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Federico Tesio Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
24
|
Steady state analysis of influx and transbilayer distribution of ergosterol in the yeast plasma membrane. Theor Biol Med Model 2019; 16:13. [PMID: 31412941 PMCID: PMC6694696 DOI: 10.1186/s12976-019-0108-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023] Open
Abstract
Background The transbilayer sterol distribution between both plasma membrane (PM) leaflets has long been debated. Recent studies in mammalian cells and in yeast show that the majority of sterol resides in the inner PM leaflet. Since sterol flip-flop in model membranes is rapid and energy-independent, a mechanistic understanding for net enrichment of sterol in one leaflet is lacking. Import of ergosterol in yeast can take place via the ABC transporters Aus1/Pdr11 under anaerobic growth conditions, eventually followed by rapid non-vesicular sterol transport to the endoplasmic reticulum (ER). Little is known about how these transport steps are dynamically coordinated. Methods Here, a kinetic steady state model is presented which considers sterol import via Aus1/Pdr11, sterol flip-flop across the PM, bi-molecular complex formation and intracellular sterol release followed by eventual transport to and esterification of sterol in the ER. The steady state flux is calculated, and a thermodynamic analysis of feasibility is presented. Results It is shown that the steady state sterol flux across the PM can be entirely controlled by irreversible sterol import via Aus1/Pdr11. The transbilayer sterol flux at steady state is a non-linear function of the chemical potential difference of sterol between both leaflets. Non-vesicular release of sterol on the cytoplasmic side of the PM lowers the attainable sterol enrichment in the inner leaflet. Including complex formation of sterol with phospholipids or proteins can explain several puzzling experimental observations; 1) rapid sterol flip-flop across the PM despite net sterol enrichment in one leaflet, 2) a pronounced steady state sterol gradient between PM and ER despite fast non-vesicular sterol exchange between both compartments and 3) a non-linear dependence of ER sterol on ergosterol abundance in the PM. Conclusions A steady state model is presented that can account for the observed sterol asymmetry in the yeast PM, the strong sterol gradient between PM and ER and threshold-like expansion of ER sterol for increasing sterol influx into the PM. The model also provides new insight into selective uptake of cholesterol and its homeostasis in mammalian cells, and it provides testable predictions for future experiments.
Collapse
|
25
|
Weiss LE, Milenkovic L, Yoon J, Stearns T, Moerner WE. Motional dynamics of single Patched1 molecules in cilia are controlled by Hedgehog and cholesterol. Proc Natl Acad Sci U S A 2019; 116:5550-5557. [PMID: 30819883 PMCID: PMC6431229 DOI: 10.1073/pnas.1816747116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Hedgehog-signaling pathway is an important target in cancer research and regenerative medicine; yet, on the cellular level, many steps are still poorly understood. Extensive studies of the bulk behavior of the key proteins in the pathway established that during signal transduction they dynamically localize in primary cilia, antenna-like solitary organelles present on most cells. The secreted Hedgehog ligand Sonic Hedgehog (SHH) binds to its receptor Patched1 (PTCH1) in primary cilia, causing its inactivation and delocalization from cilia. At the same time, the transmembrane protein Smoothened (SMO) is released of its inhibition by PTCH1 and accumulates in cilia. We used advanced, single molecule-based microscopy to investigate these processes in live cells. As previously observed for SMO, PTCH1 molecules in cilia predominantly move by diffusion and less frequently by directional transport, and spend a fraction of time confined. After treatment with SHH we observed two major changes in the motional dynamics of PTCH1 in cilia. First, PTCH1 molecules spend more time as confined, and less time freely diffusing. This result could be mimicked by a depletion of cholesterol from cells. Second, after treatment with SHH, but not after cholesterol depletion, the molecules that remain in the diffusive state showed a significant increase in the diffusion coefficient. Therefore, PTCH1 inactivation by SHH changes the diffusive motion of PTCH1, possibly by modifying the membrane microenvironment in which PTCH1 resides.
