1
|
Kaur D, Singh RP, Gupta S. Screening and Characterization of Next-Generation Biofuels Producing Bacterial Strains. Curr Microbiol 2022; 79:85. [PMID: 35129690 DOI: 10.1007/s00284-022-02781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
Production of fuels from renewable resources is of utmost importance due to fast depletion of fossil resources and related environmental issues. The present study explored the intrinsic capability of microbial strains to produce alka(e)nes, the next-generation biofuel, thus to reduce the dependence upon current petroleum fuels. Eight bacterial strains, namely, SDK-1, SDK-2, SDK-6, SDK-7, SDK-8, SDK-9, SDK-10, and SDK-11 were isolated from sludge and soil samples collected from different sources using lauric acid as a substrate with a potential to produce alka(e)nes. Production of different medium- and long-chain alka(e)nes by these isolates was confirmed via gas chromatography-mass spectrometer (GC-MS) analysis. SDK-1 (7.2%), SDK-2 (3.72%), and SDK-6 (3.52%) produced significant proportion of medium-chain hydrocarbons as compared to SDK-10 and control with no production. These isolates may be further investigated for production of these alternative sources of energy. In contrary, maximum fraction of long-chain hydrocarbons is produced in SDK-8 (75.28%) followed by SDK-9 (61.51%). Similarly more than 50% of the total hydrocarbons produced in SDK-8 constitute fossil mimic hydrocarbons while only 10.78% fractions were found in SDK-10. Since these fractions resemble different hydrocarbons obtained from crude oil, hence may be explored for their wide applications in different fields. Biochemical characterization and sequencing of the 16S rRNA gene revealed the homology of SDK-1, SDK-2 and SDK-6 with Pseudomonas aeruginosa, SDK-7 and SDK-9 with Enterobacter cloacae, SDK-8 with Klebsiella pnuemoniae, SDK-10 with Enterobacter hormaechei and SDK-11 with Pseudomonas nitroreducens, respectively.
Collapse
Affiliation(s)
- Damanjeet Kaur
- Department of Microbiology, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India.,Department of Biotechnology, Punjabi University, Patiala, Punjab, India
| | - Rupinder Pal Singh
- Department of Food Processing Technology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Saurabh Gupta
- Department of Microbiology, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India.
| |
Collapse
|
2
|
Surger M, Angelov A, Liebl W. Distribution and diversity of olefins and olefin-biosynthesis genes in Gram-positive bacteria. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:70. [PMID: 32313552 PMCID: PMC7158056 DOI: 10.1186/s13068-020-01706-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The natural production of olefins (unsaturated aliphatic hydrocarbons) by certain bacterial genera represents an alternative and sustainable source of biofuels and lubricant components. The biochemical steps of olefin biosynthesis via the ole pathway encoded by oleABCD have been unraveled recently, and the occurrence of olefins has been reported for several Gram-negative and Gram-positive bacteria. However, the distribution and diversity of olefins among the Gram-positive bacteria has not been studied in detail. RESULTS We report the distribution of olefin synthesis gene clusters in the bacterial domain and focus on the olefin composition and the determinants of olefin production within the phylum of Actinobacteria. The olefin profiles of numerous genera of the Micrococcales order were analyzed by GC/MS. We describe for the first time olefin synthesis in representatives of the genera Pseudarthrobacter, Paenarthrobacter, Glutamicibacter, Clavibacter, Rothia, Dermacoccus, Kytococcus, Curtobacterium, and Microbacterium. By exchange of the native ole genes of Micrococcus luteus with the corresponding genes of actinobacteria producing different olefins, we demonstrate that the olefin composition can be manipulated with respect to chain length and isomer composition. CONCLUSIONS This study provides a catalogue of the diversity of olefin structures found in the Actinobacteria. Our ole gene swapping data indicate that the olefin structures are fundamentally determined by the substrate specificity of OleA, and at the same time by the availability of a sufficient supply of suitable fatty acyl-CoA substrates from cellular fatty acid metabolism. This makes OleA of Gram-positive bacteria a promising target for structural analysis and protein engineering aiming to generate olefin chain lengths and isomer profiles which are designed to match the requirements of various industrial applications.
