1
|
Ahmed A, Rahman MS. Histological, biochemical and immunohistochemical assessments of Roundup®, atrazine, and 2,4-D mixtures on tissue architecture, body fluid conditions, nitrotyrosine protein and Na +/K +-ATPase expressions in the American oyster, Crassostera virginica. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109951. [PMID: 38844188 DOI: 10.1016/j.cbpc.2024.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Pesticides are widely used to control weeds and pests in agricultural settings but harm non-target aquatic organisms. In this study, our objective was to evaluate the effect of short-term exposure (one week) to environmentally relevant concentrations of pesticides mixture (low concentration: 0.4 μg/l atrazine, 0.5 μg/l Roundup®, and 0.5 μg/l 2,4-D; high concentration: 0.8 μg/l atrazine, 1 μg/l Roundup®, and 1 μg/l 2,4-D) on tissue architecture, body fluid conditions, and 3-nitrotyrosine protein (NTP) and Na+/K+-ATPase, expressions in tissues of American oyster (Crassostrea virginica) under controlled laboratory conditions. Histological analysis demonstrated the atrophy in the gills and digestive glands of oysters exposed to pesticides mixture. Periodic acid-Schiff (PAS) staining showed the number of hemocytes in connective tissue increased in low- and high-concentration pesticides exposure groups. However, pesticides treatment significantly (P < 0.05) decreased the amount of mucous secretion in the gills and digestive glands of oysters. The extrapallial fluid (i.e., body fluid) protein concentrations and glucose levels were dropped significantly (P < 0.05) in oysters exposed to high-concentration pesticides exposure groups. Moreover, immunohistochemical analysis showed significant upregulations of NTP and Na+/K+-ATPase expressions in the gills and digestive glands in pesticides exposure groups. Our results suggest that exposure to environmentally relevant pesticides mixture causes morphological changes in tissues and alters body fluid conditions and NTP and Na+/K+-ATPase expressions in tissues, which may lead to impaired physiological functions in oysters.
Collapse
Affiliation(s)
- Asif Ahmed
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| |
Collapse
|
2
|
Dash MK, Rahman MS. Molecular and biochemical responses to tributyltin (TBT) exposure in the American oyster: Triggers of stress-induced oxidative DNA damage and prooxidant-antioxidant imbalance in tissues by TBT. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109523. [PMID: 36427667 DOI: 10.1016/j.cbpc.2022.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Environmental pollution increases due to anthropogenic activities. Toxic chemicals in the environment affect the health of aquatic organisms. Tributyltin (TBT) is a toxic chemical widely used as an antifouling paint on boats, hulls, and ships. The toxic effect of TBT is well documented in aquatic organisms; however, little is known about the effects of TBT on DNA lesions in shellfish. The American oyster (Crassostrea virginica, an edible and commercially important species) is an ideal marine mollusk to examine the effects of TBT exposure on DNA lesions and oxidative/nitrative stress. In this study, we investigated the effects of TBT on 8'-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), dinitrophenyl protein (DNP, a biomarker on reactive oxygen species, ROS), 3-nitrotyrosine protein (NTP, a biomarker of reactive nitrogen species, RNS), catalase (CAT, an antioxidant), and acetylcholinesterase (AChE, a cholinergic enzyme) expressions in the gills and digestive glands of oysters. We also analyzed extrapallial (EF) fluid conditions. Immunohistochemical and qRT-PCR results showed that TBT exposure significantly increased 8-OHdG, dsDNA, DNP, NTP, and CAT mRNA and/or protein expressions in the gills and digestive glands. However, AChE mRNA and protein expressions, and EP fluid pH and protein concentrations were decreased in TBT-exposed oysters. Taken together, these results suggest that antifouling biocide-induced production of ROS/RNS results in DNA damage, which may lead to decreased cellular functions in oysters. To the best of our knowledge, the present study provides the first molecular/biochemical evidence that TBT exposure results in oxidative/nitrative stress and DNA lesions in oysters.
Collapse
Affiliation(s)
- Mohan Kumar Dash
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA; Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
3
|
Rahman MF, Billah MM, Kline RJ, Rahman MS. Effects of elevated temperature on 8-OHdG expression in the American oyster ( Crassostrea virginica): Induction of oxidative stress biomarkers, cellular apoptosis, DNA damage and γH2AX signaling pathways. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 4:100079. [PMID: 36589260 PMCID: PMC9798191 DOI: 10.1016/j.fsirep.2022.100079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Global temperature is increasing due to anthropogenic activities and the effects of elevated temperature on DNA lesions are not well documented in marine organisms. The American oyster (Crassostrea virginica, an edible and commercially important marine mollusk) is an ideal shellfish species to study oxidative DNA lesions during heat stress. In this study, we examined the effects of elevated temperatures (24, 28, and 32 °C for one-week exposure) on heat shock protein-70 (HSP70, a biomarker of heat stress), 8‑hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), γ-histone family member X (γH2AX, a molecular biomarker of DNA damage), caspase-3 (CAS-3, a key enzyme of apoptotic pathway) and Bcl-2-associated X (BAX, an apoptosis regulator) protein and/or mRNA expressions in the gills of American oysters. Immunohistochemical and qRT-PCR results showed that HSP70, 8-OHdG, dsDNA, and γH2AX expressions in gills were significantly increased at high temperatures (28 and 32 °C) compared with control (24°C). In situ TUNEL analysis showed that the apoptotic cells in gill tissues were increased in heat-exposed oysters. Interestingly, the enhanced apoptotic cells were associated with increased CAS-3 and BAX mRNA and/or protein expressions, along with 8-OHdG levels in gills after heat exposure. Moreover, the extrapallial (EP) fluid (i.e., extracellular body fluid) protein concentrations were lower; however, the EP glucose levels were higher in heat-exposed oysters. Taken together, these results suggest that heat shock-driven oxidative stress alters extracellular body fluid conditions and induces cellular apoptosis and DNA damage, which may lead to increased 8-OHdG levels in cells/tissues in oysters.
Collapse
Key Words
- 8-OHdG, 8‑hydroxy-2′-deoxyguanosine
- BAX, bcl-2-associate X
- BSA, bovine serum albumin
- CAS-3, caspase-3
- Caspase 3
- DSBs, double-stranded breaks
- EP, extrapallial
- Extrapallial fluid
- HSP70
- HSP70, heat shock protein 70
- Heat stress
- Marine mollusks
- PBS, Phosphate buffer saline
- SSBs, single-stranded breaks
- TUNEL, terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling
- dsDNA breaks
- dsDNA, double-stranded DNA
- qRT-PCR, quantitative real-time polymerase chain reaction
- ssDNA, single-stranded DNA
- γ-H2AX, γ-histone family member X
Collapse
Affiliation(s)
- Md Faizur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Mohammad Maruf Billah
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Richard J. Kline
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA,Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA,Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA,Corresponding author at: Department of Biology, University of Texas Rio Grande Valley, 1 West University Blvd., Brownsville, Texas 78520, USA.
| |
Collapse
|
4
|
Rumney RMH, Robson SC, Kao AP, Barbu E, Bozycki L, Smith JR, Cragg SM, Couceiro F, Parwani R, Tozzi G, Stuer M, Barber AH, Ford AT, Górecki DC. Biomimetic generation of the strongest known biomaterial found in limpet tooth. Nat Commun 2022; 13:3753. [PMID: 35798724 PMCID: PMC9263180 DOI: 10.1038/s41467-022-31139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
The biomaterial with the highest known tensile strength is a unique composite of chitin and goethite (α-FeO(OH)) present in teeth from the Common Limpet (Patella vulgata). A biomimetic based on limpet tooth, with corresponding high-performance mechanical properties is highly desirable. Here we report on the replication of limpet tooth developmental processes ex vivo, where isolated limpet tissue and cells in culture generate new biomimetic structures. Transcriptomic analysis of each developmental stage of the radula, the organ from which limpet teeth originate, identifies sequential changes in expression of genes related to chitin and iron processing. We quantify iron and chitin metabolic processes in the radula and grow isolated radula cells in vitro. Bioinspired material can be developed with electrospun chitin mineralised by conditioned media from cultured radula cells. Our results inform molecular processes behind the generation of limpet tooth and establish a platform for development of a novel biomimetic with comparable properties. The highest tensile strength biomaterial known exists in limpet teeth and replicating this material is of interest. Here, the authors report on the ex vivo growth of teeth and use of isolated limpet tissue and cells providing foundations for the development of this high-tensile biomaterial.
Collapse
Affiliation(s)
- Robin M H Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Samuel C Robson
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.,Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, PO1 2DT, UK.,School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Alexander P Kao
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, UK
| | - Eugen Barbu
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Lukasz Bozycki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.,Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - James R Smith
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Simon M Cragg
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, PO4 9LY, UK
| | - Fay Couceiro
- School of Civil Engineering and Surveying, University of Portsmouth, Portland Building, Portland St, Portsmouth, PO3 1AH, UK
| | - Rachna Parwani
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, UK.,Carl Zeiss X-ray Microscopy, Pleasanton, CA, USA
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, UK
| | - Michael Stuer
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Asa H Barber
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, UK.,School of Engineering, London South Bank University, 103 Borough Road, London, SE10AA, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, PO4 9LY, UK
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
5
|
Piwoni-Piórewicz A, Strekopytov S, Humphreys-Williams E, Najorka J, Szymczycha B, Kukliński P. Polymorphism of CaCO 3 and the variability of elemental composition of the calcareous skeletons secreted by invertebrates along the salinity gradient of the Baltic Sea. GEOBIOLOGY 2022; 20:575-596. [PMID: 35610771 DOI: 10.1111/gbi.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Biomineralization is of great importance in ecosystem functioning and for the use of carbonate skeleton as environmental proxies. Skeletal formation is controlled to different degrees by environmental parameters and biological mechanisms. While salinity is one of the most important factors affecting ecological processes and ocean physiochemistry, the goal of this investigation was to identify how salinity influences the mineral type and the concentrations of chemical elements in the whole skeleton of invertebrates from the Baltic Sea. In this model system, the surface salinity decreases from marine values (27.2) to almost fresh water (6.1). The selected organisms, mussels (Mytilus spp.), bryozoans (Einhornia crustulenta, Cribrilina cryptooecium, Cryptosula pallasiana, Electra pilosa, Escharella immersa), barnacles (Amphibalanus improvisus, Semibalanus balanoides), and polychaetes (Spirorbis tridentatus), precipitated skeleton composed of calcite and aragonite, most likely as a result of various interacting environmental and biological factors. The concentrations of all elements in bulk skeleton were highly variable between species from the same location, underlining the role of the biological mechanisms in skeletal formation. The concentration of Ca, Mg, Sr, and Na increased in the bulk skeleton of stenohaline organisms with increasing salinity, while in the bulk skeleton of euryhaline species, only the concentration of Na increased with increasing salinity. The concentrations of Mn, Ba, Cu, Pb, Y, V, Cd, and U in the skeleton of euryhaline species generally decreased at higher salinities, most likely reflecting the lower bioavailability of elements at higher salinity. However, the concentrations of elements in the skeleton of stenohaline organisms were highly variable with no clear salinity impact. This study suggests that, although the composition of skeleton of calcifying organisms along the salinity gradient of the Baltic Sea is to a large extent affected by biological mechanisms, it also reflects the responses to environmental conditions.
