1
|
Naz H, Rahim F, Hussain R, Khan S, Rehman W, Khan Y, Aziz T, Alharbi M. In silico molecular modeling and in vitro biological screening of novel benzimidazole-based piperazine derivatives as potential acetylcholinesterase and butyrylcholinesterase inhibitors. Z NATURFORSCH C 2025; 80:85-94. [PMID: 39007228 DOI: 10.1515/znc-2024-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
New series of benzimidazole incorporating piperazine moieties in single molecular framework has been reported. The structures of the synthesized derivatives were assigned by 1H-NMR, 13C-NMR, and HR-MS techniques. The hybrid derivatives were evaluated for their acetylcholinesterase and butyrylcholinesterase inhibition effect. All the synthesized analogs showed good to moderate inhibitory effect ranging from IC50 value 0.20 ± 0.01 µM to 0.50 ± 0.10 µM for acetylcholinesterase and from IC50 value 0.25 ± 0.01 µM to 0.70 ± 0.10 µM for butyrylcholinesterase except one that showed least potency with IC50 value 1.05 ± 0.1 µM and 1.20 ± 0.1 µM. The differences in inhibitory potential of synthesized compounds were due to the nature and position of substitution attached to the main ring. Additionally, molecular docking study was carried out for most active in order to explore the binding interactions established by ligand (active compounds) with the active residues of targeted AChE & BuChE enzyme.
Collapse
Affiliation(s)
- Haseena Naz
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Yousaf Khan
- Department of Chemistry, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, Arta 47132, Greece
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Almutary AG, Begum MY, Kyada AK, Gupta S, Jyothi SR, Chaudhary K, Sharma S, Sinha A, Abomughaid MM, Imran M, Lakhanpal S, Babalghith AO, Abu-Seer EA, Avinash D, Alzahrani HA, Alhindi AA, Iqbal D, Kumar S, Jha NK, Alghamdi S. Inflammatory signaling pathways in Alzheimer's disease: Mechanistic insights and possible therapeutic interventions. Ageing Res Rev 2025; 104:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The complex pathophysiology of Alzheimer's disease (AD) poses challenges for the development of therapies. Recently, neuroinflammation has been identified as a key pathogenic mechanism underlying AD, while inflammation has emerged as a possible target for the management and prevention of AD. Several prior studies have demonstrated that medications modulating neuroinflammation might lessen AD symptoms, mostly by controlling neuroinflammatory signaling pathways such as the NF-κB, MAPK, NLRP3, etc, and their respective signaling cascade. Moreover, targeting these inflammatory modalities with inhibitors, natural products, and metabolites has been the subject of intensive research because of their anti-inflammatory characteristics, with many studies demonstrating noteworthy pharmacological capabilities and potential clinical applications. Therefore, targeting inflammation is considered a promising strategy for treating AD. This review comprehensively elucidates the neuroinflammatory mechanisms underlying AD progression and the beneficial effects of inhibitors, natural products, and metabolites in AD treatment.
Collapse
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Swati Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Adnan Abu-Seer
- Department of Epidemiology and Medical Statistic, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Hassan A Alzahrani
- Department of Respiratory Care, Medical Cities at the Minister of Interior, MCMOl, Riyadh, Saudi Arabia
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India; DST-FIST Laboratory, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology (SBT), Galgotias University, Greater Noida, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Pathak K, Ahmad MZ, Saikia R, Pathak MP, Sahariah JJ, Kalita P, Das A, Islam MA, Pramanik P, Tayeng D, Abdel-Wahab BA. Nanomedicine: A New Frontier in Alzheimer's Disease Drug Targeting. Cent Nerv Syst Agents Med Chem 2025; 25:3-19. [PMID: 38551038 DOI: 10.2174/0118715249281331240325042642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 01/31/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting elderly individuals, characterized by progressive cognitive decline leading to dementia. This review examines the challenges posed by anatomical and biochemical barriers such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and p-glycoproteins in delivering effective therapeutic agents to the central nervous system (CNS) for AD treatment. This article outlines the fundamental role of acetylcholinesterase inhibitors (AChEIs) and NMDA(N-Methyl-D-Aspartate) receptor antagonists in conventional AD therapy and highlights their limitations in terms of brain-specific delivery. It delves into the intricacies of BBB and pglycoprotein- mediated efflux mechanisms that impede drug transport to the CNS. The review further discusses cutting-edge nanomedicine-based strategies, detailing their composition and mechanisms that enable effective bypassing of BBB and enhancing drug accumulation in brain tissues. Conventional therapies, namely AChEIs and NMDA receptor antagonists, have shown limited efficacy and are hindered by suboptimal brain penetration. The advent of nanotechnology-driven therapeutic delivery systems offers promising strategies to enhance CNS targeting and bioavailability, thereby addressing the shortcomings of conventional treatments. Various nanomedicines, encompassing polymeric and metallic nanoparticles (MNPs), solid lipid nanoparticles (SLNs), liposomes, micelles, dendrimers, nanoemulsions, and carbon nanotubes, have been investigated for their potential in delivering anti-AD agents like AChEIs, polyphenols, curcumin, and resveratrol. These nanocarriers exhibit the ability to traverse the BBB and deliver therapeutic payloads to the brain, thereby holding immense potential for effective AD treatment and early diagnostic approaches. Notably, nanocarriers loaded with AChEIs have shown promising results in preclinical studies, exhibiting improved therapeutic efficacy and sustained release profiles. This review underscores the urgency of innovative drug delivery approaches to overcome barriers in AD therapy. Nanomedicine-based solutions offer a promising avenue for achieving effective CNS targeting, enabling enhanced bioavailability and sustained therapeutic effects. As ongoing research continues to elucidate the complexities of CNS drug delivery, these advancements hold great potential for revolutionizing AD treatment and diagnosis.
Collapse
Affiliation(s)
- Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Kingdom Saudi Arabia
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Sciences, Assam Down Town University, Panikhaiti, Guwahati, 781026, Assam, India
| | - Jon Jyoti Sahariah
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Parimita Kalita
- School of Pharmacy, The Assam Kaziranga University, Jorhat, 785006, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Md Ariful Islam
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Pallab Pramanik
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Dubom Tayeng
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, 71111, Egypt
| |
Collapse
|
4
|
Alcorn KN, Oberhauser IA, Politeski MD, Eckroat TJ. Evaluation of N-alkyl isatins and indoles as acetylcholinesterase and butyrylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2024; 39:2286935. [PMID: 38059272 PMCID: PMC11721616 DOI: 10.1080/14756366.2023.2286935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
Two series of N-alkyl isatins and N-alkyl indoles varying in size of the alkyl group were synthesised and evaluated for inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Among the N-alkyl isatins 4a-j, the addition of the N-alkyl group improved inhibition potency towards AChE and BChE compared to isatin. Selectivity towards inhibition of BChE was observed, and the increase in size of the N-alkyl group positively correlated to improved inhibition potency. The most potent inhibitor for BChE was 4i (IC50 = 3.77 µM, 22-fold selectivity for BChE over AChE). N-alkyl indoles 5a-j showed similar inhibition of AChE, the most potent being 5g (IC50 = 35.0 µM), but 5a-j lost activity towards BChE. This suggests an important role of the 3-oxo group on isatin for BChE inhibition, and molecular docking of 4i with human BChE indicates a key hydrogen bond between this group and Ser198 and His438 of the BChE catalytic triad.
Collapse
Affiliation(s)
- Kaitlyn N. Alcorn
- School of Science, Penn State Erie, The Behrend College, Erie, PA, USA
| | | | | | - Todd J. Eckroat
- School of Science, Penn State Erie, The Behrend College, Erie, PA, USA
| |
Collapse
|
5
|
Sharma P, Sharma S, Yadav Y, Shukla P, Sagar R. Current pharmacophore based approaches for the development of new anti-Alzheimer's agents. Bioorg Med Chem 2024; 113:117926. [PMID: 39306973 DOI: 10.1016/j.bmc.2024.117926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024]
Abstract
Amyloid beta peptide (Aβ) and hyperphosphorylated neuronal tau proteins accumulate in neurofibrillary tangles in Alzheimer's disease (AD), a chronic neurodegenerative illness. Chronic inflammation in the brain, which promotes disease progression, is another feature of the Alzheimer's disease pathogenesis. Approximately 60-70 % of dementia cases are caused by AD. The development of effective therapies for the treatment of AD is urgently needed given the severity of the condition and its rapidly rising prevalence. Cholinesterase inhibitors, beta-amyloid (A-beta), tau inhibitors, and many other medications are currently used as preventive medicine for AD. These medications can temporarily suppress dementia symptoms but cannot halt or reverse the disease's progression. Many international pharmaceutical companies have tried numerous times to develop an amyloid clearing medication based on the amyloid hypothesis, but without success. Therefore, the amyloid theory may not be entirely plausible. This review mainly covers the recent and important reported pharmacophores as the starting point to discuss already known targets like tau, butyrylcholinesterase, amyloid beta, and acetylcholinesterase and covers the literature between years 2019-2024.
Collapse
Affiliation(s)
- Prachi Sharma
- Department of Chemistry, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Paritosh Shukla
- Department of Chemistry, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India.
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Nasr EE, Tawfik SS, Massoud MAM, Mostafa AS. Unveiling new thiazole-clubbed piperazine derivatives as multitarget anti-AD: Design, synthesis, and in silico studies. Arch Pharm (Weinheim) 2024; 357:e2400044. [PMID: 38754070 DOI: 10.1002/ardp.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
New thiazole-clubbed piperazine derivatives were designed, synthesized, evaluated for their inhibitory capabilities against human acetylcholinesterase and butyrylcholinesterase (hAChE and/or hBuChE) and β-amyloid (Aβ) aggregation, and investigated for their metal chelating potential as multitarget agents for the treatment of Alzheimer's disease. Compounds 10, 19-21, and 24 showed the highest hAChE inhibitory activity at submicromolar concentrations, of which compound 10 was the most potent with a half-maximal inhibitory concentration (IC50) value of 0.151 μM. Compounds 10 and 20 showed the best hBuChE inhibitory activities (IC50 values of 0.135 and 0.103 μM, respectively), in addition to remarkable Aβ1-42 aggregation inhibitory activities and metal chelating capabilities. Both compounds were further evaluated against human neuroblastoma SH-SY5Y and PC12 neuronal cells, where they proved noncytotoxic at their active concentrations against hAChE or hBuChE. They also offered a significant neuroprotective effect against Aβ25-35-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Compound 10 displayed acceptable physicochemical properties and could pass the blood-brain barrier. The molecular docking study revealed the good binding interactions of compound 10 with the key amino acids of both the catalytic active site and the peripheral anionic site of hAChE, explaining its significant potency.
Collapse
Affiliation(s)
- Eman E Nasr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Samar S Tawfik
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohammed A M Massoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amany S Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Pastene-Burgos S, Muñoz-Nuñez E, Quiroz-Carreño S, Pastene-Navarrete E, Espinoza Catalan L, Bustamante L, Alarcón-Enos J. Ceanothanes Derivatives as Peripheric Anionic Site and Catalytic Active Site Inhibitors of Acetylcholinesterase: Insights for Future Drug Design. Int J Mol Sci 2024; 25:7303. [PMID: 39000410 PMCID: PMC11242892 DOI: 10.3390/ijms25137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial and fatal neurodegenerative disorder. Acetylcholinesterase (AChE) plays a key role in the regulation of the cholinergic system and particularly in the formation of amyloid plaques; therefore, the inhibition of AChE has become one of the most promising strategies for the treatment of AD, particularly concerning AChE inhibitors that interact with the peripheral anionic site (PAS). Ceanothic acid isolated from the Chilean Rhamnaceae plants is an inhibitor of AChE through its interaction with PAS. In this study, six ceanothic acid derivatives were prepared, and all showed inhibitory activity against AChE. The structural modifications were performed starting from ceanothic acid by application of simple synthetic routes: esterification, reduction, and oxidation. AChE activity was determined by the Ellmann method for all compounds. Kinetic studies indicated that its inhibition was competitive and reversible. According to the molecular coupling and displacement studies of the propidium iodide test, the inhibitory effect of compounds would be produced by interaction with the PAS of AChE. In silico predictions of physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of the ceanothane derivatives were performed using the Swiss ADME tool.
