1
|
Yu Y, Brió Pérez M, Cao C, de Beer S. Switching (bio-) adhesion and friction in liquid by stimulus responsive polymer coatings. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
2
|
Berger S, Krhač Levačić A, Hörterer E, Wilk U, Benli-Hoppe T, Wang Y, Öztürk Ö, Luo J, Wagner E. Optimizing pDNA Lipo-polyplexes: A Balancing Act between Stability and Cargo Release. Biomacromolecules 2021; 22:1282-1296. [PMID: 33616407 DOI: 10.1021/acs.biomac.0c01779] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
When optimizing nanocarriers, structural motifs that are beneficial for the respective type of cargo need to be identified. Here, succinoyl tetraethylene pentamine (Stp)-based lipo-oligoaminoamides (OAAs) were optimized for the delivery of plasmid DNA (pDNA). Structural variations comprised saturated fatty acids with chain lengths between C2 and C18 and terminal cysteines as units promoting nanoparticle stabilization, histidines for endosomal buffering, and disulfide building blocks for redox-sensitive release. Biophysical and tumor cell culture screening established clear-cut relationships between lipo-OAAs and characteristics of the formed pDNA complexes. Based on the optimized alternating Stp-histidine backbones, lipo-OAAs containing fatty acids with chain lengths around C6 to C10 displayed maximum gene transfer with around 500-fold higher gene expression than that of C18 lipo-OAA analogues. Promising lipo-OAAs, however, showed only moderate in vivo efficiency. In vitro testing in 90% full serum, revealing considerable inhibition of lytic and gene-transfer activity, was found as a new screening model predictive for intravenous applications in vivo.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Ana Krhač Levačić
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Elisa Hörterer
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Teoman Benli-Hoppe
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Yanfang Wang
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Özgür Öztürk
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Jie Luo
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| |
Collapse
|
3
|
de Groot AM, Thanki K, Gangloff M, Falkenberg E, Zeng X, van Bijnen DCJ, van Eden W, Franzyk H, Nielsen HM, Broere F, Gay NJ, Foged C, Sijts AJAM. Immunogenicity Testing of Lipidoids In Vitro and In Silico: Modulating Lipidoid-Mediated TLR4 Activation by Nanoparticle Design. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:159-169. [PMID: 29858051 PMCID: PMC5992342 DOI: 10.1016/j.omtn.2018.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 11/28/2022]
Abstract
Therapeutics based on small interfering RNA (siRNA) have promising potential as antiviral and anti-inflammatory agents. To deliver siRNA across cell membranes to reach the RNAi pathway in the cytosol of target cells, non-viral nanoparticulate delivery approaches are explored. Recently, we showed that encapsulation of siRNA in lipid-polymer hybrid nanoparticles (LPNs), based on poly(DL-lactic-co-glycolic acid) (PLGA) and cationic lipid-like materials (lipidoids), remarkably enhances intracellular delivery of siRNA as compared to siRNA delivery with LPNs modified with dioleoyltrimethylammoniumpropane (DOTAP) as the lipid component. However, the potential immune modulation by these cationic lipids remains unexplored. By testing lipidoids and DOTAP for innate immune-receptor-activating properties in vitro, we found that neither lipidoids nor DOTAP activate human Toll-like receptor (TLR) 2, 3, 7, and 9. However, in contrast to DOTAP, lipidoids are strong agonists for TLR4 and activate murine antigen-presenting cells in vitro. This agonistic effect was further confirmed in silico using a prediction model based on crystal structures. Also, lipidoids formulated as lipoplexes or as stable nucleic acid lipid particles, which was the reference formulation for siRNA delivery, proved to activate TLR4. However, by combining lipidoids with PLGA into LPNs, TLR4 activation was abrogated. Thus, lipidoid-mediated TLR4 activation during siRNA delivery may be modulated via optimization of the formulation design.
Collapse
Affiliation(s)
- Anne Marit de Groot
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Kaushik Thanki
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Emily Falkenberg
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Xianghui Zeng
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Djai C J van Bijnen
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Hanne M Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Nick J Gay
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Alice J A M Sijts
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Bridges RJ, Bradbury NA. Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator and Drugs: Insights from Cellular Trafficking. Handb Exp Pharmacol 2018; 245:385-425. [PMID: 29460152 DOI: 10.1007/164_2018_103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The eukaryotic cell is organized into membrane-delineated compartments that are characterized by specific cadres of proteins sustaining biochemically distinct cellular processes. The appropriate subcellular localization of proteins is key to proper organelle function and provides a physiological context for cellular processes. Disruption of normal trafficking pathways for proteins is seen in several genetic diseases, where a protein's absence for a specific subcellular compartment leads to organelle disruption, and in the context of an individual, a disruption of normal physiology. Importantly, several drug therapies can also alter protein trafficking, causing unwanted side effects. Thus, a deeper understanding of trafficking pathways needs to be appreciated as novel therapeutic modalities are proposed. Despite the promising efficacy of novel therapeutic agents, the intracellular bioavailability of these compounds has proved to be a potential barrier, leading to failures in treatments for various diseases and disorders. While endocytosis of drug moieties provides an efficient means of getting material into cells, the subsequent release and endosomal escape of materials into the cytosol where they need to act has been a barrier. An understanding of cellular protein/lipid trafficking pathways has opened up strategies for increasing drug bioavailability. Approaches to enhance endosomal exit have greatly increased the cytosolic bioavailability of drugs and will provide a means of investigating previous drugs that may have been shelved due to their low cytosolic concentration.
Collapse
Affiliation(s)
- Robert J Bridges
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, USA
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, USA.
| |
Collapse
|
5
|
Insua I, Wilkinson A, Fernandez-Trillo F. Polyion complex (PIC) particles: Preparation and biomedical applications. Eur Polym J 2016; 81:198-215. [PMID: 27524831 PMCID: PMC4973809 DOI: 10.1016/j.eurpolymj.2016.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/27/2022]
Abstract
Oppositely charged polyions can self-assemble in solution to form colloidal polyion complex (PIC) particles. Such nanomaterials can be loaded with charged therapeutics such as DNA, drugs or probes for application as novel nanomedicines and chemical sensors to detect disease markers. A comprehensive discussion of the factors affecting PIC particle self-assembly and their response to physical and chemical stimuli in solution is described herein. Finally, a collection of key examples of polyionic nanoparticles for biomedical applications is discussed to illustrate their behaviour and demonstrate the potential of PIC nanoparticles in medicine.