Collapse
Affiliation(s)
- Anna Piwoni-Piórewicz
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- Institute of Oceanography, University of Gdansk, Gdynia, Poland
| | | | | | - Jens Najorka
- Imaging and Analysis Centre, Natural History Museum, London, UK
| | - Beata Szymczycha
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Piotr Kukliński
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
6
|
Mussels Repair Shell Damage despite Limitations Imposed by Ocean Acidification. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bivalves frequently withstand shell damage that must be quickly repaired to ensure survival. While the processes that underlie larval shell development have been extensively studied within the context of ocean acidification (OA), it remains unclear whether shell repair is impacted by elevated pCO2. To better understand the stereotypical shell repair process, we monitored mussels (Mytilus edulis) with sublethal shell damage that breached the mantle cavity within both field and laboratory conditions to characterize the deposition rate, composition, and integrity of repaired shell. Results were then compared with a laboratory experiment wherein mussels (Mytilus trossulus) repaired shell damage in one of seven pCO2 treatments (400–2500 µatm). Shell repair proceeded through distinct stages; an organic membrane first covered the damaged area (days 1–15), followed by the deposition of calcite crystals (days 22–43) and aragonite tablets (days 51–69). OA did not impact the ability of mussels to close drill holes, nor the microstructure, composition, or integrity of end-point repaired shell after 10 weeks, as measured by µCT and SEM imaging, energy-dispersive X-ray (EDX) analysis, and mechanical testing. However, significant interactions between pCO2, the length of exposure to treatment conditions, the strength and inorganic content of shell, and the physiological condition of mussels within OA treatments were observed. These results suggest that while OA does not prevent adult mussels from repairing or mineralizing shell, both OA and shell damage may elicit stress responses that impose energetic constraints on mussel physiology.
Collapse
|
7
|
Iannello M, Mezzelani M, Dalla Rovere G, Smits M, Patarnello T, Ciofi C, Carraro L, Boffo L, Ferraresso S, Babbucci M, Mazzariol S, Centelleghe C, Cardazzo B, Carrer C, Varagnolo M, Nardi A, Pittura L, Benedetti M, Fattorini D, Regoli F, Ghiselli F, Gorbi S, Bargelloni L, Milan M. Long-lasting effects of chronic exposure to chemical pollution on the hologenome of the Manila clam. Evol Appl 2021; 14:2864-2880. [PMID: 34950234 PMCID: PMC8674894 DOI: 10.1111/eva.13319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic exposure to pollutants affects natural populations, creating specific molecular and biochemical signatures. In the present study, we tested the hypothesis that chronic exposure to pollutants might have substantial effects on the Manila clam hologenome long after removal from contaminated sites. To reach this goal, a highly integrative approach was implemented, combining transcriptome, genetic and microbiota analyses with the evaluation of biochemical and histological profiles of the edible Manila clam Ruditapes philippinarum, as it was transplanted for 6 months from the polluted area of Porto Marghera (PM) to the clean area of Chioggia (Venice lagoon, Italy). One month post-transplantation, PM clams showed several modifications to its resident microbiota, including an overrepresentation of the opportunistic pathogen Arcobacter spp. This may be related to the upregulation of several immune genes in the PM clams, potentially representing a host response to the increased abundance of deleterious bacteria. Six months after transplantation, PM clams demonstrated a lower ability to respond to environmental/physiological stressors related to the summer season, and the hepatopancreas-associated microbiota still showed different compositions among PM and CH clams. This study confirms that different stressors have predictable effects in clams at different biological levels and demonstrates that chronic exposure to pollutants leads to long-lasting effects on the animal hologenome. In addition, no genetic differentiation between samples from the two areas was detected, confirming that PM and CH clams belong to a single population. Overall, the obtained responses were largely reversible and potentially related to phenotypic plasticity rather than genetic adaptation. The results here presented will be functional for the assessment of the environmental risk imposed by chemicals on an economically important bivalve species.
Collapse
Affiliation(s)
- Mariangela Iannello
- Department of Biological, Geological, and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Marica Mezzelani
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Morgan Smits
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Claudio Ciofi
- Department of BiologyUniversity of FlorenceSesto FiorentinoItaly
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Luciano Boffo
- Associazione “Vongola Verace di Chioggia”ChioggiaItaly
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Claudio Carrer
- c/o Magistrato alle Acque di Venezia Ufficio Tecnico Antinquinamento Laboratorio CSMOPadovaItaly
| | | | - Alessandro Nardi
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Lucia Pittura
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Maura Benedetti
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Daniele Fattorini
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Francesco Regoli
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Stefania Gorbi
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Massimo Milan
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| |
Collapse
|
8
|
Zimmer RK, Ferrier GA, Zimmer CA. Chemosensory Exploitation and Predator-Prey Arms Races. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.752327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thousands of armed predatory species, distributed widely across the metazoan tree-of-life, consume only hard-shell or exoskeleton-bearing organisms (called “durophagy”). Prey armor clearly has evolved in response to selection by predators, but there is little evidence of the contrary, counter-adaptation by predators. Evolved consumer responses to prey, in general, might be more readily expressed in ways other than morphological traits, including via sensory cues. Here, we explored the chemosensory basis for durophagy in a model predator-prey system, and identified intimate associations between durophagous predators and their shelled prey. Barnacles (Balanus glandula and Semibalanus cariosus) bear hard shells and secrete, respectively, a 199 or 201 kDa glycoprotein ortholog (named “MULTIFUNCin”), with expression limited to the body armor (epidermis, cuticle, and live shell). To test for effects of MULTIFUNCin on predators, we constructed faux prey to mimic meaningful physical and chemical characteristics of live barnacles. In separate experiments, each consumer species was presented MULTIFUNCin, purified from either B. glandula or S. cariosus, at a typical armor concentration. All six predatory species (sea star, Pisaster ochraceus; whelks, Acanthinucella spirata, Nucella emarginata, N. ostrina, N. canaliculata, and N. lamellosa) attacked and ate MULTIFUNCin-infused faux prey significantly more than controls. Akin to barnacles, secretion of glycoprotein-rich extracellular matrices is common among armored prey species—from marine sponges to terrestrial vertebrates. Our results, therefore, suggest that chemosensory exploitation of glycoproteins could be widespread, with notable consequences for life on land and in the sea.
Collapse
|
9
|
Chandra Rajan K, Meng Y, Yu Z, Roberts SB, Vengatesen T. Oyster biomineralization under ocean acidification: From genes to shell. GLOBAL CHANGE BIOLOGY 2021; 27:3779-3797. [PMID: 33964098 DOI: 10.1111/gcb.15675] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/02/2021] [Indexed: 05/27/2023]
Abstract
Biomineralization is one of the key processes that is notably affected in marine calcifiers such as oysters under ocean acidification (OA). Understanding molecular changes in the biomineralization process under OA and its heritability, therefore, is key to developing conservation strategies for protecting ecologically and economically important oyster species. To do this, in this study, we have explicitly chosen the tissue involved in biomineralization (mantle) of an estuarine commercial oyster species, Crassostrea hongkongensis. The primary aim of this study is to understand the influence of DNA methylation over gene expression of mantle tissue under decreased ~pH 7.4, a proxy of OA, and to extrapolate if these molecular changes can be observed in the product of biomineralization-the shell. We grew early juvenile C. hongkongensis, under decreased ~pH 7.4 and control ~pH 8.0 over 4.5 months and studied OA-induced DNA methylation and gene expression patterns along with shell properties such as microstructure, crystal orientation and hardness. The population of oysters used in this study was found to be moderately resilient to OA at the end of the experiment. The expression of key biomineralization-related genes such as carbonic anhydrase and alkaline phosphatase remained unaffected; thus, the mechanical properties of the shell (shell growth rate, hardness and crystal orientation) were also maintained without any significant difference between control and OA conditions with signs of severe dissolution. In addition, this study makes three major conclusions: (1) higher expression of Ca2+ binding/signalling-related genes in the mantle plays a key role in maintaining biomineralization under OA; (2) DNA methylation changes occur in response to OA; however, these methylation changes do not directly control gene expression; and (3) OA would be more of a 'dissolution problem' rather than a 'biomineralization problem' for resilient species that maintain calcification rate with normal shell growth and mechanical properties.
