1
|
Di YP, Kuhn JM, Mangoni ML. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol Rev 2024; 104:1643-1677. [PMID: 39052018 PMCID: PMC11495187 DOI: 10.1152/physrev.00039.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jenna Marie Kuhn
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Lee S, Schefter BR, Taheri-Araghi S, Ha BY. Modeling selectivity of antimicrobial peptides: how it depends on the presence of host cells and cell density. RSC Adv 2023; 13:34167-34182. [PMID: 38020026 PMCID: PMC10663724 DOI: 10.1039/d3ra06030f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Antimicrobial peptides (AMPs), naturally-occurring peptide antibiotics, are known to attack bacteria selectively over the host cells. The emergence of drug-resistant bacteria has spurred much effort in utilizing optimized (more selective) AMPs as new peptide antibiotics. Cell selectivity of these peptides depends on various factors or parameters such as their binding affinity for cell membranes, peptide trapping in cells, peptide coverages on cell membranes required for membrane rupture, and cell densities. In this work, using a biophysical model of peptide selectivity, we show this dependence quantitatively especially for a mixture of bacteria and host cells. The model suggests a rather nontrivial dependence of the selectivity on the presence of host cells, cell density, and peptide trapping. In a typical biological setting, peptide trapping works in favor of host cells; the selectivity increases with increasing host-cell density but decreases with bacterial cell density. Because of the cell-density dependence of peptide activity, the selectivity can be overestimated by two or three orders of magnitude. The model also clarifies how the cell selectivity of AMPs differs from their membrane selectivity.
Collapse
Affiliation(s)
- Suemin Lee
- Department of Physics and Astronomy, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Bethany R Schefter
- Department of Physics and Astronomy, University of Western Ontario London Ontario N6A 3K7 Canada
| | - Sattar Taheri-Araghi
- Department of Physics and Astronomy, California State University Northridge CA 91330 USA
| | - Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
3
|
Castelletto V, Seitsonen J, Hamley IW. Effect of Glycosylation on Self-Assembly of Lipid A Lipopolysaccharides in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37289534 DOI: 10.1021/acs.langmuir.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipopolysaccharides (LPSs) based on lipid A produced by bacteria are of interest due to their bioactivity in stimulating immune responses, as are simpler synthetic components or analogues. Here, the self-assembly in water of two monodisperse lipid A derivatives based on simplified bacterial LPS structures is examined and compared to that of a native Escherichia coli LPS using small-angle X-ray scattering and cryogenic transmission electron microscopy. The critical aggregation concentration is obtained from fluorescence probe experiments, and conformation is probed using circular dichroism spectroscopy. The E. coli LPS is found to form wormlike micelles, whereas the synthetic analogues bearing six lipid chains and with four or two saccharide head groups (Kdo2-lipid A and monophosphoryl lipid A) self-assemble into nanosheets or vesicles, respectively. These observations are rationalized by considering the surfactant packing parameter.
Collapse
Affiliation(s)
- Valeria Castelletto
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland
| | - Ian W Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
4
|
Nandi S, Nair KS, Bajaj H. Bacterial Outer-Membrane-Mimicking Giant Unilamellar Vesicle Model for Detecting Antimicrobial Permeability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5891-5900. [PMID: 37036429 DOI: 10.1021/acs.langmuir.3c00378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The construction of bacterial outer membrane models with native lipids like lipopolysaccharide (LPS) is a barrier to understanding antimicrobial permeability at the membrane interface. Here, we engineer bacterial outer membrane (OM)-mimicking giant unilamellar vesicles (GUVs) by constituting LPS under different pH conditions and assembled GUVs with controlled dimensions. We quantify the LPS reconstituted in GUV membranes and reveal their arrangement in the leaflets of the vesicles. Importantly, we demonstrate the applications of OM vesicles by exploring antimicrobial permeability activity across membranes. Model peptides, melittin and magainin-2, are examined where both peptides exhibit lower membrane activity in OM vesicles than vesicles devoid of LPS. Our findings reveal the mode of action of antimicrobial peptides in bacterial-membrane-mimicking models. Notably, the critical peptide concentration required to elicit activity on model membranes correlates with the cell inhibitory concentrations that revalidate our models closely mimic bacterial membranes. In conclusion, we provide an OM-mimicking model capable of quantifying antimicrobial permeability across membranes.
Collapse
Affiliation(s)
- Samir Nandi
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | - Karthika S Nair
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| |
Collapse
|
5
|
Effects of Dimerization, Dendrimerization, and Chirality in p-BthTX-I Peptide Analogs on the Antibacterial Activity and Enzymatic Inhibition of the SARS-CoV-2 PL pro Protein. Pharmaceutics 2023; 15:pharmaceutics15020436. [PMID: 36839758 PMCID: PMC9964244 DOI: 10.3390/pharmaceutics15020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Recent studies have shown that the peptide [des-Cys11,Lys12,Lys13-(p-BthTX-I)2K] (p-Bth) is a p-BthTX-I analog that shows enhanced antimicrobial activity, stability and hemolytic activity, and is easy to obtain compared to the wild-type sequence. This molecule also inhibits SARS-CoV-2 viral infection in Vero cells, acting on SARS-CoV-2 PLpro enzymatic activity. Thus, the present study aimed to assess the effects of structural modifications to p-Bth, such as dimerization, dendrimerization and chirality, on the antibacterial activity and inhibitory properties of PLpro. The results showed that the dimerization or dendrimerization of p-Bth was essential for antibacterial activity, as the monomeric structure led to a total loss of, or significant reduction in, bacterial activities. The dimers and tetramers obtained using branched lysine proved to be prominent compounds with antibacterial activity against Gram-positive and Gram-negative bacteria. In addition, hemolysis rates were below 10% at the corresponding concentrations. Conversely, the inhibitory activity of the PLpro of SARS-CoV-2 was similar in the monomeric, dimeric and tetrameric forms of p-Bth. Our findings indicate the importance of the dimerization and dendrimerization of this important class of antimicrobial peptides, which shows great potential for antimicrobial and antiviral drug-discovery campaigns.
Collapse
|
6
|
Di Somma A, Cané C, Moretta A, Illiano A, Pinto G, Cavasso D, Amoresano A, Paduano L, Duilio A. The antimicrobial peptide Magainin-2 interacts with BamA impairing folding of E. coli membrane proteins. Front Chem 2022; 10:1013788. [PMID: 36324521 PMCID: PMC9620421 DOI: 10.3389/fchem.2022.1013788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/05/2022] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a unique and diverse group of molecules endowed with a broad spectrum of antibiotics properties that are being considered as new alternative therapeutic agents. Most of these peptides are membrane-active molecules, killing bacteria by membrane disruption. However, recently an increasing number of AMPs was shown to enter bacterial cells and target intracellular processes fundamental for bacterial life. In this paper we investigated the mechanism of action of Maganin-2 (Mag-2), a well-known antimicrobial peptide isolated from the African clawed frog Xenopus laevis, by functional proteomic approaches. Several proteins belonging to E. coli macromolecular membrane complexes were identified as Mag-2 putative interactors. Among these, we focused our attention on BamA a membrane protein belonging to the BAM complex responsible for the folding and insertion of nascent β-barrel Outer Membrane Proteins (OMPs) in the outer membrane. In silico predictions by molecular modelling, in vitro fluorescence binding and Light Scattering experiments carried out using a recombinant form of BamA confirmed the formation of a stable Mag-2/BamA complex and indicated a high affinity of the peptide for BamA. Functional implications of this interactions were investigated by two alternative and complementary approaches. The amount of outer membrane proteins OmpA and OmpF produced in E. coli following Mag-2 incubation were evaluated by both western blot analysis and quantitative tandem mass spectrometry in Multiple Reaction Monitoring scan mode. In both experiments a gradual decrease in outer membrane proteins production with time was observed as a consequence of Mag-2 treatment. These results suggested BamA as a possible good target for the rational design of new antibiotics since this protein is responsible for a crucial biological event of bacterial life and is absent in humans.
Collapse
Affiliation(s)
- Angela Di Somma
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Carolina Cané
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Antonio Moretta
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Domenico Cavasso
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| |
Collapse
|
7
|
Hoelscher MP, Forner J, Calderone S, Krämer C, Taylor Z, Loiacono FV, Agrawal S, Karcher D, Moratti F, Kroop X, Bock R. Expression strategies for the efficient synthesis of antimicrobial peptides in plastids. Nat Commun 2022; 13:5856. [PMID: 36195597 PMCID: PMC9532397 DOI: 10.1038/s41467-022-33516-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) kill microbes or inhibit their growth and are promising next-generation antibiotics. Harnessing their full potential as antimicrobial agents will require methods for cost-effective large-scale production and purification. Here, we explore the possibility to exploit the high protein synthesis capacity of the chloroplast to produce AMPs in plants. Generating a large series of 29 sets of transplastomic tobacco plants expressing nine different AMPs as fusion proteins, we show that high-level constitutive AMP expression results in deleterious plant phenotypes. However, by utilizing inducible expression and fusions to the cleavable carrier protein SUMO, the cytotoxic effects of AMPs and fused AMPs are alleviated and plants with wild-type-like phenotypes are obtained. Importantly, purified AMP fusion proteins display antimicrobial activity independently of proteolytic removal of the carrier. Our work provides expression strategies for the synthesis of toxic polypeptides in chloroplasts, and establishes transplastomic plants as efficient production platform for antimicrobial peptides.