Collapse
Affiliation(s)
- Lucien E Weiss
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | | | - Joshua Yoon
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA 94305;
| |
Collapse
|
26
|
Ayuyan AG, Cohen FS. The Chemical Potential of Plasma Membrane Cholesterol: Implications for Cell Biology. Biophys J 2019; 114:904-918. [PMID: 29490250 DOI: 10.1016/j.bpj.2017.12.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 10/17/2022] Open
Abstract
Cholesterol is abundant in plasma membranes and exhibits a variety of interactions throughout the membrane. Chemical potential accounts for thermodynamic consequences of molecular interactions, and quantifies the effective concentration (i.e., activity) of any substance participating in a process. We have developed, to our knowledge, the first method to measure cholesterol chemical potential in plasma membranes. This was accomplished by complexing methyl-β-cyclodextrin with cholesterol in an aqueous solution and equilibrating it with an organic solvent containing dissolved cholesterol. The chemical potential of cholesterol was thereby equalized in the two phases. Because cholesterol is dilute in the organic phase, here activity and concentration were equivalent. This equivalence allowed the amount of cholesterol bound to methyl-β-cyclodextrin to be converted to cholesterol chemical potential. Our method was used to determine the chemical potential of cholesterol in erythrocytes and in plasma membranes of nucleated cells in culture. For erythrocytes, the chemical potential did not vary when the concentration was below a critical value. Above this value, the chemical potential progressively increased with concentration. We used standard cancer lines to characterize cholesterol chemical potential in plasma membranes of nucleated cells. This chemical potential was significantly greater for highly metastatic breast cancer cells than for nonmetastatic breast cancer cells. Chemical potential depended on density of the cancer cells. A method to alter and fix the cholesterol chemical potential to any value (i.e., a cholesterol chemical potential clamp) was also developed. Cholesterol content did not change when cells were clamped for 24-48 h. It was found that the level of activation of the transcription factor STAT3 increased with increasing cholesterol chemical potential. The cholesterol chemical potential may regulate signaling pathways.
Collapse
Affiliation(s)
- Artem G Ayuyan
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois.
| | - Fredric S Cohen
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
27
|
Almeida PF, Carter FE, Kilgour KM, Raymonda MH, Tejada E. Heat Capacity of DPPC/Cholesterol Mixtures: Comparison of Single Bilayers with Multibilayers and Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9798-9809. [PMID: 30088940 DOI: 10.1021/acs.langmuir.8b01774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The excess heat capacity (Δ C p) of mixtures of dipalmitoylphosphatidylcholine (DPPC) and cholesterol (Chol) is examined in detail in large unilamellar vesicles (LUVs), both experimentally, using differential scanning calorimetry (DSC), and theoretically, using a three-state Ising model. The model postulates that DPPC can access three conformational states: gel, liquid-disordered (Ld), and liquid-ordered (Lo). The Lo state, however, is only available if coupled with interaction with an adjacent Chol. Δ C p was calculated using Monte Carlo simulations on a lattice and compared to experiment. The DSC results in LUVs are compared with literature data on multilamellar vesicles (MLVs). The enthalpy change of the complete phase transition from gel to Ld is identical in LUVs and MLVs, and the melting temperatures ( Tm) are similar. However, the DSC curves in LUVs are significantly broader, and the maxima of Δ C p are accordingly smaller. The parameters in the Ising model were chosen to match the DSC curves in LUVs and the nearest-neighbor recognition (NNR) data. The model reproduces the NNR data very well. It also reproduces the phase transition in DPPC, the freezing point depression induced by Chol, and the broad component of Δ C p in DPPC/Chol LUVs. However, there is a sharp component, between 5 and 15 mol % Chol, that the model does not reproduce. The broad component of Δ C p becomes dominant as Chol concentration increases, indicating that it involves melting of the Lo phase. Because the simulations reproduce this component, the conclusions regarding the nature of the phase transition at high Chol concentrations and the structure of the Lo phase are important: there is no true phase separation in DPPC/Chol LUVs. There are large domains of gel and Lo phase coexisting below Tm of DPPC, but above Tm the three states of DPPC are mixed with Chol, although clusters persist.