Collapse
|
6
|
Johnson RP, Uthaman S, John JV, Lee HR, Lee SJ, Park H, Park IK, Suh H, Kim I. Poly(PEGA)-b-poly(L-lysine)-b-poly(L-histidine) Hybrid Vesicles for Tumoral pH-Triggered Intracellular Delivery of Doxorubicin Hydrochloride. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21770-21779. [PMID: 26375278 DOI: 10.1021/acsami.5b05338] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A series of poly(ethylene glycol) methyl ether acrylate-block-poly(L-lysine)-block-poly(L-histidine) [p(PEGA)30-b-p(Lys)25-b-p(His)n] (n = 25, 50, 75, 100) triblock copolypeptides were designed and synthesized for tumoral pH-responsive intracellular release of anticancer drug doxorubicin hydrochloride (Dox). The tumoral acidic pH-responsive hybrid vesicles fabricated were stable at physiological pH 7.4 and could gradually destabilize in acidic pH as a result of pH-induced swelling of the p(His) block. The blank vesicles were nontoxic over a wide concentration range (0.01-100 μg/mL) in normal cell lines. The tumor acidic pH responsiveness of these vesicles was exploited for intracellular delivery of Dox. Vesicles efficiently encapsulated Dox, and pH-induced destabilization resulted in the controlled and sustained release of Dox in CT26 murine cancer cells, and dose-dependent cytotoxicity. The tumor-specific controlled release Dox from vesicles demonstrates this system represents a promising theranostic agent for tumor-targeted delivery.
Collapse
Affiliation(s)
| | - Saji Uthaman
- Department of Biomedical Science and BK 21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School , 160 Baekseo-ro, Gwangju, 501-746, Republic of Korea
| | | | | | - Sang Joon Lee
- Department of Biomedical Science and BK 21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School , 160 Baekseo-ro, Gwangju, 501-746, Republic of Korea
| | | | - In-Kyu Park
- Department of Biomedical Science and BK 21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School , 160 Baekseo-ro, Gwangju, 501-746, Republic of Korea
| | | | | |
Collapse
|
7
|
Salmasi Z, Shier WT, Hashemi M, Mahdipour E, Parhiz H, Abnous K, Ramezani M. Heterocyclic amine-modified polyethylenimine as gene carriers for transfection of mammalian cells. Eur J Pharm Biopharm 2015. [PMID: 26209125 DOI: 10.1016/j.ejpb.2015.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Branched polyethylenimine (PEI) is extensively used as a polycationic non-viral vector for gene delivery. Polyplexes formed with PEI are believed to be released from endocytotic vesicles by the osmotic burst mechanism in the rate-limiting step in transfection. Increasing the buffering capacity of PEI derivatives in the endosomal pH range of 4.5-7.5 should enhance transfection efficiency. In this study, PEI was derivatized by covalently attaching heterocyclic amine moieties (piperazine, pyridine and imidazole rings with pKa values from 5.23 to 6.04) through amide bonds. PEI derivatives with 50% of the primary amines on PEI exhibited increased buffering capacity, increased transfection activity and decreased cytotoxicity in murine neuroblastoma (Neuro-2a) cells. The relative effectiveness in enhancing transfection efficiency was piperazine>pyridine>histidine, but each type of amine was the most effective under a particular set of conditions. Modified vectors could significantly improve transfection efficiency in murine mesenchymal stem cells. PEI25 derivatized at 50% with histidine administered as polyplexes in the tail veins of mice resulted in remarkably enhanced luciferase gene expression in the expected organ distribution and much lower toxicity than underivatized PEI25.
Collapse
Affiliation(s)
- Zahra Salmasi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Wayne Thomas Shier
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Maryam Hashemi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, P.O. Box 917794-8564, Iran
| | - Hamideh Parhiz
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran.
| |
Collapse
|
8
|
pH-responsive nano carriers for doxorubicin delivery. Pharm Res 2014; 32:1249-63. [PMID: 25288014 DOI: 10.1007/s11095-014-1530-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The aim of this study was to design stimuli-responsive nanocarriers for anti-cancer drug delivery. For this purpose, doxorubicin (DOX)-loaded, polysebacic anhydride (PSA) based nanocapsules (NC) were combined with pH-sensitive poly (L-histidine) (PLH). METHOD PSA nano-carriers were first loaded with DOX and were coated with poly L-histidine to introduce pH sensitivity. The PLH-coated NCs were then covered with polyethylene glycol (PEG) to reduce macrophage uptake. The drug release profile from this system was examined in two different buffer solutions prepared as acidic (pH5) and physiological (pH 7.4) media. The physical and chemical properties of the nanocapsules were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), ultraviolet and visible absorption spectroscopy (UV-VIS), and scanning electron microscopy (SEM). In vitro studies of the prepared nanocapsules were conducted in MDA-MB-231 breast cancer cells. RESULTS The results obtained by SEM and DLS revealed that nanocapsules have spherical morphology with an average size of 230 nm. Prepared pH sensitive nanocapsules exhibited pH-dependent drug release profile and promising intracellular release of drug. PEGylation of nanoparticles significantly prevented macrophage uptake compared to non-PEGylated particles.
Collapse
|
9
|
Johnson RP, John JV, Kim I. Poly(l-histidine)-containing polymer bioconjugate hybrid materials as stimuli-responsive theranostic systems. J Appl Polym Sci 2014. [DOI: 10.1002/app.40796] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Renjith P. Johnson
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering; Pusan National University; Pusan Republic of Korea
| | - Johnson V. John
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering; Pusan National University; Pusan Republic of Korea
| | - Il Kim
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering; Pusan National University; Pusan Republic of Korea
| |
Collapse
|
10
|
Hammel I, Meilijson I. The stealthy nano-machine behind mast cell granule size distribution. Mol Immunol 2014; 63:45-54. [PMID: 24629227 DOI: 10.1016/j.molimm.2014.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/15/2014] [Accepted: 02/01/2014] [Indexed: 02/01/2023]
Abstract
The classical model of mast cell secretory granule formation suggests that newly synthesized secretory mediators, transported from the rough endoplasmic reticulum to the Golgi complex, undergo post-transitional modification and are packaged for secretion by condensation within membrane-bound granules of unit size. These unit granules may fuse with other granules to form larger granules that reside in the cytoplasm until secreted. A novel stochastic model for mast cell granule growth and elimination (G&E) as well as inventory management is presented. Resorting to a statistical mechanics approach in which SNAP (Soluble NSF Attachment Protein) REceptor (SNARE) components are viewed as interacting particles, the G&E model provides a simple 'nano-machine' of SNARE self-aggregation that can perform granule growth and secretion. Granule stock is maintained as a buffer to meet uncertainty in demand by the extracellular environment and to serve as source of supply during the lead time to produce granules of adaptive content. Experimental work, mathematical calculations, statistical modeling and a rationale for the emergence of nearly last-in, first out inventory management, are discussed.