Collapse
Affiliation(s)
- Sofía Pastene-Burgos
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Evelyn Muñoz-Nuñez
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Soledad Quiroz-Carreño
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Edgar Pastene-Navarrete
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Luis Espinoza Catalan
- Departamento de Química, Universidad Federico Santa María, Valparaíso 2340000, Chile;
| | - Luis Bustamante
- Departamento Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4030000, Chile;
| | - Julio Alarcón-Enos
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| |
Collapse
|
8
|
Coaviche-Yoval A, Tovar-Miranda R, Rodríguez JE, Lagos-Cruz JA, Luna H, Andrade-Jorge E, Trujillo-Ferrara JG. Benzofurans as Acetylcholinesterase Inhibitors for Treating Alzheimer's Disease: Synthesis, in vitro Testing, and in silico Analysis. ChemMedChem 2024; 19:e202300615. [PMID: 38554286 DOI: 10.1002/cmdc.202300615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the leading cause of dementia worldwide. It is characterized by a progressive decline in cholinergic neurotransmission. During the development of AD, acetylcholinesterase (AChE) binds to β-amyloid peptides to form amyloid fibrils, which aggregate into plaque deposits. Meanwhile, tau proteins are hyperphosphorylated, forming neurofibrillary tangles (NFTs) that aggregate into inclusions. These complexes are cytotoxic for the brain, causing impairment of memory, attention, and cognition. AChE inhibitors are the main treatment for AD, but their effect is only palliative. This study aimed to design and synthesize novel benzofuran derivatives and evaluate their inhibition of AChE in vitro and in silico. Results: The seven synthesized benzofuran derivatives inhibited AChE in vitro. Benzofurans hydroxy ester 4, amino ester 5, and amido ester (±)-7 had the lowest inhibition constant (Ki) values and displayed good affinity for EeAChE in molecular docking. Six derivatives showed competitive inhibition, while the best compound (5: Ki=36.53 μM) exhibited uncompetitive inhibition. The amino, hydroxyl, amide, and ester groups of the ligands favored interaction with the enzyme by hydrogen bonds. Conclusion: Three benzofurans were promising AChE inhibitors with excellent Ki values. In future research on their their application to AD, 5 will be considered as the base structure.
Collapse
Affiliation(s)
- Arturo Coaviche-Yoval
- Laboratorio de Investigación en Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Casco de Santo Tomás, 11340, Mexico City, México
- Facultad de Química Farmacéutica Biológica, Universidad Veracruza, Circuito Gonzalo Aguirre Beltrán Esq. Calle de la Pérgola Zona Universitaria, 91090, Xalapa, Veracruz, México
| | - Ricardo Tovar-Miranda
- Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n Col. Industrial Ánimas, 91190, Xalapa, Veracruz, México
| | - Jessica E Rodríguez
- Bioquímica Clínica, Carrera de Químico Farmacéutico Biólogo, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Av. Guelatao con Av. Exploradores, Ejército de Oriente, Iztapalapa, 09230, Mexico City, México
| | - Jesus A Lagos-Cruz
- Laboratorio de Investigación en Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Casco de Santo Tomás, 11340, Mexico City, México
| | - Héctor Luna
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Unidad Xochimilco, Calzada del Hueso1100, Col. Villa Quietud, Coyoacan, 04960, Mexico City, México
| | - Erik Andrade-Jorge
- Laboratorio de Investigación en Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Casco de Santo Tomás, 11340, Mexico City, México
| | - José G Trujillo-Ferrara
- Laboratorio de Investigación en Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Casco de Santo Tomás, 11340, Mexico City, México
| |
Collapse
|
9
|
Tripathi PN, Lodhi A, Rai SN, Nandi NK, Dumoga S, Yadav P, Tiwari AK, Singh SK, El-Shorbagi ANA, Chaudhary S. Review of Pharmacotherapeutic Targets in Alzheimer's Disease and Its Management Using Traditional Medicinal Plants. Degener Neurol Neuromuscul Dis 2024; 14:47-74. [PMID: 38784601 PMCID: PMC11114142 DOI: 10.2147/dnnd.s452009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. While there is currently no cure for AD, several pharmacotherapeutic targets and management strategies have been explored. Additionally, traditional medicinal plants have gained attention for their potential role in AD management. Pharmacotherapeutic targets in AD include amyloid-beta (Aβ) aggregation, tau protein hyperphosphorylation, neuroinflammation, oxidative stress, and cholinergic dysfunction. Traditional medicinal plants, such as Ginkgo biloba, Huperzia serrata, Curcuma longa (turmeric), and Panax ginseng, have demonstrated the ability to modulate these targets through their bioactive compounds. Ginkgo biloba, for instance, contains flavonoids and terpenoids that exhibit neuroprotective effects by reducing Aβ deposition and enhancing cerebral blood flow. Huperzia serrata, a natural source of huperzine A, has acetylcholinesterase-inhibiting properties, thus improving cholinergic function. Curcuma longa, enriched with curcumin, exhibits anti-inflammatory and antioxidant effects, potentially mitigating neuroinflammation and oxidative stress. Panax ginseng's ginsenosides have shown neuroprotective and anti-amyloidogenic properties. The investigation of traditional medicinal plants as a complementary approach to AD management offers several advantages, including a lower risk of adverse effects and potential multi-target interactions. Furthermore, the cultural knowledge and utilization of these plants provide a rich source of information for the development of new therapies. However, further research is necessary to elucidate the precise mechanisms of action, standardize preparations, and assess the safety and efficacy of these natural remedies. Integrating traditional medicinal-plant-based therapies with modern pharmacotherapies may hold the key to a more comprehensive and effective approach to AD treatment. This review aims to explore the pharmacotherapeutic targets in AD and assess the potential of traditional medicinal plants in its management.
Collapse
Affiliation(s)
- Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Ankit Lodhi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Sachchida Nand Rai
- Center of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nilay Kumar Nandi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Shweta Dumoga
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Pooja Yadav
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Amit Kumar Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Santosh Kumar Singh
- Center of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Abdel-Nasser A El-Shorbagi
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Sachin Chaudhary
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
10
|
Vaaland Holmgard IC, González-Bakker A, Poeta E, Puerta A, Fernandes MX, Monti B, Fernández-Bolaños JG, Padrón JM, López Ó, Lindbäck E. Coumarin-azasugar-benzyl conjugates as non-neurotoxic dual inhibitors of butyrylcholinesterase and cancer cell growth. Org Biomol Chem 2024; 22:3425-3438. [PMID: 38590227 DOI: 10.1039/d4ob00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We have applied the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to prepare a library of ten coumarin-azasugar-benzyl conjugates and two phthalimide-azasugar-benzyl conjugates with potential anti-Alzheimer and anti-cancer properties. The compounds were evaluated as cholinesterase inhibitors, demonstrating a general preference, of up to 676-fold, for the inhibition of butyrylcholinesterase (BuChE) over acetylcholinesterase (AChE). Nine of the compounds behaved as stronger BuChE inhibitors than galantamine, one of the few drugs in clinical use against Alzheimer's disease. The most potent BuChE inhibitor (IC50 = 74 nM) was found to exhibit dual activities, as it also showed high activity (GI50 = 5.6 ± 1.1 μM) for inhibiting the growth of WiDr (colon cancer cells). In vitro studies on this dual-activity compound on Cerebellar Granule Neurons (CGNs) demonstrated that it displays no neurotoxicity.
Collapse
Affiliation(s)
- I Caroline Vaaland Holmgard
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway.
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, La Laguna, E-38206, Spain
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, La Laguna, E-38206, Spain
| | - Miguel X Fernandes
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, La Laguna, E-38206, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - Emil Lindbäck
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
11
|
Luque FJ, Muñoz-Torrero D. Acetylcholinesterase: A Versatile Template to Coin Potent Modulators of Multiple Therapeutic Targets. Acc Chem Res 2024. [PMID: 38333993 PMCID: PMC10882973 DOI: 10.1021/acs.accounts.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
ConspectusThe enzyme acetylcholinesterase (AChE) hydrolyzes the neurotransmitter acetylcholine (ACh) at cholinergic synapses of the peripheral and central nervous system. Thus, it is a prime therapeutic target for diseases that occur with a cholinergic deficit, prominently Alzheimer's disease (AD). Working at a rate near the diffusion limit, it is considered one of nature's most efficient enzymes. This is particularly meritorious considering that its catalytic site is buried at the bottom of a 20-Å-deep cavity, which is preceded by a bottleneck with a diameter shorter than that of the trimethylammonium group of ACh, which has to transit through it. Not only the particular architecture and amino acid composition of its active site gorge enable AChE to largely overcome this potential drawback, but it also offers plenty of possibilities for the design of novel inhibitor drug candidates.In this Account, we summarize our different approaches to colonize the vast territory of the AChE gorge in the pursuit of increased occupancy and hence of inhibitors with increased affinity. We pioneered the use of molecular hybridization to design inhibitors with extended binding at the CAS, reaching affinities among the highest reported so far. Further application of molecular hybridization to grow CAS extended binders by attaching a PAS-binding moiety through suitable linkers led to multisite inhibitors that span the whole length of the gorge, reaching the PAS and even interacting with midgorge residues. We show that multisite AChE inhibitors can also be successfully designed the other way around, by starting with an optimized PAS binder and then colonizing the gorge and CAS. Molecular hybridization from a multicomponent reaction-derived PAS binder afforded a single-digit picomolar multisite AChE inhibitor with more than 1.5 million-fold increased potency relative to the initial hit. This illustrates the powerful alliance between molecular hybridization and gorge occupancy for designing potent AChE inhibitors.Beyond AChE, we show that the stereoelectronic requirements imposed by the AChE gorge for multisite binding have a templating effect that leads to compounds that are active in other key biological targets in AD and other neurological and non-neurological diseases, such as BACE-1 and the aggregation of amyloidogenic proteins (β-amyloid, tau, α-synuclein, prion protein, transthyretin, and human islet amyloid polypeptide). The use of known pharmacophores for other targets as the PAS-binding motif enables the rational design of multitarget agents with multisite binding within AChE and activity against a variety of targets or pathological events, such as oxidative stress and the neuroinflammation-modulating enzyme soluble epoxide hydrolase, among others.We hope that our results can contribute to the development of drug candidates that can modify the course of neurodegeneration and may inspire future works that exploit the power of molecular hybridization in other proteins featuring large cavities.