Collapse
Affiliation(s)
- Maximilian Surger
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - Angel Angelov
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| |
Collapse
|
3
|
Surger MJ, Angelov A, Stier P, Übelacker M, Liebl W. Impact of Branched-Chain Amino Acid Catabolism on Fatty Acid and Alkene Biosynthesis in Micrococcus luteus. Front Microbiol 2018; 9:374. [PMID: 29593665 PMCID: PMC5857589 DOI: 10.3389/fmicb.2018.00374] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/19/2018] [Indexed: 12/02/2022] Open
Abstract
Micrococcus luteus naturally produces alkenes, unsaturated aliphatic hydrocarbons, and represents a promising host to produce hydrocarbons as constituents of biofuels and lubricants. In this work, we identify the genes for key enzymes of the branched-chain amino acid catabolism in M. luteus, whose first metabolic steps lead also to the formation of primer molecules for branched-chain fatty acid and olefin biosynthesis, and demonstrate how these genes can be used to manipulate the production of specific olefins in this organism. We constructed mutants of several gene candidates involved in the branched-chain amino acid metabolism or its regulation and investigated the resulting changes in the cellular fatty acid and olefin profiles by GC/MS. The gene cluster encoding the components of the branched-chain α-keto acid dehydrogenase (BCKD) complex was identified by deletion and promoter exchange mutagenesis. Overexpression of the BCKD gene cluster resulted in about threefold increased olefin production whereas deletion of the cluster led to a drastic reduction in branched-chain fatty acid content and a complete loss of olefin production. The specificities of the acyl-CoA dehydrogenases of the branched amino acid degradation pathways were deduced from the fatty acid and olefin profiles of the respective deletion mutant strains. In addition, growth experiments with branched amino acids as the only nitrogen source were carried out with the mutants in order to confirm our annotations. Both the deletion mutant of the BCKD complex, responsible for the further degradation of all three branched-chain amino acids, as well as the deletion mutant of the proposed isovaleryl-CoA dehydrogenase (specific for leucine degradation) were not able to grow on leucine in contrast to the parental strain. In conclusion, our experiments allow the unambigous assignment of specific functions to the genes for key enzymes of the branched-chain amino acid metabolism of M. luteus. We also show how this knowledge can be used to engineer the isomeric composition and the chain lengths of the olefins produced by this organism.
Collapse
Affiliation(s)
| | - Angel Angelov
- Department of Microbiology, Technical University of Munich, Munich, Germany
| | - Philipp Stier
- Department of Microbiology, Technical University of Munich, Munich, Germany
| | - Maria Übelacker
- Department of Microbiology, Technical University of Munich, Munich, Germany
| | - Wolfgang Liebl
- Department of Microbiology, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Christenson JK, Robinson SL, Engel TA, Richman JE, Kim AN, Wackett LP. OleB from Bacterial Hydrocarbon Biosynthesis Is a β-Lactone Decarboxylase That Shares Key Features with Haloalkane Dehalogenases. Biochemistry 2017; 56:5278-5287. [PMID: 28872321 DOI: 10.1021/acs.biochem.7b00667] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OleB is an α/β-hydrolase found in bacteria that biosynthesize long-chain olefinic hydrocarbons, but its function has remained obscure. We report that OleB from the Gram-negative bacterium Xanthomonas campestris performs an unprecedented β-lactone decarboxylation reaction, to complete cis-olefin biosynthesis. OleB reactions monitored by 1H nuclear magnetic resonance spectroscopy revealed a selectivity for decarboxylating cis-β-lactones and no discernible activity with trans-β-lactones, consistent with the known configuration of pathway intermediates. Protein sequence analyses showed OleB proteins were most related to haloalkane dehalogenases (HLDs) and retained the canonical Asp-His-Asp catalytic triad of HLDs. Unexpectedly, it was determined that an understudied subfamily, denoted as HLD-III, is comprised mostly of OleB proteins encoded within oleABCD gene clusters, suggesting a misannotation. OleB from X. campestris showed very low dehalogenase activity only against haloalkane substrates with long alkyl chains. A haloalkane substrate mimic alkylated wild-type X. campestris OleB but not OleBD114A, implicating this residue as the active site nucleophile as in HLDs. A sequence-divergent OleB, found as part of a natural OleBC fusion and classified as an HLD-III, from the Gram-positive bacterium Micrococcus luteus was demonstrated to have the same activity, stereochemical preference, and dependence on the proposed Asp nucleophile. H218O studies with M. luteus OleBC suggested that the canonical alkyl-enzyme intermediate of HLDs is hydrolyzed differently by OleB enzymes, as 18O is not incorporated into the nucleophilic aspartic acid. This work defines a previously unrecognized reaction in nature, functionally identifies some HLD-III enzymes as β-lactone decarboxylases, and posits an enzymatic mechanism of β-lactone decarboxylation.
Collapse
Affiliation(s)
- James K Christenson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota , Minneapolis, Minnesota 55455, United States.,Biotechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - Serina L Robinson
- Biotechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States.,Department of Microbiology and Immunology, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Tiffany A Engel
- Biotechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - Jack E Richman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota , Minneapolis, Minnesota 55455, United States.,Biotechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - An N Kim
- Biotechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - Larry P Wackett
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota , Minneapolis, Minnesota 55455, United States.,Biotechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States.,Microbial and Plant Genomics Institute, University of Minnesota , St. Paul, Minnesota 55108, United States
| |
Collapse
|
5
|
Active Multienzyme Assemblies for Long-Chain Olefinic Hydrocarbon Biosynthesis. J Bacteriol 2017; 199:JB.00890-16. [PMID: 28223313 DOI: 10.1128/jb.00890-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/10/2017] [Indexed: 12/14/2022] Open
Abstract
Bacteria from different phyla produce long-chain olefinic hydrocarbons derived from an OleA-catalyzed Claisen condensation of two fatty acyl coenzyme A (acyl-CoA) substrates, followed by reduction and oxygen elimination reactions catalyzed by the proteins OleB, OleC, and OleD. In this report, OleA, OleB, OleC, and OleD were individually purified as soluble proteins, and all were found to be essential for reconstituting hydrocarbon biosynthesis. Recombinant coexpression of tagged OleABCD proteins from Xanthomonas campestris in Escherichia coli and purification over His6 and FLAG columns resulted in OleA separating, while OleBCD purified together, irrespective of which of the four Ole proteins were tagged. Hydrocarbon biosynthetic activity of copurified OleBCD assemblies could be reconstituted by adding separately purified OleA. Immunoblots of nondenaturing gels using anti-OleC reacted with X. campestris crude protein lysate indicated the presence of a large protein assembly containing OleC in the native host. Negative-stain electron microscopy of recombinant OleBCD revealed distinct large structures with diameters primarily between 24 and 40 nm. Assembling OleB, OleC, and OleD into a complex may be important to maintain stereochemical integrity of intermediates, facilitate the movement of hydrophobic metabolites between enzyme active sites, and protect the cell against the highly reactive β-lactone intermediate produced by the OleC-catalyzed reaction.IMPORTANCE Bacteria biosynthesize hydrophobic molecules to maintain a membrane, store carbon, and for antibiotics that help them survive in their niche. The hydrophobic compounds are often synthesized by a multidomain protein or by large multienzyme assemblies. The present study reports on the discovery that long-chain olefinic hydrocarbons made by bacteria from different phyla are produced by multienzyme assemblies in X. campestris The OleBCD multienzyme assemblies are thought to compartmentalize and sequester olefin biosynthesis from the rest of the cell. This system provides additional insights into how bacteria control specific biosynthetic pathways.