Collapse
Affiliation(s)
- Matthijs P Hoelscher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
- Utrecht University, Pharmaceutical sciences, Pharmaceutics, Universiteitsweg 99, 3584 CG, Utrecht, Netherlands
| | - Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Silvia Calderone
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Carolin Krämer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Zachary Taylor
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - F Vanessa Loiacono
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Shreya Agrawal
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
- Neoplants, 630 Rue Noetzlin Bâtiment, 91190, Gif-sur-Yvette, France
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Fabio Moratti
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Xenia Kroop
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany.
| |
Collapse
|
8
|
Blair JMA, Zeth K, Bavro VN, Sancho-Vaello E. The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Rev 2022; 46:6617596. [PMID: 35749576 PMCID: PMC9629497 DOI: 10.1093/femsre/fuac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance is a global issue that threatens our progress in healthcare and life expectancy. In recent years, antimicrobial peptides (AMPs) have been considered as promising alternatives to the classic antibiotics. AMPs are potentially superior due to their lower rate of resistance development, since they primarily target the bacterial membrane ('Achilles' heel' of the bacteria). However, bacteria have developed mechanisms of AMP resistance, including the removal of AMPs to the extracellular space by efflux pumps such as the MtrCDE or AcrAB-TolC systems, and the internalization of AMPs to the cytoplasm by the Sap transporter, followed by proteolytic digestion. In this review, we focus on AMP transport as a resistance mechanism compiling all the experimental evidence for the involvement of efflux in AMP resistance in Gram-negative bacteria and combine this information with the analysis of the structures of the efflux systems involved. Finally, we expose some open questions with the aim of arousing the interest of the scientific community towards the AMPs-efflux pumps interactions. All the collected information broadens our understanding of AMP removal by efflux pumps and gives some clues to assist the rational design of AMP-derivatives as inhibitors of the efflux pumps.
Collapse
Affiliation(s)
- Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Vassiliy N Bavro
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Enea Sancho-Vaello
- Corresponding author. College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom. E-mail:
| |
Collapse
|
9
|
Liu D, Liu M, Meng D, Mu Y, Wang T, Lv Z. Harsh Sensitivity and Mechanism Exploration of an Antibacterial Peptide Extracted from Walnut Oil Residue Derived from Agro-Industrial Waste. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7460-7470. [PMID: 35671140 DOI: 10.1021/acs.jafc.2c02699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Walnut (Juglans regia L.) cake meal constitutes a significant amount of solid byproduct from the production of walnut oil, comprising more than 40% protein. However, it is usually not well utilized. Therefore, an antibacterial peptide was obtained by hydrolyzing walnut oil residue protein with pepsin based on the diameter parameters of the antibacterial zone in this research. The purified antibacterial peptide WRPH-II-6 was obtained by two-part purification (ultrafiltration and reversed-phase liquid chromatography) and possessed higher antibacterial activity against Escherichia coli (MIC = 1.33 mg/mL), Staphylococcus aureus (MIC = 0.33 mg/mL), and Bacillus subtilis (MIC = 0.66 mg/mL). The amino acid sequence of WRPH-II-6 was identified as TGSAVPSPRASATATMEMAAAMGLMPGSPSSVSAVMSPF, where the presence of a large proportion of hydrophobic amino acid residues, such as alanine, proline, and methionine, explained the marked antibacterial activity of WRPH-II-6. The harsh sensitivity experiment demonstrated that WRPH-II-6 retains the stability of antibacterial activity when exposed to broad-spectrum pH values, variable temperatures, and long-lasting UV irradiation. The antibacterial mechanism of the WRPH-II-6 peptide against S. aureus and B. subtilis involves nonmembrane disruption: the contact of anions and cations causes the folding and collapse of the bacterial cell membrane to achieve the inhibitory effect. The antibacterial mechanism against E. coli is membrane disruption, which markedly disrupts the bacterial cell membrane to achieve the bactericidal effect. Significantly, the walnut residual protein hydrolysate is a potent preservative and antibacterial agent.
Collapse
Affiliation(s)
- Dongwei Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Mei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dehao Meng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yihan Mu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Tao Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Zhaolin Lv
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Department of Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
10
|
Krishnan M, Choi J, Jang A, Yoon YK, Kim Y. Antiseptic 9-Meric Peptide with Potency against Carbapenem-Resistant Acinetobacter baumannii Infection. Int J Mol Sci 2021; 22:12520. [PMID: 34830401 PMCID: PMC8621208 DOI: 10.3390/ijms222212520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
Carbapenem-resistant A. baumannii (CRAB) infection can cause acute host reactions that lead to high-fatality sepsis, making it important to develop new therapeutic options. Previously, we developed a short 9-meric peptide, Pro9-3D, with significant antibacterial and cytotoxic effects. In this study, we attempted to produce safer peptide antibiotics against CRAB by reversing the parent sequence to generate R-Pro9-3 and R-Pro9-3D. Among the tested peptides, R-Pro9-3D had the most rapid and effective antibacterial activity against Gram-negative bacteria, particularly clinical CRAB isolates. Analyses of antimicrobial mechanisms based on lipopolysaccharide (LPS)-neutralization, LPS binding, and membrane depolarization, as well as SEM ultrastructural investigations, revealed that R-Pro9-3D binds strongly to LPS and impairs the membrane integrity of CRAB by effectively permeabilizing its outer membrane. R-Pro9-3D was also less cytotoxic and had better proteolytic stability than Pro9-3D and killed biofilm forming CRAB. As an LPS-neutralizing peptide, R-Pro9-3D effectively reduced LPS-induced pro-inflammatory cytokine levels in RAW 264.7 cells. The antiseptic abilities of R-Pro9-3D were also investigated using a mouse model of CRAB-induced sepsis, which revealed that R-Pro9-3D reduced multiple organ damage and attenuated systemic infection by acting as an antibacterial and immunosuppressive agent. Thus, R-Pro9-3D displays potential as a novel antiseptic peptide for treating Gram-negative CRAB infections.
Collapse
Affiliation(s)
- Manigandan Krishnan
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| | - Joonhyeok Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| | - Ahjin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| | - Young Kyung Yoon
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, Korea University Anam Hospital, Korea University, Seoul 02841, Korea;
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| |
Collapse
|
11
|
Luo Y, Song Y. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. Int J Mol Sci 2021; 22:ijms222111401. [PMID: 34768832 PMCID: PMC8584040 DOI: 10.3390/ijms222111401] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are regarded as a new generation of antibiotics. Besides antimicrobial activity, AMPs also have antibiofilm, immune-regulatory, and other activities. Exploring the mechanism of action of AMPs may help in the modification and development of AMPs. Many studies were conducted on the mechanism of AMPs. The present review mainly summarizes the research status on the antimicrobial, anti-inflammatory, and antibiofilm properties of AMPs. This study not only describes the mechanism of cell wall action and membrane-targeting action but also includes the transmembrane mechanism of intracellular action and intracellular action targets. It also discusses the dual mechanism of action reported by a large number of investigations. Antibiofilm and anti-inflammatory mechanisms were described based on the formation of biofilms and inflammation. This study aims to provide a comprehensive review of the multiple activities and coordination of AMPs in vivo, and to fully understand AMPs to realize their therapeutic prospect.
Collapse
Affiliation(s)
- Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Medical College, Kunming University of Science and Technology, Kunming 650500, China
- Correspondence: ; Tel.: +86-871-65939528
| |
Collapse
|
12
|
Nourbakhsh S, Yu L, Ha BY. Modeling the Protective Role of Bacterial Lipopolysaccharides against Membrane-Rupturing Peptides. J Phys Chem B 2021; 125:8839-8854. [PMID: 34319722 DOI: 10.1021/acs.jpcb.1c02330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipopolysaccharide (LPS) is a key surface component of Gram-negative bacteria, populating the outer layer of their outer membrane. A number of experimental studies highlight its protective role against harmful molecules such as antibiotics and antimicrobial peptides (AMPs). In this work, we present a theoretical model for describing the interaction between LPS and cationic antimicrobial peptides, which combines the following two key features. The polysaccharide part is viewed as forming a polymer brush, exerting an osmotic pressure on inclusions such as antimicrobial peptides. The charged groups on LPS (those in lipid A and the two Kdo groups in the inner core) form electrostatic binding sites for cationic AMPs or cations. Using the resulting model, we offer a quantitative picture of how the brush component enhances the protective role of LPS against magainin-like peptides, in the presence of divalent cations such as Mg2+. The LPS brush tends to diminish the interfacial binding of the peptides, at the lipid headgroup region, by about 30%. In the presence of 5 mM of Mg2+, the interfacial binding does not reach a threshold value for wild-type LPS, beyond which the LPS layer is ruptured, even though it does for LPS Re (the simplest form of LPS, lacking the brush part), as long as [AMP] ≤ 20 μM, where [AMP] is the concentration of AMPs. At a low concentration of Mg2+ (≈1 mM), however, a smaller [AMP] value (≳2 μM) is needed to reach the threshold coverage for wild-type LPS. Our results also suggest that the interfacial binding of peptides is insensitive to their possible weak interaction with the surrounding brush chains.
Collapse
Affiliation(s)
- Shokoofeh Nourbakhsh
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Liu Yu
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
13
|
Ilyas H, van der Plas MJA, Agnoletti M, Kumar S, Mandal AK, Atreya HS, Bhunia A, Malmsten M. Effect of PEGylation on Host Defense Peptide Complexation with Bacterial Lipopolysaccharide. Bioconjug Chem 2021; 32:1729-1741. [PMID: 34282895 DOI: 10.1021/acs.bioconjchem.1c00259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conjugation with poly(ethylene glycol) ("PEGylation") is a widely used approach for improving the therapeutic propensities of peptide and protein drugs through prolonging bloodstream circulation, reducing toxicity and immunogenicity, and improving proteolytic stability. In the present study, we investigate how PEGylation affects the interaction of host defense peptides (HDPs) with bacterial lipopolysaccharide (LPS) as well as HDP suppression of LPS-induced cell activation. In particular, we investigate the effects of PEGylation site for KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYTLR), a peptide displaying potent anti-inflammatory effects, primarily provided by its N-terminal part. PEGylation was performed either in the N-terminus, the C-terminus, or in both termini, keeping the total number of ethylene groups (n = 48) constant. Ellipsometry showed KYE28 to exhibit pronounced affinity to both LPS and its hydrophobic lipid A moiety. The PEGylated peptide variants displayed lower, but comparable, affinity for both LPS and lipid A, irrespective of the PEGylation site. Furthermore, both KYE28 and its PEGylated variants triggered LPS aggregate disruption. To investigate the peptide structure in such LPS complexes, a battery of nuclear magnetic resonance (NMR) methods was employed. From this, it was found that KYE28 formed a well-folded structure after LPS binding, stabilized by hydrophobic domains involving aromatic amino acids as well as by electrostatic interactions. In contrast, the PEGylated peptide variants displayed a less well-defined secondary structure, suggesting weaker LPS interactions in line with the ellipsometry findings. Nevertheless, the N-terminal part of KYE28 retained helix formation after PEGylation, irrespective of the conjugation site. For THP1-Xblue-CD14 reporter cells, KYE28 displayed potent suppression of LPS activation at simultaneously low cell toxicity. Interestingly, the PEGylated KYE28 variants displayed similar or improved suppression of LPS-induced cell activation, implying the underlying key role of the largely retained helical structure close to the N-terminus, irrespective of PEGylation site. Taken together, the results show that PEGylation of HDPs can be done insensitively to the conjugation site without losing anti-inflammatory effects, even for peptides inducing such effects through one of its termini.