Collapse
Affiliation(s)
- F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, E-08921 Santa Coloma de Gramenet, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
- Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona, E-08028 Barcelona, Spain
| | - Diego Muñoz-Torrero
- Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
12
|
Khudina OG, Grishchenko MV, Makhaeva GF, Kovaleva NV, Boltneva NP, Rudakova EV, Lushchekina SV, Shchegolkov EV, Borisevich SS, Burgart YV, Saloutin VI, Charushin VN. Conjugates of amiridine and thiouracil derivatives as effective inhibitors of butyrylcholinesterase with the potential to block β-amyloid aggregation. Arch Pharm (Weinheim) 2024; 357:e2300447. [PMID: 38072670 DOI: 10.1002/ardp.202300447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 02/04/2024]
Abstract
New amiridine-thiouracil conjugates with different substituents in the pyrimidine fragment (R = CH3 , CF2 Н, CF3 , (CF2 )2 H) and different spacer lengths (n = 1-3) were synthesized. The conjugates rather weakly inhibit acetylcholinesterase (AChE) and exhibit high inhibitory activity (IC50 up to 0.752 ± 0.021 µM) and selectivity to butyrylcholinesterase (BChE), which increases with spacer elongation; the lead compounds are 11c, 12c, and 13c. The conjugates are mixed-type reversible inhibitors of both cholinesterases and practically do not inhibit the structurally related off-target enzyme carboxylesterase. The results of molecular docking to AChE and BChE are consistent with the experiment on enzyme inhibition and explain the structure-activity relationships, including the rather low anti-AChE activity and the high anti-BChE activity of long-chain conjugates. The lead compounds displace propidium from the AChE peripheral anion site (PAS) at the level of the reference compound donepezil, which agrees with the mixed-type mechanism of AChE inhibition and the main mode of binding of conjugates in the active site of AChE due to the interaction of the pyrimidine moiety with the PAS. This indicates the ability of the studied conjugates to block AChE-induced aggregation of β-amyloid, thereby exerting a disease-modifying effect. According to computer calculations, all synthesized conjugates have an ADME profile acceptable for drugs.
Collapse
Affiliation(s)
- Olga G Khudina
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Maria V Grishchenko
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Galina F Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (IPAC RAS), Russian Academy of Sciences, Chernogolovka, Russia
| | - Nadezhda V Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (IPAC RAS), Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia P Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (IPAC RAS), Russian Academy of Sciences, Chernogolovka, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (IPAC RAS), Russian Academy of Sciences, Chernogolovka, Russia
| | - Sofya V Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (IPAC RAS), Russian Academy of Sciences, Chernogolovka, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny V Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Sophia S Borisevich
- Institute of Cyber Intelligence Systems, National Research Nuclear University MEPhI, Moscow, Russia
| | - Yanina V Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Valery N Charushin
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| |
Collapse
|
13
|
Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Timokhina EN, Serkov IV, Proshin AN, Soldatova YV, Poletaeva DA, Faingold II, Mumyatova VA, Terentiev AA, Radchenko EV, Palyulin VA, Bachurin SO, Richardson RJ. Combining Experimental and Computational Methods to Produce Conjugates of Anticholinesterase and Antioxidant Pharmacophores with Linker Chemistries Affecting Biological Activities Related to Treatment of Alzheimer's Disease. Molecules 2024; 29:321. [PMID: 38257233 PMCID: PMC10820264 DOI: 10.3390/molecules29020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Effective therapeutics for Alzheimer's disease (AD) are in great demand worldwide. In our previous work, we responded to this need by synthesizing novel drug candidates consisting of 4-amino-2,3-polymethylenequinolines conjugated with butylated hydroxytoluene via fixed-length alkylimine or alkylamine linkers (spacers) and studying their bioactivities pertaining to AD treatment. Here, we report significant extensions of these studies, including the use of variable-length spacers and more detailed biological characterizations. Conjugates were potent inhibitors of acetylcholinesterase (AChE, the most active was 17d IC50 15.1 ± 0.2 nM) and butyrylcholinesterase (BChE, the most active was 18d: IC50 5.96 ± 0.58 nM), with weak inhibition of off-target carboxylesterase. Conjugates with alkylamine spacers were more effective cholinesterase inhibitors than alkylimine analogs. Optimal inhibition for AChE was exhibited by cyclohexaquinoline and for BChE by cycloheptaquinoline. Increasing spacer length elevated the potency against both cholinesterases. Structure-activity relationships agreed with docking results. Mixed-type reversible AChE inhibition, dual docking to catalytic and peripheral anionic sites, and propidium iodide displacement suggested the potential of hybrids to block AChE-induced β-amyloid (Aβ) aggregation. Hybrids also exhibited the inhibition of Aβ self-aggregation in the thioflavin test; those with a hexaquinoline ring and C8 spacer were the most active. Conjugates demonstrated high antioxidant activity in ABTS and FRAP assays as well as the inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Quantum-chemical calculations explained antioxidant results. Computed ADMET profiles indicated favorable blood-brain barrier permeability, suggesting the CNS activity potential. Thus, the conjugates could be considered promising multifunctional agents for the potential treatment of AD.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Y. Astakhova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Elena N. Timokhina
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Yuliya V. Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Darya A. Poletaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Irina I. Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Viktoriya A. Mumyatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Alexey A. Terentiev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Madar P, Nagalapur P, Chaudhari S, Sharma D, Koparde A, Buchade R, Kshirsagar S, Uttekar P, Jadhav S, Chaudhari P. The Unveiling of Therapeutic Targets for Alzheimer's Disease: An Integrative Review. Curr Top Med Chem 2024; 24:850-868. [PMID: 38424435 DOI: 10.2174/0115680266282492240220101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease (AD) is characterized by a complex pathological landscape, necessitating a comprehensive treatment approach. This concise review paper delves into the idea of addressing multiple mechanisms in AD, summarizing the latest research findings on pathogenesis, risk factors, diagnostics, and therapeutic strategies. The etiology of AD is multifaceted, involving genetic, environmental, and lifestyle factors. The primary feature is the accumulation of amyloid-- beta and tau proteins, leading to neuroinflammation, synaptic dysfunction, oxidative stress, and neuronal loss. Conventional single-target therapies have shown limited effectiveness, prompting a shift toward simultaneously addressing multiple disease-related processes. Recent advancements in AD research underscore the potential of multifaceted therapies. This review explores strategies targeting both tau aggregation and amyloid-beta, along with interventions to alleviate neuroinflammation, enhance synaptic function, and reduce oxidative stress. In conclusion, the review emphasizes the growing importance of addressing various pathways in AD treatment. A holistic approach that targets different aspects of the disease holds promise for developing effective treatments and improving the quality of life for Alzheimer's patients and their caregivers.
Collapse
Affiliation(s)
- Pratiksha Madar
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Pooja Nagalapur
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Somdatta Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Devesh Sharma
- Department of Biotechnology, National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Akshada Koparde
- Department of Pharmaceutical Chemistry, Krishna Foundation's Jaywant Institute of Pharmacy, Malkapur, Karad, India
| | - Rahul Buchade
- Department of Pharmaceutical Chemistry, Indira College of Pharmacy, Tathwade, Pune, India
| | - Sandip Kshirsagar
- Department of Pharmaceutical Chemistry, Dr. D Y Patil College of Pharmacy, Pune, India
| | - Pravin Uttekar
- Department of Pharmacuetics, Savitribai Phule Pune University, Pune, India
| | - Shailaja Jadhav
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Praveen Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
15
|
Murray AP, Biscussi B, Cavallaro V, Donozo M, Rodriguez SA. Naturally Occurring Cholinesterase Inhibitors from Plants, Fungi, Algae, and Animals: A Review of the Most Effective Inhibitors Reported in 2012-2022. Curr Neuropharmacol 2024; 22:1621-1649. [PMID: 37357520 PMCID: PMC11284722 DOI: 10.2174/1570159x21666230623105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 06/27/2023] Open
Abstract
Since the development of the "cholinergic hypothesis" as an important therapeutic approach in the treatment of Alzheimer's disease (AD), the scientific community has made a remarkable effort to discover new and effective molecules with the ability to inhibit the enzyme acetylcholinesterase (AChE). The natural function of this enzyme is to catalyze the hydrolysis of the neurotransmitter acetylcholine in the brain. Thus, its inhibition increases the levels of this neurochemical and improves the cholinergic functions in patients with AD alleviating the symptoms of this neurological disorder. In recent years, attention has also been focused on the role of another enzyme, butyrylcholinesterase (BChE), mainly in the advanced stages of AD, transforming this enzyme into another target of interest in the search for new anticholinesterase agents. Over the past decades, Nature has proven to be a rich source of bioactive compounds relevant to the discovery of new molecules with potential applications in AD therapy. Bioprospecting of new cholinesterase inhibitors among natural products has led to the discovery of an important number of new AChE and BChE inhibitors that became potential lead compounds for the development of anti-AD drugs. This review summarizes a total of 260 active compounds from 142 studies which correspond to the most relevant (IC50 ≤ 15 μM) research work published during 2012-2022 on plant-derived anticholinesterase compounds, as well as several potent inhibitors obtained from other sources like fungi, algae, and animals.
Collapse
Affiliation(s)
- Ana Paula Murray
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Brunella Biscussi
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Valeria Cavallaro
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Martina Donozo
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvana A. Rodriguez
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
16
|
Waly OM, El-Sayed SM, Ghaly MA, El-Subbagh HI. Multi-targeted anti-Alzheimer's agents: Synthesis, biological evaluation, and molecular modeling study of some pyrazolopyridine hybrids. Eur J Med Chem 2023; 262:115880. [PMID: 37871406 DOI: 10.1016/j.ejmech.2023.115880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
A new series of compounds bearing a pyrazolopyridine scaffold was synthesized as integrated anti-Alzheimer's disease (AD) multi-targeted ligands. Compounds 49 and 51 showed remarkable activity as hAChE inhibitors with IC50 values of 0.17 and 0.16 μM, respectively; and proved to be active hBuChE inhibitors with IC50 values 0.17 and 0.69 μM, eight and two-fold more active than the reference compound rivastigmine, respectively. Compounds 49 and 51 showed potent GSK3β inhibition with IC50 values of 0.21 and 0.26 μM, respectively compared to L807mts. Also, 49 and 51 showed 66.0 and 60.0% as tau protein aggregation inhibitors; and Aβ1-42 self-aggregation inhibitors with 79.0 and 75.0% respectively. Furthermore, 49 and 51 could bind virtually with the PAS affecting Aβ aggregation, thus preventing Aβ-dependent neurotoxicity. They proved to have the ability to chelate bio-metals such as Fe2+, Cu2+, and Zn2+ preventing their oxidative damage in the brain of AD patients, in addition to their safety upon WI-38 cell line. Both compounds could virtually penetrate BBB and obeyed Lipinski's rule of five. Compounds 49 and 51 could be considered as MTDLs for AD patients and the obtained model and pattern of substitution could be used for further development of new multi-targeted anti-Alzheimer's agents.
Collapse
Affiliation(s)
- Omnia M Waly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mariam A Ghaly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
17
|
Preet G, Haj Hasan A, Ramlagan P, Fawdar S, Boulle F, Jaspars M. Anti-Neurodegenerating Activity: Structure-Activity Relationship Analysis of Flavonoids. Molecules 2023; 28:7188. [PMID: 37894669 PMCID: PMC10609304 DOI: 10.3390/molecules28207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
An anti-neurodegeneration activity study was carried out for 80 flavonoid compounds. The structure-activity analysis of the structures was carried out by performing three different anti-neurodegeneration screening tests, showing that in these structures, the presence of a hydroxy substituent group at position C3' as well as C5' of ring B and a methoxy substituent group at the C7 position of ring A play a vital role in neuroprotective and antioxidant as well as anti-inflammatory activity. Further, we found structure (5) was the top-performing active structure out of 80 structures. Subsequently, a molecular docking study was carried out for the 3 lead flavonoid compounds (4), (5), and (23) and 21 similar hypothetical proposed structures to estimate the binding strength between the tested compounds and proteins potentially involved in disease causation. Ligand-based pharmacophores were generated to guide future drug design studies.