Collapse
|
6
|
Christenson JK, Richman JE, Jensen MR, Neufeld JY, Wilmot CM, Wackett LP. β-Lactone Synthetase Found in the Olefin Biosynthesis Pathway. Biochemistry 2017; 56:348-351. [PMID: 28029240 PMCID: PMC5499249 DOI: 10.1021/acs.biochem.6b01199] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The first β-lactone synthetase enzyme is reported, creating an unexpected link between the biosynthesis of olefinic hydrocarbons and highly functionalized natural products. The enzyme OleC, involved in the microbial biosynthesis of long-chain olefinic hydrocarbons, reacts with syn- and anti-β-hydroxy acid substrates to yield cis- and trans-β-lactones, respectively. Protein sequence comparisons reveal that enzymes homologous to OleC are encoded in natural product gene clusters that generate β-lactone rings, suggesting a common mechanism of biosynthesis.
Collapse
Affiliation(s)
- James K. Christenson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Min-nesota, 55455, United States
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, 55108, United States
| | - Jack E. Richman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Min-nesota, 55455, United States
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, 55108, United States
| | - Matthew R. Jensen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Min-nesota, 55455, United States
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, 55108, United States
| | - Jennifer Y. Neufeld
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, 55108, United States
| | - Carrie M. Wilmot
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Min-nesota, 55455, United States
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, 55108, United States
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Min-nesota, 55455, United States
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, 55108, United States
- Microbial and Plant Genomic Institute, University of Minnesota, St. Paul, Minnesota, 55108, United States
| |
Collapse
|
7
|
Biobased production of alkanes and alkenes through metabolic engineering of microorganisms. J Ind Microbiol Biotechnol 2016; 44:613-622. [PMID: 27565672 PMCID: PMC5408033 DOI: 10.1007/s10295-016-1814-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/30/2016] [Indexed: 12/02/2022]
Abstract
Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ‘drop-in’ biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks and possible solutions to accomplish industrial level production of these chemicals by microbial fermentation.
Collapse
|
8
|
Kancharla P, Bonnett SA, Reynolds KA. Stenotrophomonas maltophilia OleC-Catalyzed ATP-Dependent Formation of Long-Chain Z-Olefins from 2-Alkyl-3-hydroxyalkanoic Acids. Chembiochem 2016; 17:1426-9. [PMID: 27238740 DOI: 10.1002/cbic.201600063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 12/21/2022]
Abstract
The bacterial pathway of olefin biosynthesis starts with OleA catalyzed "head-to-head" condensation of two CoA-activated long-chain fatty acids to generate (R)-2-alkyl-3-ketoalkanoic acids. A subsequent OleD-catalyzed reduction generates (2R,3S)-2-alkyl-3-hydroxyalkanoic acids. We now show that the final step in the pathway is an OleC-catalyzed ATP-dependent decarboxylative dehydration to form the corresponding Z olefins. Higher kcat /Km values were seen for substrates with longer alkyl chains. All four stereoisomers of 2-hexyl-3-hydroxydecanoic acid were shown to be substrates, and GC-MS and NMR analyses confirmed that the product in each case was (Z)-pentadec-7-ene. LC-MS analysis supported the formation of AMP adduct as an intermediate. The enzymatic and stereochemical course of olefin biosynthesis from long-chain fatty acids by OleA, OleD and OleC is now established.
Collapse
Affiliation(s)
- Papireddy Kancharla
- Department of Chemistry, Portland State University, Portland, OR, 97201-3203, USA
| | - Shilah A Bonnett
- Department of Chemistry, Portland State University, Portland, OR, 97201-3203, USA
| | - Kevin A Reynolds
- Department of Chemistry, Portland State University, Portland, OR, 97201-3203, USA.
| |
Collapse
|
9
|
Beller HR, Lee TS, Katz L. Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids. Nat Prod Rep 2015. [PMID: 26216573 DOI: 10.1039/c5np00068h] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although natural products are best known for their use in medicine and agriculture, a number of fatty acid-derived and isoprenoid natural products are being developed for use as renewable biofuels and bio-based chemicals. This review summarizes recent work on fatty acid-derived compounds (fatty acid alkyl esters, fatty alcohols, medium- and short-chain methyl ketones, alkanes, α-olefins, and long-chain internal alkenes) and isoprenoids, including hemiterpenes (e.g., isoprene and isopentanol), monoterpenes (e.g., limonene), and sesquiterpenes (e.g., farnesene and bisabolene).