Collapse
Affiliation(s)
- Humaira Ilyas
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Mariena J A van der Plas
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark.,Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Monica Agnoletti
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Sourav Kumar
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Hanudatta S Atreya
- NMR Research Center, Indian Institute of Science, Bangalore 560012, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark.,Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| |
Collapse
|
14
|
Al Adwani S, Padhi A, Karadottir H, Mörman C, Gräslund A, Végvári Á, Johansson J, Rising A, Agerberth B, Bergman P. Citrullination Alters the Antibacterial and Anti-Inflammatory Functions of the Host Defense Peptide Canine Cathelicidin K9CATH In Vitro. THE JOURNAL OF IMMUNOLOGY 2021; 207:974-984. [PMID: 34282000 DOI: 10.4049/jimmunol.2001374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/25/2021] [Indexed: 11/19/2022]
Abstract
K9CATH is the sole cathelicidin in canines (dogs) and exhibits broad antimicrobial activity against both Gram-positive and Gram-negative bacteria. K9CATH also modulates inflammatory responses and binds to LPS. These activities depend on the secondary structure and a net-positive charge of the peptide. Peptidylarginine deiminases (PAD) convert cationic peptidyl arginine to neutral citrulline. Thus, we hypothesized that citrullination is a biologically relevant modification of the peptide that would reduce the antibacterial and LPS-binding activities of K9CATH. Recombinant PAD2 and PAD4 citrullinated K9CATH to various extents and circular dichroism spectroscopy revealed that both native and citrullinated K9CATH exhibited similar α-helical secondary structures. Notably, citrullination of K9CATH reduced its bactericidal activity, abolished its ability to permeabilize the membrane of Gram-negative bacteria and reduced the hemolytic capacity. Electron microscopy showed that citrullinated K9CATH did not cause any morphological changes of Gram-negative bacteria, whereas the native peptide caused clear alterations of membrane integrity, concordant with a rapid bactericidal effect. Finally, citrullination of K9CATH impaired its capacity to inhibit LPS-mediated release of proinflammatory molecules from mouse and canine macrophages. In conclusion, citrullination attenuates the antibacterial and the LPS-binding properties of K9CATH, demonstrating the importance of a net positive charge for antibacterial lysis of bacteria and LPS-binding effects and suggests that citrullination is a means to regulate cathelicidin activities.
Collapse
Affiliation(s)
- Salma Al Adwani
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden.,Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoudh, Muscat, Oman
| | - Avinash Padhi
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden.,Dermatology and Venereology Section, Department of Medicine Solna, Karolinska Institutet, Huddinge, Sweden
| | - Harpa Karadottir
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden
| | - Cecilia Mörman
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ákos Végvári
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Huddinge, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden; and
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden; .,Infectious Disease Clinic, Immunodeficiency Unit, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
15
|
Zeth K, Sancho-Vaello E. Structural Plasticity of LL-37 Indicates Elaborate Functional Adaptation Mechanisms to Bacterial Target Structures. Int J Mol Sci 2021; 22:ijms22105200. [PMID: 34068993 PMCID: PMC8156758 DOI: 10.3390/ijms22105200] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
The human cathelicidin LL-37 is a multifunctional peptide of the human innate immune system. Among the various functions of LL-37, its antimicrobial activity is important in controlling the microorganisms of the human body. The target molecules of LL-37 in bacteria include membrane lipids, lipopolysaccharides (LPS), lipoteichoic acid (LTA), proteins, DNA and RNA. In this mini-review, we summarize the entity of LL-37 structural data determined over the last 15 years and specifically discuss features implicated in the interactions with lipid-like molecules. For this purpose, we discuss partial and full-length structures of LL-37 determined in the presence of membrane-mimicking detergents. This constantly growing structural database is now composed of monomers, dimers, tetramers, and fiber-like structures. The diversity of these structures underlines an unexpected plasticity and highlights the conformational and oligomeric adaptability of LL-37 necessary to target different molecular scaffolds. The recent co-crystal structures of LL-37 in complex with detergents are particularly useful to understand how these molecules mimic lipids and LPS to induce oligomerization and fibrillation. Defined detergent binding sites provide deep insights into a new class of peptide scaffolds, widening our view on the fascinating world of the LL-37 structural factotum. Together, the new structures in their evolutionary context allow for the assignment of functionally conserved residues in oligomerization and target interactions. Conserved phenylalanine and arginine residues primarily mediate those interactions with lipids and LPS. The interactions with macromolecules such as proteins or DNA remain largely unexplored and open a field for future studies aimed at structures of LL-37 complexes. These complexes will then allow for the structure-based rational design of LL-37-derived peptides with improved antibiotic properties.
Collapse
Affiliation(s)
- Kornelius Zeth
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
- Correspondence: (K.Z.); (E.S.-V.); Tel.: +45-604-666-29 (K.Z.)
| | - Enea Sancho-Vaello
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Correspondence: (K.Z.); (E.S.-V.); Tel.: +45-604-666-29 (K.Z.)
| |
Collapse
|
16
|
Cardoso P, Glossop H, Meikle TG, Aburto-Medina A, Conn CE, Sarojini V, Valery C. Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities. Biophys Rev 2021; 13:35-69. [PMID: 33495702 PMCID: PMC7817352 DOI: 10.1007/s12551-021-00784-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
The global public health threat of antimicrobial resistance has led the scientific community to highly engage into research on alternative strategies to the traditional small molecule therapeutics. Here, we review one of the most popular alternatives amongst basic and applied research scientists, synthetic antimicrobial peptides. The ease of peptide chemical synthesis combined with emerging engineering principles and potent broad-spectrum activity, including against multidrug-resistant strains, has motivated intense scientific focus on these compounds for the past decade. This global effort has resulted in significant advances in our understanding of peptide antimicrobial activity at the molecular scale. Recent evidence of molecular targets other than the microbial lipid membrane, and efforts towards consensus antimicrobial peptide motifs, have supported the rise of molecular engineering approaches and design tools, including machine learning. Beyond molecular concepts, supramolecular chemistry has been lately added to the debate; and helped unravel the impact of peptide self-assembly on activity, including on biofilms and secondary targets, while providing new directions in pharmaceutical formulation through taking advantage of peptide self-assembled nanostructures. We argue that these basic research advances constitute a solid basis for promising industry translation of rationally designed synthetic peptide antimicrobials, not only as novel drugs against multidrug-resistant strains but also as components of emerging antimicrobial biomaterials. This perspective is supported by recent developments of innovative peptide-based and peptide-carrier nanobiomaterials that we also review.
Collapse
Affiliation(s)
- Priscila Cardoso
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- School of Science, RMIT University, Melbourne, Australia
| | - Hugh Glossop
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | - Celine Valery
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
17
|
Krishnan M, Choi J, Choi S, Kim Y. Anti-Endotoxin 9-Meric Peptide with Therapeutic Potential for the Treatment of Endotoxemia. J Microbiol Biotechnol 2021; 31:25-32. [PMID: 33263333 PMCID: PMC9705858 DOI: 10.4014/jmb.2011.11011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Inflammatory reactions activated by lipopolysaccharide (LPS) of gram-negative bacteria can lead to severe septic shock. With the recent emergence of multidrug-resistant gram-negative bacteria and a lack of efficient ways to treat resulting infections, there is a need to develop novel anti-endotoxin agents. Antimicrobial peptides have been noticed as potential therapeutic molecules for bacterial infection and as candidates for new antibiotic drugs. We previously designed the 9-meric antimicrobial peptide Pro9-3 and it showed high antimicrobial activity against gram-negative bacteria. Here, to further examine its potency as an anti-endotoxin agent, we examined the antiendotoxin activities of Pro9-3 and elucidated its mechanism of action. We performed a dye-leakage experiment and BODIPY-TR cadaverine and limulus amebocyte lysate assays for Pro9-3 as well as its lysine-substituted analogue and their enantiomers. The results confirmed that Pro9-3 targets the bacterial membrane and the arginine residues play key roles in its antimicrobial activity. Pro9-3 showed excellent LPS-neutralizing activity and LPS-binding properties, which were superior to those of other peptides. Saturation transfer difference-nuclear magnetic resonance experiments to explore the interaction between LPS and Pro9-3 revealed that Trp3 and Tlr7 in Pro9-3 are critical for attracting Pro9-3 to the LPS in the gram-negative bacterial membrane. Moreover, the anti-septic effect of Pro9-3 in vivo was investigated using an LPS-induced endotoxemia mouse model, demonstrating its dual activities: antibacterial activity against gram-negative bacteria and immunosuppressive effect preventing LPS-induced endotoxemia. Collectively, these results confirmed the therapeutic potential of Pro9-3 against infection of gram-negative bacteria.