Collapse
Affiliation(s)
- Paulo F Almeida
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina 28403 , United States
| | - Faith E Carter
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina 28403 , United States
| | - Katie M Kilgour
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina 28403 , United States
| | - Matthew H Raymonda
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina 28403 , United States
| | - Emmanuel Tejada
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina 28403 , United States
| |
Collapse
|
28
|
Ferraro NA, Cascio M. Cross-Linking-Mass Spectrometry Studies of Cholesterol Interactions with Human α1 Glycine Receptor. Anal Chem 2018; 90:2508-2516. [DOI: 10.1021/acs.analchem.7b03639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Nicholas A. Ferraro
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Michael Cascio
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
29
|
Bozelli JC, Hou YH, Epand RM. Thermodynamics of Methyl-β-cyclodextrin-Induced Lipid Vesicle Solubilization: Effect of Lipid Headgroup and Backbone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13882-13891. [PMID: 29120189 DOI: 10.1021/acs.langmuir.7b03447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The low aqueous solubility of phospholipids makes necessary the use of lipid carriers in studies ranging from lipid traffic and metabolism to the engineering of model membranes bearing lipid transverse asymmetry. One particular lipid carrier that has proven to be particularly useful is methyl-β-cyclodextrin (MβCD). To assess the interaction of MβCD with structurally different phospholipids, the present work reports the results of isothermal titration calorimetry in conjunction with dynamic light scattering measurements. The results showed that the interaction of MβCD with large unilamellar vesicles composed of a single type of lipid led to the solubilization of the lipid vesicle and, consequently, the complexation of MβCD with the lipids. This interaction is dependent on the nature of the lipid headgroup, with a preferable interaction with phosphatidylglycerol in comparison to phosphatidylcholine. It was also possible to show a role played by the phospholipid backbone in this interaction. In many cases, the differences in the transfer energy between one lipid and another in going from a bilayer to a cyclodextrin-bound state can be qualitatively explained by the energy required to extract the lipid from a bilayer. In all cases, the data showed that the solubilization of the vesicles is entropically driven with a large negative ΔCp, suggesting a mechanism dependent on the hydrophobic effect.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre , Hamilton, Ontario L8S 4K1 Canada
| | - Yu Heng Hou
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre , Hamilton, Ontario L8S 4K1 Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre , Hamilton, Ontario L8S 4K1 Canada
| |
Collapse
|
30
|
Mechanistic Insights into the Cholesterol-dependent Binding of Perfringolysin O-based Probes and Cell Membranes. Sci Rep 2017; 7:13793. [PMID: 29061991 PMCID: PMC5653841 DOI: 10.1038/s41598-017-14002-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/05/2017] [Indexed: 11/18/2022] Open
Abstract
Cholesterol distribution in the cell is maintained by both vesicular and non-vesicular sterol transport. Non-vesicular transport is mediated by the interaction of membrane-embedded cholesterol and water-soluble proteins. Small changes to the lipid composition of the membrane that do not change the total cholesterol content, can significantly affect how cholesterol interacts with other molecules at the surface of the membrane. The cholesterol-dependent cytolysin Perfringolysin O (PFO) constitutes a powerful tool to detect cholesterol in membranes, and the use of PFO-based probes has flourished in recent years. By using a non-lytic PFO derivative, we showed that the sensitivity of the probes for cholesterol can be tuned by modifications introduced directly in the membrane-interacting loops and/or by modifying residues away from the membrane-interacting domain. Through the use of these biosensors on live RAW 264.7 cells, we found that changes in the overall cholesterol content have a limited effect on the average cholesterol accessibility at the surface of the membrane. We showed that these exquisite biosensors report on changes in cholesterol reactivity at the membrane surface independently of the overall cholesterol content in the membrane.
Collapse
|
31
|
Zuo H, Wang R, Jiang D, Fang D. Determining the Composition of Active Cholesterol in the Plasma Membrane of Single Cells by using Electrochemiluminescence. ChemElectroChem 2017. [DOI: 10.1002/celc.201600738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huanzhen Zuo
- School of Pharmacy; Nanjing Medical University; Jiangsu 210029 P.R. China
- NanJing Biopharmaceutical Innovation Platform Co. Ltd; Jiangsu 210000 P.R. China
| | - Rui Wang
- School of Pharmacy; Nanjing Medical University; Jiangsu 210029 P.R. China
| | - Dechen Jiang
- School of Chemistry and Chemical Engineering; Nanjing University; Jiangsu 210092 P.R. China
| | - Danjun Fang
- School of Pharmacy; Nanjing Medical University; Jiangsu 210029 P.R. China
| |
Collapse
|
32
|
Xu J, Jiang D, Qin Y, Xia J, Jiang D, Chen HY. C3N4 Nanosheet Modified Microwell Array with Enhanced Electrochemiluminescence for Total Analysis of Cholesterol at Single Cells. Anal Chem 2017; 89:2216-2220. [PMID: 28192948 DOI: 10.1021/acs.analchem.6b04635] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jingjing Xu
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Depeng Jiang
- Department