Collapse
Affiliation(s)
- Harry R Beller
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, Emeryville, California, 94608 USA.
| | | | | |
Collapse
|
10
|
Goblirsch BR, Frias JA, Wackett LP, Wilmot CM. Crystal structures of Xanthomonas campestris OleA reveal features that promote head-to-head condensation of two long-chain fatty acids. Biochemistry 2012; 51:4138-46. [PMID: 22524624 PMCID: PMC3358466 DOI: 10.1021/bi300386m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acyl-coenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short β-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117β) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly, Glu117β comes from the other monomer of the physiological dimer.
Collapse
Affiliation(s)
- Brandon R. Goblirsch
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Janice A. Frias
- Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Carrie M. Wilmot
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
11
|
Linear Hydrocarbon Producing Pathways in Plants, Algae and Microbes. SUSTAINABLE BIOENERGY AND BIOPRODUCTS 2012. [DOI: 10.1007/978-1-4471-2324-8_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
12
|
Bonnett SA, Papireddy K, Higgins S, del Cardayre S, Reynolds KA. Functional characterization of an NADPH dependent 2-alkyl-3-ketoalkanoic acid reductase involved in olefin biosynthesis in Stenotrophomonas maltophilia. Biochemistry 2011; 50:9633-40. [PMID: 21958090 DOI: 10.1021/bi201096w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OleD is shown to play a key reductive role in the generation of alkenes (olefins) from acyl thioesters in Stenotrophomonas maltophilia. The gene coding for OleD clusters with three other genes, oleABC, and all appear to be transcribed in the same direction as an operon in various olefin producing bacteria. In this study, a series of substrates varying in chain length and stereochemistry were synthesized and used to elucidate the functional role and substrate specificity of OleD. We demonstrated that OleD, which is an NADP(H) dependent reductase, is a homodimer which catalyzes the reversible stereospecific reduction of 2-alkyl-3-ketoalkanoic acids. Maximal catalytic efficiency was observed with syn-2-decyl-3-hydroxytetradecanoic acid, with a k(cat)/K(m) 5- and 8-fold higher than for syn-2-octyl-3-hydroxydodecanoic acid and syn-2-hexyl-3-hydroxydecanoic acid, respectively. OleD activity was not observed with syn-2-butyl-3-hydroxyoctanoic acid and compounds lacking a 2-alkyl group such as 3-ketodecanoic and 3-hydroxydecanoic acids, suggesting the necessity of the 2-alkyl chain for enzyme recognition and catalysis. Using diastereomeric pairs of substrates and 4 enantiopure isomers of 2-hexyl-3-hydroxydecanoic acid of known stereochemistry, OleD was shown to have a marked stereochemical preference for the (2R,3S)-isomer. Finally, experiments involving OleA and OleD demonstrate the first 3 steps and stereochemical course in olefin formation from acyl thioesters; condensation to form a 2-alkyl-3-ketoacyl thioester, subsequent thioester hydrolysis, and ketone reduction.
Collapse
Affiliation(s)
- Shilah A Bonnett
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | | | | | | | | |
Collapse
|
13
|
Frias JA, Richman JE, Erickson JS, Wackett LP. Purification and characterization of OleA from Xanthomonas campestris and demonstration of a non-decarboxylative Claisen condensation reaction. J Biol Chem 2011; 286:10930-8. [PMID: 21266575 PMCID: PMC3064148 DOI: 10.1074/jbc.m110.216127] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/24/2011] [Indexed: 11/06/2022] Open
Abstract
OleA catalyzes the condensation of fatty acyl groups in the first step of bacterial long-chain olefin biosynthesis, but the mechanism of the condensation reaction is controversial. In this study, OleA from Xanthomonas campestris was expressed in Escherichia coli and purified to homogeneity. The purified protein was shown to be active with fatty acyl-CoA substrates that ranged from C(8) to C(16) in length. With limiting myristoyl-CoA (C(14)), 1 mol of the free coenzyme A was released/mol of myristoyl-CoA consumed. Using [(14)C]myristoyl-CoA, the other products were identified as myristic acid, 2-myristoylmyristic acid, and 14-heptacosanone. 2-Myristoylmyristic acid was indicated to be the physiologically relevant product of OleA in several ways. First, 2-myristoylmyristic acid was the major condensed product in short incubations, but over time, it decreased with the concomitant increase of 14-heptacosanone. Second, synthetic 2-myristoylmyristic acid showed similar decarboxylation kinetics in the absence of OleA. Third, 2-myristoylmyristic acid was shown to be reactive with purified OleC and OleD to generate the olefin 14-heptacosene, a product seen in previous in vivo studies. The decarboxylation product, 14-heptacosanone, did not react with OleC and OleD to produce any demonstrable product. Substantial hydrolysis of fatty acyl-CoA substrates to the corresponding fatty acids was observed, but it is currently unclear if this occurs in vivo. In total, these data are consistent with OleA catalyzing a non-decarboxylative Claisen condensation reaction in the first step of the olefin biosynthetic pathway previously found to be present in at least 70 different bacterial strains.