Collapse
Affiliation(s)
- Manigandan Krishnan
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Joonhyeok Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sungjae Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-450-3421 Fax: +82-2-447-5987 E-mail:
| |
Collapse
|
18
|
Cieśluk M, Deptuła P, Piktel E, Fiedoruk K, Suprewicz Ł, Paprocka P, Kot P, Pogoda K, Bucki R. Physics Comes to the Aid of Medicine-Clinically-Relevant Microorganisms through the Eyes of Atomic Force Microscope. Pathogens 2020; 9:pathogens9110969. [PMID: 33233696 PMCID: PMC7699805 DOI: 10.3390/pathogens9110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/01/2022] Open
Abstract
Despite the hope that was raised with the implementation of antibiotics to the treatment of infections in medical practice, the initial enthusiasm has substantially faded due to increasing drug resistance in pathogenic microorganisms. Therefore, there is a need for novel analytical and diagnostic methods in order to extend our knowledge regarding the mode of action of the conventional and novel antimicrobial agents from a perspective of single microbial cells as well as their communities growing in infected sites, i.e., biofilms. In recent years, atomic force microscopy (AFM) has been mostly used to study different aspects of the pathophysiology of noninfectious conditions with attempts to characterize morphological and rheological properties of tissues, individual mammalian cells as well as their organelles and extracellular matrix, and cells’ mechanical changes upon exposure to different stimuli. At the same time, an ever-growing number of studies have demonstrated AFM as a valuable approach in studying microorganisms in regard to changes in their morphology and nanomechanical properties, e.g., stiffness in response to antimicrobial treatment or interaction with a substrate as well as the mechanisms behind their virulence. This review summarizes recent developments and the authors’ point of view on AFM-based evaluation of microorganisms’ response to applied antimicrobial treatment within a group of selected bacteria, fungi, and viruses. The AFM potential in development of modern diagnostic and therapeutic methods for combating of infections caused by drug-resistant bacterial strains is also discussed.
Collapse
Affiliation(s)
- Mateusz Cieśluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (P.P.); (P.K.)
| | - Patrycja Kot
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (P.P.); (P.K.)
| | - Katarzyna Pogoda
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
- Correspondence:
| |
Collapse
|
19
|
Zamani E, Johnson TJ, Chatterjee S, Immethun C, Sarella A, Saha R, Dishari SK. Cationic π-Conjugated Polyelectrolyte Shows Antimicrobial Activity by Causing Lipid Loss and Lowering Elastic Modulus of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49346-49361. [PMID: 33089982 PMCID: PMC8926324 DOI: 10.1021/acsami.0c12038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cationic, π-conjugated oligo-/polyelectrolytes (CCOEs/CCPEs) have shown great potential as antimicrobial materials to fight against antibiotic resistance. In this work, we treated wild-type and ampicillin-resistant (amp-resistant) Escherichia coli (E. coli) with a promising cationic, π-conjugated polyelectrolyte (P1) with a phenylene-based backbone and investigated the resulting morphological, mechanical, and compositional changes of the outer membrane of bacteria in great detail. The cationic quaternary amine groups of P1 led to electrostatic interactions with negatively charged moieties within the outer membrane of bacteria. Using atomic force microscopy (AFM), high-resolution transmission electron microscopy (TEM), we showed that due to this treatment, the bacterial outer membrane became rougher, decreased in stiffness/elastic modulus (AFM nanoindentation), formed blebs, and released vesicles near the cells. These evidences, in addition to increased staining of the P1-treated cell membrane by lipophilic dye Nile Red (confocal laser scanning microscopy (CLSM)), suggested loosening/disruption of packing of the outer cell envelope and release and exposure of lipid-based components. Lipidomics and fatty acid analysis confirmed a significant loss of phosphate-based outer membrane lipids and fatty acids, some of which are critically needed to maintain cell wall integrity and mechanical strength. Lipidomics and UV-vis analysis also confirmed that the extracellular vesicles released upon treatment (AFM) are composed of lipids and cationic P1. Such surface alterations (vesicle/bleb formation) and release of lipids/fatty acids upon treatment were effective enough to inhibit further growth of E. coli cells without completely disintegrating the cells and have been known as a defense mechanism of the cells against cationic antimicrobial agents.
Collapse
Affiliation(s)
- Ehsan Zamani
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Tyler J. Johnson
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Shyambo Chatterjee
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Cheryl Immethun
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Anandakumar Sarella
- Nebraska Center for Materials and Nanoscience, Voelte-Keegan Nanoscience Research Center, University of Nebraska-Lincoln, Lincoln, NE 68588-0298, United States
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
20
|
Sancho-Vaello E, Gil-Carton D, François P, Bonetti EJ, Kreir M, Pothula KR, Kleinekathöfer U, Zeth K. The structure of the antimicrobial human cathelicidin LL-37 shows oligomerization and channel formation in the presence of membrane mimics. Sci Rep 2020; 10:17356. [PMID: 33060695 PMCID: PMC7562864 DOI: 10.1038/s41598-020-74401-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/26/2020] [Indexed: 12/22/2022] Open
Abstract
The human cathelicidin LL-37 serves a critical role in the innate immune system defending bacterial infections. LL-37 can interact with molecules of the cell wall and perforate cytoplasmic membranes resulting in bacterial cell death. To test the interactions of LL-37 and bacterial cell wall components we crystallized LL-37 in the presence of detergents and obtained the structure of a narrow tetrameric channel with a strongly charged core. The formation of a tetramer was further studied by cross-linking in the presence of detergents and lipids. Using planar lipid membranes a small but defined conductivity of this channel could be demonstrated. Molecular dynamic simulations underline the stability of this channel in membranes and demonstrate pathways for the passage of water molecules. Time lapse studies of E. coli cells treated with LL-37 show membrane discontinuities in the outer membrane followed by cell wall damage and cell death. Collectively, our results open a venue to the understanding of a novel AMP killing mechanism and allows the rational design of LL-37 derivatives with enhanced bactericidal activity.
Collapse
Affiliation(s)
- Enea Sancho-Vaello
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, Spain.,Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - David Gil-Carton
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia Edificio 800, 48160, Derio, Spain
| | - Patrice François
- Genomic Research Laboratory, Department of Medical Specialities, Geneva University Hospitals, University of Geneva, Genève, Switzerland
| | - Eve-Julie Bonetti
- Genomic Research Laboratory, Department of Medical Specialities, Geneva University Hospitals, University of Geneva, Genève, Switzerland
| | - Mohamed Kreir
- Nanion Technologies GmbH, Gabrielenstraße 9, 80636, Munich, Germany.,Janssen Pharmaceutica NV, Janssen R&D, Nonclinical Safety, Beerse, Belgium
| | - Karunakar Reddy Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.
| |
Collapse
|
21
|
Kumar SD, Shin SY. Antimicrobial and anti-inflammatory activities of short dodecapeptides derived from duck cathelicidin: Plausible mechanism of bactericidal action and endotoxin neutralization. Eur J Med Chem 2020; 204:112580. [DOI: 10.1016/j.ejmech.2020.112580] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 01/04/2023]
|
22
|
Yang L, Sun Y, Xu Y, Hang B, Wang L, Zhen K, Hu B, Chen Y, Xia X, Hu J. Antibacterial Peptide BSN-37 Kills Extra- and Intra-Cellular Salmonella enterica Serovar Typhimurium by a Nonlytic Mode of Action. Front Microbiol 2020; 11:174. [PMID: 32117178 PMCID: PMC7019029 DOI: 10.3389/fmicb.2020.00174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/24/2020] [Indexed: 01/08/2023] Open
Abstract
The increasing rates of resistance to traditional anti-Salmonella agents have made the treatment of invasive salmonellosis more problematic, which necessitates the search for new antimicrobial compounds. In this study, the action mode of BSN-37, a novel antibacterial peptide (AMP) from bovine spleen neutrophils, was investigated against Salmonella enterica serovar Typhimurium (S. Typhimurium). Minimum inhibitory concentrations (MICs) and time-kill kinetics of BSN-37 were determined. The cell membrane changes of S. Typhimurium CVCC541 (ST) treated with BSN-37 were investigated by testing the fluorescence intensity of membrane probes and the release of cytoplasmic β-galactosidase activity. Likewise, cell morphological and ultrastructural changes were also observed using scanning and transmission electron microscopes. Furthermore, the cytotoxicity of BSN-37 was detected by a CCK-8 kit and real-time cell assay. The proliferation inhibition of BSN-37 against intracellular S. Typhimurium was performed in Madin-Darby canine kidney (MDCK) cells. The results demonstrated that BSN-37 exhibited strong antibacterial activity against ST (MICs, 16.67 μg/ml), which was not remarkably affected by the serum salts at a physiological concentration. However, the presence of CaCl2 led to an increase in MIC of BSN-37 by about 4-fold compared to that of ST. BSN-37 at the concentration of 100 μg/ml could completely kill ST after co-incubation for 6 h. Likewise, BSN-37 at different concentrations (50, 100, and 200 μg/ml) could increase the outer membrane permeability of ST but not impair its inner membrane integrity. Moreover, no broken and ruptured cells were found in the figures of scanning and transmission electron microscopes. These results demonstrate that BSN-37 exerts its antibacterial activity against S. Typhimurium by a non-lytic mode of action. Importantly, BSN-37 had no toxicity to the tested eukaryotic cells, even at a concentration of 800 μg/ml. BSN-37 could significantly inhibit the proliferation of intracellular S. Typhimurium.