of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yanling Qin
- Department
of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Juan Xia
- Department
of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Dechen Jiang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
33
|
Chakrabarti RS, Ingham SA, Kozlitina J, Gay A, Cohen JC, Radhakrishnan A, Hobbs HH. Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin. eLife 2017; 6. [PMID: 28169829 PMCID: PMC5323040 DOI: 10.7554/elife.23355] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/28/2017] [Indexed: 01/07/2023] Open
Abstract
Cholesterol partitions into accessible and sequestered pools in cell membranes. Here, we describe a new assay using fluorescently-tagged anthrolysin O, a cholesterol-binding bacterial toxin, to measure accessible cholesterol in human red blood cells (RBCs). Accessible cholesterol levels were stable within individuals, but varied >10 fold among individuals. Significant variation was observed among ethnic groups (Blacks>Hispanics>Whites). Variation in accessibility of RBC cholesterol was unrelated to the cholesterol content of RBCs or plasma, but was associated with the phospholipid composition of the RBC membranes and with plasma triglyceride levels. Pronase treatment of RBCs only modestly altered cholesterol accessibility. Individuals on hemodialysis, who have an unexplained increase in atherosclerotic risk, had significantly higher RBC cholesterol accessibility. Our data indicate that RBC accessible cholesterol is a stable phenotype with significant inter-individual variability. Factors both intrinsic and extrinsic to the RBC contribute to variation in its accessibility. This assay provides a new tool to assess cholesterol homeostasis among tissues in humans. DOI:http://dx.doi.org/10.7554/eLife.23355.001
Collapse
Affiliation(s)
- Rima S Chakrabarti
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sally A Ingham
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Julia Kozlitina
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Austin Gay
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jonathan C Cohen
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Arun Radhakrishnan
- Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Helen H Hobbs
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States.,Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
34
|
Litz JP, Thakkar N, Portet T, Keller SL. Depletion with Cyclodextrin Reveals Two Populations of Cholesterol in Model Lipid Membranes. Biophys J 2017; 110:635-645. [PMID: 26840728 DOI: 10.1016/j.bpj.2015.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022] Open
Abstract
Recent results provide evidence that cholesterol is highly accessible for removal from both cell and model membranes above a threshold concentration that varies with membrane composition. Here we measured the rate at which methyl-β-cyclodextrin depletes cholesterol from a supported lipid bilayer as a function of cholesterol mole fraction. We formed supported bilayers from two-component mixtures of cholesterol and a PC (phosphatidylcholine) lipid, and we directly visualized the rate of decrease in area of the bilayers with fluorescence microscopy. Our technique yields the accessibility of cholesterol over a wide range of concentrations (30-66 mol %) for many individual bilayers, enabling fast acquisition of replicate data. We found that the bilayers contain two populations of cholesterol, one with low surface accessibility and the other with high accessibility. A larger fraction of the total membrane cholesterol appears in the more accessible population when the acyl chains of the PC-lipid tails are more unsaturated. Our findings are most consistent with the predictions of the condensed-complex and cholesterol bilayer domain models of cholesterol-phospholipid interactions in lipid membranes.
Collapse
Affiliation(s)
- Jonathan P Litz
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Niket Thakkar
- Department of Chemistry, University of Washington, Seattle, Washington; Department of Applied Mathematics, University of Washington, Seattle, Washington
| | - Thomas Portet
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Sarah L Keller
- Department of Chemistry, University of Washington, Seattle, Washington; Department of Physics, University of Washington, Seattle, Washington.
| |
Collapse
|
35
|
Luchetti G, Sircar R, Kong JH, Nachtergaele S, Sagner A, Byrne EFX, Covey DF, Siebold C, Rohatgi R. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling. eLife 2016; 5:e20304. [PMID: 27705744 PMCID: PMC5123864 DOI: 10.7554/elife.20304] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022] Open
Abstract
Cholesterol is necessary for the function of many G-protein coupled receptors (GPCRs). We find that cholesterol is not just necessary but also sufficient to activate signaling by the Hedgehog (Hh) pathway, a prominent cell-cell communication system in development. Cholesterol influences Hh signaling by directly activating Smoothened (SMO), an orphan GPCR that transmits the Hh signal across the membrane in all animals. Unlike many GPCRs, which are regulated by cholesterol through their heptahelical transmembrane domains, SMO is activated by cholesterol through its extracellular cysteine-rich domain (CRD). Residues shown to mediate cholesterol binding to the CRD in a recent structural analysis also dictate SMO activation, both in response to cholesterol and to native Hh ligands. Our results show that cholesterol can initiate signaling from the cell surface by engaging the extracellular domain of a GPCR and suggest that SMO activity may be regulated by local changes in cholesterol abundance or accessibility.