Collapse
Affiliation(s)
- Janice A. Frias
- From the Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Jack E. Richman
- From the Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Jasmine S. Erickson
- From the Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Lawrence P. Wackett
- From the Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
14
|
Engineering microbes to produce biofuels. Curr Opin Biotechnol 2010; 22:388-93. [PMID: 21071201 DOI: 10.1016/j.copbio.2010.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/13/2010] [Accepted: 10/18/2010] [Indexed: 11/24/2022]
Abstract
The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.
Collapse
|
15
|
Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP. Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of OleA. Appl Environ Microbiol 2010; 76:3850-62. [PMID: 20418421 PMCID: PMC2893475 DOI: 10.1128/aem.00436-10] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/13/2010] [Indexed: 11/20/2022] Open
Abstract
Previous studies identified the oleABCD genes involved in head-to-head olefinic hydrocarbon biosynthesis. The present study more fully defined the OleABCD protein families within the thiolase, alpha/beta-hydrolase, AMP-dependent ligase/synthase, and short-chain dehydrogenase superfamilies, respectively. Only 0.1 to 1% of each superfamily represents likely Ole proteins. Sequence analysis based on structural alignments and gene context was used to identify highly likely ole genes. Selected microorganisms from the phyla Verucomicrobia, Planctomyces, Chloroflexi, Proteobacteria, and Actinobacteria were tested experimentally and shown to produce long-chain olefinic hydrocarbons. However, different species from the same genera sometimes lack the ole genes and fail to produce olefinic hydrocarbons. Overall, only 1.9% of 3,558 genomes analyzed showed clear evidence for containing ole genes. The type of olefins produced by different bacteria differed greatly with respect to the number of carbon-carbon double bonds. The greatest number of organisms surveyed biosynthesized a single long-chain olefin, 3,6,9,12,15,19,22,25,28-hentriacontanonaene, that contains nine double bonds. Xanthomonas campestris produced the greatest number of distinct olefin products, 15 compounds ranging in length from C(28) to C(31) and containing one to three double bonds. The type of long-chain product formed was shown to be dependent on the oleA gene in experiments with Shewanella oneidensis MR-1 ole gene deletion mutants containing native or heterologous oleA genes expressed in trans. A strain deleted in oleABCD and containing oleA in trans produced only ketones. Based on these observations, it was proposed that OleA catalyzes a nondecarboxylative thiolytic condensation of fatty acyl chains to generate a beta-ketoacyl intermediate that can decarboxylate spontaneously to generate ketones.
Collapse
Affiliation(s)
- David J. Sukovich
- Graduate Program in Microbiology, Immunology, and Cancer Biology, BioTechnology Institute, Department of Biochemistry, Molecular Biology and Biophysics, Department of Microbiology, University of Minnesota, St. Paul, Minnesota 55108
| | - Jennifer L. Seffernick
- Graduate Program in Microbiology, Immunology, and Cancer Biology, BioTechnology Institute, Department of Biochemistry, Molecular Biology and Biophysics, Department of Microbiology, University of Minnesota, St. Paul, Minnesota 55108
| | - Jack E. Richman
- Graduate Program in Microbiology, Immunology, and Cancer Biology, BioTechnology Institute, Department of Biochemistry, Molecular Biology and Biophysics, Department of Microbiology, University of Minnesota, St. Paul, Minnesota 55108
| | - Jeffrey A. Gralnick
- Graduate Program in Microbiology, Immunology, and Cancer Biology, BioTechnology Institute, Department of Biochemistry, Molecular Biology and Biophysics, Department of Microbiology, University of Minnesota, St. Paul, Minnesota 55108
| | - Lawrence P. Wackett
- Graduate Program in Microbiology, Immunology, and Cancer Biology, BioTechnology Institute, Department of Biochemistry, Molecular Biology and Biophysics, Department of Microbiology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
16
|
Structure, function, and insights into the biosynthesis of a head-to-head hydrocarbon in Shewanella oneidensis strain MR-1. Appl Environ Microbiol 2010; 76:3842-9. [PMID: 20418444 DOI: 10.1128/aem.00433-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A polyolefinic hydrocarbon was found in nonpolar extracts of Shewanella oneidensis MR-1 and identified as 3,6,9,12,15,19,22,25,28-hentriacontanonaene (compound I) by mass spectrometry, chemical modification, and nuclear magnetic resonance spectroscopy. Compound I was shown to be the product of a head-to-head fatty acid condensation biosynthetic pathway dependent on genes denoted as ole (for olefin biosynthesis). Four ole genes were present in S. oneidensis MR-1. Deletion of the entire oleABCD gene cluster led to the complete absence of nonpolar extractable products. Deletion of the oleC gene alone generated a strain that lacked compound I but produced a structurally analogous ketone. Complementation of the oleC gene eliminated formation of the ketone and restored the biosynthesis of compound I. A recombinant S. oneidensis strain containing oleA from Stenotrophomonas maltophilia strain R551-3 produced at least 17 related long-chain compounds in addition to compound I, 13 of which were identified as ketones. A potential role for OleA in head-to-head condensation was proposed. It was further proposed that long-chain polyunsaturated compounds aid in adapting cells to a rapid drop in temperature, based on three observations. In S. oneidensis wild-type cells, the cellular concentration of polyunsaturated compounds increased significantly with decreasing growth temperature. Second, the oleABCD deletion strain showed a significantly longer lag phase than the wild-type strain when shifted to a lower temperature. Lastly, compound I has been identified in a significant number of bacteria isolated from cold environments.