Collapse
Affiliation(s)
- Kanmani Chandra Rajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Yuan Meng
- State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziniu Yu
- South China Sea Institute of Oceanology, Guangzhou, China
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Thiyagarajan Vengatesen
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| |
Collapse
|
10
|
Rivera-Pérez C, Hernández-Saavedra NY. Review: Post-translational modifications of marine shell matrix proteins. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110641. [PMID: 34182126 DOI: 10.1016/j.cbpb.2021.110641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/13/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022]
Abstract
Shell matrix proteins (SMPs) are key components for the Mollusk shell biomineralization. SMPs function has been hypothesized in several proteins by bioinformatics analysis, and through in vitro crystallization assays. However, studies of the post-translational modifications (PTMs) of SMPs, which contribute to their structure and the function, are limited. This review provides the current status of the SMPs with the most common PTMs described (glycosylation, phosphorylation, and disulfide bond formation) and their role in shell biomineralization. Also, recent studies based on recombinant production of SMPs are discussed. Finally, recommendations for the study of SMPs and their PTMs are provided. The review showed that PTMs are widely distributed in SMPs, and their presence on SMPs may contribute to the modulation of their activity in some SMPs, contributing to the crystal growth formation and differentiation through different mechanisms, however, in a few cases the lack of the PTMs do not alter their inherent function.
Collapse
Affiliation(s)
- Crisalejandra Rivera-Pérez
- CONACYT, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico.
| | - Norma Y Hernández-Saavedra
- Molecular Genetics Laboratory, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz 23096, Baja California Sur, Mexico
| |
Collapse
|
11
|
Bowden TJ, Kraev I, Lange S. Extracellular Vesicles and Post-Translational Protein Deimination Signatures in Mollusca-The Blue Mussel ( Mytilus edulis), Soft Shell Clam ( Mya arenaria), Eastern Oyster ( Crassostrea virginica) and Atlantic Jacknife Clam ( Ensis leei). BIOLOGY 2020; 9:biology9120416. [PMID: 33255637 PMCID: PMC7760292 DOI: 10.3390/biology9120416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Simple Summary Oysters and clams form an important component of the food chain and food security and are of considerable commercial value worldwide. They are affected by pollution and climate change, as well as a range of infections, some of which are opportunistic. For aquaculture purposes they are furthermore of great commercial value and changes in their immune responses can also serve as indicators of changes in ocean environments. Therefore, studies into understanding new factors in their immune systems may aid new biomarker discovery and are of considerable value. This study assessed new biomarkers relating to changes in protein function in four economically important marine molluscs, the blue mussel, soft shell clam, Eastern oyster, and Atlantic jacknife clam. These findings indicate novel regulatory mechanisms of important metabolic and immunology related pathways in these mollusks. The findings provide new understanding to how these pathways function in diverse ways in different animal species as well as aiding new biomarker discovery for Mollusca aquaculture. Abstract Oysters and clams are important for food security and of commercial value worldwide. They are affected by anthropogenic changes and opportunistic pathogens and can be indicators of changes in ocean environments. Therefore, studies into biomarker discovery are of considerable value. This study aimed at assessing extracellular vesicle (EV) signatures and post-translational protein deimination profiles of hemolymph from four commercially valuable Mollusca species, the blue mussel (Mytilus edulis), soft shell clam (Mya arenaria), Eastern oyster (Crassostrea virginica), and Atlantic jacknife clam (Ensis leei). EVs form part of cellular communication by transporting protein and genetic cargo and play roles in immunity and host–pathogen interactions. Protein deimination is a post-translational modification caused by peptidylarginine deiminases (PADs), and can facilitate protein moonlighting in health and disease. The current study identified hemolymph-EV profiles in the four Mollusca species, revealing some species differences. Deiminated protein candidates differed in hemolymph between the species, with some common targets between all four species (e.g., histone H3 and H4, actin, and GAPDH), while other hits were species-specific; in blue mussel these included heavy metal binding protein, heat shock proteins 60 and 90, 2-phospho-D-glycerate hydrolyase, GTP cyclohydrolase feedback regulatory protein, sodium/potassium-transporting ATPase, and fibrinogen domain containing protein. In soft shell clam specific deimination hits included dynein, MCM3-associated protein, and SCRN. In Eastern oyster specific deimination hits included muscle LIM protein, beta-1,3-glucan-binding protein, myosin heavy chain, thaumatin-like protein, vWFA domain-containing protein, BTB domain-containing protein, amylase, and beta-catenin. Deiminated proteins specific to Atlantic jackknife clam included nacre c1q domain-containing protein and PDZ domain-containing protein In addition, some proteins were common as deiminated targets between two or three of the Bivalvia species under study (e.g., EP protein, C1q domain containing protein, histone H2B, tubulin, elongation factor 1-alpha, dominin, extracellular superoxide dismutase). Protein interaction network analysis for the deiminated protein hits revealed major pathways relevant for immunity and metabolism, providing novel insights into post-translational regulation via deimination. The study contributes to EV characterization in diverse taxa and understanding of roles for PAD-mediated regulation of immune and metabolic pathways throughout phylogeny.
Collapse
Affiliation(s)
- Timothy J. Bowden
- Aquaculture Research Institute, School of Food & Agriculture, University of Maine, Orono, ME 04469-5735, USA;
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5000
| |
Collapse
|
12
|
Fields PA, Eraso A. A year in the salt marsh: Seasonal changes in gill protein expression in the temperate intertidal mussel Geukensia demissa. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105088. [PMID: 32798780 DOI: 10.1016/j.marenvres.2020.105088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Organisms living in temperate and polar regions experience extensive seasonal changes in the physical and biotic environment, including temperature, insolation, and food availability, among other factors. Sessile intertidal organisms respond to such seasonal fluctuations largely through physiological and biochemical means, because their behavioral responses are severely limited. In this study, we used a proteomic approach to examine changes in seasonal protein expression of gill from the intertidal mussel Geukensia demissa, a keystone species of the western Atlantic salt marsh, over the course of one year. Gill tissue of mussels collected in summer had the greatest number of proteins significantly increased in abundance (37 of 592 spots detected on two-dimensional polyacrylamide gels), although autumn mussels revealed a comparable proportion of up-regulated proteins (31 spots). In contrast, the number of proteins changing in abundance in winter and spring mussels were substantially smaller (15 and 9, respectively). Identification of these proteins revealed both expected and unanticipated changes to the proteome. Maintenance of gill cilia dominates in the summer when filter-feeding is most active, as evidenced by cytoskeletal proteins such as tektin-4 and tubulin isoforms; a signal of protection from heat stress is also present in summer (e.g., heat shock cognate 70). In autumn oxidative stress protection (peroxiredoxin-5 and manganese-containing superoxide dismutase) and aerobic ATP synthetic capacity (ATP synthase subunits a and delta) appear to increase. In winter a signal of cold-induced oxidative stress is apparent (Mn-SOD and NADP-dependent isocitrate dehydrogenase), perhaps in association with heavy metal toxicity and exposure to pathogens. Gill tissue from spring shows relatively little environmental acclimatization, other than a possible increase in protein synthesis capacity.
Collapse
Affiliation(s)
- Peter A Fields
- Biology Department, PO Box 3003, Franklin & Marshall College, Lancaster, PA, USA, 17604.
| | - Ariel Eraso
- Biology Department, PO Box 3003, Franklin & Marshall College, Lancaster, PA, USA, 17604; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, 1945 Colorado Avenue, Denver, CO, 80309, USA
| |
Collapse
|
13
|
Sforzini S, Banni M, Oliveri C, Moore MN, Viarengo A. New insights into the possible multiple roles of histidine-rich glycoprotein in blue mussels. Comp Biochem Physiol B Biochem Mol Biol 2020; 245:110440. [DOI: 10.1016/j.cbpb.2020.110440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023]
|
14
|
Mlouka R, Cachot J, Sforzini S, Oliveri C, Boukadida K, Clerandeau C, Pacchioni B, Millino C, Viarengo A, Banni M. Molecular mechanisms underlying the effects of temperature increase on Mytilus sp. and their hybrids at early larval stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135200. [PMID: 31806331 DOI: 10.1016/j.scitotenv.2019.135200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
The present work aims to investigate the effects of water temperature increase on Mytilus galloprovincilis and Mytilus edulis pure larvae (PG, PE) and their hybrids (HFG, HFE). D-larvae were maintained at 18 °C or exposed to a higher temperature of 22 °C for 48 h. Initially, Embryotoxicity test was evaluated. Second, a transcriptomic analysis using a recently developed microarray platform was applied to determine the main biological processes involved in early life stages responses to temperature increase. Finally, an immunofluorescence investigation was performed to bridge the gap between transcriptomic regulation and the real changes at cellular/tissue levels. Embryotoxicity test revealed a higher sensitivity of M. edulis (PE) D-larvae as well as hybrids from females M. edulis (HFE) to temperature increase, with the highest rate of larval malformations. Transcriptomic results indicated a lack of an adequate heat shock protein (Hsp) response in PE and HFE larvae (the high expression was observed in PG larvae); the differential expression of gene involved in translation, energy metabolism and oxidative stress response may contribute to explain the observed complex alterations in the studied conditions. As revealed by immunohistochemistry, cytoskeleton proteins changes associated with a drastic decrease of Histidine-Rich Glycoprotein (HRG) may elucidate the larval abnormalities in shell development observed for PE and HFE larvae. Overall, the results indicate that each type of pure larva (PG and PE) and their respective female hybrid (HFG and HFE) react similarly to the temperature increase. Our data should be carefully considered in view of the water temperature increase in marine ecosystems and especially for the mussel's species in confluence zones.