Collapse
Affiliation(s)
- Giovanni Luchetti
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, United States
| | - Ria Sircar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, United States
| | - Jennifer H Kong
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, United States
| | - Sigrid Nachtergaele
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, United States
| | - Andreas Sagner
- Mill Hill Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Eamon FX Byrne
- Division of Structural Biology, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Christian Siebold
- Division of Structural Biology, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
36
|
Quach D, Vitali C, La FM, Xiao AX, Millar JS, Tang C, Rader DJ, Phillips MC, Lyssenko NN. Cell lipid metabolism modulators 2-bromopalmitate, D609, monensin, U18666A and probucol shift discoidal HDL formation to the smaller-sized particles: implications for the mechanism of HDL assembly. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1968-1979. [PMID: 27671775 DOI: 10.1016/j.bbalip.2016.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/27/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022]
Abstract
ATP-binding cassette transporter A1 (ABCA1) mediates formation of disc-shaped high-density lipoprotein (HDL) from cell lipid and lipid-free apolipoprotein A-I (apo A-I). Discoidal HDL particles are heterogeneous in physicochemical characteristics for reasons that are understood incompletely. Discoidal lipoprotein particles similar in characteristics and heterogeneity to cell-formed discoidal HDL can be reconstituted from purified lipids and apo A-I by cell-free, physicochemical methods. The heterogeneity of reconstituted HDL (rHDL) is sensitive to the lipid composition of the starting lipid/apo A-I mixture. To determine whether the heterogeneity of cell-formed HDL is similarly sensitive to changes in cell lipids, we investigated four compounds that have well-established effects on cell lipid metabolism and ABCA1-mediated cell cholesterol efflux. 2-Bromopalmitate, D609, monensin and U18666A decreased formation of the larger-sized, but dramatically increased formation of the smaller-sized HDL. 2-Bromopalmitate did not appear to affect ABCA1 activity, subcellular localization or oligomerization, but induced dissolution of the cholesterol-phospholipid complexes in the plasma membrane. Arachidonic and linoleic acids shifted HDL formation to the smaller-sized species. Tangier disease mutations and inhibitors of ABCA1 activity wheat germ agglutinin and AG 490 reduced formation of both larger-sized and smaller-sized HDL. The effect of probucol was similar to the effect of 2-bromopalmitate. Taking rHDL formation as a paradigm, we propose that ABCA1 mutations and activity inhibitors reduce the amount of cell lipid available for HDL formation, and the compounds in the 2-bromopalmitate group and the polyunsaturated fatty acids change cell lipid composition from one that favors formation of the larger-sized HDL particles to one that favors formation of the smaller-sized species.
Collapse
Affiliation(s)
- Duyen Quach
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Cecilia Vitali
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Fiona M La
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Angel X Xiao
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John S Millar
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Chongren Tang
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Phillips
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas N Lyssenko
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Gay A, Rye D, Radhakrishnan A. Switch-like responses of two cholesterol sensors do not require protein oligomerization in membranes. Biophys J 2016; 108:1459-1469. [PMID: 25809258 DOI: 10.1016/j.bpj.2015.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/27/2015] [Accepted: 02/12/2015] [Indexed: 10/23/2022] Open
Abstract
Many cellular processes are sensitive to levels of cholesterol in specific membranes and show a strongly sigmoidal dependence on membrane composition. The sigmoidal responses of the cholesterol sensors involved in these processes could arise from several mechanisms, including positive cooperativity (protein effects) and limited cholesterol accessibility (membrane effects). Here, we describe a sigmoidal response that arises primarily from membrane effects due to sharp changes in the chemical activity of cholesterol. Our models for eukaryotic membrane-bound cholesterol sensors are soluble bacterial toxins that show an identical switch-like specificity for endoplasmic reticulum membrane cholesterol. We show that truncated versions of these toxins fail to form oligomers but still show sigmoidal binding to cholesterol-containing membranes. The nonlinear response emerges because interactions between bilayer lipids control cholesterol accessibility to toxins in a threshold-like fashion. Around these thresholds, the affinity of toxins for membrane cholesterol varies by >100-fold, generating highly cooperative lipid-dependent responses independently of protein-protein interactions. Such lipid-driven cooperativity may control the sensitivity of many cholesterol-dependent processes.
Collapse
Affiliation(s)
- Austin Gay
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daphne Rye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
38
|
Somerharju P. Is Spontaneous Translocation of Polar Lipids Between Cellular Organelles Negligible? Lipid Insights 2016; 8:87-93. [PMID: 27147824 PMCID: PMC4849424 DOI: 10.4137/lpi.s31616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 01/23/2023] Open
Abstract
In most reviews addressing intracellular lipid trafficking, spontaneous diffusion of lipid monomers between the cellular organelles is considered biologically irrelevant because it is thought to be far too slow to significantly contribute to organelle biogenesis. This view is based on intervesicle transfer experiments carried out in vitro with few lipids as well as on the view that lipids are highly hydrophobic and thus cannot undergo spontaneous intermembrane diffusion at a significant rate. However, besides that single-chain lipids can translocate between vesicles in seconds, it has been demonstrated that the rate of spontaneous transfer of two-chain polar lipids can vary even 1000-fold, depending on the number of carbons and double bonds in the acyl chains. In addition, the rate of spontaneous lipid transfer can strongly depend on the experimental conditions such as vesicle composition and concentration. This review examines the studies suggesting that spontaneous lipid transfer is probably more relevant to intracellular trafficking of amphipathic lipids than commonly thought.
