1
|
Jewlikar SS, Tolentino Collado J, Ali MI, Sabbah A, He Y, Iuliano JN, Hall CR, Adamczyk K, Greetham GM, Lukacs A, Meech SR, Tonge PJ. Probing the Signal Transduction Mechanism of the Light-Activated Adenylate Cyclase OaPAC Using Unnatural Amino Acid Mutagenesis. ACS Chem Biol 2025; 20:369-377. [PMID: 39844630 DOI: 10.1021/acschembio.4c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
OaPAC, the photoactivated adenylyl cyclase from Oscillatoria acuminata, is composed of a blue light using FAD (BLUF) domain fused to an adenylate cyclase (AC) domain. Since both the BLUF and AC domains are part of the same protein, OaPAC is a model for understanding how the ultrafast modulation of the chromophore binding pocket caused by photoexcitation results in the activation of the output domain on the μs-s time scale. In the present work, we use unnatural amino acid mutagenesis to identify specific sites in the protein that are involved in transducing the signal from the FAD binding site to the ATP binding site. To provide insight into site-specific structural dynamics, we replaced W90 which is close to the chromophore pocket, F103 which interacts with W90 across the dimer interface, and F180 in the central core of the AC domain, with the infrared probe azido-Phe (AzPhe). Using ultrafast IR, we show that AzPhe at position 90 responds on multiple time scales following photoexcitation. In contrast, the light minus dark IR spectrum of AzPhe103 shows only a minor perturbation in environment between the dark and light states, while replacement of F180 with AzPhe resulted in a protein with no catalytic activity. We also replaced Y125, which hydrogen bonds with N256 across the dimer interface, with fluoro-Tyr residues. All the fluoro-Tyr substituted proteins retained the light-induced red shift in the flavin absorption spectrum; however, only the 3-FY125 OaPAC retained photoinduced catalytic activity. The loss of activity in 3,5-F2Y125 and 2,3,5-F3Y125 OaPAC, which potentially increase the acidity of the Y125 phenol by more than 1000-fold, suggests that deprotonation of Y125 disrupts the signal transduction pathway from the BLUF to the AC domain.
Collapse
Affiliation(s)
- Samruddhi S Jewlikar
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | | | - Madeeha I Ali
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Aya Sabbah
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - YongLe He
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - James N Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | | | - Katrin Adamczyk
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Szigeti ut 12, 7624 Pecs, Hungary
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Peter J Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| |
Collapse
|
2
|
Taguchi M, Sakuraba S, Chan J, Kono H. Unveiling the Photoactivation Mechanism of BLUF Photoreceptor Protein through Hybrid Quantum Mechanics/Molecular Mechanics Free-Energy Calculation. ACS PHYSICAL CHEMISTRY AU 2024; 4:647-659. [PMID: 39634647 PMCID: PMC11613238 DOI: 10.1021/acsphyschemau.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/18/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024]
Abstract
OaPAC is a photoactivated enzyme that forms a homodimer. The two blue-light using flavin (BLUF) photoreceptor domains are connected to the catalytic domains with long coiled-coil C-terminal helices. Upon photoreception, reorganization of the hydrogen bonding network between Tyr6, Gln48, and the chromophore in the BLUF domain and keto-enol tautomerization of Gln48 are thought to occur. However, the quantitative energetics of the photoisomerization reaction and how the BLUF domain's structural change propagates toward the catalytic domain are still unknown. We evaluate the free-energy differences among the dark-state and two different light-state structures by the free-energy perturbation calculations combined with QM/MM free-energy optimizations. Furthermore, we performed long-time MD simulations for the free-energetically optimized dark- and light-state structures to clarify the differences in protein dynamics upon photoisomerization. The free-energy difference between the two optimized light-state structures was estimated at ∼4.7 kcal/mol. The free-energetically optimized light-state structure indicates that the chemically unstable enol tautomer of Gln48 in the light state is stabilized by forming a strong hydrogen bonding network with the chromophore and Tyr6. In addition, the components of free-energy difference between the dark- and light-state structures show that the energy upon photoreception is stored in the environment rather than the internal photoreceived region, suggesting a mechanism to keep the photoactivated signaling state with the chemically unstable enol tautomer of Gln48. In the light state, a fluctuation of Trp90 near the C-terminal helix becomes large, which causes subsequent structural changes in the BLUF core and the C-terminal helix. We also identified residue pairs with significant differences concerning residue-wise contact maps between the dark and light states.
Collapse
Affiliation(s)
- Masahiko Taguchi
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology, Chiba 263-8555, Japan
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Shun Sakuraba
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology, Chiba 263-8555, Japan
- Graduate
School of Science and Engineering, Chiba
University, Chiba 263-8522, Japan
| | - Justin Chan
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Hidetoshi Kono
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology, Chiba 263-8555, Japan
- Graduate
School of Science and Engineering, Chiba
University, Chiba 263-8522, Japan
| |
Collapse
|
3
|
Jia L, Gao S, Qiao Y. Optical Control over Liquid–Liquid Phase Separation. SMALL METHODS 2024; 8:e2301724. [PMID: 38530063 DOI: 10.1002/smtd.202301724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Indexed: 03/27/2024]
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the emergence of intracellular membrane-less organelles and the development of coacervate protocells. Benefitting from the advantages of simplicity, precision, programmability, and noninvasiveness, light has become an effective tool to regulate the assembly dynamics of LLPS, and mediate various biochemical processes associated with LLPS. In this review, recent advances in optically controlling membrane-less organelles within living organisms are summarized, thereby modulating a series of biological processes including irreversible protein aggregation pathologies, transcription activation, metabolic flux, genomic rearrangements, and enzymatic reactions. Among these, the intracellular systems (i.e., optoDroplet, Corelet, PixELL, CasDrop, and other optogenetic systems) that enable the photo-mediated control over biomolecular condensation are highlighted. The design of photoactive complex coacervate protocells in laboratory settings by utilizing photochromic molecules such as azobenzene and diarylethene is further discussed. This review is expected to provide in-depth insights into phase separation-associated biochemical processes, bio-metabolism, and diseases.
Collapse
Affiliation(s)
- Liyan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Gao
- Department of Orthopedic, Peking University Third Hospital, Beijing, 100191, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Han Y, Hammerl J, Flemming FE, Schuergers N, Wilde A. A cyanobacterial chemotaxis-like system controls phototactic orientation via phosphorylation of two antagonistic response regulators. MICROLIFE 2024; 5:uqae012. [PMID: 38887653 PMCID: PMC11181946 DOI: 10.1093/femsml/uqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Photosynthetic cyanobacteria exhibit phototaxis, utilizing type IV pili (T4P) to navigate either toward or away from a light source. The Tax1 system is a chemotaxis-like signal transduction pathway that controls the switch in cell polarity, which is crucial for positive phototaxis in Synechocystis sp. PCC 6803. The system consists of the blue/green light sensor PixJ, which controls the histidine kinase PixL and two CheY-like response regulators, PixG and PixH. However, the molecular mechanism by which Tax1 regulates T4P activity and polarity is poorly understood. Here, we investigated the phosphotransfer between PixL and its cognate response regulators in vitro and analyzed the localization and function of wild-type and phosphorylation-deficient PixG and PixH during phototaxis. We found that both PixG and PixH are phosphorylated by PixL but have different roles in phototaxis regulation. Only phosphorylated PixG interacts with the T4P motor protein PilB1 and localizes to the leading cell pole under directional light, thereby promoting positive phototaxis. In contrast, PixH is a negative regulator of PixG phosphorylation and inhibits positive phototaxis. We also demonstrated that the C-terminal receiver domain of PixL is essential for positive phototaxis, and modulates the kinase activity of PixL. Our findings reveal the molecular basis of positive phototaxis regulation by the Tax1 system and provide insights into the division of labor between PatA-type and CheY-like response regulators in cyanobacterial chemotaxis-like systems. Furthermore, these findings highlight similarities in the regulation of movement direction during twitching motility in phototactic and chemotactic bacteria.
Collapse
Affiliation(s)
- Yu Han
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Jonas Hammerl
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albertstr. 19A, University of Freiburg, Germany
| | - Felicitas E Flemming
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Schuergers
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Kang XW, Wang K, Zhang X, Zhong D, Ding B. Elementary Reactions in the Functional Triads of the Blue-Light Photoreceptor BLUF Domain. J Phys Chem B 2024; 128:2065-2075. [PMID: 38391132 DOI: 10.1021/acs.jpcb.3c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The blue light using the flavin (BLUF) domain is one of the smallest photoreceptors in nature, which consists of a unique bidirectional electron-coupled proton relay process in its photoactivation reaction cycle. This perspective summarizes our recent efforts in dissecting the photocycle into three elementary processes, including proton-coupled electron transfer (PCET), proton rocking, and proton relay. Using ultrafast spectroscopy, we have determined the temporal sequence, rates, kinetic isotope effects (KIEs), and concertedness of these elementary steps. Our findings provide important implications for illuminating the photoactivation mechanism of the BLUF domain and suggest an engineering platform to characterize intricate reactions involving proton motions that are ubiquitous in nonphotosensitive protein machines.