Collapse
Affiliation(s)
- Rania Mlouka
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600 Pessac, France; Laboratory of Biochemistry and Environmental , ISA, Chott-Mariem, 4042 Sousse, Tunisia; Higher Institute of Biotechnology of Monastir.5000, Monastir University, Tunisia
| | - Jérôme Cachot
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600 Pessac, France
| | - Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of Environmental Chemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Mario Negri 2, 20156 Milano, Italy
| | - Caterina Oliveri
- Dipartimento di Scienze della terra, dell'ambiente e della vita (DISTAV), Università degli Studi di Genova,Via Balbi 5, 16126 Genova, Italy
| | - Khouloud Boukadida
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600 Pessac, France; Laboratory of Biochemistry and Environmental , ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Christelle Clerandeau
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600 Pessac, France
| | | | - Caterina Millino
- CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of Environmental Chemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Mario Negri 2, 20156 Milano, Italy
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental , ISA, Chott-Mariem, 4042 Sousse, Tunisia; Higher Institute of Biotechnology of Monastir.5000, Monastir University, Tunisia.
| |
Collapse
|
15
|
Yen Le TT, García MR, Grabner D, Nachev M, Balsa-Canto E, Hendriks AJ, Zimmermann S, Sures B. Mechanistic simulation of bioconcentration kinetics of waterborne Cd, Ag, Pd, and Pt in the zebra mussel Dreissena polymorpha. CHEMOSPHERE 2020; 242:124967. [PMID: 31677506 DOI: 10.1016/j.chemosphere.2019.124967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 05/21/2023]
Abstract
Mechanistic models based on chemical properties of metals and body size have received substantial attention for their potential application to various metals and to different conditions without required calibration. This advantage has been demonstrated for a number of metals, such as Cd and Ag. However, the capacity of metal-specific chemical properties to explain variations in the accumulation for platinum-group elements (PGEs) has not been investigated yet, although emission of these metals is of increasing concern. Once being released, PGEs exist in the environment in mixtures with other metals. The present study attempted to model the accumulation of Pd and Pt in mixtures with Ag and Cd in the zebra mussel (Dreissena polymorpha) from the aqueous phase; and to investigate the potential application of mechanistic models to Pd and Pt. The present study showed statistically insignificant differences in metal accumulation among size groups in a narrow range of shell length (16-22 mm). Kinetic models could simulate well the accumulation of Cd, Ag, and Pt when metal-specific responses of zebra mussels are taken into consideration. These responses include enhanced immobilisation as a detoxifying mechanism and exchange between soft tissues and shells via the extrapallial fluid. Environmental conditions, e.g. the presence of abiotic ligands such as chloride, might also play an important role in metal accumulation. Significant relationships between the absorption efficiency and the covalent index indicate the potential application of mechanistic models based on this chemical property to Pt.
Collapse
Affiliation(s)
- T T Yen Le
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany.
| | - Míriam R García
- Process Engineering Group, Spanish Council for Scientific Research, IIM-CSIC, Vigo, 36208, Spain
| | - Daniel Grabner
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| | - Eva Balsa-Canto
- Process Engineering Group, Spanish Council for Scientific Research, IIM-CSIC, Vigo, 36208, Spain
| | - A Jan Hendriks
- Department of Environmental Science, Faculty of Science, Radboud University Nijmegen, Nijmegen, 6525, HP, the Netherlands
| | - Sonja Zimmermann
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| |
Collapse
|
16
|
Iori S, Rovere GD, Ezzat L, Smits M, Ferraresso SS, Babbucci M, Marin MG, Masiero L, Fabrello J, Garro E, Carraro L, Cardazzo B, Patarnello T, Matozzo V, Bargelloni L, Milan M. The effects of glyphosate and AMPA on the mediterranean mussel Mytilus galloprovincialis and its microbiota. ENVIRONMENTAL RESEARCH 2020; 182:108984. [PMID: 31830695 DOI: 10.1016/j.envres.2019.108984] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate, the most widely used herbicide worldwide, targets the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme in the shikimate pathway found in plants and some microorganisms. While the potential for glyphosate to induce a broad range of biological effects in exposed organisms has been demonstrated, the global molecular mechanisms of toxicity and potential effects in bacterial symbionts remain unclear, in particular for ecologically important marine species such as bivalve molluscs. Here, the effects of glyphosate (GLY), its degradation product aminomethylphosphonic acid (AMPA), and a mixture of both (MIX) on the mussel M. galloprovincialis were assessed in a controlled experiment. For the first time, next generation sequencing (RNA-seq and 16S rRNA amplicon sequencing) was used to evaluate such effects at the molecular level in both the host and its respective microbiota. The results suggest that the variable capacity of bacterial species to proliferate in the presence of these compounds and the impairment of host physiological homeostasis due to AMPA and GLY toxicity may cause significant perturbations to the digestive gland microbiota, as well as elicit the spread of potential opportunistic pathogens such as Vibrio spp.. The consequent host-immune system activation identified at the molecular and cellular level could be aimed at controlling changes occurring in the composition of symbiotic microbial communities. Overall, our data raise further concerns about the potential adverse effects of glyphosate and AMPA in marine species, suggesting that both the effects of direct toxicity and the ensuing changes occurring in the host-microbial community must be taken into consideration to determine the overall ecotoxicological hazard of these compounds.
Collapse
Affiliation(s)
- S Iori
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - G Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - L Ezzat
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, CA, 93106, Santa Barbara, United States
| | - M Smits
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - S S Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - M Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - M G Marin
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - L Masiero
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - J Fabrello
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - E Garro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - L Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - B Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - T Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - V Matozzo
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy; CONISMA - Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy
| | - M Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy; CONISMA - Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy.
| |
Collapse
|
17
|
Feng X, Gao R, Wang R, Zhang G. Non-classical crystal growth on a hydrophobic substrate: learning from bivalve nacre. CrystEngComm 2020. [DOI: 10.1039/d0ce00076k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The hydrophobic substrate has an effect on the non-classical crystallization of nacreous aragonite crystals.
Collapse
Affiliation(s)
- Xin Feng
- School of Resources
- Environment and Materials
- Guangxi University
- Nanning
- China
| | - Ruohe Gao
- School of Resources
- Environment and Materials
- Guangxi University
- Nanning
- China
| | - Rize Wang
- School of Resources
- Environment and Materials
- Guangxi University
- Nanning
- China
| | - Gangsheng Zhang
- School of Resources
- Environment and Materials
- Guangxi University
- Nanning
- China
| |
Collapse
|
18
|
Gerdol M, Greco S, Pallavicini A. Extensive Tandem Duplication Events Drive the Expansion of the C1q-Domain-Containing Gene Family in Bivalves. Mar Drugs 2019; 17:md17100583. [PMID: 31615007 PMCID: PMC6835236 DOI: 10.3390/md17100583] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 01/04/2023] Open
Abstract
C1q-domain-containing (C1qDC) proteins are rapidly emerging as key players in the innate immune response of bivalve mollusks. Growing experimental evidence suggests that these highly abundant secretory proteins are involved in the recognition of microbe-associated molecular patterns, serving as lectin-like molecules in the bivalve proto-complement system. While a large amount of functional data concerning the binding specificity of the globular head C1q domain and on the regulation of these molecules in response to infection are quickly accumulating, the genetic mechanisms that have led to the extraordinary lineage-specific expansion of the C1qDC gene family in bivalves are still largely unknown. The analysis of the chromosome-scale genome assembly of the Eastern oyster Crassostrea virginica revealed that the 476 oyster C1qDC genes, far from being uniformly distributed along the genome, are located in large clusters of tandemly duplicated paralogs, mostly found on chromosomes 7 and 8. Our observations point out that the evolutionary process behind the development of a large arsenal of C1qDC lectin-like molecules in marine bivalves is still ongoing and likely based on an unequal crossing over.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
- National Institute of Oceanography and Applied Geophysics, 34151 Trieste, Italy.
| |
Collapse
|
19
|
Naik A, Hayes M. Bioprocessing of mussel by-products for value added ingredients. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Bruggmann S, Klaebe RM, Paulukat C, Frei R. Heterogeneity and incorporation of chromium isotopes in recent marine molluscs ( Mytilus). GEOBIOLOGY 2019; 17:417-435. [PMCID: PMC6618261 DOI: 10.1111/gbi.12336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 06/11/2023]
Abstract
The mollusc genus Mytilus is abundant in various modern marine environments and is an important substrate for palaeo‐proxy work. The redox‐sensitive chromium (Cr) isotope system is emerging as a proxy for changes in the oxidation state of the Earth's atmosphere and oceans. However, potential isotopic offsets between ambient sea water and modern biogenic carbonates have yet to be constrained. We measured Cr concentrations ([Cr]) and isotope variations (δ53Cr) in recent mollusc shells (Mytilus) from open and restricted marine environments and compared these to ambient sea water δ53Cr values. We found a large range in mollusc [Cr] (12–309 ppb) and δ53Cr values (−0.30 to +1.25‰) and in the offset between δ53Cr values of mollusc shells and ambient sea water (Δ53CrseawaterbulkMytilus, −0.17 to −0.91‰). Step digestions of cultivated Mytilus edulis specimens indicate that Cr is mainly concentrated in organic components of the shell (periostracum: 407 ppb, n = 2), whereas the mollusc carbonate minerals contain ≤3 ppb Cr. Analyses of individual Cr‐hosting phases (i.e., carbonate minerals and organic matrix) did not reveal significant differences in δ53Cr values, and thus, we suggest that Cr isotope fractionation may likely take place prior to rather than during biomineralisation of Mytilus shells. Heterogeneity of δ53Cr values in mollusc shells depends on sea water chemistry (e.g., salinity, food availability, faeces). The main control for δ53Cr values incorporated into shells, however, is likely vital effects (in particular shell valve closure time) since Cr can be partially or quantitatively reduced in sea water trapped between closed shell valves. The δ53Cr values recorded in Mytilus shells may thus be de‐coupled from the redox conditions of ambient sea water, introducing additional heterogeneity that needs to be better constrained before using δ53Cr values in mollusc shells for palaeo‐reconstructions.