Collapse
Affiliation(s)
- Lei Yang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Bolin Hang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Ke Zhen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Bing Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanan Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
23
|
Dong W, Luo X, Sun Y, Li Y, Wang C, Guan Y, Shang D. Binding Properties of DNA and Antimicrobial Peptide Chensinin-1b Containing Lipophilic Alkyl Tails. J Fluoresc 2020; 30:131-142. [DOI: 10.1007/s10895-019-02478-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/26/2019] [Indexed: 11/29/2022]
|
24
|
Martynowycz MW, Rice A, Andreev K, Nobre TM, Kuzmenko I, Wereszczynski J, Gidalevitz D. Salmonella Membrane Structural Remodeling Increases Resistance to Antimicrobial Peptide LL-37. ACS Infect Dis 2019; 5:1214-1222. [PMID: 31083918 DOI: 10.1021/acsinfecdis.9b00066] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gram-negative bacteria are protected from their environment by an outer membrane that is primarily composed of lipopolysaccharides (LPSs). Under stress, pathogenic serotypes of Salmonella enterica remodel their LPSs through the PhoPQ two-component regulatory system that increases resistance to both conventional antibiotics and antimicrobial peptides (AMPs). Acquired resistance to AMPs is contrary to the established narrative that AMPs circumvent bacterial resistance by targeting the general chemical properties of membrane lipids. However, the specific mechanisms underlying AMP resistance remain elusive. Here we report a 2-fold increase in bacteriostatic concentrations of human AMP LL-37 for S. enterica with modified LPSs. LPSs with and without chemical modifications were isolated and investigated by Langmuir films coupled with grazing-incidence X-ray diffraction (GIXD) and specular X-ray reflectivity (XR). The initial interactions between LL-37 and LPS bilayers were probed using all-atom molecular dynamics simulations. These simulations suggest that initial association is nonspecific to the type of LPS and governed by hydrogen bonding to the LPS outer carbohydrates. GIXD experiments indicate that the interactions of the peptide with monolayers reduce the number of crystalline domains but greatly increase the typical domain size in both LPS isoforms. Electron densities derived from XR experiments corroborate the bacteriostatic values found in vitro and indicate that peptide intercalation is reduced by LPS modification. We hypothesize that defects at the liquid-ordered boundary facilitate LL-37 intercalation into the outer membrane, whereas PhoPQ-mediated LPS modification protects against this process by having innately increased crystallinity. Since induced ordering has been observed with other AMPs and drugs, LPS modification may represent a general mechanism by which Gram-negative bacteria protect against host innate immunity.
Collapse
Affiliation(s)
- Michael W. Martynowycz
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 10 West 35th Street, Chicago, Illinois 60616, United States
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Building 401, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Amy Rice
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 10 West 35th Street, Chicago, Illinois 60616, United States
| | - Konstantin Andreev
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 10 West 35th Street, Chicago, Illinois 60616, United States
| | - Thatyane M. Nobre
- Departamento de Fisica e Ciecias dos Materiais, Instituto de Fisica de São Carlos, 400 Parque Arnold Schimidt, 13566-590 São Carlos-SP, Brazil
| | - Ivan Kuzmenko
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Building 401, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 10 West 35th Street, Chicago, Illinois 60616, United States
| | - David Gidalevitz
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 10 West 35th Street, Chicago, Illinois 60616, United States
| |
Collapse
|
25
|
Lee MT, Hung WC, Huang HW. Rhombohedral trap for studying molecular oligomerization in membranes: application to daptomycin. SOFT MATTER 2019; 15:4326-4333. [PMID: 31070654 PMCID: PMC6541503 DOI: 10.1039/c9sm00323a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A persistent problem in the studies of membrane-active peptides, including antimicrobial peptides and pathogenic amyloidal peptides, is the lack of methods for investigating their molecular configurations in membranes. These peptides spontaneously bind to membranes from solutions, and often form oligomers that induce changes of membrane permeability. For antimicrobials, such actions appear to relate to the antimicrobial mechanisms, but for amyloidal peptides, the oligomerization has been linked to neurodegenerative diseases. In many cases, no further understanding of such oligomerization has been achieved due to the lack of structural information. In this article, we will demonstrate a method of trapping such peptide oligomers in a rhombohedral (R) phase of lipid so that the oligomers can be subjected to 3D diffraction analysis. The conditions for forming the R phase and the electron density distribution in the rhombohedral unit cell provide information about peptide-lipid interactions and the molecular size of the trapped oligomer. Such information cannot be obtained from membranes in the planar configuration. For illustration, we apply this method to daptomycin, an FDA-approved antibiotic that attacks membranes containing phosphatidylglycerol, in the presence of calcium ions. We have successfully used the brominated phosphatidylglycerol to perform bromine-atom anomalous diffraction in the rhombohedral phase containing daptomycin and calcium ions. The preliminary results apparently exhibit diffraction data related to daptomycin oligomers. We believe that this method will also be applicable to the difficult problems related to amyloidal peptides, such as amyloid beta of Alzheimer's disease.
Collapse
Affiliation(s)
- Ming-Tao Lee
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
- Department of Physics, National Central University, Jhongli, Taiwan
| | - Wei-Chin Hung
- Department of Physics, R. O. C. Military Academy, Fengshan, Kaohsiung, Taiwan
| | - Huey W. Huang
- Department of Physics and Astronomy, Rice University, Houston TX, USA
- Corresponding address:
| |
Collapse
|
26
|
Studies on the interactions of neutral Galleria mellonella cecropin D with living bacterial cells. Amino Acids 2018; 51:175-191. [DOI: 10.1007/s00726-018-2641-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/25/2018] [Indexed: 01/28/2023]
|
27
|
Wang J, Ma K, Ruan M, Wang Y, Li Y, Fu YV, Song Y, Sun H, Wang J. A novel cecropin B-derived peptide with antibacterial and potential anti-inflammatory properties. PeerJ 2018; 6:e5369. [PMID: 30065898 PMCID: PMC6064198 DOI: 10.7717/peerj.5369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023] Open
Abstract
Cecropins, originally found in insects, are a group of cationic antimicrobial peptides. Most cecropins have an amphipathic N-terminal segment and a largely hydrophobic C-terminal segment, and normally form a helix-hinge-helix structure. In this study, we developed the novel 32-residue cecropin-like peptide cecropin DH by deleting the hinge region (Alanine-Glycine-Proline) of cecropin B isolated from Chinese oak silk moth, Antheraea pernyi. Cecropin DH possesses effective antibacterial activity, particularly against Gram-negative bacteria, with very low cytotoxicity against mammalian cells. Interactions between cecropin DH and the highly anionic lipopolysaccharide (LPS) component of the Gram-negative bacterial outer membrane indicate that it is capable of dissociating LPS micelles and disrupting LPS aggregates into smaller assemblies, which may play a vital role in its antimicrobial activity. Using LPS-stimulated mouse macrophage RAW264.7 cells, we found that cecropin DH exerted higher potential anti-inflammatory activity than cecropin B, as demonstrated by the inhibition of pro-inflammatory cytokines nitric oxide production and secretion of tumor necrosis factor-α. In conclusion, cecropin DH has potential as a therapeutic agent for both antibacterial and anti-inflammatory applications.
Collapse
Affiliation(s)
- Jiarong Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China
| | - Kun Ma
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China
| | - Maosen Ruan
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China
| | - Yujuan Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China
| | - Yan Li
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China.,The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yu V Fu
- State Key Laboratory of Microbial Resources, Institution of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yonghong Song
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Hongbin Sun
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China.,School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China.,Institute of Physical Science and information Technology, Anhui University, Hefei, China
| |
Collapse
|
28
|
Dutta K, Nag K, Booth V, Smyth E, Dueck H, Fritzen-Garcia M, Ghosh C, Panda AK. Paradoxical Bactericidal Effects of Hydrophobic Lung Surfactant Proteins and Their Peptide Mimics Using Liposome Molecular Trojan. J Oleo Sci 2018; 67:1043-1057. [PMID: 30012899 DOI: 10.5650/jos.ess18026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lung surfactant, besides alveolar stability, also provides defence against pathogens by surfactant proteins (SP), SP-A and SP-D. The hydrophobic proteins SP-B and SP-C enhance surface activity. An unusual and paradoxical effect of bovine LS and synthetic model LS with SP-B/-C was bactericidal to Staphylococcus aureus and Escherichia coli. Bacterial proliferation were investigated with bovine lung surfactant extract (BLES), dipalmitoylphosphatdylcholine, palmitooleylglycerol, in combination with SP-B/-C using standard microbiological colony forming unit (CFU) counts and structural imaging. BLES and other surfactant-SP-B/-C mixtures inhibit bacterial growth in the concentration range of 0 -7.5 mg/mL, at > 10 mg/mL paradoxical growth of both the bacterial species suggest antibiotic resistance. The lipid only LS have no effect on bacterial proliferation. Smaller peptide mimics of SP-B or SP-B1-25, were less efficient than SP-Cff. Ultra structural studies of the bacterial CFU using electron and atomic force microscopy suggest some membrane damage of S. aereus at inhibitory concentration of BLES, and some structural alteration of E. coli at dividing zones, suggesting utilization and incorporation of surfactant lipid species by both bacteria. The results depicted from in vitro studies are also in agreement with protein-protein interactions obtained from PatchDock, FireDock and ClasPro algorithm. The MD-simulation decipher a small range fluctuation of gyration radius of the LS proteins and their peptide mimics. The studies have alarming implications in the use of high dosages (100 mg/mL/kg body weight) of exogenous surfactant for treatment of respiratory distress syndrome, genetic knock-out abnormalities associated with these proteins, and the novel roles played by SP-B/C as bactericidal agents.
Collapse
Affiliation(s)
- Kunal Dutta
- Microbiology and Immunology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University.,Department of Chemistry and Chemical Technology, Vidyasagar University
| | - Kaushik Nag
- Department of Biochemistry, Memorial University of Newfoundland
| | - Valerie Booth
- Department of Biochemistry, Memorial University of Newfoundland
| | - Erin Smyth
- Department of Biochemistry, Memorial University of Newfoundland
| | - Helen Dueck
- Department of Biochemistry, Memorial University of Newfoundland
| | | | - Chandradipa Ghosh
- Microbiology and Immunology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University
| | - Amiya Kumar Panda
- Department of Chemistry and Chemical Technology, Vidyasagar University
| |
Collapse
|
29
|
Herman A. Antimicrobial Ingredients as Preservative Booster and Components of Self-Preserving Cosmetic Products. Curr Microbiol 2018; 76:744-754. [PMID: 29651551 DOI: 10.1007/s00284-018-1492-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/10/2018] [Indexed: 01/24/2023]
Abstract
This review reports cosmetic ingredients with antimicrobial activity including synthetic and natural (plant and microbial) origin as alternative for preservatives used in cosmetics as well described mechanism of their action.