Collapse
Affiliation(s)
- Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kailin Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofan Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Programs of Chemical Physics, and Programs of Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Zhou Y, Tang S, Chen Z, Zhou Z, Huang J, Kang XW, Zou S, Wang B, Zhang T, Ding B, Zhong D. Origin of the multi-phasic quenching dynamics in the BLUF domains across the species. Nat Commun 2024; 15:623. [PMID: 38245518 PMCID: PMC10799861 DOI: 10.1038/s41467-023-44565-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
Blue light using flavin (BLUF) photoreceptors respond to light via one of nature's smallest photo-switching domains. Upon photo-activation, the flavin cofactor in the BLUF domain exhibits multi-phasic dynamics, quenched by a proton-coupled electron transfer reaction involving the conserved Tyr and Gln. The dynamic behavior varies drastically across different species, the origin of which remains controversial. Here, we incorporate site-specific fluorinated Trp into three BLUF proteins, i.e., AppA, OaPAC and SyPixD, and characterize the percentages for the Wout, WinNHin and WinNHout conformations using 19F nuclear magnetic resonance spectroscopy. Using femtosecond spectroscopy, we identify that one key WinNHin conformation can introduce a branching one-step proton transfer in AppA and a two-step proton transfer in OaPAC and SyPixD. Correlating the flavin quenching dynamics with the active-site structural heterogeneity, we conclude that the quenching rate is determined by the percentage of WinNHin, which encodes a Tyr-Gln configuration that is not conducive to proton transfer.
Collapse
Affiliation(s)
- Yalin Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Siwei Tang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zijing Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhongneng Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiulong Huang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuhua Zou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingyao Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianyi Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Noji T, Tamura H, Ishikita H, Saito K. Difference in the Charge-Separation Energetics between Distinct Conformers in the PixD Photoreceptor. J Phys Chem B 2023; 127:10351-10359. [PMID: 38014591 DOI: 10.1021/acs.jpcb.3c06483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Blue light using flavin (BLUF) domain proteins are photoreceptors in various organisms. The PixD BLUF domain can adopt two conformations, W91out and W91in, with Trp91 either proximal or distal to flavin (FMN). Using a quantum mechanical/molecular mechanical/polarizable continuum model approach, the energetics of charge-separated and biradical states in the two conformations were investigated. In the W91out conformation, the charge-separated state (FMN•-) is more stable than the photoexcited state (FMN*), whereas it is less stable due to an electrostatic repulsive interaction with the Ser28 side chain in the W91in conformation. This leads to a lower activation energy for the charge separation in the W91out conformation, resulting in a faster charge separation compared to that in the W91in conformation. In the W91out conformation, the radical state (FMNH•) is more stable than FMN•- and forms from FMN•-, leading to reorientation of the Gln50 side chain adjacent to FMN and formation of a hydrogen bond between Gln50 and FMN. Subsequently, a signaling state forms through charge recombination. In contrast, in the W91in conformation, FMN•- cannot proceed further, returning to the dark-adapted state, as FMNH• is less stable. Thus, formation of the signaling state exclusively occurs in the W91out conformation.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroyuki Tamura
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
8
|
Gupta A, Pandey P, Gupta R, Tiwari S, Singh SP. Responding to light signals: a comprehensive update on photomorphogenesis in cyanobacteria. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1915-1930. [PMID: 38222287 PMCID: PMC10784256 DOI: 10.1007/s12298-023-01386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024]
Abstract
Cyanobacteria are ancestors of chloroplast and perform oxygen-evolving photosynthesis similar to higher plants and algae. However, an obligatory requirement of photons for their growth results in the exposure of cyanobacteria to varying light conditions. Therefore, the light environment could act as a signal to drive the developmental processes, in addition to photosynthesis, in cyanobacteria. These Gram-negative prokaryotes exhibit characteristic light-dependent developmental processes that maximize their fitness and resource utilization. The development occurring in response to radiance (photomorphogenesis) involves fine-tuning cellular physiology, morphology and metabolism. The best-studied example of cyanobacterial photomorphogenesis is chromatic acclimation (CA), which allows a selected number of cyanobacteria to tailor their light-harvesting antenna called phycobilisome (PBS). The tailoring of PBS under existing wavelengths and abundance of light gives an advantage to cyanobacteria over another photoautotroph. In this work, we will provide a comprehensive update on light-sensing, molecular signaling and signal cascades found in cyanobacteria. We also include recent developments made in other aspects of CA, such as mechanistic insights into changes in the size and shape of cells, filaments and carboxysomes.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Priyul Pandey
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Rinkesh Gupta
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Sapna Tiwari
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Shailendra Pratap Singh
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| |
Collapse
|
9
|
Nakasone Y, Murakami H, Tokonami S, Oda T, Terazima M. Time-resolved study on signaling pathway of photoactivated adenylate cyclase and its nonlinear optical response. J Biol Chem 2023; 299:105285. [PMID: 37742920 PMCID: PMC10634658 DOI: 10.1016/j.jbc.2023.105285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Photoactivated adenylate cyclases (PACs) are multidomain BLUF proteins that regulate the cellular levels of cAMP in a light-dependent manner. The signaling route and dynamics of PAC from Oscillatoria acuminata (OaPAC), which consists of a light sensor BLUF domain, an adenylate cyclase domain, and a connector helix (α3-helix), were studied by detecting conformational changes in the protein moiety. Although circular dichroism and small-angle X-ray scattering measurements did not show significant changes upon light illumination, the transient grating method successfully detected light-induced changes in the diffusion coefficient (diffusion-sensitive conformational change (DSCC)) of full-length OaPAC and the BLUF domain with the α3-helix. DSCC of full-length OaPAC was observed only when both protomers in a dimer were photoconverted. This light intensity dependence suggests that OaPAC is a cyclase with a nonlinear light intensity response. The enzymatic activity indeed nonlinearly depends on light intensity, that is, OaPAC is activated under strong light conditions. It was also found that both DSCC and enzymatic activity were suppressed by a mutation in the W90 residue, indicating the importance of the highly conserved Trp in many BLUF domains for the function. Based on these findings, a reaction scheme was proposed together with the reaction dynamics.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hiroto Murakami
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shunrou Tokonami
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takashi Oda
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
10
|
Raics K, Pirisi K, Zhuang B, Fekete Z, Kis-Bicskei N, Pecsi I, Ujfalusi KP, Telek E, Li Y, Collado JT, Tonge PJ, Meech SR, Vos MH, Bodis E, Lukacs A. Photocycle alteration and increased enzymatic activity in genetically modified photoactivated adenylate cyclase OaPAC. J Biol Chem 2023; 299:105056. [PMID: 37468104 PMCID: PMC10448171 DOI: 10.1016/j.jbc.2023.105056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Photoactivated adenylate cyclases (PACs) are light activated enzymes that combine blue light sensing capacity with the ability to convert ATP to cAMP and pyrophosphate (PPi) in a light-dependent manner. In most of the known PACs blue light regulation is provided by a blue light sensing domain using flavin which undergoes a structural reorganization after blue-light absorption. This minor structural change then is translated toward the C-terminal of the protein, inducing a larger conformational change that results in the ATP conversion to cAMP. As cAMP is a key second messenger in numerous signal transduction pathways regulating various cellular functions, PACs are of great interest in optogenetic studies. The optimal optogenetic device must be "silent" in the dark and highly responsive upon light illumination. PAC from Oscillatoria acuminata is a very good candidate as its basal activity is very small in the dark and the conversion rates increase 20-fold upon light illumination. We studied the effect of replacing D67 to N, in the blue light using flavin domain. This mutation was found to accelerate the primary electron transfer process in the photosensing domain of the protein, as has been predicted. Furthermore, it resulted in a longer lived signaling state, which was formed with a lower quantum yield. Our studies show that the overall effects of the D67N mutation lead to a slightly higher conversion of ATP to cAMP, which points in the direction that by fine tuning the kinetic properties more responsive PACs and optogenetic devices can be generated.
Collapse
Affiliation(s)
- Katalin Raics
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Katalin Pirisi
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Bo Zhuang
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Palaiseau, France
| | - Zsuzsanna Fekete
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | | | - Ildiko Pecsi
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | | | - Elek Telek
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Yin Li
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang City, China
| | | | - Peter J Tonge
- Department of Chemistry, Stony Brook University, New York, USA
| | | | - Marten H Vos
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Palaiseau, France
| | - Emoke Bodis
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary.
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary.
| |
Collapse
|
11
|
Tokonami S, Nakasone Y, Terazima M. Effects of N- and C-terminal regions on oligomeric formation of blue light sensor protein SyPixD. Protein Sci 2023; 32:e4658. [PMID: 37184370 PMCID: PMC10211260 DOI: 10.1002/pro.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
A sensor of blue-light using flavin adenine dinucleotide (BLUF) is a typical blue light photoreceptor domain that is found in many photosensor proteins in bacteria and some eukaryotic algae. SyPixD in Synechocystis is one of the well-studied BLUF proteins. In the dark state, it forms a decamer and, upon photoexcitation, a dissociation reaction takes place to yield dimers. Such change in the intermolecular interactions of the protomers is important for the biological function. The effect of the N- and C-terminal sequences on the stability of SyPixD oligomeric states and photoreactions of SyPixD were studied to understand how the oligomeric form is maintained with weak interaction. It was found that a few residues that frequently persist at the N-terminus after removing a tag for purification are sensitive to the stability of the decamer structure. Even two or three residues at the N-terminus considerably reduces decamer stability, whereas four or more residues completely prevent decamer formation. Unexpectedly, truncating C-terminal sequences, which locate far from any protomer interface and of which structure is undetermined in crystal structure, also destabilizes the decamer structure. This destabilization is also apparent from the dissociation reaction dynamics detected by the transient grating and transient absorption measurements. The dissociation reaction is faster and the yield increases when the C-terminus does not contain seven amino acid residues. Photoexcitation induces a conformational change in the C-terminus of the decamer but not the dimer.