Collapse
Affiliation(s)
- Ilan Hammel
- Sackler Faculty of Medicine, Department of Pathology, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Isaac Meilijson
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Mathematical Sciences, Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
11
|
Akbulut M, D’Addio SM, Gindy ME, Prud’homme RK. Novel methods of targeted drug delivery: the potential of multifunctional nanoparticles. Expert Rev Clin Pharmacol 2014; 2:265-82. [DOI: 10.1586/ecp.09.4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Bennevault-Celton V, Urbach A, Martin O, Pichon C, Guégan P, Midoux P. Supramolecular assemblies of histidinylated α-cyclodextrin in the presence of DNA scaffold during CDplexes formation. Bioconjug Chem 2011; 22:2404-14. [PMID: 22014097 DOI: 10.1021/bc200167p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
α-Cyclodextrin was transformed in a cationic unit after per substitution with histidine (His-α-CD) and lysine (Lys-α-CD) molecules on the primary face. His-α-CD and Lys-α-CD were used to form electrostatic complexes (CDplexes) with a plasmid DNA encoding luciferase gene, and the ability of CDplexes to transfect mammalian cells was examined using HEK293-T7 cells. The luciferase activity in cells transfected with His-α-CDplexes was 8-fold higher than that obtained Lys-α-CDplexes. When the transfection was carried out in the presence of chloroquine, the luciferase activity with His-α-CDplexes and Lys-α-CDplexes increased 6 and 25 times, respectively. The lower enhancement with His-α-CDplexes confirmed that histidine induced a proton sponge effect inside endosomes upon imidazole protonation, favoring DNA delivery in the cytosol. At the same time, we found that the condensation of DNA with His-α-CD was unexpectedly stronger than that obtained with the lysyl-α-CD counterpart. Moreover, it was as strong as that observed with high molecular weight polylysine. NMR (ROESY and DOSY) investigations in the absence of DNA showed that an inclusion complex is formed between the imidazole ring of histidine and the hydrophobic cavity of CD but no His-α-CD polymers can be formed by intermolecular interactions. These results suggest that intermolecular interactions between imidazole and His-α-CD cavity could be involved to form supramolecular assemblies in the presence of a DNA scaffold leading to DNA condensation into low diameter particles.
Collapse
|
13
|
Bertrand E, Gonçalves C, Billiet L, Gomez JP, Pichon C, Cheradame H, Midoux P, Guégan P. Histidinylated linear PEI: a new efficient non-toxic polymer for gene transfer. Chem Commun (Camb) 2011; 47:12547-9. [PMID: 22020088 DOI: 10.1039/c1cc15716g] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A series of linear polyethylenimine (lPEI) substituted with histidine residue (His-lPEI) was synthesized using the Michael reaction in order to provide new highly efficient vectors for gene therapy applications (up to 95% of transfected cells) with remarkable low cytotoxicity compared to lPEI-based polyplexes.
Collapse
Affiliation(s)
- Emilie Bertrand
- Laboratoire LAMBE équipe MPI, UMR 8587, Université d'Evry Val d'Essonne, Evry, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Park IK, Singha K, Arote RB, Choi YJ, Kim WJ, Cho CS. pH-Responsive Polymers as Gene Carriers. Macromol Rapid Commun 2010; 31:1122-33. [PMID: 21590865 DOI: 10.1002/marc.200900867] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/05/2010] [Indexed: 11/05/2022]
Abstract
Despite the immense potential of non-viral delivery system in gene therapy its application has been impaired greatly by various impediments having contrasting traits. Therefore it is an absolute necessity to develop some non-viral vectors which are endowed with special characteristics to act differently in intracellular as well as extracellular compartments to surmount these inter-conflicting hurdles. Such smart polymers should serve some specific purposes by adjusting their structural or functional traits under the influence of stimuli such as temperature, light, salt concentration or pH. Among all these stimuli-responsive polymers pH-responsive polymers have attracted major attention and great impetus has been directed towards utilizing the subtle yet significant change in pH value within the cellular compartments. This review is intended to provide a comprehensive account of the development of pH-responsive polymeric vectors based on their structural features and consequent functional attributes to achieve efficient transfection. The underlying modes of actions relating to structure and differential pH environment have also been discussed in this review.
Collapse
Affiliation(s)
- In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Chonnam National University, Gwangju 501-746, Korea
| | | | | | | | | | | |
Collapse
|
15
|
Development of a novel Hsp70-based DNA vaccine as a multifunctional antigen delivery system. J Control Release 2010; 142:411-5. [DOI: 10.1016/j.jconrel.2009.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/17/2009] [Accepted: 11/06/2009] [Indexed: 11/17/2022]
|
16
|
Polyelectrolyte-coated liposomes: stabilization of the interfacial complexes. Adv Colloid Interface Sci 2008; 142:43-52. [PMID: 18571615 DOI: 10.1016/j.cis.2008.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 04/07/2008] [Accepted: 04/16/2008] [Indexed: 12/28/2022]
Abstract
Anionic liposomes, composed of egg lecithin (EL) or dipalmitoylphosphatidylcholine (DPPC) with 20 mol% of cardiolipin (CL(2-)), were mixed with cationic polymers, poly(4-vinylpyridine) fully quaternized with ethyl bromide (P2) or poly-L-lysine (PL). Polymer/liposome binding studies were carried out using electrophoretic mobility (EPM), fluorescence, and conductometry as the main analytical tools. Binding was also examined in the presence of added salt and polyacrylic acid (PAA). The following generalizations arose from the experiments: (a) Binding of P2 and PL to small EL/CL(2-) liposomes (60-80 nm in diameter) is electrostatic in nature and completely reversed by addition of salt or PAA. (b) Binding can be enhanced by hydrophobization of the polymer with cetyl groups. (c) Binding can also be enhanced by changing the phase state of the lipid bilayer from liquid to solid (i.e. going from EL to DPPC) or by increasing the size of the liposomes (i.e. going from 60-80 to 300 nm). By far the most promising systems, from the point of view of constructing polyelectrolyte multilayers on liposome cores without disruption of liposome integrity, involve small, liquid, anionic liposomes coated initially with polycations carrying pendant alkyl groups.
Collapse
|
17
|
|
18
|
Ortiz A, Gómez-Fernández JC. Aggregation and Phospholipid Intermixing of Oleic-Acid-Containing Phosphatidylcholine Vesicles Induced by Polylysine. J Liposome Res 2008. [DOI: 10.3109/08982108809035985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Asayama S, Kato H, Kawakami H, Nagaoka S. Carboxymethyl poly(L-histidine) as a new pH-sensitive polypeptide at endosomal/lysosomal pH. POLYM ADVAN TECHNOL 2007. [DOI: 10.1002/pat.890] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Park JS, Han TH, Lee KY, Han SS, Hwang JJ, Moon DH, Kim SY, Cho YW. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: Endocytosis, exocytosis and drug release. J Control Release 2006; 115:37-45. [PMID: 16935380 DOI: 10.1016/j.jconrel.2006.07.011] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 07/06/2006] [Accepted: 07/10/2006] [Indexed: 11/25/2022]
Abstract
Nano-sized vesicular systems (nanoparticles), ranging from 10 nm to 1000 nm in size, have potential applications as drug delivery systems. Successful clinical applications require the efficient intracellular delivery of drug-loaded nanoparticles. Here we describe N-acetyl histidine-conjugated glycol chitosan (NAcHis-GC) self-assembled nanoparticles as a promising system for intracytoplasmic delivery of drugs. Because N-acetyl histidine (NAcHis) is hydrophobic at neutral pH, the conjugates formed self-assembled nanoparticles with mean diameters of 150-250 nm. In slightly acidic environments, such as those in endosomes, the nanoparticles were disassembled due to breakdown of the hydrophilic/hydrophobic balance by the protonation of the imidazole group of NAcHis. Cellular internalization and drug release of the pH-sensitive self-assembled nanoparticles were investigated by flow cytometry and confocal microscopy. NAcHis-GC nanoparticles internalized by adsorptive endocytosis were exocytosed or localized in endosomes. The amount of exocytosed nanoparticles was dependent on the pre-incubation time prior to removal of free nanoparticles from the culture media. Flow cytometry and confocal microscopy showed that NAcHis-GC nanoparticles released drugs into the cytosol and cell cycle analysis demonstrated that paclitaxel-incorporated NAcHis-GC nanoparticles were effective in inducing arrest of cell growth.