Collapse
Affiliation(s)
- Gagan Preet
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (G.P.); (A.H.H.)
| | - Ahlam Haj Hasan
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (G.P.); (A.H.H.)
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | | | - Shameem Fawdar
- Axonova Ltd., Grand Port 51405, Mauritius; (P.R.); (S.F.); (F.B.)
| | - Fabien Boulle
- Axonova Ltd., Grand Port 51405, Mauritius; (P.R.); (S.F.); (F.B.)
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (G.P.); (A.H.H.)
| |
Collapse
|
18
|
Li Z, Shi H. Study on the active ingredients of Shenghui decoction inhibiting acetylcholinesterase based on molecular docking and molecular dynamics simulation. Medicine (Baltimore) 2023; 102:e34909. [PMID: 37746985 PMCID: PMC10519482 DOI: 10.1097/md.0000000000034909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
We aim to investigate the mechanism and effective components of Shenghui decoction (SHD), which has been shown to inhibit acetylcholinesterase (AChE) through molecular docking (MD) and molecular dynamics simulation (MDS). The effective ingredients in SHD were collected through the TCMSP database and literature review. All components were docked with AChE using CDOCKER. Receptor ligand interaction analysis was performed for the optimal ligand. Two simulation models (model I and II) containing AChE and acetylcholine (ACh) were constructed, in which model II contained the best-docked ligand. Perform 90ns MDS on 2 models. After the simulation, the distance between ACh and AChE peripheral active sites were calculated in both models. The root mean square deviation (RMSD) curve of ligand and receptor, the radius of gyration (Rog) of the receptor, the distance between ligand center and binding site center, and the binding energy of ligand and receptor were calculated in model II. 98 ingredients of SHD were collected, and the best ligand was Tumulosic acid. The residues that form conventional hydrogen bonds between AChE and Tumulosic acid include Tyr132 and Glu201. MDS revealed that ACh could bind to AChE active site in model I. In model II, ACh cannot bind to the binding cavity because the ligand occupies the active site. The RMSD of AChE and Tumulosic acid tends to be stable, the Rog curve of AChE is relatively stable, and the distance between ligand and binding cavity does not fluctuate greatly, indicating that the structure of receptor and ligand is relatively stable. The binding energy of AChE and Tumulosic acid was -24.14 ± 2.46 kcal/mol. SHD contains many effective ingredients that may inhibit AChE activity. Tumulosic acid can occupy the binding site to prevent ACh from entering the chemical domain, thus exerting AChE inhibitory effect.
Collapse
Affiliation(s)
- Zefei Li
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Heyuan Shi
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
19
|
Elseweidy MM, Mahrous M, Ali SI, Shaheen MA, Younis NN. Vitamin D alleviates cognitive dysfunction and brain damage induced by copper sulfate intake in experimental rats: focus on its combination with donepezil. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1931-1942. [PMID: 36864348 PMCID: PMC10409850 DOI: 10.1007/s00210-023-02449-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
This study aimed to demonstrate the potential benefits of donepezil (DPZ) and vitamin D (Vit D) in combination to counteract the neurodegenerative disorders induced by CuSO4 intake in experimental rats. Neurodegeneration (Alzheimer-like) was induced in twenty-four male Wistar albino rats by CuSO4 supplement to drinking water (10 mg/L) for 14 weeks. AD rats were divided into four groups: untreated AD group (Cu-AD) and three treated AD groups; orally treated for 4 weeks with either DPZ (10 mg/kg/day), Vit D (500 IU/kg/day), or DPZ + Vit D starting from the 10th week of CuSO4 intake. Another six rats were used as normal control (NC) group. The hippocampal tissue content of β-amyloid precursor protein cleaving enzyme 1 (BACE1), phosphorylated Tau (p-tau), clusterin (CLU), tumor necrosis factor-α (TNF-α), caspase-9 (CAS-9), Bax, and Bcl-2 and the cortical content of acetylcholine (Ach), acetylcholinesterase (AChE), total antioxidant capacity (TAC), and malondialdehyde (MDA) were measured. Cognitive function tests (Y-maze) and histopathology studies (hematoxylin and eosin and Congo red stains) and immunohistochemistry for neurofilament. Vit D supplementation alleviated CuSO4-induced memory deficits including significant reduction hippocampal BACE1, p-tau, CLU, CAS-9, Bax, and TNF-α and cortical AChE and MDA. Vit D remarkably increased cortical Ach, TAC, and hippocampal Bcl-2. It also improved neurobehavioral and histological abnormalities. The effects attained by Vit D treatment were better than those attained by DPZ. Furthermore, Vit D boosted the therapeutic potential of DPZ in almost all AD associated behavioral and pathological changes. Vit D is suggested as a potential therapy to retard neurodegeneration.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed Mahrous
- Department of Biochemistry, Faculty of Pharmacy, Port-Said University, Port-Said, 42526, Egypt
| | - Sousou I Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Nahla N Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
20
|
Fares S, El Husseiny WM, Selim KB, Massoud MAM. Modified Tacrine Derivatives as Multitarget-Directed Ligands for the Treatment of Alzheimer's Disease: Synthesis, Biological Evaluation, and Molecular Modeling Study. ACS OMEGA 2023; 8:26012-26034. [PMID: 37521639 PMCID: PMC10373466 DOI: 10.1021/acsomega.3c02051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
To develop multitarget-directed ligands (MTDLs) as potential treatments for Alzheimer's disease (AD) and to shed light on the effect of the chromene group in designing these ligands, 35 new tacrine-chromene derivatives were designed, synthesized, and biologically evaluated. Compounds 5c and 5d exhibited the most desirable multiple functions for AD; they were strong hAChE inhibitors with IC50 values of 0.44 and 0.25 μM, respectively. Besides, their potent BuChE inhibitory activity was 10- and 5-fold more active than rivastigmine with IC50 = 0.08 and 0.14 μM, respectively. Moreover, they could bind to the peripheral anionic site (PAS), influencing Aβ aggregation and decreasing Aβ-related neurodegeneration, especially compound 5d, which was 8 times more effective than curcumin with IC50 = 0.74 μM and 76% inhibition at 10 μM. Compounds 5c and 5d showed strong BACE-1 inhibition at the submicromolar level with IC50 = 0.38 and 0.44 μM, respectively, which almost doubled the activity of curcumin. They also showed single-digit micromolar inhibitory activity against MAO-B with IC50 = 5.15 and 2.42 μM, respectively. They also had antioxidant activities and showed satisfactory metal-chelating properties toward Fe+2, Zn+2, and Cu+2, inhibiting oxidative stress in AD brains. Furthermore, compounds 5c and 5d showed acceptable relative safety upon normal cells SH-SY5Y and HepG2. It was shown that 5c and 5d were blood-brain barrier (BBB) penetrants by online prediction. Taken together, these multifunctional properties highlight that compounds 5c and 5d can serve as promising candidates for the further development of multifunctional drugs against AD.
Collapse
Affiliation(s)
- Salma Fares
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department
of Pharmaceutical Chemistry, Delta University
For science and Technology, Gamasa 11152, Egypt
| | - Walaa M. El Husseiny
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Khalid B. Selim
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed A. M. Massoud
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
21
|
Richmond V, Falcone BN, Maier MS, Arroyo Máñez P. Putting the Puzzle Together To Get the Whole Picture: Molecular Basis of the Affinity of Two Steroid Derivatives to Acetylcholinesterase. ACS OMEGA 2023; 8:25610-25622. [PMID: 37483177 PMCID: PMC10357547 DOI: 10.1021/acsomega.3c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that has no cure because its etiology is still unknown, and its main treatment is the administration of acetylcholinesterase (AChE) inhibitors. The study of the mechanism of action of this family of compounds is critical for the design of new more potent and specific inhibitors. In this work, we study the molecular basis of an uncompetitive inhibitor (compound 1, 2β, 3α-dihydroxy-5α-cholestan-6-one disulfate), which we have proved to be a peripheral anionic site (PAS)-binding AChE inhibitor. The pipeline designed in this work is key to the development of other PAS inhibitors that not only inhibit the esterase action of the enzyme but could also modulate the non-cholinergic functions of AChE linked to the process of amylogenesis. Our studies showed that 1 inhibits the enzyme not simply by blocking the main gate but by an allosteric mechanism. A detailed and careful analysis of the ligand binding position and the protein dynamics, particularly regarding their secondary gates and active site, was necessary to conclude this. The same analysis was executed with an inactive analogue (compound 2, 2β, 3α-dihydroxy-5α-cholestan-6-one). Our first computational results showed no differences in affinity to AChE between both steroids, making further analysis necessary. This work highlights the variables to be considered and develops a refined methodology, for the successful design of new potent dual-action drugs for AD, particularly PAS inhibitors, an attractive strategy to combat AD.
Collapse
Affiliation(s)
- Victoria Richmond
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad
de Microanálisis y Métodos Físicos aplicados
a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Pabellón 2 de Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Bruno N. Falcone
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad
de Microanálisis y Métodos Físicos aplicados
a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Pabellón 2 de Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Marta S. Maier
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad
de Microanálisis y Métodos Físicos aplicados
a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Pabellón 2 de Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Pau Arroyo Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, Valencia 46100, Spain
- Departamento
de Química Orgánica, Universitat
de València, Doctor Moliner 50, Burjassot, Valencia 46100, Spain
| |
Collapse
|
22
|
Asproni B, Catto M, Loriga G, Murineddu G, Corona P, Purgatorio R, Cichero E, Fossa P, Scarano N, Martínez AL, Brea J, Pinna GA. Novel thienocycloalkylpyridazinones as useful scaffolds for acetylcholinesterase inhibition and serotonin 5-HT6 receptor interaction. Bioorg Med Chem 2023; 84:117256. [PMID: 37003157 DOI: 10.1016/j.bmc.2023.117256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
A library of eighteen thienocycloalkylpyridazinones was synthesized for human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) inhibition and serotonin 5-HT6 receptor subtype interaction by following a multitarget-directed ligand approach (MTDL), as a suitable strategy for treatment of Alzheimer's disease (AD). The novel compounds featured a tricyclic scaffold, namely thieno[3,2-h]cinnolinone, thienocyclopentapyridazinone and thienocycloheptapyridazinone, connected through alkyl chains of variable length to proper amine moieties, most often represented by N-benzylpiperazine or 1-(phenylsulfonyl)-4-(piperazin-1-ylmethyl)-1H-indole as structural elements addressing AChE and 5-HT6 interaction, respectively. Our study highlighted the versatility of thienocycloalkylpyridazinones as useful architectures for AChE interaction, with several N-benzylpiperazine-based analogues emerging as potent and selective hAChE inhibitors with IC50 in the 0.17-1.23 μM range, exhibiting low to poor activity for hBChE (IC50 = 4.13-9.70 μM). The introduction of 5-HT6 structural moiety phenylsulfonylindole in place of N-benzylpiperazine, in tandem with a pentamethylene linker, gave potent 5-HT6 thieno[3,2-h]cinnolinone and thienocyclopentapyridazinone-based ligands both displaying hAChE inhibition in the low micromolar range and unappreciable activity towards hBChE. While docking studies provided a rational structural explanation for AChE/BChE enzyme and 5-HT6 receptor interaction, in silico prediction of ADME properties of tested compounds suggested further optimization for development of such compounds in the field of MTDL for AD.