Collapse
Affiliation(s)
- Shunrou Tokonami
- Department of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan
| |
Collapse
|
12
|
Hammes-Schiffer S. Exploring Proton-Coupled Electron Transfer at Multiple Scales. NATURE COMPUTATIONAL SCIENCE 2023; 3:291-300. [PMID: 37577057 PMCID: PMC10416817 DOI: 10.1038/s43588-023-00422-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/23/2023] [Indexed: 08/15/2023]
Abstract
The coupling of electron and proton transfer is critical for chemical and biological processes spanning a wide range of length and time scales and often occurring in complex environments. Thus, diverse modeling strategies, including analytical theories, quantum chemistry, molecular dynamics, and kinetic modeling, are essential for a comprehensive understanding of such proton-coupled electron transfer reactions. Each of these computational methods provides one piece of the puzzle, and all these pieces must be viewed together to produce the full picture.
Collapse
|
13
|
Hontani Y, Mehlhorn J, Domratcheva T, Beck S, Kloz M, Hegemann P, Mathes T, Kennis JTM. Spectroscopic and Computational Observation of Glutamine Tautomerization in the Blue Light Sensing Using Flavin Domain Photoreaction. J Am Chem Soc 2023; 145:1040-1052. [PMID: 36607126 PMCID: PMC9853863 DOI: 10.1021/jacs.2c10621] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Blue light sensing using flavin (BLUF) domains constitute a family of flavin-binding photoreceptors of bacteria and eukaryotic algae. BLUF photoactivation proceeds via a light-driven hydrogen-bond switch among flavin adenine dinucleotide (FAD) and glutamine and tyrosine side chains, whereby FAD undergoes electron and proton transfer with tyrosine and is subsequently re-oxidized by a hydrogen back-shuttle in picoseconds, constituting an important model system to understand proton-coupled electron transfer in biology. The specific structure of the hydrogen-bond patterns and the prevalence of glutamine tautomeric states in dark-adapted (DA) and light-activated (LA) states have remained controversial. Here, we present a combined femtosecond stimulated Raman spectroscopy (FSRS), computational chemistry, and site-selective isotope labeling Fourier-transform infrared spectroscopy (FTIR) study of the Slr1694 BLUF domain. FSRS showed distinct vibrational bands from the FADS1 singlet excited state. We observed small but significant shifts in the excited-state vibrational frequency patterns of the DA and LA states, indicating that these frequencies constitute a sensitive probe for the hydrogen-bond arrangement around FAD. Excited-state model calculations utilizing four different realizations of hydrogen bond patterns and glutamine tautomeric states were consistent with a BLUF reaction model that involved glutamine tautomerization to imidic acid, accompanied by a rotation of its side chain. A combined FTIR and double-isotope labeling study, with 13C labeling of FAD and 15N labeling of glutamine, identified the glutamine imidic acid C═N stretch vibration in the LA state and the Gln C═O in the DA state. Hence, our study provides support for glutamine tautomerization and side-chain rotation in the BLUF photoreaction.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands
| | - Jennifer Mehlhorn
- Institut
für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Tatiana Domratcheva
- Department
of Biomolecular Mechanisms, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany,Department
of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sebastian Beck
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str.
2, 12489 Berlin, Germany
| | - Miroslav Kloz
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands,Institute
of Physics, ELI-Beamlines, Na Slovance 2, 182
21 Praha 8, Czech Republic
| | - Peter Hegemann
- Institut
für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Tilo Mathes
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands,Institut
für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - John T. M. Kennis
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands,
| |
Collapse
|
14
|
Tokonami S, Onose M, Nakasone Y, Terazima M. Slow Conformational Changes of Blue Light Sensor BLUF Proteins in Milliseconds. J Am Chem Soc 2022; 144:4080-4090. [PMID: 35196858 DOI: 10.1021/jacs.1c13121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blue light sensor using flavin (BLUF) proteins consist of flavin-binding BLUF domains and functional domains. Upon blue light excitation, the hydrogen bond network around the flavin chromophore changes, and the absorption spectrum in the visible region exhibits a red shift. Ultimately, the light information received in the BLUF domain is transmitted to the functional region. It has been believed that this red shift is complete within nanoseconds. In this study, slow reaction kinetics were discovered in milliseconds (τ1- and τ2-phase) for all the BLUF proteins examined (AppA, OaPAC, BlrP1, YcgF, PapB, SyPixD, and TePixD). Despite extensive reports on BLUF, this is the first clear observation of the BLUF protein absorption change with the duration in the millisecond time region. From the measurements of some domain-deleted mutants of OaPAC and two chimeric mutants of PixD proteins, it was found that the slower dynamics (τ2-phase) are strongly affected by the size and nature of the C-terminal region adjacent to the BLUF domain. Hence, this millisecond reaction is a significant indicator of conformational changes in the C-terminal region, which is essential for the biological functions. On the other hand, the τ1-phase commonly exists in all BLUF proteins, including any mutants. The origin of the slow dynamics was studied using site-specific mutants. These results clearly show the importance of Trp in the BLUF domain. Based on this, a reaction scheme for the BLUF reaction is proposed.
Collapse
Affiliation(s)
- Shunrou Tokonami
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Morihiko Onose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
Abstract
Light activated proteins are at the heart of photobiology and optogenetics, so there is wide interest in understanding the mechanisms coupling optical excitation to protein function. In addition, such light activated proteins provide unique insights into the real-time dynamics of protein function. Using pump-probe spectroscopy, the function of a photoactive protein can be initiated by a sub-100 fs pulse of light, allowing subsequent protein dynamics to be probed from femtoseconds to milliseconds and beyond. Among the most interesting photoactive proteins are the blue light using flavin (BLUF) domain proteins, which regulate the response to light of a wide range of bacterial and some euglenoid processes. The photosensing mechanism of BLUF domains has long been a subject of debate. In contrast to other photoactive proteins, the electronic and nuclear structure of the chromophore (flavin) is the same in dark- and light-adapted states. Thus, the driving force for photoactivity is unclear.To address this question requires real-time observation of both chromophore excited state processes and their effect on the structure and dynamics of the surrounding protein matrix. In this Account we describe how time-resolved infrared (IR) experiments, coupled with chemical biology, provide important new insights into the signaling mechanism of BLUF domains. IR measurements are sensitive to changes in both chromophore electronic structure and protein hydrogen bonding interactions. These contributions are resolved by isotope labeling of the chromophore and protein separately. Further, a degree of control over BLUF photochemistry is achieved through mutagenesis, while unnatural amino acid substitution allows us to both fine-tune the photochemistry and time resolve protein dynamics with spatial resolution.Ultrafast studies of BLUF domains reveal non-single-exponential relaxation of the flavin excited state. That relaxation leads within one nanosecond to the original flavin ground state bound in a modified hydrogen-bonding network, as seen in transient and steady-state IR spectroscopy. The change in H-bond configuration arises from formation of an unusual enol (imine) form of a critical glutamine residue. The dynamics observed, complemented by quantum mechanical calculations, suggest a unique sequential electron then double proton transfer reaction as the driving force, followed by rapid reorganization in the binding site and charge recombination. Importantly, studies of several BLUF domains reveal an unexpected diversity in their dynamics, although the underlying structure appears highly conserved. It is suggested that this diversity reflects structural dynamics in the ground state at standard temperature, leading to a distribution of structures and photochemical outcomes. Time resolved IR measurements were extended to the millisecond regime for one BLUF domain, revealing signaling state formation on the microsecond time scale. The mechanism involves reorganization of a β-sheet connected to the chromophore binding pocket via a tryptophan residue. The potential of site-specific labeling amino acids with IR labels as a tool for probing protein structural dynamics was demonstrated.In summary, time-resolved IR studies of BLUF domains (along with related studies at visible wavelengths and quantum and molecular dynamics calculations) have resolved the photoactivation mechanism and real-time dynamics of signaling state formation. These measurements provide new insights into protein structural dynamics and will be important in optimizing the potential of BLUF domains in optobiology.
Collapse
Affiliation(s)
- Andras Lukacs
- Department of Biophysics, Medical School, University of Pécs, Szigeti str 12, 7624 Pécs, Hungary
| | - Peter J. Tonge
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794-3400, United States
| | - Stephen R. Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
16
|
Shibata K, Nakasone Y, Terazima M. Selective Photoinduced Dimerization and Slow Recovery of a BLUF Domain of EB1. J Phys Chem B 2022; 126:1024-1033. [PMID: 35089048 DOI: 10.1021/acs.jpcb.1c10100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The EAL-BLUF fragment from Magnetococcus marinus BldP1 (EB1) light-dependently hydrolyzes c-di-GMP. Herein, the photoreaction of the BLUF domain of EB1 (eBLUF) is studied. It is found for the first time that a monomeric BLUF domain forms a dimer upon illumination and its dark recovery is very slow. The dimer of light- and dark-state protomers (LD-dimer) is much more stable than that of two light-state protomers (LL-dimer), and the dark recovery of the LD-dimer is approximately 20 times slower than that of the LL-dimer, which is suitable for optogenetic tools. The secondary structure of the L-monomer is different from those of the D-monomer and the LD-dimer. The transient grating measurements reveal that this conformational change occurs simultaneously with dimerization. Although the W91A mutant exhibits a spectral red shift, it forms a heterodimer with the L-monomer of wild-type eBLUF with similar stability to the LD-dimer. This suggests that the conformation of the dimerization site of W91A is similar to that of the dark state (dark-mimic mutant); that is, the light-induced structural changes in the chromophore cavity are not transferred to the other part of the protein. The selective photoinduced dimerization of eBLUF is potentially useful to control interprotein interactions between two different effector domains bound to these proteins.