Collapse
Affiliation(s)
- Anna Herman
- Faculty of Cosmetology, The Academy of Cosmetics and Health Care, Podwale 13 Street, 00-252, Warsaw, Poland.
| |
Collapse
|
30
|
Jin L, Wang Y, Xu N, Wang D, Liu X, Peng R, Jiang C, Li X. Expression and activity analysis of β Gallinacin-3 in Arabidopsis. Protein Expr Purif 2018; 144:1-4. [DOI: 10.1016/j.pep.2017.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
|
31
|
Hicks R. Preparation of Membrane Models of Gram-Negative Bacteria and Their Interaction with Antimicrobial Peptides Studied by CD and NMR. Methods Mol Biol 2017; 1548:231-245. [PMID: 28013508 DOI: 10.1007/978-1-4939-6737-7_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The antibiotic activity of antimicrobial peptides is generally derived via some type of disruption of the cell membrane(s). The most common models used to mimic the properties of bacterial membranes consist of mixtures of various zwitterionic and anionic phospholipids. This approach works reasonably well for Gram-positive bacteria. However, since the membranes of Gram-negative bacteria contain lipopolysaccharides, as well as zwitterionic and anionic phospholipids, a more complex model is required to simulate the outer membrane of Gram-negative bacteria. Herein we present a protocol for the preparation of models of the outer membranes of the Gram-negative bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa. This protocol can be used to prepare models of other Gram-negative bacteria provided the strain-specific lipopolysaccharides are available.
Collapse
Affiliation(s)
- Rickey Hicks
- Department of Chemistry and Physics, College of Science and Mathematics, Augusta University, 1120 5th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
32
|
Andrä J, Gutsmann T, Garidel P, Brandenburg K. Invited review: Mechanisms of endotoxin neutralization by synthetic cationic compounds. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120050201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A basic challenge in the treatment of septic patients in critical care units is the release of bacterial pathogenicity factors such as lipopolysaccharide (LPS, endotoxin) from the cell envelope of Gram-negative bacteria due to killing by antibiotics. LPS aggregates may interact with serum and membrane proteins such as LBP (lipopolysaccharide-binding protein) and CD14 leading to the observed strong reaction of the immune system. Thus, an effective treatment of patients infected by Gram-negative bacteria must comprise beside bacterial killing the neutralization of endotoxins. Here, data are summarized for synthetic compounds indicating the stepwise development to very effective LPS-neutralizing agents. These data include synthetic peptides, based on the endotoxin-binding domains of natural binding proteins such as lactoferrin, Limulus anti-LPS factor, NK-lysin, and cathelicidins or based on LPS sequestering polyamines. Many of these compounds could be shown to act not only in vitro, but also in vivo (e.g . in animal models of sepsis), and might be useful in future clinical trials and in sepsis therapy.
Collapse
Affiliation(s)
- Jörg Andrä
- Forschungszentrum Borstel, Biophysics Division, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany
| | - Thomas Gutsmann
- Forschungszentrum Borstel, Biophysics Division, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany
| | - Patrick Garidel
- Institut für Physikalische Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Klaus Brandenburg
- Forschungszentrum Borstel, Biophysics Division, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany,
| |
Collapse
|
33
|
Deslouches B, Hasek ML, Craigo JK, Steckbeck JD, Montelaro RC. Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine. J Med Microbiol 2016; 65:554-565. [PMID: 27046192 DOI: 10.1099/jmm.0.000258] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We previously reported a series of de novo engineered cationic antibiotic peptides (eCAPs) consisting exclusively of arginine and tryptophan (WR) that display potent activity against diverse multidrug-resistant (MDR) bacterial strains. In this study, we sought to examine the influence of arginine compared to lysine on antibacterial properties by direct comparison of the WR peptides (8-18 residues) with a parallel series of engineered peptides containing only lysine and tryptophan. WR and WK series were compared for antibacterial activity by bacterial killing and growth inhibition assays and for mechanism of peptide-bacteria interactions by surface plasmon resonance and flow cytometry. Mammalian cytotoxicity was also assessed by flow cytometry, haemolytic and tetrazolium-based assays. The shortest arginine-containing peptides (8 and 10 mers) displayed a statistically significant increase in activity compared to the analogous lysine-containing peptides. The WR and WK peptides achieved maximum antibacterial activity at the 12-mer peptide (WK12 or WR12). Further examination of antibacterial mechanisms of the optimally active 12-mer peptides using surface plasmon resonance and flow cytometry demonstrates stronger interactions with Pseudomonasaeruginosa, greater membrane permeabilizing activity, and lower inhibitory effects of divalent cations on activity and membrane permeabilization properties of WR12 compared to WK12 (P < 0.05). Importantly, WK12 and WR12 displayed similar negligible haemolytic and cytotoxic effects at peptide concentrations up to ten times the MIC or 20 times the minimum bactericidal concentration. Thus, arginine, compared to lysine, can indeed yield enhanced antibacterial activity to minimize the required length to achieve functional antimicrobial peptides.
Collapse
Affiliation(s)
- Berthony Deslouches
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary L Hasek
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jodi K Craigo
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan D Steckbeck
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronald C Montelaro
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
34
|
The human cathelicidin LL-37 — A pore-forming antibacterial peptide and host-cell modulator. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:546-66. [DOI: 10.1016/j.bbamem.2015.11.003] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 01/12/2023]
|
35
|
Lin MF, Tsai PW, Chen JY, Lin YY, Lan CY. OmpA Binding Mediates the Effect of Antimicrobial Peptide LL-37 on Acinetobacter baumannii. PLoS One 2015; 10:e0141107. [PMID: 26484669 PMCID: PMC4618850 DOI: 10.1371/journal.pone.0141107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023] Open
Abstract
Multidrug-resistant Acinetobacter baumannii has recently emerged as an important pathogen in nosocomial infection; thus, effective antimicrobial regimens are urgently needed. Human antimicrobial peptides (AMPs) exhibit multiple functions and antimicrobial activities against bacteria and fungi and are proposed to be potential adjuvant therapeutic agents. This study examined the effect of the human cathelicidin-derived AMP LL-37 on A. baumannii and revealed the underlying mode of action. We found that LL-37 killed A. baumannii efficiently and reduced cell motility and adhesion. The bacteria-killing effect of LL-37 on A. baumannii was more efficient compared to other AMPs, including human ß–defensin 3 (hBD3) and histatin 5 (Hst5). Both flow cytometric analysis and immunofluorescence staining showed that LL-37 bound to A. baumannii cells. Moreover, far-western analysis demonstrated that LL-37 could bind to the A. baumannii OmpA (AbOmpA) protein. An ELISA assay indicated that biotin-labelled LL-37 (BA-LL37) bound to the AbOmpA74-84 peptide in a dose-dependent manner. Using BA-LL37 as a probe, the ~38 kDa OmpA signal was detected in the wild type but the ompA deletion strain did not show the protein, thereby validating the interaction. Finally, we found that the ompA deletion mutant was more sensitive to LL-37 and decreased cell adhesion by 32% compared to the wild type. However, ompA deletion mutant showed a greatly reduced adhesion defect after LL-37 treatment compared to the wild strain. Taken together, this study provides evidence that LL-37 affects A. baumannii through OmpA binding.
Collapse
Affiliation(s)
- Ming-Feng Lin
- Department of Medicine, National Taiwan University Hospital Chu-Tung Branch, Hsin-Chu County, Taiwan
| | - Pei-Wen Tsai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsin-Chu City, Taiwan
| | - Jeng-Yi Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsin-Chu City, Taiwan
| | - Yun-You Lin
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsin-Chu City, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsin-Chu City, Taiwan
- Department of Life Science, National Tsing Hua University, Hsin-Chu City, Taiwan
- * E-mail:
| |
Collapse
|
36
|
Malgieri G, Avitabile C, Palmieri M, D’Andrea LD, Isernia C, Romanelli A, Fattorusso R. Structural basis of a temporin 1b analogue antimicrobial activity against Gram negative bacteria determined by CD and NMR techniques in cellular environment. ACS Chem Biol 2015; 10:965-9. [PMID: 25622128 DOI: 10.1021/cb501057d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We here report an original approach to elucidate mechanisms of action of antimicrobial peptides and derive crucial structural requirements for the design of novel therapeutic agents. The high resolution structure of TB_KKG6A, an antimicrobial peptide designed to amplify the spectrum of action of Temporin B, bound to E. coli is here determined by means of CD and NMR methodologies. We have also defined, through STD analysis, the residues in closer proximity to the bacterial membrane.
Collapse
Affiliation(s)
- Gaetano Malgieri
- Dipartimento
di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Concetta Avitabile
- Diagnostica e Farmaceutiche Molecolari Scarl, Via Mezzocannone 16,80134 Napoli, Italy
| | - Maddalena Palmieri
- Dipartimento
di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | | | - Carla Isernia
- Dipartimento
di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alessandra Romanelli
- Dipartimento
di Farmacia, Università di Napoli Federico II, Via Mezzocannone
16, 80134 Napoli, Italy
| | - Roberto Fattorusso
- Dipartimento
di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
37
|
Spectral and biological evaluation of a synthetic antimicrobial peptide derived from 1-aminocyclohexane carboxylic acid. Bioorg Med Chem 2015; 23:1341-7. [DOI: 10.1016/j.bmc.2015.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/04/2015] [Accepted: 01/15/2015] [Indexed: 11/21/2022]
|
38
|
Synthetic Antimicrobial Peptides Exhibit Two Different Binding Mechanisms to the Lipopolysaccharides Isolated from Pseudomonas aeruginosa and Klebsiella pneumoniae. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2014; 2014:809283. [PMID: 25610647 PMCID: PMC4295349 DOI: 10.1155/2014/809283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 01/03/2023]
Abstract
Circular dichroism and 1H NMR were used to investigate the interactions of a
series of synthetic antimicrobial peptides (AMPs) with lipopolysaccharides (LPS) isolated from
Pseudomonas aeruginosa and Klebsiella pneumoniae. Previous CD studies with AMPs
containing only three Tic-Oic dipeptide units do not exhibit helical characteristics upon
interacting with small unilamellar vesicles (SUVs) consisting of LPS. Increasing the number of
Tic-Oic dipeptide units to six resulted in five analogues with CD spectra that exhibited helical
characteristics on binding to LPS SUVs. Spectroscopic and in vitro inhibitory data suggest that
there are two possible helical conformations resulting from two different AMP-LPS binding
mechanisms. Mechanism one involves a helical binding conformation where the AMP binds
LPS very strongly and is not efficiently transported across the LPS bilayer resulting in the loss of
inhibitory activity. Mechanism two involves a helical binding conformation where the AMP
binds LPS very loosely and is efficiently transported across the LPS bilayer resulting in an
increase in inhibitory activity. Mechanism three involves a nonhelical binding conformation
where the AMP binds LPS very loosely and is efficiently transported across the LPS bilayer
resulting in an increase in inhibitory activity.