Collapse
Affiliation(s)
- Ji Sun Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, 388-1 Pungnap-2dong, Songpa-gu, Seoul 138-736, Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lochmann D, Jauk E, Zimmer A. Drug delivery of oligonucleotides by peptides. Eur J Pharm Biopharm 2005; 58:237-51. [PMID: 15296952 DOI: 10.1016/j.ejpb.2004.03.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Accepted: 03/11/2004] [Indexed: 01/18/2023]
Abstract
Oligonucleotides are promising tools for in vitro studies where specific downregulation of proteins is required. In addition, antisense oligonucleotides have been studied in vivo and have entered clinical trials as new chemical entities with various therapeutic targets such as antiviral drugs or for tumour treatments. The formulation of these substances were widely studied in the past. With this review we will focus on peptides used as drug delivery vehicles for oligonucleotides. Different strategies are summarised. Cationically charged peptides from different origins were used e.g. as cellular penetration enhancers or nuclear localisation tool. Examples are given for Poly-L-lysine alone or in combination with receptor specific targeting ligands such as asialoglycoprotein, galactose, growth factors or transferrin. Another large group of peptides are those with membrane translocating properties. Fusogenic peptides rich in lysine or arginine are reviewed. They have been used for DNA complexation and condensation to form transport vehicles. Some of them, additionally, have so called nuclear localisation properties. Here, DNA sequences, which facilitate intracellular trafficking of macromolecules to the nucleus were explored. Summarizing the present literature, peptides are interesting pharmaceutical excipients and it seems to be feasible to combine the specific properties of peptides to improve drug delivery devices for oligonucleotides in the future.
Collapse
Affiliation(s)
- Dirk Lochmann
- Institute for Pharmaceutical Technology, Johann Wolfgang Goethe-University, Frankfurtam Main, Germany
| | | | | |
Collapse
|
22
|
Read ML, Singh S, Ahmed Z, Stevenson M, Briggs SS, Oupicky D, Barrett LB, Spice R, Kendall M, Berry M, Preece JA, Logan A, Seymour LW. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res 2005; 33:e86. [PMID: 15914665 PMCID: PMC1140087 DOI: 10.1093/nar/gni085] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthetic vectors based on reducible polycations consisting of histidine and polylysine residues (HIS RPCs) were evaluated for their ability to deliver nucleic acids. Initial experiments showed that RPC-based vectors with at least 70% histidine content mediated efficient levels of gene transfer without requirement for the endosomolytic agent chloroquine. Significant gene transfer was observed in a range of cell types achieving up to a 5-fold increase in the percentage of transfected cells compared to 25 kDa PEI, a gold standard synthetic vector. In contrast to 25 kDa PEI, HIS RPCs also mediated efficient transfer of other nucleic acids, including mRNA encoding green fluorescent protein in PC-3 cells and siRNA directed against the neurotrophin receptor p75NTR in post-mitotic cultures of rat dorsal root ganglion cell neurons. Experiments to elevate intracellular glutathione and linear profiling of cell images captured by multiphoton fluorescent microscopy highlighted that parameters such as the molecular weight and rate of cleavage of HIS RPCs were important factors in determining transfection activity. Altogether, these results demonstrate that HIS RPCs represent a novel and versatile type of vector that can be used for efficient cytoplasmic delivery of a broad range of nucleic acids. This should enable different or a combination of therapeutic strategies to be evaluated using a single type of polycation-based vector.
Collapse
Affiliation(s)
- Martin L Read
- Molecular Neuroscience Group, Department of Medicine, University of Birmingham Birmingham, B15 2TT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Read ML, Logan A, Seymour LW. Barriers to Gene Delivery Using Synthetic Vectors. ADVANCES IN GENETICS 2005; 53PA:19-46. [PMID: 16243059 DOI: 10.1016/s0065-2660(05)53002-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Progress has been made in the development of different types of nucleic acids such as DNA and siRNA with the potential to form the basis of new treatments for genetic and acquired disorders. The lack of suitable vectors for the delivery of nucleic acids, however, represents a major hurdle to their continued development and therapeutic application. Synthetic vectors based on polycations are promising vectors for gene delivery as they are relatively safe and can be modified by the incorporation of ligands for targeting to specific cell types. However, the levels of gene expression mediated by synthetic vectors are low compared to viral vectors. The aim of this chapter is to give an overview of the main barriers that have been identified as limiting gene transfer using polycation-based synthetic vectors. The chapter is divided into two sections to focus on both extracellular and intracellular barriers. We describe novel strategies that are being used to develop increasingly sophisticated vectors in an attempt to overcome these barriers. For instance, we describe approaches to prolong the plasma circulation of polyplexes by the incorporation onto their surface of hydrophilic polymers such as polyethylene glycol (PEG) and poly[N-(2-hydroxypropyl)methacrylamide] (pHPMA). In addition, strategies to improve transfer of nucleic acids from the outside of the cell to the nucleus are described to overcome barriers such as escape from endocytic vesicles and translocation across the nuclear membrane. Furthermore, we highlight new types of vectors based on reducible polycations that are triggered by the intracellular environment to facilitate efficient cytoplasmic release of nucleic acids.
Collapse
Affiliation(s)
- Martin L Read
- Molecular Neuroscience Group, Department of Medicine Wolfson Research Laboratories University of Birmingham Birmingham, B15 2TH, United Kingdom
| | | | | |
Collapse
|
24
|
Asayama S, Sekine T, Hamaya A, Kawakami H, Nagaoka S. Poly(L-histidine) with several aminoethyl groups for a new pH-sensitive DNA carrier. POLYM ADVAN TECHNOL 2005. [DOI: 10.1002/pat.616] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Affiliation(s)
- Stéphane Roche
- Laboratoire de Genetiquie des Virus du CNRS, Gif sur Yvette, France
| | | |
Collapse
|
26
|
Asayama S, Kawakami H, Nagaoka S. Facile Chemical Modification of the Poly(L-histidine) for a New pH-Sensitive Polypeptide. CHEM LETT 2003. [DOI: 10.1246/cl.2003.1152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Abstract
Clinical success of gene therapy based on oligonucleotides (ODNs), ribozymes, RNA and DNA will be greatly dependent on the availability of effective delivery systems. Polycations have gained increasing attention as a non-viral gene delivery vector in the past decades. Significant progress has been made in understanding complex formation between polycations and nucleic acids, entry of the complex into the cells and subsequent entry into the nucleus. Sophisticated molecular architectures of cationic polymers have made the vectors more stable and less susceptible to binding by enzymes or proteins. Incorporation of specific ligands to polycations has resulted in more cell-specific uptake by receptor-mediated mechanisms. However, there are still other barriers limiting the transfection efficiency of polycation gene delivery systems. There is a consensus that polycation-DNA complexes (polyplexes) enter cells via the endocytotic pathway. It is not clearly understood, however, how the polyplexes escape (if they do) from endosomes, how DNA is released from the polyplexes or how the released DNA is expressed. The primary focus of this article is to review various polycation gene delivery systems, which are designed to translocate DNA from endosomes into cytosol. Many polycation gene delivery systems have tried to mimic the mechanisms that viruses use for the endosomal escape. Polycation gene delivery systems are usually coupled with synthetic amphipathic peptides mimicking viral fusogenic peptides, histidine-based gene delivery systems for pH-responsive endosomal escape, polycations with intrinsic endosomolytic activity by the proton sponge mechanism and polyanions to mimic the anionic amphiphilic peptides.