Collapse
Affiliation(s)
- Kosei Shibata
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Abstract
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically-encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology"), and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
18
|
Han Y, Jakob A, Engel S, Wilde A, Nils S. PATAN-domain regulators interact with the Type IV pilus motor to control phototactic orientation in the cyanobacterium Synechocystis. Mol Microbiol 2021; 117:790-801. [PMID: 34936151 DOI: 10.1111/mmi.14872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Many prokaryotes show complex behaviors that require the intricate spatial and temporal organization of cellular protein machineries, leading to asymmetrical protein distribution and cell polarity. One such behavior is cyanobacterial phototaxis which relies on the dynamic localization of the Type IV pilus motor proteins in response to light. In the cyanobacterium Synechocystis, various signaling systems encompassing chemotaxis-related CheY- and PatA-like response regulators are critical players in switching between positive and negative phototaxis depending on the light intensity and wavelength. In this study, we show that PatA-type regulators evolved from chemosensory systems. Using fluorescence microscopy and yeast-two-hybrid analysis, we demonstrate that they localize to the inner membrane, where they interact with the N-terminal cytoplasmic domain of PilC and the pilus assembly ATPase PilB1. By separately expressing the subdomains of the response regulator PixE, we confirm that only the N-terminal PATAN domain interacts with PilB1, localizes to the membrane, and is sufficient to reverse phototactic orientation. These experiments established that the PATAN domain is the principal output domain of PatA-type regulators which we presume to modulate pilus extension by binding to the pilus motor components.
Collapse
Affiliation(s)
- Yu Han
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Annik Jakob
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Sophia Engel
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Schuergers Nils
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
19
|
Fujisawa T, Masuda S, Takeuchi S, Tahara T. Femtosecond Time-Resolved Absorption Study of Signaling State of a BLUF Protein PixD from the Cyanobacterium Synechocystis: Hydrogen-Bond Rearrangement Completes during Forward Proton-Coupled Electron Transfer. J Phys Chem B 2021; 125:12154-12165. [PMID: 34726926 DOI: 10.1021/acs.jpcb.1c05957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Femtosecond time-resolved absorption measurements were carried out for the dark and signaling states of a BLUF (Blue Light Using FAD) protein, PixD, from the cyanobacterium Synechocystis. When the dark state was excited, FAD semiquinone radical (FADH•) was produced from the S1 state, and FADH• led to the signaling state. On the other hand, photoexcitation of the signaling state generated FADH• and FAD anion radical (FAD•-), and they decayed back to the original signaling state. In both cases, FADH• was formed and decayed with a proton-coupled electron transfer (PCET) via the hydrogen-bond network that involves FAD, Gln50, and Tyr8, and hence the kinetics of FADH• directly reflects the hydrogen-bond structure in the FAD-binding sites. It was found that the formation rate of FADH• was significantly different between the dark and signaling states, whereas the decay rate was the same. This indicates that the hydrogen-bond network of FAD-Gln50-Tyr8 in the dark and signaling states is initially different but it becomes indistinguishable after FADH• is formed, implying that the FAD-Gln50-Tyr8 hydrogen-bond network is rearranged during the PCET to generate FADH•. The present results best agree with the model in which the Gln tautomerizes without rotation in the signaling-state formation.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
20
|
Hashem S, Macaluso V, Nottoli M, Lipparini F, Cupellini L, Mennucci B. From crystallographic data to the solution structure of photoreceptors: the case of the AppA BLUF domain. Chem Sci 2021; 12:13331-13342. [PMID: 34777752 PMCID: PMC8528011 DOI: 10.1039/d1sc03000k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
Photoreceptor proteins bind a chromophore, which, upon light absorption, modifies its geometry or its interactions with the protein, finally inducing the structural change needed to switch the protein from an inactive to an active or signaling state. In the Blue Light-Using Flavin (BLUF) family of photoreceptors, the chromophore is a flavin and the changes have been connected with a rearrangement of the hydrogen bond network around it on the basis of spectroscopic changes measured for the dark-to-light conversion. However, the exact conformational change triggered by the photoexcitation is still elusive mainly because a clear consensus on the identity not only of the light activated state but also of the dark one has not been achieved. Here, we present an integrated investigation that combines microsecond MD simulations starting from the two conflicting crystal structures available for the AppA BLUF domain with calculations of NMR, IR and UV-Vis spectra using a polarizable QM/MM approach. Thanks to such a combined analysis of the three different spectroscopic responses, a robust characterization of the structure of the dark state in solution is given together with the uncovering of important flaws of the most popular molecular mechanisms present in the literature for the dark-to-light activation.
Collapse
Affiliation(s)
- Shaima Hashem
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Veronica Macaluso
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Michele Nottoli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
21
|
Saito Y, Kimura W. Roles of Phase Separation for Cellular Redox Maintenance. Front Genet 2021; 12:691946. [PMID: 34306032 PMCID: PMC8299301 DOI: 10.3389/fgene.2021.691946] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The oxidation reaction greatly alters characteristics of various cellular components. In exchange for efficient energy production, mitochondrial aerobic respiration substantially increases the risk of excess oxidation of cellular biomolecules such as lipids, proteins, nucleic acids, and numerous small molecules. To maintain a physiologically balanced cellular reduction-oxidation (redox) state, cells utilize a variety of molecular machineries including cellular antioxidants and protein degradation complexes such as the ubiquitin-proteasome system or autophagy. In the past decade, biomolecular liquid-liquid phase separation (LLPS) has emerged as a subject of great interest in the biomedical field, as it plays versatile roles in the maintenance of cellular homeostasis. With regard to redox homeostasis, LLPS arose as a major player in both well-characterized and newly emerging redox pathways. LLPS is involved in direct redox imbalance sensing, signal transduction, and transcriptional regulation. Also, LLPS is at play when cells resist redox imbalance through metabolic switching, translational remodeling, activating the DNA damage response, and segregation of vulnerable lipids and proteins. On the other hand, chronic accumulation of phase-separated molecular condensates such as lipid droplets and amyloid causes neurotoxic outcomes. In this review we enumerate recent progress on understanding how cells utilize LLPS to deal with oxidative stress, especially related to cell survival or pathogenesis, and we discuss future research directions for understanding biological phase separation in cellular redox regulation.
Collapse
Affiliation(s)
| | - Wataru Kimura
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
22
|
Sugimoto Y, Masuda S. In vivo localization and oligomerization of PixD and PixE for controlling phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. J GEN APPL MICROBIOL 2021; 67:54-58. [PMID: 33342920 DOI: 10.2323/jgam.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phototaxis is a phenomenon where cyanobacteria move toward a light source. Previous studies have shown that the blue-light-using-flavin (BLUF)-type photoreceptor PixD and the response regulator-like protein PixE control the phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. The pixD-null mutant moves away from light, whereas WT, pixE mutant, and pixD pixE double mutant move toward the light. This indicates that PixE functions downstream of PixD and influences the direction of movement. However, it is still unclear how the light signal received by PixD is transmitted to PixE, and then subsequently transmitted to the type IV pili motor mechanism. Here, we investigated intracellular localization and oligomerization of PixD and PixE to elucidate mechanisms of phototaxis regulation. Blue-native PAGE analysis, coupled with western blotting, indicated that most PixD exist as a dimer in soluble fractions, whereas PixE localized in ~250 kDa and ~450 kDa protein complexes in membrane fractions. When blue-native PAGE was performed after illuminating the membrane fractions with blue light, PixE levels in the ~250 kDa and ~450 kDa complexes were reduced and increased, respectively. These results suggest that PixE, localized in the ~450 kDa complex, controls activity of the motor ATPase PilB1 to regulate pilus motility.
Collapse
Affiliation(s)
- Yuki Sugimoto
- Department of Life Science and Technology, Tokyo Institute of Technology
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
23
|
Terazima M. Spectrally Silent Protein Reaction Dynamics Revealed by Time-Resolved Thermodynamics and Diffusion Techniques. Acc Chem Res 2021; 54:2238-2248. [PMID: 33886281 DOI: 10.1021/acs.accounts.1c00113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biological functions essentially consist of a series of chemical reactions, including intermolecular interactions, and also involve the cooperation of a number of biological molecules performing these reactions. To understand this function at the molecular level, all steps of the reactions must be elucidated. However, since the biosystems including the surrounding environment are notably large, the reactions have to be elucidated from several different approaches. A variety of techniques have been developed to obtain structural information, and the knowledge of the three-dimensional structure of biomolecules has increased dramatically. Contrarily, the current information on reaction dynamics, which is essential for understanding reactions, is still not enough. Although frequently used techniques, such as spectroscopy, have revealed several important processes of reactions, there are various hidden dynamics that are not detected by these methods (silent dynamics). For example, although water molecules are essential for bioreactions, dynamics of the protein-water interaction are very difficult to trace and spectrally silent. Transient association/dissociations of proteins with partner proteins are difficult to observe. Another important property to understand the reaction of proteins is fluctuations, which are random movements that do not change the average structure and energy. The importance of fluctuations has been pointed out in order to explain enzymatic activity; however, it is extremely difficult to detect changes in fluctuation during a reaction. In this Account, unique time-resolved methods, time-resolved thermodynamics, and time-resolved diffusion methods, both of which are able to detect silent dynamics in solution at physiological temperature, are described.Thermodynamic properties are important for characterizing materials, in particular, macromolecules such as biomolecules. Therefore, the data available regarding these properties, for several stable proteins, is abundant. However, it is almost impossible to characterize short-lived intermediate species in irreversible reactions using traditional thermodynamic techniques. Similarly, although the translational diffusion coefficient is a useful property to determine the protein size and intermolecular interactions, there have been no reports revealing reaction dynamics. The transient grating (TG) method enables us to measure these quantities in a time-resolved manner for a variety of irreversible reactions. With this method, it is now possible to study biomolecule reactions from the viewpoint of thermodynamic properties and diffusion, and to elucidate reaction dynamics that cannot be detected by other spectroscopic methods.Here, the principles of the methodologies used, their characteristic advantages, and their applications to protein reactions are described. The TG measurements of octopus rhodopsin revealed a spectrally hidden intermediate and determined an energetic profile along the reaction coordinate. This emphasizes that the measurement in solution, not for trapped intermediates, is important to characterize the reaction intermediates. The application of these methods to a blue light sensor PixD revealed many spectrally silent dynamics as well as the importance of fluctuation for the reaction. As an example of the time-resolved heat capacity change and transient thermal expansion measurements, the reaction of PYP was briefly described. The reaction scheme of another blue light sensor protein, phototropins, and a spectrally silent DNA binding process of EL222 were fully elucidated by the time-resolved diffusion method.