Collapse
Affiliation(s)
- Sylvie Bruggmann
- Department of Geoscience and Natural Resource Management, Geology SectionUniversity of CopenhagenCopenhagenDenmark
| | - Robert M. Klaebe
- Department of Geoscience and Natural Resource Management, Geology SectionUniversity of CopenhagenCopenhagenDenmark
- Department of Earth SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | | | - Robert Frei
- Department of Geoscience and Natural Resource Management, Geology SectionUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
21
|
Xue Q, Beguel JP, La Peyre J. Dominin and Segon Form Multiprotein Particles in the Plasma of Eastern Oysters ( Crassostrea virginica) and Are Likely Involved in Shell Formation. Front Physiol 2019; 10:566. [PMID: 31156455 PMCID: PMC6530089 DOI: 10.3389/fphys.2019.00566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/24/2019] [Indexed: 12/14/2022] Open
Abstract
Dominin and segon are two proteins purified and characterized from the plasma of eastern oysters Crassostrea virginica, making up about 70% of the total plasma proteins. Their proposed functions are in host defense based on their pathogen binding properties and in metal metabolism based on their metal binding abilities. In the present study, the two proteins were further studied for their native states in circulation and extrapallial fluid and their possible involvement in shell formation. Two-dimensional electrophoresis confirmed that the oyster plasma was dominated by a few major proteins and size exclusion chromatography indicated that these proteins were present in circulation in a morphologically homogenous form. Density gradient ultracentrifugation in Cesium Chloride isolated morphologically homogenous particles of about 25 nm in diameter from the plasma and extrapallial fluids. Polyacrylamide gel electrophoresis identified dominin, segon and an unidentified protein as the principal components of the particles and the three proteins likely formed a multiprotein complex that associated to form the particle. Additionally, three major proteins extracted from shell organic matrix were identified based on the apparent molecular weight in SDS-PAGE to correspond to the three major proteins of plasma and protein particles. Moreover, the hemocyte expression of dominin and segon genes measured by real-time RT-PCR increased significantly upon the initiation of shell repair and were significantly greater in younger oysters. These findings suggest that dominin and segon form protein particles by association with each other and perhaps some other major plasma proteins and play a significant role in oyster shell formation.
Collapse
Affiliation(s)
- Qinggang Xue
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, Zhejiang Wanli University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Jean-Philipe Beguel
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Jerome La Peyre
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
22
|
Hao R, Zheng Z, Wang Q, Du X, Deng Y, Huang R. Molecular and functional analysis of PmCHST1b in nacre formation of Pinctada fucata martensii. Comp Biochem Physiol B Biochem Mol Biol 2018; 225:13-20. [PMID: 29981452 DOI: 10.1016/j.cbpb.2018.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 11/27/2022]
Abstract
Keratan sulfate possesses considerable amounts of negatively charged sulfonic acid groups and participates in biomineralization. In the present study, we investigated characteristics and functions of a CHST1 gene identified from the pearl oyster Pinctada fucata martensii (PmCHST1b) which participated in the synthesis of keratan sulfate. PmCHST1b amino acid sequence carried a typical sulfotransferase-3 domain (sulfotransfer-3 domain) and belonged to membrane-associated sulfotransferases. Homologous analysis of CHST1 from different species showed the conserved motif (5' PSB motif and 3' PB motif) which interacted with 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Structure analysis of sulfotransferase domain indicted that PmCHST1b showed the conserved catalytic structure character and the relationships presented in the phylogenetic tree conformed to that of traditional taxonomy. Expression pattern of PmCHST1b in different tissues and development stages showed that PmCHST1b widely expressed in all the detected tissues and development stages and showed the highest expression level in the central zone of mantle (MC). PmCHST1b expressed highly in the trochophore, D-stage larvae and spat which corresponded to prodissoconch and dissoconch shell formation, respectively. RNA interference (RNAi) successfully inhibited expression level of PmCHST1b in MC (P<0.05), and sulfate polymer content in the extrapallial fluid significantly reduced (P<0.05). Crystallization of shell nacre became irregular. Results above indicated that PmCHST1b may affect nacre formation by participating in synthesis of keratan sulfate in extrapallial fluid. This study provided fundamental materials for further research on the role of sulfotransferases and keratan sulfate in nacre formation.
Collapse
Affiliation(s)
- Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China.
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China.
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China
| | - Ronglian Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China
| |
Collapse
|
23
|
Calvo-Iglesias J, Pérez-Estévez D, González-Fernández Á. MSP22.8 is a protease inhibitor-like protein involved in shell mineralization in the edible mussel Mytilus galloprovincialis. FEBS Open Bio 2017; 7:1539-1556. [PMID: 28979842 PMCID: PMC5623705 DOI: 10.1002/2211-5463.12286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/01/2023] Open
Abstract
The mussel shell protein 22.8 (MSP22.8) is recognized by a monoclonal antibody (M22.8) directed against larvae of the mussel Mytilus galloprovincialis. After being secreted by cells of the mantle-edge epithelium into the extrapallial (EP) space (the gap between the mantle and the shell), the protein is detected in the extrapallial fluid (EPF) and EP hemocytes and finally becomes part of the shell matrix framework in adult specimens of M. galloprovincialis. In the work described here, we show how MSP22.8 is detected in EPF samples from different species of mussels (M. galloprovincialis, Mytilus edulis, and Xenostrobus securis), and also as a shell matrix protein in M. galloprovincialis, Mytilus chilensis, and Perna canaliculus. A multistep purification strategy was employed to isolate the protein from the EPF, which was then analyzed by mass spectrometry in order to identify it. The results indicate that MSP22.8 is a serpin-like protein that has great similarity with the protease inhibitor-like protein-B1, reported previously for Mytilus coruscus. We suggest that MSP22.8 is part of a system offering protection from proteolysis during biomineralization and is also part of the innate immune system in mussels.
Collapse
Affiliation(s)
- Juan Calvo-Iglesias
- Immunology Biomedical Research Center (CINBIO) Centro Singular de investigación de Galicia Institute of Biomedical Research of Vigo (IBIV) University of Vigo Pontevedra Spain
| | | | - África González-Fernández
- Immunology Biomedical Research Center (CINBIO) Centro Singular de investigación de Galicia Institute of Biomedical Research of Vigo (IBIV) University of Vigo Pontevedra Spain
| |
Collapse
|
24
|
Zimmer RK, Ferrier GA, Kim SJ, Ogorzalek Loo RR, Zimmer CA, Loo JA. Keystone predation and molecules of keystone significance. Ecology 2017; 98:1710-1721. [PMID: 28376248 DOI: 10.1002/ecy.1849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/24/2017] [Accepted: 03/27/2017] [Indexed: 11/09/2022]
Abstract
Keystone species structure ecological communities and are major determinants of biodiversity. A synthesis of research on keystone species is nonetheless missing a critical component - the sensory mechanisms for behavioral interactions that determine population- and community-wide attributes. Here, we establish the chemosensory basis for keystone predation by sea stars (Pisaster ochraceus) on mussels. This consumer-resource interaction is prototypic of top-down driven trophic cascades. Each mussel species (Mytilus californianus and M. galloprovincialis) secretes a glycoprotein orthologue (29.6 and 28.1 kDa, respectively) that acts, singularly, to evoke the sea star predatory response. The orthologues (named "KEYSTONEin") are localized in the epidermis, extrapallial fluid, and organic shell coating (periostracum) of live, intact mussels. Thus, KEYSTONEin contacts chemosensory receptors on tube feet as sea stars crawl over rocky surfaces in search of prey. The complete nucleotide sequences reveal that KEYSTONEin shares 87% (M. californianus) or 98% (M. galloprovincialis) homology with a calcium-binding protein in the shell matrix of a closely related congener, M. edulis. All three molecules cluster tightly within the Complement Component 1 Domain Containing (C1qDC) protein family; each exhibits a large globular domain, low complexity region(s), coiled coil, and at least four of five histidine-aspartic acid tandem motifs. Collective results support the hypothesis that KEYSTONEin evolved ancestrally in immunological, and later, in biomineralization roles. More recently, the substance has become exploited by sea stars as a contact cue for prey recognition. As the first identified compound to evoke keystone predation, KEYSTONEin provides valuable sensory information, promotes biodiversity, and shapes community structure and function. Without this molecule, there would be no predation by sea stars on mussels.
Collapse
Affiliation(s)
- Richard K Zimmer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA.,Moreton Bay Research Station, Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Graham A Ferrier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| | - Steven J Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, USA
| | - Rachel R Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, 90095, USA.,UCLA/DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California, 90095, USA
| | - Cheryl Ann Zimmer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA.,Moreton Bay Research Station, Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, USA.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, 90095, USA.,UCLA/DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California, 90095, USA
| |
Collapse
|
25
|
Balbi T, Franzellitti S, Fabbri R, Montagna M, Fabbri E, Canesi L. Impact of bisphenol A (BPA) on early embryo development in the marine mussel Mytilus galloprovincialis: Effects on gene transcription. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:996-1004. [PMID: 27569056 DOI: 10.1016/j.envpol.2016.08.050] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/18/2016] [Accepted: 08/21/2016] [Indexed: 05/20/2023]
Abstract
Bisphenol A (BPA), a monomer used in plastic manufacturing, is weakly estrogenic and a potential endocrine disruptor in mammals. Although it degrades quickly, it is pseudo-persistent in the environment because of continual inputs, with reported concentrations in aquatic environments between 0.0005 and 12 μg/L. BPA represents a potential concern for aquatic ecosystems, as shown by its reproductive and developmental effects in aquatic vertebrates. In invertebrates, endocrine-related effects of BPA were observed in different species and experimental conditions, with often conflicting results, indicating that the sensitivity to this compound can vary considerably among related taxa. In the marine mussel Mytilus galloprovincialis BPA was recently shown to affect early development at environmental concentrations. In this work, the possible effects of BPA on mussel embryos were investigated at the molecular level by evaluating transcription of 13 genes, selected on the basis of their biological functions in adult mussels. Gene expression was first evaluated in trocophorae and D-veligers (24 and 48 h post fertilization) grown in physiological conditions, in comparison with unfertilized eggs. Basal expressions showed a general up-regulation during development, with distinct transcript levels in trocophorae and D-veligers. Exposure of fertilized eggs to BPA (10 μg/L) induced a general upregulation at 24 h pf, followed by down regulation at 48 h pf. Mytilus Estrogen Receptors, serotonin receptor and genes involved in biomineralization (Carbonic Anydrase and Extrapallial Protein) were the most affected by BPA exposure. At 48 h pf, changes in gene expression were associated with irregularities in shell formation, as shown by scanning electron microscopy (SEM), indicating that the formation of the first shelled embryo, a key step in mussel development, represents a sensitive target for BPA. Similar results were obtained with the natural estrogen 17β-estradiol. The results demonstrate that BPA and E2 can affect Mytilus early development through dysregulation of gene transcription.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132, Genova, Italy
| | - Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Rita Fabbri
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132, Genova, Italy
| | - Michele Montagna
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132, Genova, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy.