Collapse
|
23
|
Caputo L, Amato G, De Martino L, De Feo V, Nazzaro F. Anti-Cholinesterase and Anti-α-Amylase Activities and Neuroprotective Effects of Carvacrol and p-Cymene and Their Effects on Hydrogen Peroxide Induced Stress in SH-SY5Y Cells. Int J Mol Sci 2023; 24:ijms24076073. [PMID: 37047044 PMCID: PMC10093841 DOI: 10.3390/ijms24076073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Several researchers have demonstrated the health and pharmacological properties of carvacrol and p-cymene, monoterpenes of aromatic plants. This study investigated these compounds' possible anti-cholinesterase, anti-α-amylase, and neuroprotective effects. We evaluated the anti-acetylcholinesterase and anti-α-amylase activities at different concentrations of the compounds. The maximum non-toxic dose of carvacrol and p-cymene against SH-SY5Y neuroblastoma cells was determined using an MTT assay. The neuroprotective effects of the compounds were evaluated on H2O2-induced stress in SH-SY5Y cells, studying the expression of caspase-3 using Western blotting assays. Carvacrol showed inhibitory activities against acetylcholinesterase (IC50 = 3.8 µg/mL) and butyrylcholinesterase (IC50 = 32.7 µg/mL). Instead, the anti-α-amylase activity of carvacrol resulted in an IC50 value of 171.2 μg/mL After a pre-treatment with the maximum non-toxic dose of carvacrol and p-cymene, the expression of caspase-3 was reduced compared to cells treated with H2O2 alone. Carvacrol and p-cymene showed in vitro anti-enzymatic properties, and may act as neuroprotective agents against oxidative stress. Further studies are necessary to elucidate their possible use as coadjutants in preventing and treating AD in diabetic patients.
Collapse
Affiliation(s)
- Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy
| | - Filomena Nazzaro
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy
| |
Collapse
|
24
|
A Purine Derivative Containing an Organoselenium Group Protects Against Memory Impairment, Sensitivity to Nociception, Oxidative Damage, and Neuroinflammation in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2023; 60:1214-1231. [PMID: 36427137 DOI: 10.1007/s12035-022-03110-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
In the present study, the effect of 6-((4-fluorophenyl) selanyl)-9H-purine (FSP) was tested against memory impairment and sensitivity to nociception induced by intracerebroventricular injection of amyloid-beta peptide (Aβ) (25-35 fragment), 3 nmol/3 μl/per site in mice. Memory impairment was determined by the object recognition task (ORT) and nociception by the Von-Frey test (VFT). Aβ caused neuroinflammation with upregulation of glial fibrillary acidic protein (GFAP) (in hippocampus), nuclear factor-κB (NF-κB), and the proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in cerebral cortex and hippocampus. Additionally, Aβ increased oxidant levels and lipid peroxidation in cerebral cortex and hippocampus, but decreased heme oxygenase-1 (HO-1) and peroxiredoxin-1 (Prdx1) expression in the hippocampus. Anti-neuroinflammatory effects of FSP were demonstrated by a decrease in the expression of GFAP and NF-κB in the hippocampus, as well as a decrease in proinflammatory cytokines in both the hippocampus and cerebral cortex FSP protected against oxidative stress by decreasing oxidant levels and lipid peroxidation and by increasing HO-1 and Prdx1 expressions in the hippocampus of mice. Moreover, FSP prevented the activation of nuclear factor erythroid 2-related factor 2 (Nrf-2) in the hippocampus of mice induced by Aβ. In conclusion, treatment with FSP attenuated memory impairment, nociception sensitivity by decreasing oxidative stress, and neuroinflammation in a mouse model of Alzheimer's disease.
Collapse
|
25
|
Conjugates of Tacrine and Salicylic Acid Derivatives as New Promising Multitarget Agents for Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24032285. [PMID: 36768608 PMCID: PMC9916969 DOI: 10.3390/ijms24032285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
A series of previously synthesized conjugates of tacrine and salicylamide was extended by varying the structure of the salicylamide fragment and using salicylic aldehyde to synthesize salicylimine derivatives. The hybrids exhibited broad-spectrum biological activity. All new conjugates were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The structure of the salicylamide moiety exerted little effect on anticholinesterase activity, but AChE inhibition increased with spacer elongation. The most active conjugates were salicylimine derivatives: IC50 values of the lead compound 10c were 0.0826 µM (AChE) and 0.0156 µM (BChE), with weak inhibition of the off-target carboxylesterase. The hybrids were mixed-type reversible inhibitors of both cholinesterases and displayed dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking, which, along with experimental results on propidium iodide displacement, suggested their potential to block AChE-induced β-amyloid aggregation. All conjugates inhibited Aβ42 self-aggregation in the thioflavin test, and inhibition increased with spacer elongation. Salicylimine 10c and salicylamide 5c with (CH2)8 spacers were the lead compounds for inhibiting Aβ42 self-aggregation, which was corroborated by molecular docking to Aβ42. ABTS•+-scavenging activity was highest for salicylamides 5a-c, intermediate for salicylimines 10a-c, low for F-containing salicylamides 7, and non-existent for methoxybenzoylamides 6 and difluoromethoxybenzoylamides 8. In the FRAP antioxidant (AO) assay, the test compounds displayed little or no activity. Quantum chemical analysis and molecular dynamics (MD) simulations with QM/MM potentials explained the AO structure-activity relationships. All conjugates were effective chelators of Cu2+, Fe2+, and Zn2+, with molar compound/metal (Cu2+) ratios of 2:1 (5b) and ~1:1 (10b). Conjugates exerted comparable or lower cytotoxicity than tacrine on mouse hepatocytes and had favorable predicted intestinal absorption and blood-brain barrier permeability. The overall results indicate that the synthesized conjugates are promising new multifunctional agents for the potential treatment of AD.
Collapse
|
26
|
Patil VM, Masand N, Gautam V, Kaushik S, Wu D. Multi-Target-Directed Ligand Approach in Anti-Alzheimer’s Drug Discovery. DECIPHERING DRUG TARGETS FOR ALZHEIMER’S DISEASE 2023:285-319. [DOI: 10.1007/978-981-99-2657-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Kashif M, Sivaprakasam P, Vijendra P, Waseem M, Pandurangan AK. A Recent Update on Pathophysiology and Therapeutic Interventions of Alzheimer's Disease. Curr Pharm Des 2023; 29:3428-3441. [PMID: 38038007 DOI: 10.2174/0113816128264355231121064704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
AIM Alzheimer's disease (AD) has been identified as a progressive brain disorder associated with memory dysfunction and the accumulation of β-amyloid plaques and neurofibrillary tangles of τ protein. Mitochondria is crucial in maintaining cell survival, cell death, calcium regulation, and ATP synthesis. Mitochondrial dysfunction and linked calcium overload have been involved in the pathogenesis of AD. CRM2 (Collapsin response mediator protein-2) is involved in endosomal lysosomal trafficking as well as autophagy, and their reduced level is also a primary culprit in the progression of AD. In addition, Cholinergic neurotransmission and neuroinflammation are two other mechanisms implicated in AD onset and might be protective targets to attenuate disease progression. The microbiota-gut-brain axis (MGBA) is another crucial target for AD treatment. Crosstalk between gut microbiota and brain mutually benefitted each other, dysbiosis in gut microbiota affects the brain functions and leads to AD progression with increased AD-causing biomarkers. Despite the complexity of AD, treatment is only limited to symptomatic management. Therefore, there is an urgent demand for novel therapeutics that target associated pathways responsible for AD pathology. This review explores the role of different mechanisms involved in AD and possible therapeutic targets to protect against disease progression. BACKGROUND Amidst various age-related diseases, AD is the most deleterious neurodegenerative disorder that affects more than 24 million people globally. Every year, approximately 7.7 million new cases of dementia have been reported. However, to date, no novel disease-modifying therapies are available to treat AD. OBJECTIVE The aim of writing this review is to highlight the role of key biomarker proteins and possible therapeutic interventions that could play a crucial role in mitigating the ongoing prognosis of Alzheimer's disease. MATERIALS AND METHODS The available information about the disease was collected through multiple search engines, including PubMed, Science Direct, Clinical Trials, and Google Scholar. RESULTS Accumulated pieces of evidence reveal that extracellular aggregation of β-amyloid plaques and intracellular tangles of τ protein are peculiar features of perpetuated Alzheimer's disease (AD). Further, the significant role of mitochondria, calcium, and cholinergic pathways in the pathogenesis of AD makes the respiratory cell organelle a crucial therapeutic target in this neurodegenerative disease. All currently available drugs either delay the clinical damage to cells or temporarily attenuate some symptoms of Alzheimer's disease. CONCLUSION The pathological features of AD are extracellular deposition of β-amyloid, acetylcholinesterase deregulation, and intracellular tangles of τ protein. The multifactorial heterogeneity of disease demands more research work in this field to find new therapeutic biological targets.
Collapse
Affiliation(s)
- Mohd Kashif
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Prathibha Sivaprakasam
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Poornima Vijendra
- Department of Studies in Food Technology, Davangere University, Davangere, Karnataka, India
| | - Mohammad Waseem
- Department of Pharmaceutical Science, University of Maryland, Eastern Shore, Baltimore, USA
| | - Ashok Kumar Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| |
Collapse
|
28
|
Chakrovorty A, Bhattacharjee B, Saxena A, Samadder A, Nandi S. Current Naturopathy to Combat Alzheimer's Disease. Curr Neuropharmacol 2023; 21:808-841. [PMID: 36173068 PMCID: PMC10227918 DOI: 10.2174/1570159x20666220927121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegeneration is the progressive loss of structure or function of neurons, which may ultimately involve cell death. The most common neurodegenerative disorder in the brain happens with Alzheimer's disease (AD), the most common cause of dementia. It ultimately leads to neuronal death, thereby impairing the normal functionality of the central or peripheral nervous system. The onset and prevalence of AD involve heterogeneous etiology, either in terms of genetic predisposition, neurometabolomic malfunctioning, or lifestyle. The worldwide relevancies are estimated to be over 45 million people. The rapid increase in AD has led to a concomitant increase in the research work directed towards discovering a lucrative cure for AD. The neuropathology of AD comprises the deficiency in the availability of neurotransmitters and important neurotrophic factors in the brain, extracellular betaamyloid plaque depositions, and intracellular neurofibrillary tangles of hyperphosphorylated tau protein. Current pharmaceutical interventions utilizing synthetic drugs have manifested resistance and toxicity problems. This has led to the quest for new pharmacotherapeutic candidates naturally prevalent in phytochemicals. This review aims to provide an elaborative description of promising Phyto component entities having activities against various potential AD targets. Therefore, naturopathy may combine with synthetic chemotherapeutics to longer the survival of the patients.