Collapse
Affiliation(s)
- Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
24
|
Photoreaction Mechanisms of Flavoprotein Photoreceptors and Their Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:189-206. [PMID: 33398814 DOI: 10.1007/978-981-15-8763-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Three classes of flavoprotein photoreceptors, cryptochromes (CRYs), light-oxygen-voltage (LOV)-domain proteins, and blue light using FAD (BLUF)-domain proteins, have been identified that control various physiological processes in multiple organisms. Accordingly, signaling activities of photoreceptors have been intensively studied and the related mechanisms have been exploited in numerous optogenetic tools. Herein, we summarize the current understanding of photoactivation mechanisms of the flavoprotein photoreceptors and review their applications.
Collapse
|
25
|
Formation of an unusual glutamine tautomer in a blue light using flavin photocycle characterizes the light-adapted state. Proc Natl Acad Sci U S A 2020; 117:26626-26632. [PMID: 33037153 DOI: 10.1073/pnas.2016719117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Blue light using flavin (BLUF) photoreceptor proteins are critical for many light-activated biological processes and are promising candidates for optogenetics because of their modular nature and long-range signaling capabilities. Although the photocycle of the Slr1694 BLUF domain has been characterized experimentally, the identity of the light-adapted state following photoexcitation of the bound flavin remains elusive. Herein hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations of this photocycle provide a nonequilibrium dynamical picture of a possible mechanism for the formation of the light-adapted state. Photoexcitation of the flavin induces a forward proton-coupled electron transfer (PCET) process that leads to the formation of an imidic acid tautomer of Gln50. The calculations herein show that the subsequent rotation of Gln50 allows a reverse PCET process that retains this tautomeric form. In the resulting purported light-adapted state, the glutamine tautomer forms a hydrogen bond with the flavin carbonyl group. Additional ensemble-averaged QM/MM calculations of the dark-adapted and purported light-adapted states demonstrate that the light-adapted state with the imidic acid glutamine tautomer reproduces the experimentally observed spectroscopic signatures. Specifically, the calculations reproduce the red shifts in the flavin electronic absorption and carbonyl stretch infrared spectra in the light-adapted state. Further hydrogen-bonding analyses suggest the formation of hydrogen-bonding interactions between the flavin and Arg65 in the light-adapted state, providing a plausible explanation for the experimental observation of faster photoinduced PCET in this state. These characteristics of the light-adapted state may also be essential for the long-range signaling capabilities of this photoreceptor protein.
Collapse
|
26
|
Kichuk TC, Carrasco-López C, Avalos JL. Lights up on organelles: Optogenetic tools to control subcellular structure and organization. WIREs Mech Dis 2020; 13:e1500. [PMID: 32715616 DOI: 10.1002/wsbm.1500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 12/21/2022]
Abstract
Since the neurobiological inception of optogenetics, light-controlled molecular perturbations have been applied in many scientific disciplines to both manipulate and observe cellular function. Proteins exhibiting light-sensitive conformational changes provide researchers with avenues for spatiotemporal control over the cellular environment and serve as valuable alternatives to chemically inducible systems. Optogenetic approaches have been developed to target proteins to specific subcellular compartments, allowing for the manipulation of nuclear translocation and plasma membrane morphology. Additionally, these tools have been harnessed for molecular interrogation of organelle function, location, and dynamics. Optogenetic approaches offer novel ways to answer fundamental biological questions and to improve the efficiency of bioengineered cell factories by controlling the assembly of synthetic organelles. This review first provides a summary of available optogenetic systems with an emphasis on their organelle-specific utility. It then explores the strategies employed for organelle targeting and concludes by discussing our perspective on the future of optogenetics to control subcellular structure and organization. This article is categorized under: Metabolic Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Therese C Kichuk
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - César Carrasco-López
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA.,Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
27
|
Nakamura H, DeRose R, Inoue T. Harnessing biomolecular condensates in living cells. J Biochem 2019; 166:13-27. [PMID: 31020316 DOI: 10.1093/jb/mvz028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/22/2019] [Indexed: 11/12/2022] Open
Abstract
As part of the 'Central Dogma' of molecular biology, the function of proteins and nucleic acids within a cell is determined by their primary sequence. Recent work, however, has shown that within living cells the role of many proteins and RNA molecules can be influenced by the physical state in which the molecule is found. Within living cells, both protein and RNA molecules are observed to condense into non-membrane-bound yet distinct structures such as liquid droplets, hydrogels and insoluble aggregates. These unique intracellular organizations, collectively termed biomolecular condensates, have been found to be vital in both normal and pathological conditions. Here, we review the latest studies that have developed molecular tools attempting to recreate artificial biomolecular condensates in living cells. We will describe their design principles, implementation and unique characteristics, along with limitations. We will also introduce how these tools can be used to probe and perturb normal and pathological cell functions, which will then be complemented with discussions of remaining areas for technological advance under this exciting theme.
Collapse
Affiliation(s)
- Hideki Nakamura
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD, USA
| | - Robert DeRose
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD, USA
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD, USA
| |
Collapse
|
28
|
Wood CR, Squire MS, Finley NL, Page RC, Actis LA. Structural and functional analysis of the Acinetobacter baumannii BlsA photoreceptor and regulatory protein. PLoS One 2019; 14:e0220918. [PMID: 31415622 PMCID: PMC6695109 DOI: 10.1371/journal.pone.0220918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
The Acinetobacter baumannii BlsA photoreceptor has an N-terminal (NT) BLUF domain and a C-terminal (CT) amino acid sequence with no significant homology to characterized bacterial proteins. In this study, we tested the biological role of specific residues located in these BlsA regions. Site-directed mutagenesis, surface motility assays at 24°C and protein overexpression showed that residues Y7, Q51 and W92 are essential for not only light-regulated motility, but also BlsA's solubility when overexpressed in a heterologous host. In contrast, residues A29 and F32, the latter representing a difference when compared with other BLUF-containing photoreceptors, do not play a major role in BlsA's biological functions. Analysis of the CT region showed that the deletion of the last five BlsA residues has no significant effect on the protein's light-sensing and motility regulatory functions, but the deletion of the last 14 residues as well as K144E and K145E substitutions significantly alter light-regulated motility responses. In contrast to the NT mutants, these CT derivatives were overexpressed and purified to homogeneity to demonstrate that although these mutations do not significantly affect flavin binding and photocycling, they do affect BlsA's photodynamic properties. Notably, these mutations map within a potential fifth α-helical component that could play a role in predicted interactions between regulatory partners and BlsA, which could function as a monomer according to gel filtration data. All these observations indicate that although BlsA shares common structural and functional properties with unrelated photoreceptors, it also exhibits unique features that make it a distinct BLUF photoreceptor.
Collapse
Affiliation(s)
- Cecily R. Wood
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Mariah S. Squire
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Natosha L. Finley
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abstract
Molecular mechanisms of dark-to-light state transitions in flavoprotein photoreceptors have been the subject of intense investigation. Blue-light sensing flavoproteins fall into three general classes that share aspects of their activation processes: LOV domains, BLUF proteins, and cryptochromes. In all cases, light-induced changes in flavin redox, protonation, and bonding states result in hydrogen-bond and conformational rearrangements important for regulation of downstream targets. Physical characterization of these flavoprotein states can provide valuable insights into biological function, but clear conclusions are often challenging to draw owing to complexities of data collection and interpretation. In this chapter, we briefly review the three classes of flavoprotein photoreceptors and provide methods for their recombinant production, reconstitution with flavin cofactor, and characterization. We then relate best practices and special considerations for the application of several types of spectroscopies, redox potential measurements, and X-ray scattering experiments to photosensitive flavoproteins. The methods presented are generally accessible to most laboratories.
Collapse
Affiliation(s)
- Estella F Yee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | | | - Changfan Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
30
|
|
31
|
Sayfutyarova ER, Goings JJ, Hammes-Schiffer S. Electron-Coupled Double Proton Transfer in the Slr1694 BLUF Photoreceptor: A Multireference Electronic Structure Study. J Phys Chem B 2018; 123:439-447. [DOI: 10.1021/acs.jpcb.8b10973] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elvira R. Sayfutyarova
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Joshua J. Goings
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
32
|
Grigorenko BL, Khrenova MG, Nemukhin AV. Amide-imide tautomerization in the glutamine side chain in enzymatic and photochemical reactions in proteins. Phys Chem Chem Phys 2018; 20:23827-23836. [PMID: 30202846 DOI: 10.1039/c8cp04817g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amide-imide tautomerization presents a pervasive class of chemical transformations in organic chemistry of natural compounds. In this Perspective, we describe two distinctively different protein systems, in which the amide-imide tautomerization in the glutamine side chain takes place in enzymatic or photochemical reactions. First, hydrolysis of guanosine triphosphate (GTP) catalyzed by the Ras-GAP protein complex suggests the occurrence of the imide tautomer of glutamine in reaction intermediates. Second, photoexcitation of flavin-binding protein domains (BLUFs) initiates a chain of reactions in the chromophore-binding pocket, including amide-imide tautomerization of glutamine. Mechanisms of these reactions at the atomic level have been revealed in quantum mechanics/molecular mechanics (QM/MM) simulations. To reinforce conclusions on the critical role of amide-imide tautomerization of glutamine in these reactions we describe results of new quantum chemistry and QM/MM calculations for relevant molecular model systems. We reexamine results of the recent IR spectroscopy studies of BLUF domains, which provide experimental evidences of Gln tautomerization in proteins. We also propose to validate the glutamine-assisted mechanism of enzymatic GTP hydrolysis by using IR spectroscopy in a proper range of wavenumbers.