Collapse
|
39
|
Lam NH, Ha BY. Surface-lattice model describes electrostatic interactions of ions and polycations with bacterial lipopolysaccharides: ion valence and polycation's excluded area. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13631-13640. [PMID: 25341067 DOI: 10.1021/la502905m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The bacterial outer membrane (OM) is compositionally distinct and contains polyanionic lipopolysaccharide (LPS) in the outer layer as a main component. It has long been known that the cation-binding ability of LPS is one of the key determinants of OM permeability. Here we present a two-dimensional lattice model of the outer LPS layer, in which the lattice is decorated with bound ions or polycations; while small ions can occupy single binding sites, polycations, modeled as (charged) rods, compete for binding sites through their area exclusion, a consequence of their multisite binding. Our results suggest that in the parameter space of biological relevance, the effect of area exclusion is well-reflected in the competitive binding of Mg(2+) and polycations onto LPS; by reducing the apparent binding affinity of polycations, it enhances Mg(2+) binding. Despite simplifications, our results are generally consistent with the common view of Mg(2+) as OM-stabilizing and polycations as OM-perturbing agents. They will be useful for understanding how cationic antimicrobials can gain entry into the cytoplasmic membrane. We also outline a few strategies for extending our model toward a more realistic modeling of OM permeability.
Collapse
Affiliation(s)
- Norman H Lam
- Department of Physics and Astronomy, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
40
|
Lam NH, Ma Z, Ha BY. Electrostatic modification of the lipopolysaccharide layer: competing effects of divalent cations and polycationic or polyanionic molecules. SOFT MATTER 2014; 10:7528-7544. [PMID: 25109281 DOI: 10.1039/c4sm01262c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The outer membrane (OM) of Gram-negative bacteria is asymmetrical with its outer layer mainly populated with polyanionic lipopolysaccharide (LPS). Much empirical evidence shows how OM permeability can be altered electrostatically: if Mg(2+) or divalent cations are required for the integrity of the OM, antimicrobial peptides (AMPs) or ethylene-diaminetetraacetic acid (EDTA) can permeabilize it. Using a coarse-grained model of the outer LPS layer, in which the layer is viewed as forming discrete binding sites for opposite charges, we study how the LPS layer can be modified electrostatically. In particular, we capture systematically ion-pairing and lateral-charge correlations on the LPS layer. Our results offer a clear picture of (competitive) ion binding onto the LPS layer and its impact on the lateral packing of LPS molecules, similarly to what has been seen in experiments: divalent cations such as Mg(2+) not only neutralize the LPS layer but also make its planar charge distribution heterogeneous, thus tightening the LPS layer; on the other hand, polycationic AMPs or polyanionic EDTA can displace Mg(2+) ions from the LPS layer and counteract the favorable effect of Mg(2+). Our result will be useful for clarifying to what extent OM permeability can be modified electrostatically.
Collapse
Affiliation(s)
- Norman H Lam
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | | | |
Collapse
|
41
|
Mastore M, Binda Rossetti S, Giovannardi S, Scarì G, Brivio MF. Inducible factors with antimicrobial activity after immune challenge in the haemolymph of Red Palm Weevil (Insecta). Innate Immun 2014; 21:392-405. [PMID: 25114180 DOI: 10.1177/1753425914542446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/11/2014] [Indexed: 01/18/2023] Open
Abstract
Insects are capable of innate immune responses elicited after microbial infection. In this process, the receptor-mediated recognition of foreign bodies and the subsequent activation of immunocompetent cells lead to the synthesis ex novo of a peptide pool with antimicrobial activity. We investigated the inducible immune response of a coleopteran, Rhynchophorus ferrugineus, challenged with both Gram-negative and Gram-positive bacteria. After immunization, we evaluated the presence of antimicrobial peptides using either biochemical analyses or microbiological techniques. The antimicrobial properties of the newly synthesized protein pool, detectable in haemolymph fractions of low molecular mass, showed strong antibacterial activity against various bacterial strains (Escherichia coli, Pseudomonas sp. OX1, Bacillus subtilis and Micrococcus luteus). In addition to the preliminary study of the mechanism of action of the pool of antimicrobial peptides, we also investigated its effects on bacterial cell walls by means of fluorescence microscopy and scanning electron microscopy. The data suggest that the main effects seem to be directed at destabilizing and damaging the bacterial wall. This study provides data that help us to understand some aspects of the inducible innate immunity in a system model that lacks anticipatory responses. However, the weevil has finely tuned its defensive strategies to counteract effectively microbial infection.
Collapse
Affiliation(s)
- Maristella Mastore
- Comparative Immunology Laboratory, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Simona Binda Rossetti
- Comparative Immunology Laboratory, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Stefano Giovannardi
- Cell Physiology Laboratory, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Giorgio Scarì
- Department of Biosciences, University degli Studi of Milan, Milan, Italy
| | - Maurizio F Brivio
- Comparative Immunology Laboratory, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
42
|
Wang J, Li Y, Wang X, Chen W, Sun H, Wang J. Lipopolysaccharide induces amyloid formation of antimicrobial peptide HAL-2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2910-8. [PMID: 25109934 DOI: 10.1016/j.bbamem.2014.07.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 07/01/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
Lipopolysaccharide (LPS), the important component of the outer membrane of Gram-negative bacteria, contributes to the integrity of the outer membrane and protects the cell against bactericidal agents, including antimicrobial peptides. However, the mechanisms of interaction between antimicrobial peptides and LPS are not clearly understood. Halictines-2 (HAL-2), one of the novel antimicrobial peptides, was isolated from the venom of the eusocial bee Halictus sexcinctus. HAL-2 has exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria and even against cancer cells. Here, we studied the interactions between HAL-2 and LPS to elucidate the antibacterial mechanism of HAL-2 in vitro. Our results show that HAL-2 adopts a significant degree of β-strand structure in the presence of LPS. LPS is capable of inducing HAL-2 amyloid formation, which may play a vital role in its antimicrobial activity.
Collapse
Affiliation(s)
- Jiarong Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China
| | - Yan Li
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China
| | - Xiaoming Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China
| | - Wei Chen
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China
| | - Hongbin Sun
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China.
| | - Junfeng Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China.
| |
Collapse
|
43
|
Mohanram H, Bhattacharjya S. Cysteine deleted protegrin-1 (CDP-1): anti-bacterial activity, outer-membrane disruption and selectivity. Biochim Biophys Acta Gen Subj 2014; 1840:3006-16. [PMID: 24997421 DOI: 10.1016/j.bbagen.2014.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/14/2014] [Accepted: 06/27/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Protegin-1 (PG-1: RGGRLCYCRRRFCVCVGR-amide) assumes a rigid β-hairpin like structure that is stabilized by two disulfide bridges between Cys6-Cys15 and Cys8-Cys13. Previous studies, employing linear analogs of PG-1, with Cys to Ala mutations or modified Cys, have demonstrated that the disulfide bridges are critical for the broad spectrum and salt resistant antimicrobial activity of PG-1. METHODS In order to understand structural and functional roles of disulfide bonds in protegrins, we have synthesized a Cys deleted variant of PG-1 or CDP-1, RGGRLYRRRFVVGR-amide, and two of its analogs, RR11, RLYRRRFVVGR-amide, and LR10, LYRRRFVVGR-amide, containing deletion of residues at the N-terminus. These peptides have been characterized for bactericidal activity and mode of action in lipopolysaccharide (LPS) using optical spectroscopy, ITC and NMR. RESULTS Antibacterial activity, against Gram-negative and Gram-positive strains, of the three peptides follows the order: CDP-1>RR11>LR10. LR10 displays only limited activity toward Gram-negative strains. CDP-1 demonstrates efficient membrane permeabilization and high-affinity interactions with LPS. CDP-1 and RR11 both assume β-hairpin like compact structures in complex with LPS, whereas LR10 adopts an extended conformation in LPS. In zwitterionic DPC micelles CDP-1 and the truncated analog peptides do not adopt folded conformations. MAJOR CONCLUSIONS Despite the absence of stabilizing disulfide bridges CDP-1 shows broad-spectrum antibacterial activity and assumes β-hairpin like structure in complex with LPS. The β-hairpin structure may be essential for outer membrane permeabilization and cell killing.