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132, Genova, Italy
| |
Collapse
|
26
|
Canesi L, Grande C, Pezzati E, Balbi T, Vezzulli L, Pruzzo C. Killing of Vibrio cholerae and Escherichia coli Strains Carrying D-mannose-sensitive Ligands by Mytilus Hemocytes is Promoted by a Multifunctional Hemolymph Serum Protein. MICROBIAL ECOLOGY 2016; 72:759-762. [PMID: 27041371 DOI: 10.1007/s00248-016-0757-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
In aquatic environments, bivalve mollusks represent an important ecological niche for microorganisms. Persistence of bacteria in bivalve tissues partly depends on their capacity to survive the bactericidal activity of the hemolymph due to both cellular (hemocyes) and soluble serum factors (e.g., enzymes, lectins, opsonins). The extrapallial protein (EP) present in serum of Mytilus galloprovincialis (MgEP) has been recently shown to work as an opsonin promoting D-mannose sensitive (MS) interactions of the bivalve pathogen Vibrio aestuarianus 01/032 strain with the hemocytes. In this study, the role of MgEP in adhesion and killing of other bacteria carrying MS sensitive ligands was investigated. MgEP enhanced adhesion to and killing by hemocytes of Vibrio cholerae ElTor N16961, expressing the MS hemagglutin (MSHA), as well as of Escherichia coli MG1655, carrying type 1 fimbriae. These results further support the recent finding that the multifunctional MgEP also acts as an opsonin involved in mussel defense towards bacteria carrying MS ligands. In addition, these results contribute to elucidate the ecology of bacterial pathogens that can be transmitted to humans via shellfish consumption.
Collapse
Affiliation(s)
- Laura Canesi
- Department of Hearth, Environmental and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Chiara Grande
- Department of Hearth, Environmental and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Elisabetta Pezzati
- Department of Hearth, Environmental and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Teresa Balbi
- Department of Hearth, Environmental and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Luigi Vezzulli
- Department of Hearth, Environmental and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Carla Pruzzo
- Department of Hearth, Environmental and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy.
| |
Collapse
|
27
|
Fields PA, Burmester EM, Cox KM, Karch KR. Rapid proteomic responses to a near-lethal heat stress in the salt marsh mussel Geukensia demissa. ACTA ACUST UNITED AC 2016; 219:2673-86. [PMID: 27335449 DOI: 10.1242/jeb.141176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/17/2016] [Indexed: 01/27/2023]
Abstract
Acute heat stress perturbs cellular function on a variety of levels, leading to protein dysfunction and aggregation, oxidative stress and loss of metabolic homeostasis. If these challenges are not overcome quickly, the stressed organism can die. To better understand the earliest tissue-level responses to heat stress, we examined the proteomic response of gill from Geukensia demissa, an extremely eurythermal mussel from the temperate intertidal zone of eastern North America. We exposed 15°C-acclimated individuals to an acute near-lethal heat stress (45°C) for 1 h, and collected gill samples from 0 to 24 h of recovery. The changes in protein expression we found reveal a coordinated physiological response to acute heat stress: proteins associated with apoptotic processes were increased in abundance during the stress itself (i.e. at 0 h of recovery), while protein chaperones and foldases increased in abundance soon after (3 h). The greatest number of proteins changed abundance at 6 h; these included oxidative stress proteins and enzymes of energy metabolism. Proteins associated with the cytoskeleton and extracellular matrix also changed in abundance starting at 6 h, providing evidence of cell proliferation, migration and tissue remodeling. By 12 h, the response to acute heat stress was diminishing, with fewer stress and structural proteins changing in abundance. Finally, the proteins with altered abundances identified at 24 h suggest a return to the pre-stress anabolic state.
Collapse
Affiliation(s)
- Peter A Fields
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA
| | | | - Kelly M Cox
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA
| | - Kelly R Karch
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA
| |
Collapse
|
28
|
Digilio G, Sforzini S, Cassino C, Robotti E, Oliveri C, Marengo E, Musso D, Osella D, Viarengo A. Haemolymph from Mytilus galloprovincialis: Response to copper and temperature challenges studied by (1)H-NMR metabonomics. Comp Biochem Physiol C Toxicol Pharmacol 2016; 183-184:61-71. [PMID: 26899427 DOI: 10.1016/j.cbpc.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/01/2016] [Accepted: 02/15/2016] [Indexed: 01/18/2023]
Abstract
Numerous studies on molluscs have been carried out to clarify the physiological roles of haemolymph serum proteins and haemocytes. However, little is known about the presence and functional role of the serum metabolites. In this study, Nuclear Magnetic Resonance (NMR) was used to assess whether changes of the metabolic profile of Mytilus galloprovincialis haemolymph may reflect alterations of the physiological status of the organisms due to environmental stressors, namely copper and temperature. Mussel haemolymph was taken from the posterior adductor muscle after a 4-day exposure to ambient (16 °C) or high temperature (24 °C) and in the absence or presence (5 μg/L, 20 μg/L, or 40 μg/L) of sublethal copper (Cu(2+)). The total glutathione (GSH) concentration in the haemolymph of both control and treated mussels was minimal, indicating the absence of significant contaminations by muscle intracellular metabolites due to the sampling procedure. In the (1)H-NMR spectrum of haemolymph, 27 metabolites were identified unambiguously. The separate and combined effects of exposure to copper and temperature on the haemolymph metabolic profile were assessed by Principal Component Analysis (PCA) and Ranking-PCA multivariate analysis. Changes of the metabolomic profile due to copper exposure at 16 °C became detectable at a dose of 20 μg/L copper. Alanine, lysine, serine, glutamine, glycogen, glucose and protein aliphatics played a major role in the classification of the metabolic changes according to the level of copper exposition. High temperature (24 °C) and high copper levels caused a coherent increase of a common set of metabolites (mostly glucose, serine, and lysine), indicating that the metabolic impairment due to high temperature is enforced by the presence of copper. Overall, the results demonstrate that, as for human blood plasma, the analysis of haemolymph metabolites represents a promising tool for the diagnosis of pollutant-induced stress syndrome in marine mussels.
Collapse
Affiliation(s)
- Giuseppe Digilio
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Claudio Cassino
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Elisa Robotti
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Caterina Oliveri
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Davide Musso
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Domenico Osella
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
29
|
Calvo-Iglesias J, Pérez-Estévez D, Lorenzo-Abalde S, Sánchez-Correa B, Quiroga MI, Fuentes JM, González-Fernández Á. Characterization of a Monoclonal Antibody Directed against Mytilus spp Larvae Reveals an Antigen Involved in Shell Biomineralization. PLoS One 2016; 11:e0152210. [PMID: 27008638 PMCID: PMC4805170 DOI: 10.1371/journal.pone.0152210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/10/2016] [Indexed: 11/19/2022] Open
Abstract
The M22.8 monoclonal antibody (mAb) developed against an antigen expressed at the mussel larval and postlarval stages of Mytilus galloprovincialis was studied on adult samples. Antigenic characterization by Western blot showed that the antigen MSP22.8 has a restricted distribution that includes mantle edge tissue, extrapallial fluid, extrapallial fluid hemocytes, and the shell organic matrix of adult samples. Other tissues such as central mantle, gonadal tissue, digestive gland, labial palps, foot, and byssal retractor muscle did not express the antigen. Immunohistochemistry assays identified MSP22.8 in cells located in the outer fold epithelium of the mantle edge up to the pallial line. Flow cytometry analysis showed that hemocytes from the extrapallial fluid also contain the antigen intracellularly. Furthermore, hemocytes from hemolymph have the ability to internalize the antigen when exposed to a cell-free extrapallial fluid solution. Our findings indicate that hemocytes could play an important role in the biomineralization process and, as a consequence, they have been included in a model of shell formation. This is the first report concerning a protein secreted by the mantle edge into the extrapallial space and how it becomes part of the shell matrix framework in M. galloprovincialis mussels.
Collapse
Affiliation(s)
- Juan Calvo-Iglesias
- Immunology, Biomedical Research Center (CINBIO) and Institute of Biomedical Research of Vigo (IBIV), University of Vigo, Vigo, Spain
| | | | - Silvia Lorenzo-Abalde
- Immunology, Biomedical Research Center (CINBIO) and Institute of Biomedical Research of Vigo (IBIV), University of Vigo, Vigo, Spain
| | - Beatriz Sánchez-Correa
- Immunology, Biomedical Research Center (CINBIO) and Institute of Biomedical Research of Vigo (IBIV), University of Vigo, Vigo, Spain
| | - María Isabel Quiroga
- Veterinary Clinical Sciences, Veterinary Faculty, University of Santiago de Compostela, Lugo, Spain
| | - José M. Fuentes
- Centro de Investigacións Mariñas (CIMA), Consellería do Medio Rural e do Mar, Vilanova de Arousa, Spain
| | - África González-Fernández
- Immunology, Biomedical Research Center (CINBIO) and Institute of Biomedical Research of Vigo (IBIV), University of Vigo, Vigo, Spain
| |
Collapse
|
30
|
Su J, Zhu F, Zhang G, Wang H, Xie L, Zhang R. Transformation of amorphous calcium carbonate nanoparticles into aragonite controlled by ACCBP. CrystEngComm 2016. [DOI: 10.1039/c5ce02288f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymorph switching of calcium carbonate controlled by amorphous calcium carbonate-binding protein, an extrapallial fluid (EPF) protein from the pearl oyster, is investigated. The polymorph selection in nacre or pearl growth may be controlled not only by the nucleating template on the matrix but also by the physicochemical effects of EPF proteins.