Collapse
Affiliation(s)
- Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation.
| | | | | |
Collapse
|
33
|
Iwata T, Nagai T, Ito S, Osoegawa S, Iseki M, Watanabe M, Unno M, Kitagawa S, Kandori H. Hydrogen Bonding Environments in the Photocycle Process around the Flavin Chromophore of the AppA-BLUF domain. J Am Chem Soc 2018; 140:11982-11991. [DOI: 10.1021/jacs.8b05123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tatsuya Iwata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- Department of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Takashi Nagai
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shinsuke Osoegawa
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Mineo Iseki
- Department of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Masakatsu Watanabe
- The Graduate School for the Creation of New Photonics Industries, Nishi-ku, Hamamatsu 431-1202, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
34
|
Dine E, Gil AA, Uribe G, Brangwynne CP, Toettcher JE. Protein Phase Separation Provides Long-Term Memory of Transient Spatial Stimuli. Cell Syst 2018; 6:655-663.e5. [PMID: 29859829 PMCID: PMC6023754 DOI: 10.1016/j.cels.2018.05.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022]
Abstract
Protein/RNA clusters arise frequently in spatially regulated biological processes, from the asymmetric distribution of P granules and PAR proteins in developing embryos to localized receptor oligomers in migratory cells. This co-occurrence suggests that protein clusters might possess intrinsic properties that make them a useful substrate for spatial regulation. Here, we demonstrate that protein droplets show a robust form of spatial memory, maintaining the spatial pattern of an inhibitor of droplet formation long after it has been removed. Despite this persistence, droplets can be highly dynamic, continuously exchanging monomers with the diffuse phase. We investigate the principles of biophysical spatial memory in three contexts: a computational model of phase separation; a novel optogenetic system where light can drive rapid, localized dissociation of liquid-like protein droplets; and membrane-localized signal transduction from clusters of receptor tyrosine kinases. Our results suggest that the persistent polarization underlying many cellular and developmental processes could arise through a simple biophysical process, without any additional biochemical feedback loops.
Collapse
Affiliation(s)
- Elliot Dine
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Agnieszka A Gil
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Giselle Uribe
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
35
|
Abstract
The first stage in biological signaling is based on changes in the functional state of a receptor protein triggered by interaction of the receptor with its ligand(s). The light-triggered nature of photoreceptors allows studies on the mechanism of such changes in receptor proteins using a wide range of biophysical methods and with superb time resolution. Here, we critically evaluate current understanding of proton and electron transfer in photosensory proteins and their involvement both in primary photochemistry and subsequent processes that lead to the formation of the signaling state. An insight emerging from multiple families of photoreceptors is that ultrafast primary photochemistry is followed by slower proton transfer steps that contribute to triggering large protein conformational changes during signaling state formation. We discuss themes and principles for light sensing shared by the six photoreceptor families: rhodopsins, phytochromes, photoactive yellow proteins, light-oxygen-voltage proteins, blue-light sensors using flavin, and cryptochromes.
Collapse
Affiliation(s)
- Tilman Kottke
- Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Aihua Xie
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Delmar S. Larsen
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Wouter D. Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| |
Collapse
|
36
|
Tanwar M, Sharma K, Moar P, Kateriya S. Biochemical Characterization of the Engineered Soluble Photoactivated Guanylate Cyclases from Microbes Expands Optogenetic Tools. Appl Biochem Biotechnol 2018; 185:1014-1028. [PMID: 29404907 DOI: 10.1007/s12010-018-2710-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/23/2018] [Indexed: 01/23/2023]
Abstract
Cyclic nucleotide, such as cyclic GMP, is a secondary messenger that regulates a wide range of biological process via the diverse signaling cascades. Photoactivated adenylyl cyclases (PACs), constituted of blue light utilizing flavin (BLUF) and cyclase homology domain (CHD), are used as an optogenetic tool to modulate the cyclic AMP (cAMP) level and to study cAMP-mediated signal transduction mechanisms. Here, we have engineered photoactivated adenylyl cyclases (PACs) from microbes to photoactivated guanylyl cyclases (PGCs) via mutagenesis of the substrate binding-specific residues in cyclase homology domain. We demonstrate purification, photodynamic, and detailed biochemical characterization of the engineered PGCs that can serve as optogenetic tool for manipulation of cGMP level in the cells. Engineered PGCs show typical BLUF photoreceptor properties with different recovery kinetics and varying light-regulated guanylyl cyclase activities.
Collapse
Affiliation(s)
- Meenakshi Tanwar
- Department of Biochemistry, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Komal Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Preeti Moar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Suneel Kateriya
- Department of Biochemistry, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India. .,School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
37
|
Nakajima T, Kuroi K, Nakasone Y, Okajima K, Ikeuchi M, Tokutomi S, Terazima M. Anomalous pressure effects on the photoreaction of a light-sensor protein from Synechocystis, PixD (Slr1694), and the compressibility change of its intermediates. Phys Chem Chem Phys 2018; 18:25915-25925. [PMID: 27711633 DOI: 10.1039/c6cp05091c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
SyPixD (Slr1694) is a blue-light receptor that contains a BLUF (blue-light sensor using a flavin chromophore) domain for the function of phototaxis. The key reaction of this protein is a light-induced conformational change and subsequent dissociation reaction from the decamer to the dimer. In this study, anomalous effects of pressure on this reaction were discovered, and changes in the compressibility of its short-lived intermediates were investigated. While the absorption spectra of the dark and light states are not sensitive to pressure, the formation yield of the first intermediate decreases with pressure to about 40% at 150 MPa. Upon blue-light illumination with a sufficiently strong intensity, the transient grating signal, which represents the dissociation of the SyPixD decamer, was observed at 0.1 MPa, and the signal intensity significantly decreased with increasing pressure. This behavior shows that the dissociation of the decamer from the second intermediate state is suppressed by pressure. However, while the decamer undergoes no dissociation upon excitation of one monomer unit at 0.1 MPa, dissociation is gradually induced with increasing pressure. For solving this strange behavior, the compressibility changes of the intermediates were measured as a function of pressure at weak light intensity. Interestingly, the compressibility change was negative at low pressure, but became positive with increasing pressure. Because the compressibility is related to the volume fluctuation, this observation suggests that the driving force for this reaction is fluctuation of the protein. The relationship between the cavities at the interfaces of the monomer units and the reactivity was also discussed.
Collapse
Affiliation(s)
- Tsubasa Nakajima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Kunisato Kuroi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Koji Okajima
- Research Institute for Advanced Science and Technology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Satoru Tokutomi
- Research Institute for Advanced Science and Technology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
38
|
Lincke K, Langeland J, Madsen AØ, Kiefer HV, Skov L, Gruber E, Mikkelsen KV, Andersen LH, Nielsen MB. Elucidation of the intrinsic optical properties of hydrogen-bonded and protonated flavin chromophores by photodissociation action spectroscopy. Phys Chem Chem Phys 2018; 20:28678-28684. [DOI: 10.1039/c8cp05368e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The intrinsic optical properties of the flavin chromophore when engaged in hydrogen bonding or being protonated were elucidated by photo-induced action spectroscopy and computations.
Collapse
Affiliation(s)
- Kasper Lincke
- Department of Chemistry, University of Copenhagen
- DK-2100 Copenhagen Ø
- Denmark
| | - Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University
- DK-8000 Aarhus C
- Denmark
| | | | - Hjalte V. Kiefer
- Department of Physics and Astronomy, Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Louise Skov
- Department of Chemistry, University of Copenhagen
- DK-2100 Copenhagen Ø
- Denmark
| | - Elisabeth Gruber
- Department of Physics and Astronomy, Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Kurt V. Mikkelsen
- Department of Chemistry, University of Copenhagen
- DK-2100 Copenhagen Ø
- Denmark
| | - Lars H. Andersen
- Department of Physics and Astronomy, Aarhus University
- DK-8000 Aarhus C
- Denmark
| | | |
Collapse
|
39
|
Fujisawa T, Masuda S. Light-induced chromophore and protein responses and mechanical signal transduction of BLUF proteins. Biophys Rev 2017; 10:327-337. [PMID: 29235080 PMCID: PMC5899715 DOI: 10.1007/s12551-017-0355-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/15/2017] [Indexed: 11/26/2022] Open
Abstract
Photoreceptor proteins have been used to study how protein conformational changes are induced by alterations in their environments and how their signals are transmitted to downstream factors to dictate physiological responses. These proteins are attractive models because their signal transduction aspects and structural changes can be precisely regulated in vivo and in vitro based on light intensity. Among the known photoreceptors, members of the blue light–using flavin (BLUF) protein family have been well characterized with regard to how they control various light-dependent physiological responses in several microorganisms. Herein, we summarize our current understanding of their photoactivation and signal-transduction mechanisms. For signal transduction, we review recent studies concerning how the BLUF protein, PixD, transmits a light-induced signal to its downstream factor, PixE, to modulate phototaxis of the cyanobacterium Synechocystis sp. PCC6803.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry, Graduate School of Science and Engineering, Saga University, Saga, 840-8502 Japan
| | - Shinji Masuda
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
40
|
Gil AA, Laptenok SP, Iuliano JN, Lukacs A, Verma A, Hall CR, Yoon GE, Brust R, Greetham GM, Towrie M, French JB, Meech SR, Tonge PJ. Photoactivation of the BLUF Protein PixD Probed by the Site-Specific Incorporation of Fluorotyrosine Residues. J Am Chem Soc 2017; 139:14638-14648. [PMID: 28876066 DOI: 10.1021/jacs.7b07849] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The flavin chromophore in blue-light-using FAD (BLUF) photoreceptors is surrounded by a hydrogen bond network that senses and responds to changes in the electronic structure of the flavin on the ultrafast time scale. The hydrogen bond network includes a strictly conserved Tyr residue, and previously we explored the role of this residue, Y21, in the photoactivation mechanism of the BLUF protein AppABLUF by the introduction of fluorotyrosine (F-Tyr) analogues that modulated the pKa and reduction potential of Y21 by 3.5 pH units and 200 mV, respectively. Although little impact on the forward (dark- to light-adapted form) photoreaction was observed, the change in Y21 pKa led to a 4000-fold increase in the rate of dark-state recovery. In the present work we have extended these studies to the BLUF protein PixD, where, in contrast to AppABLUF, modulation in the Tyr (Y8) pKa has a profound impact on the forward photoreaction. In particular, a decrease in Y8 pKa by 2 or more pH units prevents formation of a stable light state, consistent with a photoactivation mechanism that involves proton transfer or proton-coupled electron transfer from Y8 to the electronically excited FAD. Conversely, the effect of pKa on the rate of dark recovery is markedly reduced in PixD. These observations highlight very significant differences between the photocycles of PixD and AppABLUF, despite their sharing highly conserved FAD binding architectures.