Collapse
Affiliation(s)
- Arnob Chakrovorty
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Banani Bhattacharjee
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Aaruni Saxena
- Department of Cardiovascular Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Asmita Samadder
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
29
|
Dubey A, Dhas N, Naha A, Rani U, GS R, Shetty A, R Shetty C, Hebbar S. Cationic biopolymer decorated Asiatic Acid and Centella asiatica extract incorporated liposomes for treating early-stage Alzheimer's disease: An In-vitro and In-vivo investigation. F1000Res 2022; 11:1535. [PMID: 36761834 PMCID: PMC9887206 DOI: 10.12688/f1000research.128874.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Asiatic acid (AA) is a naturally occurring triterpenoid derivative of Centella asiatica (CA) with neuroprotective effect. The study aimed to design an ideal oral drug delivery system to treat Alzheimer's disease (AD) and develop chitosan-embedded liposomes comprising an extract of CA (CLCAE) and compare them with the chitosan-coated liposomes of asiatic acid (CLAA) for oral delivery to treat the initial phases of AD. Methods: The solvent evaporation technique was used to develop CLCAE and CLAA, optimised with the experiment's design, and was further evaluated. Results: Nuclear magnetic resonance (NMR) studies confirmed coating with chitosan. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) indicated the successful formation of CLCAE and CLAA. Differential scanning colorimetry (DSC) confirmed the drug-phospholipid complex. Furthermore, the rate of in vitro release of CLCAE and CLAA was found to be 69.43±0.3 % and 85.3±0.3 %, respectively, in 24 h. Ex vivo permeation of CLCAE and CLAA was found to be 48±0.3 % and 78±0.3 %, respectively. In the Alcl3-induced AD model in rats, disease progression was confirmed by Y-maze, the preliminary histopathology evaluation showed significantly higher efficacy of the prepared liposomes (CLCAE and CLAA) compared to the Centella asiatica extract (CAE) and they were found to have equivalent efficacy to the standard drug (rivastigmine tartrate). The considerable increase in pharmacodynamic parameters in terms of neuronal count in the CLAA group indicated the protective role against Alcl3 toxicity and was also confirmed by assessing acetylcholine (Ach) levels. The pharmacokinetic study, such as C max, T max, and area under curve (AUC) parameters, proved an increase in AA bioavailability in the form of CLAA compared to the pure AA and CLCAE forms. Conclusion: The preclinical study suggested that CLAA was found to have better stability and an ideal oral drug delivery system to treat AD.
Collapse
Affiliation(s)
- Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anup Naha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Rani
- Department of Health Innovation, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ravi GS
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka, India
| | - Amitha Shetty
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka, India
| | - Chaithra R Shetty
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharma Chemistry, Mangalore, Karnataka, India
| | - Srinivas Hebbar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India,
| |
Collapse
|
30
|
Reiland KM, Eckroat TJ. Selective butyrylcholinesterase inhibition by isatin dimers and 3-indolyl-3-hydroxy-2-oxindole dimers. Bioorg Med Chem Lett 2022; 77:129037. [DOI: 10.1016/j.bmcl.2022.129037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
|
31
|
Yu X, Zhang Y, Zhang M, Chen Y, Yang W. Natural products as sources of acetylcholinesterase inhibitors: Synthesis, biological activities, and molecular docking studies of osthole-based ester derivatives. FRONTIERS IN PLANT SCIENCE 2022; 13:1054650. [PMID: 36466282 PMCID: PMC9716088 DOI: 10.3389/fpls.2022.1054650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Osthole is a natural coumarin compound which isolated from Cnidium monnieri (L.) Cusson, has extensive pharmacological activities and could be used as a leading compound for drug research and development. In a continuous effort to develop new acetylcholinesterase inhibitors from natural products, eighteen osthole esters were designed, synthesized, and confirmed by 1H NMR, 13C NMR and HRMS. The anti-AChE activity of These derivatives was measured at a concentration of 1.0 mol/mL in vitro by Ellman's method, and the result showed that 4m and 4o had moderate inhibitory activities with 68.8% and 62.6%, respectively. Molecular docking study results further revealed AChE interacted optimally with docking poses 4m and 4o. Network pharmacology also predicted that compound 4m could be involved in Ras signaling pathway, which made it a potential therapeutic target of AD.
Collapse
Affiliation(s)
- Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicne, Guiyang, China
- Guizhou Joint Laboratory for International Cooperation in Ethnic Medicine, Guizhou University of Traditional Chinese Medicne, Guiyang, China
| | - Yan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicne, Guiyang, China
| | - Minjie Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicne, Guiyang, China
| | - Yafang Chen
- College of Pharmacy, Guizhou University of Traditional Chinese Medicne, Guiyang, China
- Guizhou Joint Laboratory for International Cooperation in Ethnic Medicine, Guizhou University of Traditional Chinese Medicne, Guiyang, China
| | - Wude Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicne, Guiyang, China
- Guizhou Joint Laboratory for International Cooperation in Ethnic Medicine, Guizhou University of Traditional Chinese Medicne, Guiyang, China
| |
Collapse
|
32
|
Conjugates of Methylene Blue with Cycloalkaneindoles as New Multifunctional Agents for Potential Treatment of Neurodegenerative Disease. Int J Mol Sci 2022; 23:ijms232213925. [PMID: 36430413 PMCID: PMC9697446 DOI: 10.3390/ijms232213925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The development of multi-target-directed ligands (MTDLs) would provide effective therapy of neurodegenerative diseases (ND) with complex and nonclear pathogenesis. A promising method to create such potential drugs is combining neuroactive pharmacophoric groups acting on different biotargets involved in the pathogenesis of ND. We developed a synthetic algorithm for the conjugation of indole derivatives and methylene blue (MB), which are pharmacophoric ligands that act on the key stages of pathogenesis. We synthesized hybrid structures and performed a comprehensive screening for a specific set of biotargets participating in the pathogenesis of ND (i.e., cholinesterases, NMDA receptor, mitochondria, and microtubules assembly). The results of the screening study enabled us to find two lead compounds (4h and 4i) which effectively inhibited cholinesterases and bound to the AChE PAS, possessed antioxidant activity, and stimulated the assembly of microtubules. One of them (4i) exhibited activity as a ligand for the ifenprodil-specific site of the NMDA receptor. In addition, this lead compound was able to bypass the inhibition of complex I and prevent calcium-induced mitochondrial depolarization, suggesting a neuroprotective property that was confirmed using a cellular calcium overload model of neurodegeneration. Thus, these new MB-cycloalkaneindole conjugates constitute a promising class of compounds for the development of multitarget neuroprotective drugs which simultaneously act on several targets, thereby providing cognitive stimulating, neuroprotective, and disease-modifying effects.
Collapse
|
33
|
Álvarez-Berbel I, Espargaró A, Viayna A, Caballero AB, Busquets MA, Gámez P, Luque FJ, Sabaté R. Three to Tango: Inhibitory Effect of Quercetin and Apigenin on Acetylcholinesterase, Amyloid-β Aggregation and Acetylcholinesterase-Amyloid Interaction. Pharmaceutics 2022; 14:2342. [PMID: 36365159 PMCID: PMC9699245 DOI: 10.3390/pharmaceutics14112342] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 10/13/2023] Open
Abstract
One of the pathological hallmarks of Alzheimer's disease (AD) is the formation of amyloid-β plaques. Since acetylcholinesterase (AChE) promotes the formation of such plaques, the inhibition of this enzyme could slow down the progression of amyloid-β aggregation, hence being complementary to the palliative treatment of cholinergic decline. Antiaggregation assays performed for apigenin and quercetin, which are polyphenolic compounds that exhibit inhibitory properties against the formation of amyloid plaques, reveal distinct inhibitory effects of these compounds on Aβ40 aggregation in the presence and absence of AChE. Furthermore, the analysis of the amyloid fibers formed in the presence of these flavonoids suggests that the Aβ40 aggregates present different quaternary structures, viz., smaller molecular assemblies are generated. In agreement with a noncompetitive inhibition of AChE, molecular modeling studies indicate that these effects may be due to the binding of apigenin and quercetin at the peripheral binding site of AChE. Since apigenin and quercetin can also reduce the generation of reactive oxygen species, the data achieved suggest that multitarget catechol-type compounds may be used for the simultaneous treatment of various biological hallmarks of AD.
Collapse
Affiliation(s)
- Irene Álvarez-Berbel
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Antonio Viayna
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy, Institute of Theoretical and Computational Chemistry (IQTCUB) and Institute of Biomedicine (IBUB), Campus Torribera, University of Barcelona, Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - Ana Belén Caballero
- Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB) and NanoBIC, University of Barcelona, 08028 Barcelona, Spain
| | - Maria Antònia Busquets
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Patrick Gámez
- Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB) and NanoBIC, University of Barcelona, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Francisco Javier Luque
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy, Institute of Theoretical and Computational Chemistry (IQTCUB) and Institute of Biomedicine (IBUB), Campus Torribera, University of Barcelona, Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
34
|
Elkina NA, Grishchenko MV, Shchegolkov EV, Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Radchenko EV, Palyulin VA, Zhilina EF, Perminova AN, Lapshin LS, Burgart YV, Saloutin VI, Richardson RJ. New Multifunctional Agents for Potential Alzheimer's Disease Treatment Based on Tacrine Conjugates with 2-Arylhydrazinylidene-1,3-Diketones. Biomolecules 2022; 12:1551. [PMID: 36358901 PMCID: PMC9687805 DOI: 10.3390/biom12111551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2023] Open
Abstract
Alzheimer's disease (AD) is considered a modern epidemic because of its increasing prevalence worldwide and serious medico-social consequences, including the economic burden of treatment and patient care. The development of new effective therapeutic agents for AD is one of the most urgent and challenging tasks. To address this need, we used an aminoalkylene linker to combine the well-known anticholinesterase drug tacrine with antioxidant 2-tolylhydrazinylidene-1,3-diketones to create 3 groups of hybrid compounds as new multifunctional agents with the potential for AD treatment. Lead compounds of the new conjugates effectively inhibited acetylcholinesterase (AChE, IC50 0.24-0.34 µM) and butyrylcholinesterase (BChE, IC50 0.036-0.0745 µM), with weak inhibition of off-target carboxylesterase. Anti-AChE activity increased with elongation of the alkylene spacer, in agreement with molecular docking, which showed compounds binding to both the catalytic active site and peripheral anionic site (PAS) of AChE, consistent with mixed type reversible inhibition. PAS binding along with effective propidium displacement suggest the potential of the hybrids to block AChE-induced β-amyloid aggregation, a disease-modifying effect. All of the conjugates demonstrated metal chelating ability for Cu2+, Fe2+, and Zn2+, as well as high antiradical activity in the ABTS test. Non-fluorinated hybrid compounds 6 and 7 also showed Fe3+ reducing activity in the FRAP test. Predicted ADMET and physicochemical properties of conjugates indicated good CNS bioavailability and safety parameters acceptable for potential lead compounds at the early stages of anti-AD drug development.
Collapse
Affiliation(s)
- Natalia A. Elkina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Maria V. Grishchenko
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Evgeny V. Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Y. Astakhova
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina F. Zhilina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Anastasiya N. Perminova
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Luka S. Lapshin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Yanina V. Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Victor I. Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Wei YM, Yang L, Wang H, Cai CH, Chen ZB, Chen HQ, Mei WL, Dai HF. Triterpenoids as bivalent and dual inhibitors of acetylcholinesterase/butyrylcholinesterase from the fruiting bodies of Inonotus obliquus. PHYTOCHEMISTRY 2022; 200:113182. [PMID: 35427650 DOI: 10.1016/j.phytochem.2022.113182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Inonotus obliquus, an edible and medicinal mushroom parasitic on birches, has been used in human diet and for traditional therapies in the high latitude regions of Europe and Asia for a long time. Our phytochemical study of this fungus led to the identification of fourteen triterpenoids including four undescribed ones, and two pairs of undescribed phenolic enantiomers. The undescribed compounds were elucidated by extensive spectroscopic analysis including 1D and 2D NMR and HRESIMS, quantum chemical NMR and ECD calculations, as well as single-crystal X-ray diffraction analysis. Bioassays revealed that eight compounds showed dual inhibition against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) with IC50 values ranging from 2.40 ± 0.05 to 28.72 ± 0.46 μM, while 3β-hydroxy-lanosra-8,24-dien-21-al and trametenolic acid only presented BuChE inhibitory activities with IC50 values of 22.21 ± 1.01 and 7.68 ± 0.13 μM, respectively. In the kinetic studies, the most active three compounds acted as non-competitive inhibitors for both cholinesterases. Furthermore, molecular docking simulations revealed that three compounds demonstrated dual-sites bounding to AChE/BuChE. These triterpenoids emerged as bivalent and dual inhibitors of AChE/BuChE and could be effective drug candidates to prevent and treat Alzheimer's disease in the future.