Collapse
Affiliation(s)
- Pentti Somerharju
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Imaging approaches for analysis of cholesterol distribution and dynamics in the plasma membrane. Chem Phys Lipids 2016; 199:106-135. [PMID: 27016337 DOI: 10.1016/j.chemphyslip.2016.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/04/2016] [Indexed: 11/21/2022]
Abstract
Cholesterol is an important lipid component of the plasma membrane (PM) of mammalian cells, where it is involved in control of many physiological processes, such as endocytosis, cell migration, cell signalling and surface ruffling. In an attempt to explain these functions of cholesterol, several models have been put forward about cholesterol's lateral and transbilayer organization in the PM. In this article, we review imaging techniques developed over the last two decades for assessing the distribution and dynamics of cholesterol in the PM of mammalian cells. Particular focus is on fluorescence techniques to study the lateral and inter-leaflet distribution of suitable cholesterol analogues in the PM of living cells. We describe also several methods for determining lateral cholesterol dynamics in the PM including fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single particle tracking (SPT) and spot variation FCS coupled to stimulated emission depletion (STED) microscopy. For proper interpretation of such measurements, we provide some background in probe photophysics and diffusion phenomena occurring in cell membranes. In particular, we show the equivalence of the reaction-diffusion approach, as used in FRAP and FCS, and continuous time random walk (CTRW) models, as often invoked in SPT studies. We also discuss mass spectrometry (MS) based imaging of cholesterol in the PM of fixed cells and compare this method with fluorescence imaging of sterols. We conclude that evidence from many experimental techniques converges towards a model of a homogeneous distribution of cholesterol with largely free and unhindered diffusion in both leaflets of the PM.
Collapse
|
40
|
Howe V, Sharpe LJ, Alexopoulos SJ, Kunze SV, Chua NK, Li D, Brown AJ. Cholesterol homeostasis: How do cells sense sterol excess? Chem Phys Lipids 2016; 199:170-178. [PMID: 26993747 DOI: 10.1016/j.chemphyslip.2016.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/27/2016] [Indexed: 12/23/2022]
Abstract
Cholesterol is vital in mammals, but toxic in excess. Consequently, elaborate molecular mechanisms have evolved to maintain this sterol within narrow limits. How cells sense excess cholesterol is an intriguing area of research. Cells sense cholesterol, and other related sterols such as oxysterols or cholesterol synthesis intermediates, and respond to changing levels through several elegant mechanisms of feedback regulation. Cholesterol sensing involves both direct binding of sterols to the homeostatic machinery located in the endoplasmic reticulum (ER), and indirect effects elicited by sterol-dependent alteration of the physical properties of membranes. Here, we examine the mechanisms employed by cells to maintain cholesterol homeostasis.
Collapse
Affiliation(s)
- Vicky Howe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Sarah V Kunze
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ngee Kiat Chua
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Dianfan Li
- National Center for Protein Sciences, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
41
|
Lange Y, Steck TL. Active membrane cholesterol as a physiological effector. Chem Phys Lipids 2016; 199:74-93. [PMID: 26874289 DOI: 10.1016/j.chemphyslip.2016.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 02/05/2023]
Abstract
Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, 1653 W. Congress Parkway, Chicago, IL 60612, USA.