Collapse
Affiliation(s)
| | - Sergey P Laptenok
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | | | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs , Pecs H-7622, Hungary
| | - Anil Verma
- Central Laser Facility, Harwell Science and Innovation Campus , Didcot, Oxon OX11 0QX, U.K
| | - Christopher R Hall
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | | | | | - Gregory M Greetham
- Central Laser Facility, Harwell Science and Innovation Campus , Didcot, Oxon OX11 0QX, U.K
| | - Michael Towrie
- Central Laser Facility, Harwell Science and Innovation Campus , Didcot, Oxon OX11 0QX, U.K
| | | | - Stephen R Meech
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | | |
Collapse
|
41
|
Molecular mechanism of photoactivation of a light-regulated adenylate cyclase. Proc Natl Acad Sci U S A 2017; 114:8562-8567. [PMID: 28739908 DOI: 10.1073/pnas.1704391114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The photoactivated adenylate cyclase (PAC) from the photosynthetic cyanobacterium Oscillatoria acuminata (OaPAC) detects light through a flavin chromophore within the N-terminal BLUF domain. BLUF domains have been found in a number of different light-activated proteins, but with different relative orientations. The two BLUF domains of OaPAC are found in close contact with each other, forming a coiled coil at their interface. Crystallization does not impede the activity switching of the enzyme, but flash cooling the crystals to cryogenic temperatures prevents the signature spectral changes that occur on photoactivation/deactivation. High-resolution crystallographic analysis of OaPAC in the fully activated state has been achieved by cryocooling the crystals immediately after light exposure. Comparison of the isomorphous light- and dark-state structures shows that the active site undergoes minimal changes, yet enzyme activity may increase up to 50-fold, depending on conditions. The OaPAC models will assist the development of simple, direct means to raise the cyclic AMP levels of living cells by light, and other tools for optogenetics.
Collapse
|
42
|
Park SY, Tame JRH. Seeing the light with BLUF proteins. Biophys Rev 2017; 9:169-176. [PMID: 28510088 DOI: 10.1007/s12551-017-0258-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 10/19/2022] Open
Abstract
First described about 15 years ago, BLUF (Blue Light Using Flavin) domains are light-triggered switches that control enzyme activity or gene expression in response to blue light, remaining activated for seconds or even minutes after stimulation. The conserved, ferredoxin-like fold holds a flavin chromophore that captures the light and somehow triggers downstream events. BLUF proteins are found in both prokaryotes and eukaryotes and have a variety of architectures and oligomeric forms, but the BLUF domain itself seems to have a well-preserved structure and mechanism that have been the focus of intense study for a number of years. Crystallographic and NMR structures of BLUF domains have been solved, but the conflicting models have led to considerable debate about the atomic details of photo-activation. Advanced spectroscopic and computational methods have been used to analyse the early events after photon absorption, but these too have led to widely differing conclusions. New structural models are improving our understanding of the details of the mechanism and may lead to novel tailor-made tools for optogenetics.
Collapse
Affiliation(s)
- Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Jeremy R H Tame
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
43
|
Lindner R, Hartmann E, Tarnawski M, Winkler A, Frey D, Reinstein J, Meinhart A, Schlichting I. Photoactivation Mechanism of a Bacterial Light-Regulated Adenylyl Cyclase. J Mol Biol 2017; 429:1336-1351. [PMID: 28336405 DOI: 10.1016/j.jmb.2017.03.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/08/2017] [Accepted: 03/17/2017] [Indexed: 01/07/2023]
Abstract
Light-regulated enzymes enable organisms to quickly respond to changing light conditions. We characterize a photoactivatable adenylyl cyclase (AC) from Beggiatoa sp. (bPAC) that translates a blue light signal into the production of the second messenger cyclic AMP. bPAC contains a BLUF photoreceptor domain that senses blue light using a flavin chromophore, linked to an AC domain. We present a dark state crystal structure of bPAC that closely resembles the recently published structure of the homologous OaPAC from Oscillatoria acuminata. To elucidate the structural mechanism of light-dependent AC activation by the BLUF domain, we determined the crystal structures of illuminated bPAC and of a pseudo-lit state variant. We use hydrogen-deuterium exchange measurements of secondary structure dynamics and hypothesis-driven point mutations to trace the activation pathway from the chromophore in the BLUF domain to the active site of the cyclase. The structural changes are relayed from the residues interacting with the excited chromophore through a conserved kink of the BLUF β-sheet to a tongue-like extrusion of the AC domain that regulates active site opening and repositions catalytic residues. Our findings not only show the specific molecular pathway of photoactivation in BLUF-regulated ACs but also have implications for the general understanding of signaling in BLUF domains and of the activation of ACs.
Collapse
Affiliation(s)
- Robert Lindner
- Max Planck Institute for Medical Research, Jahnstr, 29, 69120 Heidelberg, Germany
| | - Elisabeth Hartmann
- Max Planck Institute for Medical Research, Jahnstr, 29, 69120 Heidelberg, Germany
| | - Miroslaw Tarnawski
- Max Planck Institute for Medical Research, Jahnstr, 29, 69120 Heidelberg, Germany
| | - Andreas Winkler
- Max Planck Institute for Medical Research, Jahnstr, 29, 69120 Heidelberg, Germany
| | - Daniel Frey
- Max Planck Institute for Medical Research, Jahnstr, 29, 69120 Heidelberg, Germany
| | - Jochen Reinstein
- Max Planck Institute for Medical Research, Jahnstr, 29, 69120 Heidelberg, Germany
| | - Anton Meinhart
- Max Planck Institute for Medical Research, Jahnstr, 29, 69120 Heidelberg, Germany
| | - Ilme Schlichting
- Max Planck Institute for Medical Research, Jahnstr, 29, 69120 Heidelberg, Germany.
| |
Collapse
|
44
|
Tanwar M, Nahar S, Gulati S, Veetil SK, Kateriya S. Molecular determinant modulates thermal recovery kinetics and structural integrity of the bacterial BLUF photoreceptor. FEBS Lett 2016; 590:2146-57. [DOI: 10.1002/1873-3468.12227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/12/2016] [Accepted: 05/25/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Meenakshi Tanwar
- Department of Biochemistry; University of Delhi; New Delhi India
| | - Smita Nahar
- Department of Biochemistry; University of Delhi; New Delhi India
| | - Sahil Gulati
- Department of Biochemistry; University of Delhi; New Delhi India
| | | | - Suneel Kateriya
- Department of Biochemistry; University of Delhi; New Delhi India
- School of Biotechnology; Jawaharlal Nehru University; New Delhi India
| |
Collapse
|
45
|
Wijaya IMM, Domratcheva T, Iwata T, Getzoff ED, Kandori H. Single Hydrogen Bond Donation from Flavin N5 to Proximal Asparagine Ensures FAD Reduction in DNA Photolyase. J Am Chem Soc 2016; 138:4368-76. [PMID: 27002596 DOI: 10.1021/jacs.5b10533] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The spread of the absorbance of the stable FADH(•) radical (300-700 nm) allows CPD photolyase to highly efficiently form FADH(-), making it functional for DNA repair. In this study, FTIR spectroscopy detected a strong hydrogen bond, from FAD N5-H to the carbonyl group of the Asn378 side chain, that is modulated by the redox state of FAD. The observed characteristic frequency shifts were reproduced in quantum-mechanical models of the flavin binding site, which were then employed to elucidate redox tuning governed by Asn378. We demonstrate that enhanced hydrogen bonding of the Asn378 side chain with the FADH(•) radical increases thermodynamic stabilization of the radical state, and further ensures kinetic stabilization and accumulation of the fully reduced FADH(-) state.