Collapse
Affiliation(s)
- Yong Woo Cho
- Korea Advanced Institute of Science and Technology, Department of Chemical Engineering, Taejon 305-701, South Korea
| | | | | |
Collapse
|
28
|
Abstract
Nucleic acids transfer into mammalian cells requires devices to improve their escape from endocytic vesicles where they are mainly confined following cellular uptake. In this review, we describe histidine-rich molecules that enable the transfer of plasmid and oligonucleotides (ODN) in human and non-human cultured cells. An histidine-rich peptide which permeabilizes biological membrane at pH 6.4, favored the transfection mediated by lactosylated polylysine/pDNA complexes. Histidylated polylysine forms cationic particles of 100 nm with a plasmid and yielded a transfection of 3-4.5 orders of magnitude higher than polylysine. The biological activity of antisense ODN was increased more than 20-fold when it was complexed with highly histidylated oligolysine into small cationic spherical particles of 35 nm. Evidence that imidazole protonation mediates the effect of these molecules in endosomes are provided. We also describe a disulfide-containing polylysine conjugate capable of mediating DNA unpackaging in a reductive medium and to increase the transfection efficiency. Overall, these molecules constitute interesting devices for developing non-viral gene delivery systems.
Collapse
Affiliation(s)
- C Pichon
- Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France
| | | | | |
Collapse
|
29
|
Das N, Gupta S, Mazumdar S. Direct observation of release of cytochrome c from lipid-encapsulated protein by peroxide and superoxide: a possible mechanism for drug-induced apoptosis. Biochem Biophys Res Commun 2001; 286:311-4. [PMID: 11500038 DOI: 10.1006/bbrc.2001.5403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Release of cytochrome c from inside lipid vesicles and from inside proteoliposomes formed by cytochrome c oxidase has been studied by spectrophotometric methods. The protein encapsulated inside vesicles did not form complex with sodium azide solution added externally. Both hydrogen peroxide and superoxide were found to cause release of cytochrome c from the lipid encapsulated protein, which was detected from the distinct spectral changes due to the formation of the azide complex of cytochrome c in the solution. Cytochrome c encapsulated inside proteoliposomes containing cytochrome c oxidase (CcO) did not release the cytochrome c during enzymatic turnover of CcO. The anticancer drug, doxorubicin, was found to inhibit the biochemical function of cytochrome c oxidase and release of cytochrome c was observed from the proteoliposome encapsulating the protein during the enzymatic turnover in the presence of doxorubicin. The results indicated that the inhibition of enzymatic activity by doxorubicin possibly leads to the formation of reactive oxygen species, which induce the release of cytochrome c from inside to outside of the membrane.
Collapse
Affiliation(s)
- N Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mambai, 400005, India
| | | | | |
Collapse
|
30
|
Benns JM, Choi JS, Mahato RI, Park JS, Kim SW. pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(L-histidine)-graft-poly(L-lysine) comb shaped polymer. Bioconjug Chem 2000; 11:637-45. [PMID: 10995206 DOI: 10.1021/bc0000177] [Citation(s) in RCA: 321] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Advancing biotechnology spurs the development of new pharmaceutically engineered gene delivery vehicles. Poly(L-histidine) ¿PLH¿ has been shown to induce membrane fusion at endosomal pH values, whereas PLL has a well documented efficacy in polyplex formation. Therefore, N-Ac-poly(L-histidine)-graft-poly(L-lysine) ¿PLH-g-PLL¿ was synthesized by grafting poly(L-histidine) to poly(L-lysine) ¿PLL¿. PLH-g-PLL formed polyplex particles by electrostatic interactions with plasmid DNA ¿pDNA¿. The mean particle size of the polyplexes was in the range of 117 +/- 6 nm to 306 +/- 77 nm. PLH-g-PLL gene carrier demonstrated higher transfection efficacy in 293T cells than PLL at all equivalent weight ratios with pDNA. The inclusion of chloroquine as an endosomolytic agent enhanced transfection for both PLL and PLH-g-PLL gene carriers. PLH-g-PLL enhanced beta-galactosidase expression compared to PLL, but still increased in efficacy when chloroquine was included.
Collapse
Affiliation(s)
- J M Benns
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- D C Drummond
- Research Institute, California Pacific Medical Center, 94115, San Francisco, CA, USA
| | | | | |
Collapse
|
32
|
Pichon C, Roufaï MB, Monsigny M, Midoux P. Histidylated oligolysines increase the transmembrane passage and the biological activity of antisense oligonucleotides. Nucleic Acids Res 2000; 28:504-12. [PMID: 10606649 PMCID: PMC102506 DOI: 10.1093/nar/28.2.504] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have designed histidylated oligolysines which increase the uptake, the cytosolic delivery and the nuclear accumulation of antisense oligonucleotides (ODN). Flow cytometry analysis showed a 10-fold enhancement of the ODN uptake in the presence of histidylated oligolysines. The intracellular localizations of fluorescein-labeled ODN and of rhodamine-labeled histidylated oligolysines were investigated by confocal microscopy. Histidylated oligolysines favor the cyto-solic delivery of ODN from endosomes and increase their nuclear accumulation. In contrast, in their absence fluorescent ODN were not observed inside the nucleus but were distributed overwhelmingly within the vesicles in the cytosol. In addition, histidylated oligolysines yielded a more than 20-fold enhancement of the biological activity of antisense ODN towards the inhibition of transient as well as constitutive gene expression. Prevention of endosome lumen acidification using bafilomycin A(1)abolished the effect of histidylated oligolysines, suggesting that protonation of the histidyl residues was involved in the transmembrane passage of ODN.
Collapse
Affiliation(s)
- C Pichon
- Centre de Biophysique Moléculaire, Glycobiologie, CNRS UPR4301 and University of Orléans, rue Charles-Sadron, F-45071 Orléans Cedex 02, France.
| | | | | | | |
Collapse
|
33
|
Modulation of interaction of polycations with negative unilamellar lipid vesicles. Colloids Surf B Biointerfaces 1999. [DOI: 10.1016/s0927-7765(99)00059-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Abstract
Plasmid/polylysine complexes, which are used to transfect mammalian cells, increase the uptake of DNA, but plasmid molecules are sequestered into vesicles where they cannot escape to reach the nuclear machinery. However, the transfection efficiency increases when membrane-disrupting reagents such as chloroquine or fusogenic peptides, are used to disrupt endosomal membranes and to favor the delivery of plasmid into the cytosol. We designed a cationic polymer that forms complexes with a plasmid DNA (pDNA) and mediates the transfection of various cell lines in the absence of chloroquine or fusogenic peptides. This polymer is a polylysine (average degree of polymerization of 190) partially substituted with histidyl residues which become cationic upon protonation of the imidazole groups at pH below 6.0. The transfection efficiency was optimal with a polylysine having 38 +/- 5% of the epsilon-amino groups substituted with histidyl residues; it was not significantly impaired in the presence of serum in the culture medium. The transfection was drastically inhibited in the presence of bafilomycin A1, indicating that the protonation of the imidazole groups in the endosome lumen might favor the delivery of pDNA into the cytosol.