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
42
|
Wüstner D, Solanko K. How cholesterol interacts with proteins and lipids during its intracellular transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1908-26. [DOI: 10.1016/j.bbamem.2015.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/14/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022]
|
43
|
Scholtysek P, Shah SWH, Müller SS, Schöps R, Frey H, Blume A, Kressler J. Unusual triskelion patterns and dye-labelled GUVs: consequences of the interaction of cholesterol-containing linear-hyperbranched block copolymers with phospholipids. SOFT MATTER 2015; 11:6106-6117. [PMID: 26133098 DOI: 10.1039/c5sm01017a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cholesterol (Ch) linked to a linear-hyperbranched block copolymer composed of poly(ethylene glycol) (PEG) and poly(glycerol) (hbPG) was investigated for its membrane anchoring properties. Two polyether-based linear-hyperbranched block copolymers with and without a covalently attached rhodamine fluorescence label (Rho) were employed (Ch-PEG30-b-hbPG23 and Ch-PEG30-b-hbPG17-Rho). Compression isotherms of co-spread 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with the respective polymers were measured on the Langmuir trough and the morphology development of the liquid-condensed (LC) domains was studied by epi-fluorescence microscopy. LC domains were strongly deformed due to the localization of the polymers at the domain interface, indicating a line activity for both block copolymers. Simultaneously, it was observed that the presence of the fluorescence label significantly influences the domain morphology, the rhodamine labelled polymer showing higher line activity. Adsorption isotherms of the polymers to the water surface or to monolayers of DPPC and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), respectively, were collected. Again the rhodamine labelled polymer showed higher surface activity and a higher affinity for insertion into lipid monolayers, which was negligibly affected when the sub-phase was changed to aqueous sodium chloride solution or phosphate buffer. Calorimetric investigations in bulk confirmed the results found using tensiometry. Confocal laser scanning microscopy (CLSM) of giant unilamellar vesicles (GUVs) also confirmed the polymers' fast adsorption to and insertion into phospholipid membranes.
Collapse
Affiliation(s)
- Peggy Scholtysek
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
A DSC and FTIR spectroscopic study of the effects of the epimeric cholestan-3-ols and cholestan-3-one on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogs. Chem Phys Lipids 2015; 187:34-49. [DOI: 10.1016/j.chemphyslip.2015.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 11/23/2022]
|
45
|
Tabaei SR, Jackman JA, Kim SO, Liedberg B, Knoll W, Parikh AN, Cho NJ. Formation of cholesterol-rich supported membranes using solvent-assisted lipid self-assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13345-52. [PMID: 25286344 DOI: 10.1021/la5034433] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
This paper describes the application of a solvent-exchange method to prepare supported membranes containing high fractions of cholesterol (up to ∼57 mol %) in an apparent equilibrium. The method exploits the phenomenon of reverse-phase evaporation, in which the deposition of lipids in alcohol (e.g., isopropanol) is followed by the slow removal of the organic solvent from the water-alcohol mixture. This in turn induces a series of lyotropic phase transitions successively producing inverse-micelles, monomers, micelles, and vesicles in equilibrium with supported bilayers at the contacting solid surface. By using the standard cholesterol depletion by methyl-β-cyclodextrin treatment, a quartz crystal microbalance with dissipation monitoring assay confirms that the cholesterol concentration in the supported membranes is comparable to that in the surrounding bulk phase. A quantitative characterization of the biophysical properties of the resultant bilayer, including lateral diffusion constants and phase separation, using epifluorescence microscopy and atomic force microscopy establishes the formation of laterally contiguous supported lipid bilayers, which break into a characteristic domain-pattern of coexisting phases in a cholesterol concentration-dependent manner. With increasing cholesterol fraction in the supported bilayer, the size of the domains increases, ultimately yielding two-dimensional cholesterol bilayer domains near the solubility limit. A unique feature of the approach is that it enables preparation of supported membranes containing limiting concentrations of cholesterol near the solubility limit under equilibrium conditions, which cannot be obtained using conventional techniques (i.e., vesicle fusion).
Collapse
Affiliation(s)
- Seyed R Tabaei
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | | | | | | | |
Collapse
|
46
|
Mukherjee M, Basu Ball W, Das PK. Leishmania donovani activates SREBP2 to modulate macrophage membrane cholesterol and mitochondrial oxidants for establishment of infection. Int J Biochem Cell Biol 2014; 55:196-208. [PMID: 25218172 DOI: 10.1016/j.biocel.2014.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/11/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
Abstract
Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent transcriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host.
Collapse
Affiliation(s)
- Madhuchhanda Mukherjee
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Writoban Basu Ball
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|
47
|
Midzak A, Papadopoulos V. Binding domain-driven intracellular trafficking of sterols for synthesis of steroid hormones, bile acids and oxysterols. Traffic 2014; 15:895-914. [PMID: 24890942 DOI: 10.1111/tra.12177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/16/2022]
Abstract
Steroid hormones, bioactive oxysterols and bile acids are all derived from the biological metabolism of lipid cholesterol. The enzymatic pathways generating these compounds have been an area of intense research for almost a century, as cholesterol and its metabolites have substantial impacts on human health. Owing to its high degree of hydrophobicity and the chemical properties that it confers to biological membranes, the distribution of cholesterol in cells is tightly controlled, with subcellular organelles exhibiting highly divergent levels of cholesterol. The manners in which cells maintain such sterol distributions are of great interest in the study of steroid and bile acid synthesis, as limiting cholesterol substrate to the enzymatic pathways is the principal mechanism by which production of steroids and bile acids is regulated. The mechanisms by which cholesterol moves within cells, however, remain poorly understood. In this review, we examine the subcellular machinery involved in cholesterol metabolism to steroid hormones and bile acid, relating it to both lipid- and protein-based mechanisms facilitating intracellular and intraorganellar cholesterol movement and delivery to these pathways. In particular, we examine evidence for the involvement of specific protein domains involved in cholesterol binding, which impact cholesterol movement and metabolism in steroidogenesis and bile acid synthesis. A better understanding of the physical mechanisms by which these protein- and lipid-based systems function is of fundamental importance to understanding physiological homeostasis and its perturbation.