Collapse
Affiliation(s)
| | - Tatiana Domratcheva
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research , Jahnstrasse 29, Heidelberg 69120, Germany
| | | | - Elizabeth D Getzoff
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | | |
Collapse
|
46
|
Domratcheva T, Hartmann E, Schlichting I, Kottke T. Evidence for Tautomerisation of Glutamine in BLUF Blue Light Receptors by Vibrational Spectroscopy and Computational Chemistry. Sci Rep 2016; 6:22669. [PMID: 26947391 PMCID: PMC4780082 DOI: 10.1038/srep22669] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/16/2016] [Indexed: 02/02/2023] Open
Abstract
BLUF (blue light sensor using flavin) domains regulate the activity of various enzymatic effector domains in bacteria and euglenids. BLUF features a unique photoactivation through restructuring of the hydrogen-bonding network as opposed to a redox reaction or an isomerization of the chromophore. A conserved glutamine residue close to the flavin chromophore plays a central role in the light response, but the underlying modification is still unclear. We labelled this glutamine with (15)N in two representative BLUF domains and performed time-resolved infrared double difference spectroscopy. The assignment of the signals was conducted by extensive quantum chemical calculations on large models with 187 atoms reproducing the UV-vis and infrared signatures of BLUF photoactivation. In the dark state, the comparatively low frequency of 1,667 cm(-1) is assigned to the glutamine C=O accepting a hydrogen bond from tyrosine. In the light state, the signature of a tautomerised glutamine was extracted with the C=N stretch at ~1,691 cm(-1) exhibiting the characteristic strong downshift by (15)N labelling. Moreover, an indirect isotope effect on the flavin C4=O stretch was found. We conclude that photoactivation of the BLUF receptor does not only involve a rearrangement of hydrogen bonds but includes a change in covalent bonds of the protein.
Collapse
Affiliation(s)
- Tatiana Domratcheva
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Elisabeth Hartmann
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitäts straße 25, 33615 Bielefeld, Germany
| |
Collapse
|
47
|
Gil A, Haigney A, Laptenok SP, Brust R, Lukacs A, Iuliano J, Jeng J, Melief E, Zhao RK, Yoon E, Clark I, Towrie M, Greetham GM, Ng A, Truglio J, French J, Meech SR, Tonge PJ. Mechanism of the AppABLUF Photocycle Probed by Site-Specific Incorporation of Fluorotyrosine Residues: Effect of the Y21 pKa on the Forward and Reverse Ground-State Reactions. J Am Chem Soc 2016; 138:926-935. [PMID: 26708408 PMCID: PMC4830125 DOI: 10.1021/jacs.5b11115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transcriptional antirepressor AppA is a blue light using flavin (BLUF) photoreceptor that releases the transcriptional repressor PpsR upon photoexcitation. Light activation of AppA involves changes in a hydrogen-bonding network that surrounds the flavin chromophore on the nanosecond time scale, while the dark state of AppA is then recovered in a light-independent reaction with a dramatically longer half-life of 15 min. Residue Y21, a component of the hydrogen-bonding network, is known to be essential for photoactivity. Here, we directly explore the effect of the Y21 pKa on dark state recovery by replacing Y21 with fluorotyrosine analogues that increase the acidity of Y21 by 3.5 pH units. Ultrafast transient infrared measurements confirm that the structure of AppA is unperturbed by fluorotyrosine substitution, and that there is a small (3-fold) change in the photokinetics of the forward reaction over the fluorotyrosine series. However, reduction of 3.5 pH units in the pKa of Y21 increases the rate of dark state recovery by 4000-fold with a Brønsted coefficient of ∼ 1, indicating that the Y21 proton is completely transferred in the transition state leading from light to dark adapted AppA. A large solvent isotope effect of ∼ 6-8 is also observed on the rate of dark state recovery. These data establish that the acidity of Y21 is a crucial factor for stabilizing the light activated form of the protein, and have been used to propose a model for dark state recovery that will ultimately prove useful for tuning the properties of BLUF photosensors for optogenetic applications.
Collapse
Affiliation(s)
- Agnieszka Gil
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Allison Haigney
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Sergey P. Laptenok
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Richard Brust
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Andras Lukacs
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - James Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Jessica Jeng
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Eduard Melief
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Rui-Kun Zhao
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - EunBin Yoon
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Ian Clark
- Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, UK
| | - Michael Towrie
- Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, UK
| | - Gregory M. Greetham
- Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, UK
| | - Annabelle Ng
- William A. Shine Great Neck South High School, 341 Lakeville Rd, Great Neck, NY 11020, USA
| | - James Truglio
- William A. Shine Great Neck South High School, 341 Lakeville Rd, Great Neck, NY 11020, USA
| | - Jarrod French
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
- Biochemistry & Cell Biology, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Stephen R. Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Peter J. Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| |
Collapse
|
48
|
Mehlhorn J, Lindtner T, Richter F, Glass K, Steinocher H, Beck S, Hegemann P, Kennis JTM, Mathes T. Light-Induced Rearrangement of the β5 Strand in the BLUF Photoreceptor SyPixD (Slr1694). J Phys Chem Lett 2015; 6:4749-4753. [PMID: 26631358 DOI: 10.1021/acs.jpclett.5b02245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The structural changes that facilitate signal transduction in blue light sensors using FAD (BLUF) photoreceptors and confer the stability of the rearranged hydrogen bond network between flavin and protein in the signaling state are still poorly understood. Here, we investigate a semiconserved Trp residue in SyPixD (Slr1694) by isotope-edited vibrational spectroscopy and site-directed mutagenesis. In the signaling state, a β-sheet structure involving the backbone of W91 is formed without apparent change of environment of the W91 indole side chain. Mutation of W91, however, significantly influences the stability of the light-adapted state, suggesting that backbone rigidity rather than discrete side-chain conformations govern the stability of the light-adapted state. On the basis of computational and crystallographic models, we interpret these changes as a +1 register shift of the β2/β5 interaction with an unaffected indole side-chain conformation, rather than a +2 register shift accompanied by an indole side-chain flip that was previously proposed on the basis of X-ray structures.
Collapse
Affiliation(s)
- Jennifer Mehlhorn
- Department of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Invalidenstraße 42, 10115 Berlin, Germany
| | - Tom Lindtner
- Department of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Invalidenstraße 42, 10115 Berlin, Germany
| | - Florian Richter
- Department of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Invalidenstraße 42, 10115 Berlin, Germany
| | - Kathrin Glass
- Department of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Invalidenstraße 42, 10115 Berlin, Germany
| | - Helena Steinocher
- Department of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Invalidenstraße 42, 10115 Berlin, Germany
| | - Sebastian Beck
- Department of Chemistry, Humboldt-Universität zu Berlin , Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Peter Hegemann
- Department of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Invalidenstraße 42, 10115 Berlin, Germany
| | - John T M Kennis
- Department of Physics and Astronomy, Biophysics Section, Faculty of Sciences, Vrije Universiteit , De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Tilo Mathes
- Department of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Invalidenstraße 42, 10115 Berlin, Germany
- Department of Physics and Astronomy, Biophysics Section, Faculty of Sciences, Vrije Universiteit , De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Cho SM, Jeoung SC, Song JY, Kupriyanova EV, Pronina NA, Lee BW, Jo SW, Park BS, Choi SB, Song JJ, Park YI. Genomic Survey and Biochemical Analysis of Recombinant Candidate Cyanobacteriochromes Reveals Enrichment for Near UV/Violet Sensors in the Halotolerant and Alkaliphilic Cyanobacterium Microcoleus IPPAS B353. J Biol Chem 2015; 290:28502-28514. [PMID: 26405033 DOI: 10.1074/jbc.m115.669150] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteriochromes (CBCRs), which are exclusive to and widespread among cyanobacteria, are photoproteins that sense the entire range of near-UV and visible light. CBCRs are related to the red/far-red phytochromes that utilize linear tetrapyrrole (bilin) chromophores. Best characterized from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and the multicellular heterocyst forming filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120, CBCRs have been poorly investigated in mat-forming, nonheterocystous cyanobacteria. In this study, we sequenced the genome of one of such species, Microcoleus IPPAS B353 (Microcoleus B353), and identified two phytochromes and seven CBCRs with one or more bilin-binding cGMP-specific phosphodiesterase, adenylyl cyclase and FhlA (GAF) domains. Biochemical and spectroscopic measurements of 23 purified GAF proteins from phycocyanobilin (PCB) producing recombinant Escherichia coli indicated that 13 of these proteins formed near-UV and visible light-absorbing covalent adducts: 10 GAFs contained PCB chromophores, whereas three contained the PCB isomer, phycoviolobilin (PVB). Furthermore, the complement of Microcoleus B353 CBCRs is enriched in near-UV and violet sensors, but lacks red/green and green/red CBCRs that are widely distributed in other cyanobacteria. We hypothesize that enrichment in short wavelength-absorbing CBCRs is critical for acclimation to high-light environments where this organism is found.
Collapse
Affiliation(s)
- Sung Mi Cho
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, Korea
| | - Sae Chae Jeoung
- Center for Advanced Measurement and Instrumentation, Korea Research Institute of Standards and Science, Daejeon 305-340, Korea
| | - Ji-Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, Korea
| | - Elena V Kupriyanova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Natalia A Pronina
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | | | | | - Beom-Seok Park
- The Agricultural Genome Center, National Academy of Agricultural Science, Rural Development Administration, Wanju 565-851, Korea.
| | - Sang-Bong Choi
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, Korea
| |
Collapse
|
50
|
Nohr D, Rodriguez R, Weber S, Schleicher E. How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors? Front Mol Biosci 2015; 2:49. [PMID: 26389123 PMCID: PMC4555020 DOI: 10.3389/fmolb.2015.00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/10/2015] [Indexed: 11/25/2022] Open
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage), and BLUF (blue-light using FAD) domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes.
Collapse
Affiliation(s)
- Daniel Nohr
- Department of Physical Chemistry, Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg Freiburg, Germany
| | - Ryan Rodriguez
- Department of Physical Chemistry, Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg Freiburg, Germany
| | - Stefan Weber
- Department of Physical Chemistry, Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg Freiburg, Germany
| | - Erik Schleicher
- Department of Physical Chemistry, Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg Freiburg, Germany
| |
Collapse
|