Collapse
Affiliation(s)
- P Midoux
- Centre de Biophysique Moléculaire, Glycobiologie CNRS UPR4301 and University of Orléans, rue Charles-Sadron, F-45071 Orléans Cedex 02, France.
| | | |
Collapse
|
35
|
Bagasra O, Amjad M, Mukhtar M. Liposomes in Gene Therapy. Gene Ther 1999. [DOI: 10.1007/978-3-0348-7011-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Krylov AV, Antonenko YN, Kotova EA, Rokitskaya TI, Yaroslavov AA. Polylysine decelerates kinetics of negatively charged gramicidin channels as shown by sensitized photoinactivation. FEBS Lett 1998; 440:235-8. [PMID: 9862462 DOI: 10.1016/s0014-5793(98)01462-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effect of a cationic polymer, poly(L-lysine), on the kinetic properties of ionic channels formed by neutral gramicidin A (gA) and its negatively charged analogue O-pyromellitylgramicidin (OPg) in a bilayer lipid membrane is studied using a method of sensitized photoinactivation. This newly developed method is based on the analysis of transmembrane current transients induced by a flash in the presence of a photosensitizer. It has been shown previously that the time course of the flash-induced current decrease in most cases follows a single exponential decay with an exponential factor (tau, the characteristic time of photoinactivation) that correlates well with the single-channel lifetime. Addition of polylysine does not affect tau for gA channels, but causes a substantial increase in tau for OPg channels. This effect is reversed by addition of polyacrylic acid. The deceleration of the photoinactivation kinetics is ascribed to electrostatic interaction of polylysine with OPg probably resulting in OPg clustering. The latter can stabilize the channel state by reducing the rotational and lateral mobility of OPg monomers and dimers, and thus increase the single channel lifetime.
Collapse
Affiliation(s)
- A V Krylov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | |
Collapse
|
37
|
Midoux P, Kichler A, Boutin V, Maurizot JC, Monsigny M. Membrane permeabilization and efficient gene transfer by a peptide containing several histidines. Bioconjug Chem 1998; 9:260-7. [PMID: 9548543 DOI: 10.1021/bc9701611] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We designed a peptide, H5WYG (GLFHAIAHFIHGGWHGLIHGWYG), that permeabilizes cell membrane at a slightly acidic pH but not at neutral pH. Absorbance, fluorescence, and circular dichroism spectra showed that H5WYG undergoes a dramatic conformational change between pH 7.0 and 6.0 that correlates with the protonation of the histidyl residues. Cell permeabilization studies monitored by flow cytometry on living cells showed that H5WYG permeabilizes the cell membrane with a great efficiency at pH 6.4 but was not active at neutral pH; at pH 6.8, the peptide permeabilized 50% of the cells at 20 degrees C within 10 min. H5WYG increased the expression of genes transferred to cells as glycosylated polylysine-DNA complexes, and the transfection efficiency was not impaired in the presence of serum. Therefore, this peptide containing several histidines that become positively charged when the pH decreased to less than 7.0 is a suitable helper for delivering molecules into the cytosol upon either permeabilization of the plasma membrane induced by lowering the extracellular medium to pH 6.4 or permeabilization of the endosomal membrane induced by acidification of endosomes.
Collapse
Affiliation(s)
- P Midoux
- Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, France.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Polycationic amino acids induce the leakage and fusion of liposomes containing anionic lipids. We have investigated the nature and extent of the changes in membrane physical properties caused by these polypeptides which could result in the observed membrane destabilization. We found that in the range of pH 5 to pH 7 both poly-L-histidine and poly-L-lysine were ineffective in shifting the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine, either in the presence of absence of 1-palmitoyl-2-oleoylphosphatidylserine. We also studied the gel to liquid crystalline phase transition properties of 1:1 mixtures of phosphatidylserine and phosphatidylethanolamine, both in dimyristoyl forms as well as the 1-palmitoyl-2-oleoyl forms, as a function of pH and in the presence and absence of polycationic amino acids. We observed that these two lipids were largely miscible at all pH values and in the presence and absence of the polypeptides. However, there was some increased tendency for phase separation at higher pH and in the absence of polypeptide. Thus neither changes in curvature strain nor lateral phase separation induced by the polycationic amino acids could account for their marked ability to induce leakage and fusion. Phosphatidylethanolamine labelled with pyrene on one of the acyl chains gives rise to fluorescent emission from both monomer and excimer forms. The ratio of emission intensity from these two forms is indicative of lateral phase separation and the degree of lateral mobility of this probe. In equimolar mixtures of the 1-palmitoyl-2-oleoyl forms of phosphatidylserine and phosphatidylethanolamine in the liquid crystalline phase at 30 degrees C we find little effect of pH on the ratio of excimer to monomer emission intensity. However poly-L-lysine markedly lowers the fraction of excimer emission from these liposomes through the pH range from 5 to 7. Poly-L-histidine lowers the excimer to monomer emission ratio at pH 5 but not at pH 7. This is opposite to what one would expect for lateral phase separation and is interpreted at being the consequence of the polypeptide lowering the rate of lateral diffusion of the lipids. This effect of poly-L-histidine is observed over a range of temperatures from 0 to 40 degrees C in both gel and liquid crystalline phases. There is no evidence from the behaviour of the pyrene fluorescent probe for lipid interdigitation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R M Epand
- Department of Biochemistry, McMaster University Health Sciences Centre, Hamilton, ON, Canada
| | | |
Collapse
|
39
|
Arnold K. Cation-Induced Vesicle Fusion Modulated by Polymers and Proteins. HANDBOOK OF BIOLOGICAL PHYSICS 1995. [DOI: 10.1016/s1383-8121(06)80012-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
40
|
Posse E, De Arcuri BF, Morero RD. Lysozyme interactions with phospholipid vesicles: relationships with fusion and release of aqueous content. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1193:101-6. [PMID: 8038179 DOI: 10.1016/0005-2736(94)90338-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have previously demonstrated that lysozyme induced fusion of negatively charged phospholipid vesicles and have stressed the importance of electrostatic interactions (Posse, E. et al. (1990) Biochim. Biophys. Acta 1024, 390-394). Using centrifugation and fluorescence polarization techniques, we show, in the present paper that lysozyme interacts with negatively charged liposomes (PC/PA, 9:1), but also with neutral liposomes (pure PC). Moreover, the ionic strength and pH of the media did not modify the protein-liposomes interactions. Such interactions induce the spontaneous release of encapsulated Tb-DPA complex in liposomes. Release and fusion of PC/PA liposomes were observed. As indicated by kinetic studies and substrate curves, fusion and release are two uncoupled processes. Taking these and previous results into account we suggest a hypothetical mechanism where a relationship between aggregation, leakage and fusion of liposomes induced by lysozyme interaction is established.