Collapse
Affiliation(s)
- Yan-Mei Wei
- Key Laboratory of Natural Products Research and Development from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; Key Laboratory of Conservation and Utilization of Tropical Agro-bioresources of Hainan Province, Hainan Academy of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Li Yang
- Key Laboratory of Natural Products Research and Development from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; Key Laboratory of Conservation and Utilization of Tropical Agro-bioresources of Hainan Province, Hainan Academy of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Hao Wang
- Key Laboratory of Natural Products Research and Development from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; Key Laboratory of Conservation and Utilization of Tropical Agro-bioresources of Hainan Province, Hainan Academy of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Cai-Hong Cai
- Key Laboratory of Natural Products Research and Development from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; Key Laboratory of Conservation and Utilization of Tropical Agro-bioresources of Hainan Province, Hainan Academy of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Zhi-Bao Chen
- College of Agronomy, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Hui-Qin Chen
- Key Laboratory of Natural Products Research and Development from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; Key Laboratory of Conservation and Utilization of Tropical Agro-bioresources of Hainan Province, Hainan Academy of Tropical Agricultural Resources, Haikou, 571101, PR China.
| | - Wen-Li Mei
- Key Laboratory of Natural Products Research and Development from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; Key Laboratory of Conservation and Utilization of Tropical Agro-bioresources of Hainan Province, Hainan Academy of Tropical Agricultural Resources, Haikou, 571101, PR China.
| | - Hao-Fu Dai
- Key Laboratory of Natural Products Research and Development from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; Key Laboratory of Conservation and Utilization of Tropical Agro-bioresources of Hainan Province, Hainan Academy of Tropical Agricultural Resources, Haikou, 571101, PR China.
| |
Collapse
|
36
|
Costantino AR, Charbe N, Duarte Y, Gutiérrez M, Giordano A, Prasher P, Dua K, Mandolesi S, Zacconi FC. Toward the cholinesterase inhibition potential of TADDOL derivatives: Seminal biological and computational studies. Arch Pharm (Weinheim) 2022; 355:e2200142. [PMID: 35892245 DOI: 10.1002/ardp.202200142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/03/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD) is a degenerative neurological disease characterized by gradual loss of cognitive skills and memory. The exact pathogenesis involved still remains unrevealed, but several studies indicate the involvement of an array of different enzymes, underlining the multifactorial character of the disease. Inhibition of these enzymes is therefore a powerful approach in the development of AD treatments, with promising candidates, including acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and monoamine oxidase. Interestingly, AChE is the target of a major pesticide family (organophosphates), with several reports indicating an intersection between the pesticide's activity and AD. In this study, various TADDOL derivatives were synthesized and their in vitro activities as AChE/BuChE inhibitors as well as their antioxidant activities were studied. Molecular modeling studies revealed the capability of TADDOL derivatives to bind to AChE and induce inhibition, especially compounds 2b and 3c furnishing IC50 values of 36.78 ± 8.97 and 59.23 ± 5.31 µM, respectively. Experimental biological activities and molecular modeling studies clearly demonstrate that TADDOL derivatives with specific stereochemistry have an interesting potential for the design of potent AChE inhibitors. The encouraging results for compounds 2b and 3c indicate them as promising scaffolds for selective and potent AChE inhibitors.
Collapse
Affiliation(s)
- Andrea R Costantino
- INQUISUR, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Nitin Charbe
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Margarita Gutiérrez
- Organic Synthesis Laboratory and Biological Activity (LSO-Act-Bio), Institute of Chemistry and Natural Resources, Universidad de Talca, Talca, Chile
| | - Ady Giordano
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sandra Mandolesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Flavia C Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,The Research Center for Nanotechnology and Advanced Materials, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
37
|
Assessments of Ceanothanes Triterpenes as Cholinesterase Inhibitors: An Investigation of Potential Agents with Novel Inspiration for Drug Treatment of Neurodegenerative Diseases. Metabolites 2022; 12:metabo12070668. [PMID: 35888792 PMCID: PMC9318782 DOI: 10.3390/metabo12070668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to determine the inhibitory capacity of ceanothanes triterpenes isolate from Chilean Rhamnaceae on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Seven ceanothanes triterpenes were isolated from aerial parts of plant material by classical phytochemical methods or prepared by the hemisynthetic method. Structures were determined by the spectroscopic method (1H-NMR and 13C NMR) and mass spectrometry (MS). AChE and BChE activity were determined by the Ellmann method for all compounds. All tested compounds exerted a greater affinity to AChE than to BChE, where compound 3 has an IC50 of 0.126 uM for AChE and of >500 uM to BChE. Kinetic studies indicated that its inhibition was competitive and reversible. According to the molecular coupling and displacement studies of the propidium iodide test, the inhibitory effect of compound 3 would be produced by interaction with the peripheral anionic site (PAS) of AChE. The compounds tested (1−7) showed an important inhibitory activity of AChE, binding to PAS. Therefore, inhibitors that bind to PAS would prevent the formation of the AChE-Aβ complex, constituting a new alternative in the treatment of Alzheimer’s disease (AD).
Collapse
|
38
|
Obaid RJ, Naeem N, Mughal EU, Al-Rooqi MM, Sadiq A, Jassas RS, Moussa Z, Ahmed SA. Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase. RSC Adv 2022; 12:19764-19855. [PMID: 35919585 PMCID: PMC9275557 DOI: 10.1039/d2ra03081k] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 01/15/2023] Open
Abstract
Heterocycles are the key structures in organic chemistry owing to their immense applications in the biological, chemical, and pharmaceutical fields. Heterocyclic compounds perform various noteworthy functions in nature, medication, innovation etc. Most frequently, pure nitrogen heterocycles or various positional combinations of nitrogen, oxygen, and sulfur atoms in five or six-membered rings can be found. Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes is a popular strategy for the management of numerous mental diseases. In this context, cholinesterase inhibitors are utilized to relieve the symptoms of neurological illnesses like dementia and Alzheimer's disease (AD). The present review focuses on various heterocyclic scaffolds and their role in designing and developing new potential AChE and BChE inhibitors to treat AD. Moreover, a detailed structure-activity relationship (SAR) has been established for the future discovery of novel drugs for the treatment of AD. Most of the heterocyclic motifs have been used in the design of new potent cholinesterase inhibitors. In this regard, this review is an endeavor to summarize the biological and chemical studies over the past decade (2010-2022) describing the pursuit of new N, O and S containing heterocycles which can offer a rich supply of promising AChE and BChE inhibitory activities.
Collapse
Affiliation(s)
- Rami J Obaid
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | | | - Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551 Al Ain Abu Dhabi United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
39
|
Zhang ZP, Bai X, Cui WB, Chen XH, Liu X, Zhi DJ, Zhang ZX, Fei DQ, Wang DS. Diterpenoid Caesalmin C Delays Aβ-Induced Paralysis Symptoms via the DAF-16 Pathway in Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms23126871. [PMID: 35743309 PMCID: PMC9225120 DOI: 10.3390/ijms23126871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the world. However, there is no effective drug to cure it. Caesalmin C is a cassane-type diterpenoid abundant in Caesalpinia bonduc (Linn.) Roxb. In this study, we investigated the effect of caesalmin C on Aβ-induced toxicity and possible mechanisms in the transgenic Caenorhabditis elegans AD model. Our results showed that caesalmin C significantly alleviated the Aβ-induced paralysis phenotype in transgenic CL4176 strain C. elegans. Caesalmin C dramatically reduced the content of Aβ monomers, oligomers, and deposited spots in AD C. elegans. In addition, mRNA levels of sod-3, gst-4, and rpt-3 were up-regulated, and mRNA levels of ace-1 were down-regulated in nematodes treated with caesalmin C. The results of the RNAi assay showed that the inhibitory effect of caesalmin C on the nematode paralysis phenotype required the DAF-16 signaling pathway, but not SKN-1 and HSF-1. Further evidence suggested that caesalmin C may also have the effect of inhibiting acetylcholinesterase (AchE) and upregulating proteasome activity. These findings suggest that caesalmin C delays the progression of AD in C. elegans via the DAF-16 signaling pathway and that it could be developed into a promising medication to treat AD.
Collapse
Affiliation(s)
- Zong-Ping Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - Xue Bai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - Wen-Bo Cui
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - Xiao-Han Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - Xu Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - De-Juan Zhi
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - Zhan-Xin Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Dong-Qing Fei
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- Correspondence: (D.-Q.F.); (D.-S.W.)
| | - Dong-Sheng Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
- Correspondence: (D.-Q.F.); (D.-S.W.)
| |
Collapse
|
40
|
Novel Cyclopentaquinoline and Acridine Analogs as Multifunctional, Potent Drug Candidates in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23115876. [PMID: 35682556 PMCID: PMC9179981 DOI: 10.3390/ijms23115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
A series of new cyclopentaquinoline derivatives with 9-acridinecarboxylic acid and a different alkyl chain length were synthesized, and their ability to inhibit cholinesterases was evaluated. All designed compounds, except derivative 3f, exhibited a selectivity for butyrylcholinesterase (BuChE) with IC50 values ranging from 103 to 539 nM. The 3b derivative revealed the highest inhibitory activity towards BuChE (IC50 = 103.73 nM) and a suitable activity against AChE (IC50 = 272.33 nM). The 3f derivative was the most active compound to AChE (IC50 = 113.34 nM) with satisfactory activity towards BuChE (IC50 = 203.52 nM). The potential hepatotoxic effect was evaluated for both 3b and 3f compounds. The 3b and 3f potential antioxidant activity was measured using the ORAC-FL method. The 3b and 3f derivatives revealed a significantly higher antioxidant potency, respectively 35 and 25 higher than tacrine. Theoretical, physicochemical, and pharmacokinetic properties were calculated using ACD Labs Percepta software. Molecular modeling and kinetic study were used to reveal the mechanism of cholinesterase inhibition in the most potent compounds: 3b and 3f.
Collapse
|
41
|
Atanasova M, Dimitrov I, Ivanov S, Georgiev B, Berkov S, Zheleva-Dimitrova D, Doytchinova I. Virtual Screening and Hit Selection of Natural Compounds as Acetylcholinesterase Inhibitors. Molecules 2022; 27:3139. [PMID: 35630613 PMCID: PMC9145144 DOI: 10.3390/molecules27103139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/10/2022] Open
Abstract
Acetylcholinesterase (AChE) is one of the classical targets in the treatment of Alzheimer's disease (AD). Inhibition of AChE slows down the hydrolysis of acetycholine and increases choline levels, improving the cognitive function. The achieved success of plant-based natural drugs acting as AChE inhibitors, such as galantamine (GAL) from Galanthus genus and huperzine A from Huperzia serrate (approved drug in China), in the treatment of AD, and the fact that natural compounds (NCs) are considered as safer and less toxic compared to synthetic drugs, led us to screen the available NCs (almost 150,000) in the ZINC12 database for AChE inhibitory activity. The compounds were screened virtually by molecular docking, filtered for suitable ADME properties, and 32 ligands from 23 structural groups were selected. The stability of the complexes was estimated via 1 μs molecular dynamics simulation. Ten compounds formed stable complexes with the enzyme and had a vendor and a reasonable price per mg. They were tested for AChE inhibitory and antioxidant activity. Five compounds showed weak AChE inhibition and three of them exhibited high antioxidant activity.