Collapse
|
17
|
Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Appl Environ Microbiol 2009; 76:1212-23. [PMID: 20038703 DOI: 10.1128/aem.02312-09] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which 4 decades ago was reported to biosynthesize iso- and anteiso-branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty acid-overproducing Escherichia coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-coenzyme A (CoA) produced the same C(27) monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or-ACP [acyl carrier protein]) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (beta-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during fatty acid biosynthesis.
Collapse
|
18
|
Genome sequence of the Fleming strain of Micrococcus luteus, a simple free-living actinobacterium. J Bacteriol 2009; 192:841-60. [PMID: 19948807 DOI: 10.1128/jb.01254-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Micrococcus luteus (NCTC2665, "Fleming strain") has one of the smallest genomes of free-living actinobacteria sequenced to date, comprising a single circular chromosome of 2,501,097 bp (G+C content, 73%) predicted to encode 2,403 proteins. The genome shows extensive synteny with that of the closely related organism, Kocuria rhizophila, from which it was taxonomically separated relatively recently. Despite its small size, the genome harbors 73 insertion sequence (IS) elements, almost all of which are closely related to elements found in other actinobacteria. An IS element is inserted into the rrs gene of one of only two rrn operons found in M. luteus. The genome encodes only four sigma factors and 14 response regulators, a finding indicative of adaptation to a rather strict ecological niche (mammalian skin). The high sensitivity of M. luteus to beta-lactam antibiotics may result from the presence of a reduced set of penicillin-binding proteins and the absence of a wblC gene, which plays an important role in the antibiotic resistance in other actinobacteria. Consistent with the restricted range of compounds it can use as a sole source of carbon for energy and growth, M. luteus has a minimal complement of genes concerned with carbohydrate transport and metabolism and its inability to utilize glucose as a sole carbon source may be due to the apparent absence of a gene encoding glucokinase. Uniquely among characterized bacteria, M. luteus appears to be able to metabolize glycogen only via trehalose and to make trehalose only via glycogen. It has very few genes associated with secondary metabolism. In contrast to most other actinobacteria, M. luteus encodes only one resuscitation-promoting factor (Rpf) required for emergence from dormancy, and its complement of other dormancy-related proteins is also much reduced. M. luteus is capable of long-chain alkene biosynthesis, which is of interest for advanced biofuel production; a three-gene cluster essential for this metabolism has been identified in the genome.
Collapse
|
19
|
New microbial fuels: a biotech perspective. Curr Opin Microbiol 2009; 12:274-81. [DOI: 10.1016/j.mib.2009.04.004] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/09/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
|
20
|
Abstract
Arthrobacter aurescens TC1, Arthrobacter chlorophenolicus A6, Arthrobacter crystallopoietes, and Arthrobacter oxydans produce long-chain monoalkenes, predominantly cis-3,25-dimethyl-13-heptacosene. Four other Arthrobacter strains did not form alkenes. The level of cis-3,25-dimethyl-13-heptacosene in Arthrobacter chlorophenolicus A6 remained proportional to cell mass during growth. cis-3,25-Dimethyl-13-heptacosene did not support growth of A. chlorophenolicus A6.
Collapse
|
21
|
Ishida R, Shirahama H, Matsumoto T. A New Glycosphingolipid from the Red AlgaCorallina pilulifera. CHEM LETT 1993. [DOI: 10.1246/cl.1993.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Wada M, Fukunaga N, Sasaki S. Mechanism of biosynthesis of unsaturated fatty acids in Pseudomonas sp. strain E-3, a psychrotrophic bacterium. J Bacteriol 1989; 171:4267-71. [PMID: 2753856 PMCID: PMC210200 DOI: 10.1128/jb.171.8.4267-4271.1989] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Biosynthesis of palmitic, palmitoleic, and cis-vaccenic acids in Pseudomonas sp. strain E-3 was investigated with in vitro and in vivo systems. [1-14C]palmitic acid was aerobically converted to palmitoleate and cis-vaccenate, and the radioactivities on their carboxyl carbons were 100 and 43%, respectively, of the total radioactivity in the fatty acids. Palmitoyl coenzyme A desaturase activity was found in the membrane fraction. [1-14C]stearic acid was converted to octadecenoate and C16 fatty acids. The octadecenoate contained oleate and cis-vaccenate, but only oleate was produced in the presence of cerulenin. [1-14C]lauric acid was aerobically converted to palmitate, palmitoleate, and cis-vaccenate. Under anaerobic conditions, palmitate (62%), palmitoleate (4%), and cis-vaccenate (34%) were produced from [1-14C]acetic acid, while they amounted to 48, 39, and 14%, respectively, under aerobic conditions. In these incorporation experiments, 3 to 19% of the added radioactivity was detected in released 14CO2, indicating that part of the added fatty acids were oxidatively decomposed. Partially purified fatty acid synthetase produced saturated and unsaturated fatty acids with chain lengths of C10 to C18. These results indicated that both aerobic and anaerobic mechanisms for the synthesis of unsaturated fatty acid are operating in this bacterium.