Collapse
Affiliation(s)
- E Posse
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas, San Miguel de Tucumán, Argentina
| | | | | |
Collapse
|
41
|
Smith JG, Walzem RL, German JB. Liposomes as agents of DNA transfer. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:327-40. [PMID: 8280745 DOI: 10.1016/0304-4157(93)90004-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J G Smith
- Department of Food Science and Technology, University of California, Davis 95616
| | | | | |
Collapse
|
42
|
Murata M, Shirai Y, Ishiguro R, Kagiwada S, Tahara Y, Ohnishi S, Takahashi S. Fusion of dioleoylphosphatidylcholine vesicles induced by an amphiphilic cationic peptide and oligophosphates at neutral pH. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1152:99-108. [PMID: 8399311 DOI: 10.1016/0005-2736(93)90236-s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Peptide E5 is an analogue of the fusion peptide of influenza virus hemagglutinin and K5 is a cationic peptide which has an arrangement of electric charges complementary to that of E5. We reported that a stoichiometric mixture of E5 and K5 caused fusion of large unilamellar vesicles (LUV) of neutral phospholipids (Murata, M., Kagiwada, S., Takahashi, S. and Ohnishi, S. (1991) J. Biol. Chem. 266, 14353-14358). K5 caused fusion of LUV composed of dioleoylphosphatidylcholine (DOPC) at pH > 10, but not at neutral pH. In the presence of oligophosphates, such as 1 mM ATP, GTP, or polyphosphate, K5 caused rapid and efficient fusion of DOPC LUV at neutral pH without hydrolysis of oligophosphate groups, but another anions such as citrate, acetate, AMP, phosphate, or EDTA were ineffective. The peptide/oligophosphate-induced fusion behaviors have been investigated by a fluorescence resonance energy transfer assay for lipid mixing of LUV and negative staining electron microscopy. At higher ionic strengths ( > 0.3 M KCl) or in the presence of 5.0 mM MgCl2, the fusion was inhibited. Even at the inhibitory conditions, the association of K5 with lipid vesicles at neutral pH was directly confirmed by the Ficoll gradient assay method and by blue shifts of the tryptophan fluorescence of the peptide. A nonhydrolyzable GTP analogue, GTP gamma S, also induced fusion. These observations suggested that the electrostatic interactions between the positive and negative charges of K5 and oligophosphate, respectively, induced complex formation, triggering membrane fusion.
Collapse
Affiliation(s)
- M Murata
- Faculty of Science, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Spruijt RB, Böhmer MR, Wilschut J, Hemminga MA. Interaction of non-enveloped plant viruses and their viral coat proteins with phospholipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1065:217-24. [PMID: 2059653 DOI: 10.1016/0005-2736(91)90233-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The interaction of the non-enveloped plant viruses TMV (rod-shaped) and CCMV (spherical) and of their coat proteins in several well-defined aggregation states, with artificial membranes was investigated to study the early stages of the cellular infection process. Information about the separate steps in the interaction mechanisms was obtained by employing three assays, performed as a function of vesicle size, net membrane charge, pH and ionic strength. The assays allow to discriminate between aggregation of vesicles (turbidity assay) and membrane destabilization (vesicle leakage assay and lipid mixing assay). The aggregation of the vesicles is a result of electrostatic interactions between the viral material and vesicles surface (cross-linking), while the destabilization of the membrane is a result of penetration or bilayer disruption by hydrophobic protein domains. TMV virions and its coat protein, and CCMV virions, due to their net negative charge, predominantly interact with positively charged membranes. The coat protein of CCMV was found to interact with negatively charged membranes, an interaction that can be assigned to its basical N-terminal sequence. Changing the aggregational state of the viral coat proteins yielded most significant interactions in case of TMV coat protein aggregated in the disk form and CCMV coat protein aggregated in empty capsids with oppositely charged membranes. These protein aggregates are found to be the best compromise between efficiency (capacity of the protein to bridge vesicles and destabilize their membranes) and concentration of protein aggregates. The results are discussed with respect to previously proposed biological models of the early stages of plant virus infection.
Collapse
Affiliation(s)
- R B Spruijt
- Department of Molecular Physics, Agricultural University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
44
|
Zsak L, Mettenleiter TC, Sugg N, Ben-Porat T. Effect of polylysine on the early stages of infection of wild type pseudorabies virus and of mutants defective in gIII. Virology 1990; 179:330-8. [PMID: 2171208 DOI: 10.1016/0042-6822(90)90301-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The main pathway of adsorption of pseudorabies virus (PrV) to its host cells is via interactions between viral glycoprotein gIII and a cellular heparin-like receptor. Mutants of PrV deficient in glycoprotein gIII adsorb by an alternative, slower pathway. Penetration into the cells of gIII- mutants is also delayed compared to penetration of wild type virus. We show here that polylysine enhances the adsorption of gIII- mutants. Furthermore, in the presence of polylysine the adsorption of wild type virus involving the interactions of viral glycoprotein gIII and the heparin-like cellular receptor is efficiently bypassed. Polylysine appears to promote virus adsorption by bridging the cellular and viral membranes. Polylysine not only stimulates adsorption of gIII- mutants but also promotes their internalization; the delay in the initiation of viral protein synthesis that is observed in cells infected with gIII- mutants compared to wild type infected cells is abrogated. Because it is unlikely that polylysine can substitute for two different functions of gIII, adsorption and penetration, the delay in the initiation of the infectious cycle in gIII-infected cells is probably related to the defect in adsorption. Furthermore, polylysine can completely overcome the inhibitory effects of antisera against gIII, but not the inhibitory effects of antisera that affect a later stage of infection. It is unlikely therefore that polylysine can promote penetration directly and that gIII is involved directly in penetration. These results, as well as those obtained previously, show that while gIII is essential for the efficient adsorption of PrV, it affects virus penetration only indirectly.
Collapse
Affiliation(s)
- L Zsak
- Department of Microbiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | | | | |
Collapse
|
45
|
Bondeson J, Sundler R. Promotion of acid-induced membrane fusion by basic peptides. Amino acid and phospholipid specificities. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1026:186-94. [PMID: 2116170 DOI: 10.1016/0005-2736(90)90063-t] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability of oligo- and polymers of the basic amino acids L-lysine, L-arginine, L-histidine and L-ornithine to induce lipid intermixing and membrane fusion among vesicles containing various anionic phospholipids has been investigated. Among vesicle consisting of either phosphatidylinositol or mixtures of phosphatidic acid and phosphatidylethanolamine rapid and extensive lipid intermixing, but not complete fusion, was induced at neutral pH by poly-L-ornithine or L-lysine peptides of five or more residues. When phosphatidylcholine was included in the vesicles, the lipid intermixing was severely inhibited. Such lipid intermixing was also much less pronounced among phosphatidylserine vesicles. Poly-L-arginine provoked considerable leakage from the various anionic vesicles and caused significantly less lipid intermixing than L-lysine peptides at neutral pH. When the addition of basic amino acid polymer was followed by acidification to pH 5-6, vesicle fusion was induced. Fusion was more pronounced among vesicles containing phosphatidylserine or phosphatidic acid than among those containing phosphatidylinositol, and occurred also with vesicles whose composition resembles that of cellular membranes (i.e., phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine, 50:30:20, by mol). Liposomes with this composition are resistant to fusion by Ca2+ or by acidification after lectin-mediated contact. The tight interaction among vesicles at neutral pH, resulting in lipid intermixing, does not seem to be necessary for the fusion occurring after acidification, but the basic peptides nevertheless appear to play a more active role in the fusion process than simply bringing the vesicles in contact. However, protonation of the polymer side chains and transformation of the polymer into a polycation does not explain the need for acidification, since the pH-dependence was quite similar for poly(L-histidine)- and poly(L-lysine)-mediated fusion.