Collapse
Affiliation(s)
- Mariyana Atanasova
- Chemistry Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.D.); (S.I.); (D.Z.-D.); (I.D.)
| | - Ivan Dimitrov
- Chemistry Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.D.); (S.I.); (D.Z.-D.); (I.D.)
| | - Stefan Ivanov
- Chemistry Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.D.); (S.I.); (D.Z.-D.); (I.D.)
- Redesign Science, 180 Varick St, New York, NY 10014, USA
| | - Borislav Georgiev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.G.); (S.B.)
| | - Strahil Berkov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.G.); (S.B.)
| | - Dimitrina Zheleva-Dimitrova
- Chemistry Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.D.); (S.I.); (D.Z.-D.); (I.D.)
| | - Irini Doytchinova
- Chemistry Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.D.); (S.I.); (D.Z.-D.); (I.D.)
| |
Collapse
|
42
|
Kalari M, Abbasi Z, Shasaltaneh MD, Khaleghian A, Moosavi-Nejad Z. A Cobalt-Containing Compound as a Stronger Inhibitor than Galantamine to Inhibit Acetylcholinesterase Activity: A New Drug Candidate for Alzheimer’s Disease Treatment. J Alzheimers Dis 2022; 87:1503-1516. [DOI: 10.3233/jad-215588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Acetylcholinesterase (AChE) regulates the transmission of neural messages by hydrolyzing acetylcholine in synaptic spaces. Objective: The effects of many AChE inhibitors have been evaluated in the treatment of Alzheimer’s disease, but the present study examined a synthetic complex containing cobalt (SC) for the first time in the field of enzyme activity to evaluate enzyme inhibitory function. Methods: Ellman’s test was applied. AChE function was assessed in the presence of SC through docking and molecular dynamics analyses. The second structure of AChE was studied through circular dichroism (CD) spectroscopy. Results: Several enzymatic methods were utilized for the kinetics of AChE, which indicated the non-Michaelis and positive homotropic behavior of AChE in the absence of inhibitors (Hill coefficient = 1.33). However, the existence of inhibitors did not eliminate this homotropic state, and even AChE had a more sigmoidal shape than the galantamine at the presence of SC. Based on the CD spectroscopy results, AChE structure changed in the existence of inhibitors and substrates. Bioinformatics analysis revealed SC bonding to the channel of active site AChE. The number of hydrogen bonds was such that the flexibility of the enzyme protein structure due to inhibitor binding reduced AChE function. Conclusion: The results reflected that AChE exhibited a non-Michaelis and positive homotropic behavior, leading to a more inhibitory effect on the SC than the galantamine. The positive homotropic behavior of AChE was intensified due to the alteration in AChE protein structure by binding SC to hydrophobic region in the active site pathway and impressing Trp84.
Collapse
Affiliation(s)
- Mohadeseh Kalari
- Department of Biochemistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Zeinab Abbasi
- Department of Inorganic Chemistry Semnan University, Semnan, Iran
| | | | - Ali Khaleghian
- Department of Biochemistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
43
|
Synthesis, and in vitro biological evaluations of novel naphthoquinone conjugated to aryl triazole acetamide derivatives as potential anti-Alzheimer agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Chen Y, Wang Y, Qin Q, Zhang Y, Xie L, Xiao J, Cao Y, Su Z, Chen Y. Carnosic acid ameliorated Aβ-mediated (amyloid-β peptide) toxicity, cholinergic dysfunction and mitochondrial defect in Caenorhabditis elegans of Alzheimer's Model. Food Funct 2022; 13:4624-4640. [PMID: 35357374 DOI: 10.1039/d1fo02965g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Amyloid-β peptide (Aβ)-induced cholinergic system and mitochondrial dysfunction are major risk factors for Alzheimer's disease (AD). Our previous studies found that carnosic acid (CA), an important polyphenol antioxidant, could significantly delay Aβ1-42-mediated acute paralysis. However, many details and underlying mechanisms of CA's neuroprotection against Aβ-induced cholinergic system defects and mitochondrial dysfunction remain unclear. Herein, we deeply investigated the effects and the possible mechanisms of CA-mediated protection against Aβ toxicity in vivo through several AD Caenorhabditis elegans strains. The results showed CA delayed age-related paralysis and Aβ deposition, and significantly protected neurons from Aβ-induced toxicity. CA might downgrade the expression of ace-1 and ace-2 genes, and upregulate cha-1 and unc-17 genes to inhibit acetylcholinesterase activity and relieve Aβ-caused cholinergic system defects. Furthermore, CA might also ameliorate Aβ-induced mitochondrial imbalance and oxidative stress through up-regulating the expression of phb-1, phb-2, eat-3, and drp-1 genes. The enhancements of the cholinergic system and mitochondrial function might be the reasons for the amelioration of Aβ-mediated toxicity and Aβ aggregation mediated by CA. These findings have helped us to understand the CA anti-Aβ activity in C. elegans and the potential mechanism of action.
Collapse
Affiliation(s)
- Yun Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, Guangdong, China
| | - Yarong Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, Guangdong, China
| | - Qiao Qin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, Guangdong, China
| | - Yali Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, Guangdong, China
| | - Lingling Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, Guangdong, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, Guangdong, China
| | - Zuanxian Su
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, Guangdong, China
| |
Collapse
|
45
|
Waly OM, Saad KM, El-Subbagh HI, Bayomi SM, Ghaly MA. Synthesis, biological evaluation, and molecular modeling simulations of new heterocyclic hybrids as multi-targeted anti-Alzheimer's agents. Eur J Med Chem 2022; 231:114152. [DOI: 10.1016/j.ejmech.2022.114152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
|
46
|
Makhaeva GF, Kovaleva NV, Boltneva NP, Rudakova EV, Lushchekina SV, Astakhova TY, Serkov IV, Proshin AN, Radchenko EV, Palyulin VA, Korabecny J, Soukup O, Bachurin SO, Richardson RJ. Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: N-Functionalization Determines the Multitarget Anti-Alzheimer’s Activity Profile. Molecules 2022; 27:molecules27031060. [PMID: 35164325 PMCID: PMC8839189 DOI: 10.3390/molecules27031060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Using two ways of functionalizing amiridine—acylation with chloroacetic acid chloride and reaction with thiophosgene—we have synthesized new homobivalent bis-amiridines joined by two different spacers—bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) —as potential multifunctional agents for the treatment of Alzheimer’s disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug–drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a–c exhibited an IC50(AChE) = 2.9–1.4 µM, IC50(BChE) = 0.13–0.067 µM, and 14–18% propidium displacement at 20 μM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aβ42 aggregation. Conjugates 3 had no effect on Aβ42 self-aggregation, whereas compounds 5c–e (m = 4, 5, 6) showed mild (13–17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2–2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood–brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c–e appear promising for future optimization and development as multitarget anti-AD agents.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Tatiana Yu. Astakhova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Eugene V. Radchenko
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.V.R.); (V.A.P.)
| | - Vladimir A. Palyulin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.V.R.); (V.A.P.)
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic; (J.K.); (O.S.)
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic; (J.K.); (O.S.)
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-936-0769
| |
Collapse
|
47
|
Synthesis, Structure and Acetylcholinesterase Inhibition Activity of New Diarylpyrazoles. Bioorg Chem 2022; 121:105658. [DOI: 10.1016/j.bioorg.2022.105658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022]
|
48
|
Lopes JPB, Silva L, Lüdtke DS. An overview on the synthesis of carbohydrate-based molecules with biological activity related to neurodegenerative diseases. RSC Med Chem 2021; 12:2001-2015. [PMID: 35028560 PMCID: PMC8672812 DOI: 10.1039/d1md00217a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/07/2021] [Indexed: 01/18/2023] Open
Abstract
In the context of the search for multitarget drugs with improved efficacy against neurodegenerative disorders, carbohydrate derivatives have emerged as promising candidates for Alzheimer's therapy. Herein we describe the synthesis and biological evaluation of several classes of sugar-based compounds, where most of them contain heterocyclic aromatic moieties that bear known biological properties and high affinity for the cholinesterase active site. This general idea led to the synthesis of compounds with high inhibitory potency against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), enzymatic selectivity and combined properties such as antioxidant and neuroprotection, in addition to the absence of toxicity.
Collapse
Affiliation(s)
- João Paulo B Lopes
- Instituto de Química, Universidade Federal do Rio Grande do Sul Av. Bento, Gonçalves 9500, Campus do Vale 91501-970 Porto Alegre RS Brazil
| | - Luana Silva
- Instituto de Química, Universidade Federal do Rio Grande do Sul Av. Bento, Gonçalves 9500, Campus do Vale 91501-970 Porto Alegre RS Brazil
| | - Diogo S Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul Av. Bento, Gonçalves 9500, Campus do Vale 91501-970 Porto Alegre RS Brazil
| |
Collapse
|
49
|
Nadeem MS, Khan JA, Rashid U. Fluoxetine and sertraline based multitarget inhibitors of cholinesterases and monoamine oxidase-A/B for the treatment of Alzheimer's disease: Synthesis, pharmacology and molecular modeling studies. Int J Biol Macromol 2021; 193:19-26. [PMID: 34687762 DOI: 10.1016/j.ijbiomac.2021.10.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
For the potential therapy of Alzheimer's disease (AD), cholinesterases (ChE) and monoamine oxidase (MAO) are key enzymes that regulate the level of acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) and monoamines. The aim of current research is the synthesis of multi-target compounds that can concomitantly inhibit ChEs and MAO. A series of fluoxetine and sertraline hybrids was designed and evaluated as multi-target inhibitors of ChEs and hMAO. In-vitro enzyme inhibition studies demonstrated that a number of compounds displayed excellent inhibition in submicromolar to nanomolar range. However, compounds 17, 22, 38-40 possess excellent concomitant inhibitory activity against ChEs and hMAO-A/B enzymes and thus emerged as optimal multi-target hybrids. In-vivo acute toxicity study showed the safety of synthesized compounds up to 2000 mg/kg dose. The examinations of brain tissue in Swiss albino mice suggested that selected most active MAO-B inhibitors 17 and 22 have a propensity to block the MAO-B activity that could be responsible for their neurodegenerative effect in mice. The in-vitro inhibitory manner of interaction of these multipotent compounds on all four targets were confirmed by molecular docking investigations.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jalaluddin Azam Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan.
| |
Collapse
|
50
|
Fan Q, Gao Y, Mazur F, Chandrawati R. Nanoparticle-based colorimetric sensors to detect neurodegenerative disease biomarkers. Biomater Sci 2021; 9:6983-7007. [PMID: 34528639 DOI: 10.1039/d1bm01226f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurodegenerative disorders (NDDs) are progressive, incurable health conditions that primarily affect brain cells, and result in loss of brain mass and impaired function. Current sensing technologies for NDD detection are limited by high cost, long sample preparation, and/or require skilled personnel. To overcome these limitations, optical sensors, specifically colorimetric sensors, have garnered increasing attention towards the development of a cost-effective, simple, and rapid alternative approach. In this review, we evaluate colorimetric sensing strategies of NDD biomarkers (e.g. proteins, neurotransmitters, bio-thiols, and sulfide), address the limitations and challenges of optical sensor technologies, and provide our outlook on the future of this field.
Collapse
Affiliation(s)
- Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Yuan Gao
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| |
Collapse
|