Collapse
Affiliation(s)
- Jingtan Su
- Institute of Marine Biotechnology, School of Life Sciences
- Tsinghua University
- Beijing 100084, China
| | - Fangjie Zhu
- Institute of Marine Biotechnology, School of Life Sciences
- Tsinghua University
- Beijing 100084, China
| | - Guiyou Zhang
- Institute of Marine Biotechnology, School of Life Sciences
- Tsinghua University
- Beijing 100084, China
| | - Hongzhong Wang
- Institute of Marine Biotechnology, School of Life Sciences
- Tsinghua University
- Beijing 100084, China
| | - Liping Xie
- Institute of Marine Biotechnology, School of Life Sciences
- Tsinghua University
- Beijing 100084, China
| | - Rongqing Zhang
- Institute of Marine Biotechnology, School of Life Sciences
- Tsinghua University
- Beijing 100084, China
- Protein Science Laboratory of the Ministry of Education
- Tsinghua University
| |
Collapse
|
31
|
Helmholz H, Lassen S, Ruhnau C, Pröfrock D, Erbslöh HB, Prange A. Investigation on the proteome response of transplanted blue mussel (Mytilus sp.) during a long term exposure experiment at differently impacted field stations in the German Bight (North Sea). MARINE ENVIRONMENTAL RESEARCH 2015; 110:69-80. [PMID: 26275755 DOI: 10.1016/j.marenvres.2015.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 06/04/2023]
Abstract
In a pilot field study the proteome response of Mytilus sp. was analyzed in relation to the concentration of different trace metal contaminants. Over a period of eight month test organisms have been exposed at a near-shore station in the anthropogenic impacted estuary of the river Elbe and at an off-shore station in the vicinity of the Island of Helgoland in the German Bight (North Sea). The stations differ in their hydrological as well as chemical characteristics. The physiological biomarkers, such as condition index which have been continuously monitored during the experiment clearly indicate the effects of the different environmental conditions. Multiple protein abundance changes were detected utilizing the techniques of two dimensional gel electrophoresis (2dGE) and consequently proteins arising as potential candidates for ecotoxicological monitoring have been identified by MALDI-ToF and ToF/ToF mass spectrometry. Different cytoskeletal proteins, enzymes of energy metabolism, stress proteins and one protein relevant for metal detoxification have been pointed out.
Collapse
Affiliation(s)
- Heike Helmholz
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department Marine Bioanalytical Chemistry, Max-Planck St. 1, D-21502 Geesthacht, Germany.
| | - Stephan Lassen
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department Marine Bioanalytical Chemistry, Max-Planck St. 1, D-21502 Geesthacht, Germany
| | - Christiane Ruhnau
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department Marine Bioanalytical Chemistry, Max-Planck St. 1, D-21502 Geesthacht, Germany
| | - Daniel Pröfrock
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department Marine Bioanalytical Chemistry, Max-Planck St. 1, D-21502 Geesthacht, Germany
| | - Hans-Burkhard Erbslöh
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department Marine Bioanalytical Chemistry, Max-Planck St. 1, D-21502 Geesthacht, Germany
| | - Andreas Prange
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department Marine Bioanalytical Chemistry, Max-Planck St. 1, D-21502 Geesthacht, Germany
| |
Collapse
|
32
|
Gao P, Liao Z, Wang XX, Bao LF, Fan MH, Li XM, Wu CW, Xia SW. Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell. PLoS One 2015. [PMID: 26218932 PMCID: PMC4517812 DOI: 10.1371/journal.pone.0133913] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs) pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry and Chemical Engineering, Ocean University of Chinese, Qingdao, China
- Laboratory of Marine Biological Protein Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biological Protein Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xin-xing Wang
- Laboratory of Marine Biological Protein Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Lin-fei Bao
- Laboratory of Marine Biological Protein Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Mei-hua Fan
- Laboratory of Marine Biological Protein Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiao-min Li
- Biotechnology Center, Chinese Academy of Fishery Science, Beijing, China
| | - Chang-wen Wu
- Laboratory of Marine Biological Protein Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Shu-wei Xia
- College of Chemistry and Chemical Engineering, Ocean University of Chinese, Qingdao, China
- * E-mail:
| |
Collapse
|
33
|
Jaafar SNT, Coelho AV, Sheehan D. Redox proteomic analysis ofmytilus edulisgills: effects of the pharmaceutical diclofenac on a non-target organism. Drug Test Anal 2015; 7:957-66. [DOI: 10.1002/dta.1786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Siti Nur Tahirah Jaafar
- Proteomics Research Group, School of Biochemistry and Cell Biology and Environmental Research Institute; University College Cork; Ireland
- Marine Biology Program, School of Marine Science and Environment; Universiti Malaysia Terengganu; Terengganu Malaysia
| | - Ana Varela Coelho
- Mass Spectrometry Laboratory, Analytical Services Unit, Institute of Chemical and Biological Technology (ITQB); New University of Lisbon; Avenida República - Quinta do Marquês 2784-505 Oeiras Portugal
| | - David Sheehan
- Proteomics Research Group, School of Biochemistry and Cell Biology and Environmental Research Institute; University College Cork; Ireland
| |
Collapse
|
34
|
Gerdol M, Venier P, Pallavicini A. The genome of the Pacific oyster Crassostrea gigas brings new insights on the massive expansion of the C1q gene family in Bivalvia. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:59-71. [PMID: 25445912 DOI: 10.1016/j.dci.2014.11.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 05/26/2023]
Abstract
C1q domain-containing (C1qDC) proteins are regarded as important players in the innate immunity of bivalve mollusks and other invertebrates and their highly adaptive binding properties indicate them as efficient pathogen recognition molecules. Although experimental studies support this view, the molecular data available at the present time are not sufficient to fully explain the great molecular diversification of this family, present in bivalves with hundreds of C1q coding genes. Taking advantage of the fully sequenced genome of the Pacific oyster Crassostrea gigas and more than 100 transcriptomic datasets, we: (i) re-annotated the oyster C1qDC loci, thus identifying the correct genomic organization of 337 C1qDC genes, (ii) explored the expression pattern of oyster C1qDC genes in diverse developmental stages and adult tissues of unchallenged and experimentally treated animals; (iii) investigated the expansion of the C1qDC gene family in all major bivalve subclasses. Overall, we provide a broad description of the functionally relevant features of oyster C1qDC genes, their comparative expression levels and new evidence confirming that a gene family expansion event has occurred during the course of Bivalve evolution, leading to the diversification of hundreds of different C1qDC genes in both the Pteriomorphia and Heterodonta subclasses.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste (TS), Italy
| | - Paola Venier
- Deparment of Biology, University of Padova, Via Ugo Bassi 58/B, 35121 Padova (PD), Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste (TS), Italy.
| |
Collapse
|
35
|
Pezzati E, Canesi L, Damonte G, Salis A, Marsano F, Grande C, Vezzulli L, Pruzzo C. Susceptibility ofVibrio aestuarianus 01/032 to the antibacterial activity ofMytilushaemolymph: identification of a serum opsonin involved in mannose-sensitive interactions. Environ Microbiol 2015; 17:4271-9. [DOI: 10.1111/1462-2920.12750] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Elisabetta Pezzati
- Department of Hearth, Environmental and Life Sciences (DISTAV); University of Genova; Corso Europa 26 16132 Genova Italy
| | - Laura Canesi
- Department of Hearth, Environmental and Life Sciences (DISTAV); University of Genova; Corso Europa 26 16132 Genova Italy
| | - Gianluca Damonte
- Department of Experimental Medicine (DIMES); University of Genova; Viale Benedetto XV 1 16132 Genova Italy
- Center of Excellence for Biomedical Research; University of Genova; Viale Benedetto XV 1 16132 Genova Italy
| | - Annalisa Salis
- Department of Hearth, Environmental and Life Sciences (DISTAV); University of Genova; Corso Europa 26 16132 Genova Italy
| | - Francesco Marsano
- Department of Sciences and Technological Innovation (DiSIT); University of Piemonte Orientale ‘A. Avogadro’; V.le T. Michel 11 15121 Alessandria Italy
| | - Chiara Grande
- Department of Hearth, Environmental and Life Sciences (DISTAV); University of Genova; Corso Europa 26 16132 Genova Italy
| | - Luigi Vezzulli
- Department of Hearth, Environmental and Life Sciences (DISTAV); University of Genova; Corso Europa 26 16132 Genova Italy
| | - Carla Pruzzo
- Department of Hearth, Environmental and Life Sciences (DISTAV); University of Genova; Corso Europa 26 16132 Genova Italy
| |
Collapse
|
36
|
Rodrigues-Silva C, Flores-Nunes F, Vernal JI, Cargnin-Ferreira E, Bainy ACD. Expression and immunohistochemical localization of the cytochrome P450 isoform 356A1 (CYP356A1) in oyster Crassostrea gigas. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:267-275. [PMID: 25569847 DOI: 10.1016/j.aquatox.2014.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
Cytochrome P450 family (CYP) is a group of proteins virtually found in all living organisms. The main role of most CYPs is to metabolize endo and xenobiotics. Most of the studies on CYP have been carried out in mammals and other vertebrates, however recently a growing interest has been devoted to the identification of CYP isoforms in invertebrates. A gene belonging to the CYP sub-family, CYP356A1, was identified in sanitary sewage-exposed Pacific oysters, Crassostrea gigas. Through heterologous expression, we produced CYP356A1 purified protein and raised a mouse polyclonal antibody. Dot blot tests showed that oysters exposed in situ for 14 days to untreated urban effluent discharges had significantly higher levels of CYP356A1 in digestive gland. Using immunohistochemical techniques we observed that the lining epithelial cells of mantle, stomach and intestine showed a strong CYP356A1 staining, but the mucus and secretory cells were negative. Digestive diverticulum parenchyma and gills lining cells showed strong CYP356A1 reaction, while the filamentary rod (connective tissue) was negative. Free cells, as hemocytes and brown cells also showed CYP356A1 immunoreactions indicating the presence of biotransformation activity in these cells. Male germ cells at early stages expressed CYP356A1 but not sperm mature cells, suggesting that this protein could be involved in the male gonadal development. This study shows the use of a specific antibody to a mollusk CYP isoform and that this protein is inducible in oysters environmentally exposed to urban sewage effluents.