Collapse
Affiliation(s)
- J Bondeson
- Department of Medical and Physiological Chemistry, University of Lund, Sweden
| | | |
Collapse
|
46
|
Posse E, López Viñals A, de Arcuri BF, Farías RN, Morero RD. Lysozyme induced fusion of negatively charged phospholipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1024:390-4. [PMID: 2354187 DOI: 10.1016/0005-2736(90)90370-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lysozyme promotes fusion of negatively charged phospholipid vesicles prepared by ethanolic injection. Vesicle fusion was a leaky process as revealed by the release of encapsulated carboxyfluorescein or Tb-DPA complex. Extensive proteolysis of lysozyme inhibited the fusion process. The fusion process was critically dependent on the medium ionic strength; 100 mM of any salt was sufficient to inhibit totally the fusion activity of the protein. The high efficiency of lysozyme (80% RET) was almost constant in the pH range from 4.0 to 9.0, but it was sharply diminished when the pH of the medium was at the isoelectric point of the protein (pI 11.0). Fusion induced by chemically modified lysozyme, showed that the pH profile changed according to the isoelectric point of the protein derivative. These observations stress the importance of electrostatic interactions in the process of fusion induced by lysozyme.
Collapse
Affiliation(s)
- E Posse
- Departamento de Bioquimica de la Nutrición, Instituto de Química Biológica Dr. Bernabé Bloj CONICET-UNT, Tucumàn, Argentina
| | | | | | | | | |
Collapse
|
47
|
Chattopadhyay A. Chemistry and biology of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids: fluorescent probes of biological and model membranes. Chem Phys Lipids 1990; 53:1-15. [PMID: 2191793 DOI: 10.1016/0009-3084(90)90128-e] [Citation(s) in RCA: 250] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lipids that are covalently labeled with the 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group are widely used as fluorescent analogues of native lipids in model and biological membranes to study a variety of processes. The fluorescent NBD group may be attached either to the polar or the apolar regions of a wide variety of lipid molecules. Synthetic routes for preparing the lipids, and spectroscopic and ionization properties of these probes are reviewed in this report. The orientation of various NBD-labeled lipids in membranes, as indicated by the location of the NBD group, is also discussed. The NBD group is uncharged at neutral pH in membranes, but loops up to the surface if attached to acyl chains of phospholipids. These lipids find applications in a variety of membrane-related studies which include membrane fusion, lipid motion and dynamics, organization of lipids and proteins in membranes, intracellular lipid transfer, and bilayer to hexagonal phase transition in liposomes. Use of NBD-labeled lipids as analogues of natural lipids is critically evaluated.
Collapse
Affiliation(s)
- A Chattopadhyay
- Department of Biochemistry and Biophysics, University of California, Davis 95616
| |
Collapse
|
48
|
Murata M, Takahashi S, Kanaseki T, Ohnishi S. Membrane fusion and lysis by the amphiphilic peptides induced by charge neutralization: A model study of virus membrane fusion mechanism. SPRINGER SERIES IN BIOPHYSICS 1990. [DOI: 10.1007/978-3-642-74471-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
49
|
Stubbs CD, Williams BW, Boni LT, Hoek JB, Taraschi TF, Rubin E. On the use of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)phosphatidylethanolamine in the study of lipid polymorphism. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 986:89-96. [PMID: 2819099 DOI: 10.1016/0005-2736(89)90276-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The change in the fluorescence properties of dioleoyl-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)phosphatidylethanola mine (N-NBD-PE) as an indicator of the (liquid-crystalline) bilayer-to-non-bilayer hexagonalII (HII) phase transition has been investigated. Lipid bilayer systems which are known to undergo the bilayer-to-HII phase transition on addition of Ca2+ were compared with systems which can undergo aggregation and fusion but not HII phase formation. The former included Ca2+-triggered non-bilayer transitions in cardiolipin and in phosphatidylethanolamine mixed with phosphatidylserine. The latter type of system investigated included the addition of polylysine to cardiolipin and Ca2+ to phosphatidylserine. Freeze-fracture electron microscopy was used to confirm that under the experimental conditions used, the formation of HII phase was occurring in the first type of system, but not in the second, which was stable in the bilayer state. It was found that the fluorescence intensity of N-NBD-PE (at 1 mol% of the phospholipids) increased in both types of system, irrespective of the formation of the HII phase. A dehydration at the phospholipid head group is a common feature of the formation of the HII phase, the interaction of divalent cations with phosphatidylserine and the interaction of polylysine with lipid bilayers, suggesting that this may be the feature which affects the fluorescence properties of the NBD. The finding of a fluorescence intensity increase in systems lacking HII phase involvement clearly indicates that the effect is not unique to the formation of the HII phase. Thus, while offering high sensitivity and the opportunity to follow kinetics of lipid structural changes, changes in the N-NBD-PE fluorescence properties should be interpreted with caution in the study of the bilayer-to-HII phase transition.
Collapse
Affiliation(s)
- C D Stubbs
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | | | | | | | |
Collapse
|
50
|
Keren-Zur M, Beigel M, Loyter A. Induction of fusion in aggregated and nonaggregated liposomes bearing cationic detergents. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 983:253-8. [PMID: 2758061 DOI: 10.1016/0005-2736(89)90241-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The addition of polyanionic polymers such as poly(aspartic acid) (PASP), DNA or dextran sulfate to liposomes composed of phosphatidylcholine (PC) and cholesterol (CHOL) and bearing the quaternary ammonium detergent [[[(1,1,3,3-tetramethylbutyl)cresoxy]ethoxy]ethyl]dimethy lbe nzylammonium hydroxide (DEBDA[OH]) resulted in liposome aggregation and fusion. Liposome-liposome fusion was studied by using fluorescently labeled liposomes and fluorescence-dequenching (DQ) methods. Addition of monoanions, such as aspartate or acetate, to liposomes bearing DEBDA[OH] caused neither their aggregation nor liposome-liposome fusion. Aggregation of liposomes bearing DEBDA[OH] by the binding pair avidin-biotin did not result in their fusion. Fusion in such aggregated liposomes was observed by the addition of chaotropic anions, such as nitrate or thiocyanate, or by PASP. A variety of other quaternary ammonium detergents behaved similarly to DEBDA[OH] in their ability to confer fusogenic properties upon PC/chol liposomes. The relevance of these findings to the mechanism of liposome-liposome fusion is discussed.
Collapse
Affiliation(s)
- M Keren-Zur
- International Genetic Sciences, Inc., Jerusalem, Israel
| | | | | |
Collapse
|