Collapse
Affiliation(s)
- Andrew Midzak
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
48
|
Das A, Brown MS, Anderson DD, Goldstein JL, Radhakrishnan A. Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. eLife 2014; 3:e02882. [PMID: 24920391 PMCID: PMC4086274 DOI: 10.7554/elife.02882] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/10/2014] [Indexed: 01/08/2023] Open
Abstract
When human fibroblasts take up plasma low density lipoprotein (LDL), its cholesterol is liberated in lysosomes and eventually reaches the endoplasmic reticulum (ER) where it inhibits cholesterol synthesis by blocking activation of SREBPs. This feedback protects against cholesterol overaccumulation in the plasma membrane (PM). But how does ER know whether PM is saturated with cholesterol? In this study, we define three pools of PM cholesterol: (1) a pool accessible to bind 125I-PFO*, a mutant form of bacterial Perfringolysin O, which binds cholesterol in membranes; (2) a sphingomyelin(SM)-sequestered pool that binds 125I-PFO* only after SM is destroyed by sphingomyelinase; and (3) a residual pool that does not bind 125I-PFO* even after sphingomyelinase treatment. When LDL-derived cholesterol leaves lysosomes, it expands PM's PFO-accessible pool and, after a short lag, it also increases the ER's PFO-accessible regulatory pool. This regulatory mechanism allows cells to ensure optimal cholesterol levels in PM while avoiding cholesterol overaccumulation.
Collapse
Affiliation(s)
- Akash Das
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Michael S Brown
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Donald D Anderson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Joseph L Goldstein
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
49
|
Olsen BN, Bielska AA, Lee T, Daily MD, Covey DF, Schlesinger PH, Baker NA, Ory DS. The structural basis of cholesterol accessibility in membranes. Biophys J 2014; 105:1838-47. [PMID: 24138860 DOI: 10.1016/j.bpj.2013.08.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/23/2013] [Accepted: 08/30/2013] [Indexed: 02/02/2023] Open
Abstract
Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.
Collapse
Affiliation(s)
- Brett N Olsen
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bielska AA, Olsen BN, Gale SE, Mydock-McGrane L, Krishnan K, Baker NA, Schlesinger PH, Covey DF, Ory DS. Side-chain oxysterols modulate cholesterol accessibility through membrane remodeling. Biochemistry 2014; 53:3042-51. [PMID: 24758724 PMCID: PMC4020583 DOI: 10.1021/bi5000096] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Side-chain
oxysterols, such as 25-hydroxycholesterol (25-HC), are
key regulators of cholesterol homeostasis. New evidence suggests that
the alteration of membrane structure by 25-HC contributes to its regulatory
effects. We have examined the role of oxysterol membrane effects on
cholesterol accessibility within the membrane using perfringolysin
O (PFO), a cholesterol-dependent cytolysin that selectively binds
accessible cholesterol, as a sensor of membrane cholesterol accessibility.
We show that 25-HC increases cholesterol accessibility in a manner
dependent on the membrane lipid composition. Structural analysis of
molecular dynamics simulations reveals that increased cholesterol
accessibility is associated with membrane thinning, and that the effects
of 25-HC on cholesterol accessibility are driven by these changes
in membrane thickness. Further, we find that the 25-HC antagonist
LY295427 (agisterol) abrogates the membrane effects of 25-HC in a
nonenantioselective
manner, suggesting that agisterol antagonizes the cholesterol-homeostatic
effects of 25-HC indirectly through its membrane interactions. These
studies demonstrate that oxysterols regulate cholesterol accessibility,
and thus the availability of cholesterol to be sensed
and transported throughout the cell, by modulating the membrane environment.
This work
provides new insights into how alterations in membrane structure can
be used to relay cholesterol regulatory signals.
Collapse
Affiliation(s)
- Agata A Bielska
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | | | | | | | | | | | | | | | | |
Collapse
|