Collapse
Affiliation(s)
- Harini Mohanram
- School of Biological Sciences, Structural Biology and Biochemistry, Nanyang Technological University, 637551, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Structural Biology and Biochemistry, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
44
|
Chai H, Allen WE, Hicks RP. Spectroscopic investigations of the binding mechanisms between antimicrobial peptides and membrane models of Pseudomonas aeruginosa and Klebsiella pneumoniae. Bioorg Med Chem 2014; 22:4210-22. [PMID: 24931276 DOI: 10.1016/j.bmc.2014.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/10/2014] [Accepted: 05/18/2014] [Indexed: 10/25/2022]
Abstract
CD spectroscopy was used to investigate the interactions of a series of synthetic AMPs with LPS isolated from Pseudomonas aeruginosa and Klebsiella pneumoniae, as well as with various phospholipids to better approximate the chemical composition of the membranes of these two strains of Gram-negative bacteria. This investigation was conducted in order to probe how the contributions of key physicochemical properties of an AMP vary in different regions of the membranes of these two bacteria. The conclusions from this study are as follows. (1) The binding interactions between the AMP and the membranes are defined by the complementarity of delocalization of positive charge density of the basic amino side chains (i.e., electrostatics), molecular flexibility of the peptide backbone, and overall hydrophobicity. (2) The binding interactions of these AMPs to LPS seem to be predominantly with the lipid A region of the LPS. (3) Incorporation of phospholipids into the LPS containing SUVs resulted in dramatic changes in the conformational equilibrium of the bound AMPs. (4) For the LPS-phospholipid models of Pseudomonas aeruginosa, delocalization of the side chain positive charge plays a major role in determining the number of conformers that contribute to the binding conformational equilibrium. This relationship was not observed for the models of the outer and inner membranes of Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Hanbo Chai
- Department of Chemistry, East Carolina University, Science and Technology Building, Greenville, NC 27858, United States
| | - William E Allen
- Department of Chemistry, East Carolina University, Science and Technology Building, Greenville, NC 27858, United States
| | - Rickey P Hicks
- Department of Chemistry, East Carolina University, Science and Technology Building, Greenville, NC 27858, United States.
| |
Collapse
|
45
|
Avitabile C, D'Andrea LD, Romanelli A. Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells. Sci Rep 2014; 4:4293. [PMID: 24618744 PMCID: PMC3950807 DOI: 10.1038/srep04293] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/17/2014] [Indexed: 12/27/2022] Open
Abstract
Studying how antimicrobial peptides interact with bacterial cells is pivotal to understand their mechanism of action. In this paper we explored the use of Circular Dichroism to detect the secondary structure of two antimicrobial peptides, magainin 2 and cecropin A, with E. coli bacterial cells. The results of our studies allow us to gain two important information in the context of antimicrobial peptides- bacterial cells interactions: peptides fold mainly due to interaction with LPS, which is the main component of the Gram negative bacteria outer membrane and the time required for the folding on the bacterial cells depends on the peptide analyzed.
Collapse
Affiliation(s)
- Concetta Avitabile
- Diagnostica e Farmaceutica Molecolari Scarl, via Mezzocannone 16, 80134 Napoli
| | | | - Alessandra Romanelli
- Dipartimento di Farmacia, Università di Napoli “Federico II”, via Mezzocannone 16, 80134 Napoli
| |
Collapse
|
46
|
Barlow PG, Findlay EG, Currie SM, Davidson DJ. Antiviral potential of cathelicidins. Future Microbiol 2014; 9:55-73. [DOI: 10.2217/fmb.13.135] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT: The global burden of morbidity and mortality arising from viral infections is high; however, the development of effective therapeutics has been slow. As our understanding of innate immunity has expanded over recent years, knowledge of natural host defenses against viral infections has started to offer potential for novel therapeutic strategies. An area of current research interest is in understanding the roles played by naturally occurring cationic host defense peptides, such as the cathelicidins, in these innate antiviral host defenses across different species. This research also has the potential to inform the design of novel synthetic antiviral peptide analogs and/or provide rationale for therapies aimed at boosting the natural production of these peptides. In this review, we will discuss our knowledge of the antiviral activities of cathelicidins, an important family of cationic host defense peptides, and consider the implications for novel antiviral therapeutic approaches.
Collapse
Affiliation(s)
- Peter G Barlow
- Health, Life & Social Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK
| | - Emily Gwyer Findlay
- University of Edinburgh/MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Silke M Currie
- University of Edinburgh/MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Donald J Davidson
- University of Edinburgh/MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
47
|
de Oliveira Junior NG, e Silva Cardoso MH, Franco OL. Snake venoms: attractive antimicrobial proteinaceous compounds for therapeutic purposes. Cell Mol Life Sci 2013; 70:4645-58. [PMID: 23657358 PMCID: PMC11113393 DOI: 10.1007/s00018-013-1345-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 12/27/2022]
Abstract
Gram-positive and -negative bacteria are dangerous pathogens that may cause human infection diseases, especially due to the increasingly high prevalence of antibiotic resistance, which is becoming one of the most alarming clinical problems. In the search for novel antimicrobial compounds, snake venoms represent a rich source for such compounds, which are produced by specialized glands in the snake's jawbone. Several venom compounds have been used for antimicrobial effects. Among them are phospholipases A2, which hydrolyze phospholipids and could act on bacterial cell surfaces. Moreover, metalloproteinases and L-amino acid oxidases, which represent important enzyme classes with antimicrobial properties, are investigated in this study. Finally, antimicrobial peptides from multiple classes are also found in snake venoms and will be mentioned. All these molecules have demonstrated an interesting alternative for controlling microorganisms that are resistant to conventional antibiotics, contributing in medicine due to their differential mechanisms of action and versatility. In this review, snake venom antimicrobial compounds will be focused on, including their enormous biotechnological applications for drug development.
Collapse
Affiliation(s)
- Nelson Gomes de Oliveira Junior
- Pós-Graduação em Ciências Genômicas e Biotecnologia UCB, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF Brazil
- Programa em Biologia Animal, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF CEP 70910-900 Brazil
| | - Marlon Henrique e Silva Cardoso
- Pós-Graduação em Ciências Genômicas e Biotecnologia UCB, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF Brazil
| | - Octavio Luiz Franco
- Pós-Graduação em Ciências Genômicas e Biotecnologia UCB, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF Brazil
| |
Collapse
|
48
|
Saravanan R, Joshi M, Mohanram H, Bhunia A, Mangoni ML, Bhattacharjya S. NMR structure of temporin-1 ta in lipopolysaccharide micelles: mechanistic insight into inactivation by outer membrane. PLoS One 2013; 8:e72718. [PMID: 24039798 PMCID: PMC3767682 DOI: 10.1371/journal.pone.0072718] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/12/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Antimicrobial peptides (AMPs) play important roles in the innate defense mechanism. The broad spectrum of activity of AMPs requires an efficient permeabilization of the bacterial outer and inner membranes. The outer leaflet of the outer membrane of Gram negative bacteria is made of a specialized lipid called lipopolysaccharide (LPS). The LPS layer is an efficient permeability barrier against anti-bacterial agents including AMPs. As a mode of protection, LPS can induce self associations of AMPs rendering them inactive. Temporins are a group of short-sized AMPs isolated from frog skin, and many of them are inactive against Gram negative bacteria as a result of their self-association in the LPS-outer membrane. PRINCIPAL FINDINGS Using NMR spectroscopy, we have determined atomic resolution structure and characterized localization of temporin-1Ta or TA (FLPLIGRVLSGIL-amide) in LPS micelles. In LPS micelles, TA adopts helical conformation for residues L4-I12, while residues F1-L3 are found to be in extended conformations. The aromatic sidechain of residue F1 is involved in extensive packing interactions with the sidechains of residues P3, L4 and I5. Interestingly, a number of long-range NOE contacts have been detected between the N-terminal residues F1, P3 with the C-terminal residues S10, I12, L13 of TA in LPS micelles. Saturation transfer difference (STD) NMR studies demonstrate close proximity of residues including F1, L2, P3, R7, S10 and L13 with the LPS micelles. Notably, the LPS bound structure of TA shows differences with the structures of TA determined in DPC and SDS detergent micelles. SIGNIFICANCE We propose that TA, in LPS lipids, forms helical oligomeric structures employing N- and C-termini residues. Such oligomeric structures may not be translocated across the outer membrane; resulting in the inactivation of the AMP. Importantly, the results of our studies will be useful for the development of antimicrobial agents with a broader spectrum of activity.
Collapse
Affiliation(s)
- Rathi Saravanan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mangesh Joshi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Harini Mohanram
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anirban Bhunia
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Maria Luisa Mangoni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche Università La Sapienza, Roma, Italy
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
49
|
Singh S, Kalle M, Papareddy P, Schmidtchen A, Malmsten M. Lipopolysaccharide Interactions of C-Terminal Peptides from Human Thrombin. Biomacromolecules 2013; 14:1482-92. [DOI: 10.1021/bm400150c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shalini Singh
- Department of Pharmacy, Uppsala University, SE-75123, Uppsala,
Sweden
| | - Martina Kalle
- Division of Dermatology
and
Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Praveen Papareddy
- Division of Dermatology
and
Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology
and
Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Martin Malmsten
- Department of Pharmacy, Uppsala University, SE-75123, Uppsala,
Sweden
| |
Collapse
|
50
|
Avitabile C, Netti F, Orefice G, Palmieri M, Nocerino N, Malgieri G, D'Andrea LD, Capparelli R, Fattorusso R, Romanelli A. Design, structural and functional characterization of a Temporin-1b analog active against Gram-negative bacteria. Biochim Biophys Acta Gen Subj 2013; 1830:3767-75. [PMID: 23403136 DOI: 10.1016/j.bbagen.2013.01.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/21/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Temporins are small antimicrobial peptides secreted by the Rana temporaria showing mainly activity against Gram-positive bacteria. However, different members of the temporin family, such as Temporin B, act in synergy also against Gram-negative bacteria. With the aim to develop a peptide with a wide spectrum of antimicrobial activity we designed and analyzed a series of Temporin B analogs. METHODS Peptides were initially obtained by Ala scanning on Temporin B sequence; antimicrobial activity tests allowed to identify the TB_G6A sequence, which was further optimized by increasing the peptide positive charge (TB_KKG6A). Interactions of this active peptide with the LPS of E. coli were investigated by CD, fluorescence and NMR. RESULTS TB_KKG6A is active against Gram-positive and Gram-negative bacteria at low concentrations. The peptide strongly interacts with the LPS of Gram-negative bacteria and folds upon interaction into a kinked helix. CONCLUSION Our results show that it is possible to widen the activity spectrum of an antimicrobial peptide by subtle changes of the primary structure. TB_KKG6A, having a simple composition, a broad spectrum of antimicrobial activity and a very low hemolytic activity, is a promising candidate for the design of novel antimicrobial peptides. GENERAL SIGNIFICANCE The activity of antimicrobial peptides is strongly related to the ability of the peptide to interact and break the bacterial membrane. Our studies on TB_KKG6A indicate that efficient interactions with LPS can be achieved when the peptide is not perfectly amphipathic, since this feature seems to help the toroidal pore formation process.
Collapse
Affiliation(s)
- Concetta Avitabile
- Università di Napoli Federico II, Dipartimento delle Scienze Biologiche, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|