Collapse
Affiliation(s)
- M Wada
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
23
|
Dasgupta A, Ayanoglu E, Djerassi C. Phospholipid studies of marine organisms: new branched fatty acids from Strongylophora durissima. Lipids 1984; 19:768-76. [PMID: 6503622 DOI: 10.1007/bf02534470] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The phospholipids of the sponge Strongylophora durissima were analyzed. The major phospholipids present were phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylglycerol (PG) and phosphatidylinositol (PI). The major fatty acid components of the phospholipids consisted of short chain (C14-C19) and very long chain (C25 -C30) "Demospongic" acids. Three novel branched delta 5 monounsaturated acids, Z-19-methyl-5-pentacosenoic, Z-19-methyl-5-hexacosenoic and Z-19-methyl-5-heptacosenoic acids were encountered in the sponge. The 3-saturated counterparts of these compounds, 19-methylpentacosanoic, 19-methylhexacosanoic and 19-methylheptacosanoic acids, as well as 19-methyltetracosanoic and 20-methyloctacosanoic acids also are hitherto undescribed acids present in the sponge. Trace amounts of 2 very long chain acids also were detected and their structures tentatively assigned as 19,21-dimethylheptacosanoic and 20,22-dimethyloctacosanoic acids. The distribution of these fatty acids according to phospholipid head groups also was described.
Collapse
|
24
|
Phospholipid studies of marine organisms: V1 new α-methoxy acids fromHigginsia tethyoides. Lipids 1983; 18:830-6. [DOI: 10.1007/bf02534643] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/1983] [Indexed: 10/23/2022]
|
25
|
Ayanoglu E, Kornprobst J, Aboud-Bichara A, Djerassi C. Phospholipid studies of marine organisms 4. (2,21)-2-methoxy-21-octacosenoic acid, the first naturally occurring α-methoxy acid from a phospholipid. Tetrahedron Lett 1983. [DOI: 10.1016/s0040-4039(00)86378-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Phospholipid studies of marine organisms: III. New phospholipid fatty acids fromPetrosia ficiformis. Lipids 1982. [DOI: 10.1007/bf02535368] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
|
28
|
Identification of arachidonic acid in gulf of Mexico shrimp and degree of biosynthesis inPenaeus setiferus. Lipids 1981. [DOI: 10.1007/bf02534990] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
|
30
|
Harwood JL, James AT. Metabolism of trans-3-hexadecenoic acid in broad bean. EUROPEAN JOURNAL OF BIOCHEMISTRY 1975; 50:325-34. [PMID: 1126340 DOI: 10.1111/j.1432-1033.1975.tb09807.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1. Broad bean (Vicia faba) leaves contain rather high concentrations (about 4% of total fatty acids) of the trans-3-hexadecenoic acid. 2. Amounts of the acid increase with the age of the leaves and are absent from etiolated tissue. 3. Changes in the levels of trans-delta-4-hexadecenoic acid can be produced by subjecting the intact plants to various light/dark periods. 4. Chloroplasts isolated from broad-bean leaves show high rates of fatty acid synthesis from [1-14C]acetate. Synthesis is dependent on coenzyme A and ATP but is insensitive to the addition of exogenous acyl carrier protein. 5. The pattern of acids made includes about 20% palmitic, 5% hexadeconoic, 10% stearic and 60% oleic. trans-3-Hexadecenoic acid synthesis was most active in chloroplasts from plants exposed to the dark for 5 days and light for 3 days. 6. Arsenite addition inhibited stearate formation by isolated chloroplasts but resulted in a two-fold stimulation of overall synthesis. 7. The rate of fatty acid synthesis by isolated chloroplasts paralleled the changes in endogenous trans-3-hexadecenoic acid levels in the leaves from which they were isolated.
Collapse
|
31
|
Naccarato WF, Gilbertson JR, Gelman RA. Effects of different culture media and oxygen upon lipids of Escherichia coli K-12. Lipids 1974; 9:322-7. [PMID: 4597781 DOI: 10.1007/bf02533108] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Walker JD, Cooney JJ. Aliphatic hydrocarbons of Cladosporium resinae cultured on glucose, glutamic acid, and hydrocarbons. Appl Microbiol 1973; 26:705-8. [PMID: 4762391 PMCID: PMC379888 DOI: 10.1128/am.26.5.705-708.1973] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The carbon source markedly influenced the qualitative and quantitative composition of cellular hydrocarbons in Cladosporium resinae. Total lipid and hydrocarbon content was greater in cells grown on n-alkanes than in cells grown on glucose or glutamic acid. Glucose-grown cells contained a spectrum of aliphatic hydrocarbons from C(7) to C(36); pristane and n-hexadecane comprised 98% of the total. Cells grown on glutamic acid contained C(7) to C(23) hydrocarbons; n-tridecane, n-tetradecane, n-hexadecane, and pristane made up 74% of the total. n-Decane-grown cells yielded C(8) to C(32) compounds, and n-hexadecane (96%) was the major hydrocarbon. Cells grown on individual n-alkanes from C(11) to C(15) all contained C(11) to C(28) hydrocarbons, and cells grown on n-hexadecane contained C(11) to C(32) hydrocarbons. In n-undecane-grown cells, n-hexadecane and pristane made up 92% of the total, but in cells grown on C(12) to C(16)n-alkanes the major cellular hydrocarbon was the one on which the cells were grown. This suggests that cells cultured on n-alkanes of C(12) or longer accumulate n-alkanes prior to oxidizing them.
Collapse
|
33
|
Kolattukudy PE, Buckner JS, Liu TY. Biosynthesis of secondary alcohols and ketones from alkanes. Arch Biochem Biophys 1973; 156:613-20. [PMID: 4718785 DOI: 10.1016/0003-9861(73)90312-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
Albro PW, Thomas R, Fishbein L. Metabolism of diethylhexyl phthalate by rats. Isolation and characterization of the urinary metabolites. J Chromatogr A 1973; 76:321-30. [PMID: 4689606 DOI: 10.1016/s0021-9673(01)96915-8] [Citation(s) in RCA: 221] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Kolattukudy PE, Walton TJ. The biochemistry of plant cuticular lipids. PROGRESS IN THE CHEMISTRY OF FATS AND OTHER LIPIDS 1973; 13:119-75. [PMID: 4602868 DOI: 10.1016/0079-6832(73)90006-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Morrison SJ, Tornabene TG, Kloos WE. Neutral lipids in the study of relationships of members of the family micrococcaceae. J Bacteriol 1971; 108:353-8. [PMID: 5122809 PMCID: PMC247073 DOI: 10.1128/jb.108.1.353-358.1971] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The organisms studied were those of the family Micrococcaceae which cannot participate in genetic exchange with Micrococcus luteus and those whose biochemical and physiological characteristics appear to bridge the genera Staphylococcus and Micrococcus. The hydrocarbon compositions of M. luteus ATCC 4698 and Micrococcus sp. ATCC 398 were shown to be similar to those previously reported for many M. luteus strains, consisting of isomers of branched monoolefins in the range C25 to C31. However, Micrococcus sp. ATCC 398 differed somewhat by having almost all C29 isomers (approximately 88% of the hydrocarbon composition). Micrococcus spp. ATCC 401 and ATCC 146 and M. roseus strains ATCC 412, ATCC 416, and ATCC 516 contained the same type of hydrocarbon patterns, but the predominant hydrocarbons were within a lower distribution range (C23 to C27), similar to Micrococcus sp. ATCC 533 previously reported. The chromatographic profile and carbon range of the hydrocarbons of an atypical strain designated M. candicans ATCC 8456 differed significantly from the hydrocarbon pattern presented above. The hydrocarbons were identified as branched and normal olefins in the range C16 to C22. Studies of several different strains of staphylococci revealed that these organisms do not contain readily detectable amounts of aliphatic hydrocarbons. The members of the family Micrococcaceae have been divided into two major groups based on the presence or absence of hydrocarbons. With the exception of M. candicans ATCC 8456, this division corresponded to the separation of these organisms according to their deoxyribonucleic acid compositions.
Collapse
|
37
|
Abstract
Although there is agreement on the fact that Sarcina lutea strain FD-533 has branched C-29 monoalkenes as major hydrocarbon components, there is disagreement in the literature as to the nature of the branching. This has been resolved by analyses of the fatty acids produced by permanganate-periodate treatment of each of the resolvable hydrocarbon fractions making up the C-29 complex. The three major components are identified as doubly branched, Delta(13) species with two iso terminations, one iso and one anteiso termination, and two anteiso terminations.
Collapse
|
38
|
Markey SP, Tornabene TG. Characterization of branched monounsaturated hydrocarbons of Sarcina lutea and Sarcina flava. Lipids 1971; 6:190-5. [PMID: 5574910 DOI: 10.1007/bf02533037] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
|
40
|
Albro PW, Fishbein L. Absorption of aliphatic hydrocarbons by rats. BIOCHIMICA ET BIOPHYSICA ACTA 1970; 219:437-46. [PMID: 5497201 DOI: 10.1016/0005-2736(70)90221-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Tornabene TG, Morrison SJ, Kloos WE. Aliphatic hydrocarbon contents of various members of the family Micrococcaceae. Lipids 1970; 5:929-37. [PMID: 5494944 DOI: 10.1007/bf02531125] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Albro PW, Fishbein L. Short-term effects of piperonyl butoxide on the deposition of dietary hydrocarbon in rat tissues. LIFE SCIENCES. PT. 2: BIOCHEMISTRY, GENERAL AND MOLECULAR BIOLOGY 1970; 9:729-39. [PMID: 5478086 DOI: 10.1016/0024-3205(70)90289-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
|
44
|
Albro PW, Dittmer JC. The biochemistry of long-chain, nonisoprenoid hydrocarbons. 3. The metabolic relationship of long-chain fatty acids and hydrocarbons and other aspects of hydrocarbon metabolism in Sarcina lutea. Biochemistry 1969; 8:1913-8. [PMID: 5785213 DOI: 10.1021/bi00833a022] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|