Collapse
Affiliation(s)
- Christielly Rodrigues-Silva
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Javier I Vernal
- Center of Structural and Molecular Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Eduardo Cargnin-Ferreira
- Laboratory of Histological Markers, Instituto Federal de Educação Ciência e Tecnologia, Garopaba, SC, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
37
|
Biochemical and proteomic characterisation of haemolymph serum reveals the origin of the alkali-labile phosphate (ALP) in mussel (Mytilus galloprovincialis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 11:29-36. [DOI: 10.1016/j.cbd.2014.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/06/2023]
|
38
|
Zhou H, Hanneman AJ, Chasteen ND, Reinhold VN. Anomalous N-glycan structures with an internal fucose branched to GlcA and GlcN residues isolated from a mollusk shell-forming fluid. J Proteome Res 2013; 12:4547-55. [PMID: 23919883 DOI: 10.1021/pr4006734] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This report describes the structural details of a unique N-linked valence epitope on the major protein within the extrapallial (EP) fluid of the mollusk, Mytilus edulis. Fluids from this area are considered to be responsible for shell expansion by a self-assembly process that provides an organic framework for the growth of CaCO3 crystals. Previous reports from our laboratories have described the purification and amino acid sequence of this EP protein, which was found to be a glycoprotein (EPG) of approximately 28 KDa with 14.3% carbohydrate on a single N-linked consensus site. Described herein is the de novo sequence of the major glycan and its glycomers. The sequence was determined by ion trap sequential mass spectrometry (ITMS(n)) resolving structure by tracking precursor-product relationships through successive rounds of collision induced disassociation (CID), thereby spatially resolving linkage and branching details within the confines of the ion trap. Three major glycomers were detected, each possessing a 6-linked fucosylated N-linked core. Two glycans possessed four and five identical antennae, while the third possessed four antennas, but with an additional methylfucose 2-linked to the glucuronic acid moiety, forming a pentasaccharide. The tetrasaccharide structure was: 4-O-methyl-GlcA(1-4)[GlcNAc(1-3)]Fuc(1-4)GlcNAc, while the pentasaccharide was shown to be as follows: mono-O-methyl-Fuc(1-2)-4-O-methyl-GlcA(1-4)[GlcNAc(1-3)]Fuc(1-4)GlcNAc. Samples were differentially deuteriomethylated (CD3/CH3) to localize indigenous methylation, further analyzed by high resolution mass spectrometry (HRMS) to confirm monomer compositions, and finally gas chromatography mass spectrometry (GC-MS) to assign structural and stereoisomers. The interfacial shell surface location of this major extrapallial glycoprotein, its calcium and heavy metal binding properties and unique structure suggests a probable role in shell formation and possibly metal ion detoxification. A closely related terminal tetrasaccharide structure has been reported in spermatozoan glycolipids of freshwater bivalves.
Collapse
Affiliation(s)
- Hui Zhou
- Glycomics Center, University of New Hampshire , 35 Colovos Road, Durham, New Hampshire 03824, United States
| | | | | | | |
Collapse
|
39
|
Abstract
In nature, mollusk shells have a role in protecting the soft body of the mollusk from predators and from the external environment, and the shells consist mainly of calcium carbonate and small amounts of organic matrices. Organic matrices in mollusk shells are thought to play key roles in shell formation. However, enough information has not been accumulated so far. High toughness and stiffness have been focused on as being adaptable to the development of organic–inorganic hybrid materials. Because mollusks can produce elaborate microstructures containing organic matrices under ambient conditions, the investigation of shell formation is expected to lead to the development of new inorganic–organic hybrid materials for various applications. In this review paper, we summarize the structures of mollusk shells and their process of formation, together with the analysis of various organic matrices related to shell calcification.
Collapse
Affiliation(s)
- Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
40
|
New Insights into the Functions of Histidine-Rich Glycoprotein. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:467-93. [DOI: 10.1016/b978-0-12-407696-9.00009-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Xue Q, Gauthier J, Schey K, Li Y, Cooper R, Anderson R, La Peyre J. Identification of a novel metal binding protein, segon, in plasma of the eastern oyster, Crassostrea virginica. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:74-85. [DOI: 10.1016/j.cbpb.2012.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 02/07/2023]
|
42
|
Deleury E, Dubreuil G, Elangovan N, Wajnberg E, Reichhart JM, Gourbal B, Duval D, Baron OL, Gouzy J, Coustau C. Specific versus non-specific immune responses in an invertebrate species evidenced by a comparative de novo sequencing study. PLoS One 2012; 7:e32512. [PMID: 22427848 PMCID: PMC3299671 DOI: 10.1371/journal.pone.0032512] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/27/2012] [Indexed: 12/27/2022] Open
Abstract
Our present understanding of the functioning and evolutionary history of invertebrate innate immunity derives mostly from studies on a few model species belonging to ecdysozoa. In particular, the characterization of signaling pathways dedicated to specific responses towards fungi and Gram-positive or Gram-negative bacteria in Drosophila melanogaster challenged our original view of a non-specific immunity in invertebrates. However, much remains to be elucidated from lophotrochozoan species. To investigate the global specificity of the immune response in the fresh-water snail Biomphalaria glabrata, we used massive Illumina sequencing of 5′-end cDNAs to compare expression profiles after challenge by Gram-positive or Gram-negative bacteria or after a yeast challenge. 5′-end cDNA sequencing of the libraries yielded over 12 millions high quality reads. To link these short reads to expressed genes, we prepared a reference transcriptomic database through automatic assembly and annotation of the 758,510 redundant sequences (ESTs, mRNAs) of B. glabrata available in public databases. Computational analysis of Illumina reads followed by multivariate analyses allowed identification of 1685 candidate transcripts differentially expressed after an immune challenge, with a two fold ratio between transcripts showing a challenge-specific expression versus a lower or non-specific differential expression. Differential expression has been validated using quantitative PCR for a subset of randomly selected candidates. Predicted functions of annotated candidates (approx. 700 unisequences) belonged to a large extend to similar functional categories or protein types. This work significantly expands upon previous gene discovery and expression studies on B. glabrata and suggests that responses to various pathogens may involve similar immune processes or signaling pathways but different genes belonging to multigenic families. These results raise the question of the importance of gene duplication and acquisition of paralog functional diversity in the evolution of specific invertebrate immune responses.
Collapse
Affiliation(s)
- Emeline Deleury
- INRA/CNRS/UNS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | | | | | - Eric Wajnberg
- INRA/CNRS/UNS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | | | - Benjamin Gourbal
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Université de Perpignan Via Domitia, Perpignan, France
| | - David Duval
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Université de Perpignan Via Domitia, Perpignan, France
| | - Olga Lucia Baron
- INRA/CNRS/UNS, Institut Sophia Agrobiotech, Sophia Antipolis, France
- UdS, UPR 9022 CNRS, IBMC, 15 rue Rene Descartes, Strasbourg, France
| | - Jérôme Gouzy
- INRA/CNRS, UMR441/2594, Laboratoire Interactions Plantes Micro-organismes, Chemin de Borde Rouge, Castanet Tolosan, France
| | - Christine Coustau
- INRA/CNRS/UNS, Institut Sophia Agrobiotech, Sophia Antipolis, France
- * E-mail:
| |
Collapse
|
43
|
Molecular Evolution of Mollusc Shell Proteins: Insights from Proteomic Analysis of the Edible Mussel Mytilus. J Mol Evol 2011; 72:531-46. [DOI: 10.1007/s00239-011-9451-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/23/2011] [Indexed: 11/26/2022]
|
44
|
Zuykov M, Pelletier E, Demers S. Colloidal complexed silver and silver nanoparticles in extrapallial fluid of Mytilus edulis. MARINE ENVIRONMENTAL RESEARCH 2011; 71:17-21. [PMID: 20950850 DOI: 10.1016/j.marenvres.2010.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/14/2010] [Accepted: 09/19/2010] [Indexed: 05/21/2023]
Abstract
Metal transport in mollusk extrapallial fluid (EPF) that acts as a "bridge" between soft tissues and shell has surprisingly received little attention until now. Using ultrafiltration and radiotracer techniques we determined silver concentrations and speciation in the EPF of the blue mussel Mytilus edulis after short-term uptake and depuration laboratory experiments. Radiolabelled silver ((¹¹⁰m)Ag) was used in dissolved or nanoparticulate phases (AgNPs < 40 nm), with a similar low Ag concentration (total radioactive and cold Ag ~0.7 μg/L) in a way that mussels could uptake radiotracers only from seawater. Our results indicated that silver nanoparticles were transported to the EPF of blue mussels at a level similar to the Ag ionic form. Bulk activity of radiolabelled silver in the EPF represented only up to 7% of the bulk activity measured in the whole mussels. The EPF extracted from mussels exposed to both treatments exhibited an Ag colloidal complexed form based on EPF ultrafiltration through a 3 kDa filter. This original study brings new insights to internal circulation of nanoparticles in living organisms and contributes to the international effort in studying the potential impacts of engineered nanomaterials on marine bivalves which play an essential role in coastal ecosystems, and are important contributors to human food supply from the sea.
Collapse
Affiliation(s)
- Michael Zuykov
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski, Rimouski, 310 allée des Ursulines, QC G5L3A1, Canada.
| | | | | |
Collapse
|
45
|
Puerto M, Campos A, Prieto A, Cameán A, de Almeida AM, Coelho AV, Vasconcelos V. Differential protein expression in two bivalve species; Mytilus galloprovincialis and Corbicula fluminea; exposed to Cylindrospermopsis raciborskii cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:109-116. [PMID: 20970860 DOI: 10.1016/j.aquatox.2010.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/10/2010] [Accepted: 09/18/2010] [Indexed: 05/30/2023]
Abstract
The cyanobacteria Cylindrospermopsis raciborskii is considered a threat to aquatic organisms due to the production of the toxin cylindrospermopsin (CYN). Despite the numerous reports evidencing the toxic effects of C. raciborskii cells and CYN in different species, not much is known regarding the toxicity mechanisms associated with this toxin and the cyanobacteria. In this work, a proteomics approach based in the two-dimensional gel electrophoresis and mass spectrometry was used to study the effects of the exposure of two bivalve species, Mytilus galloprovincialis and Corbicula fluminea, to CYN producing (CYN+) and non-producing (CYN-) C. raciborskii cells. Additionally the activities of glutathione S-transferase (GST) and glutathione peroxidase (GPx) were determined. Alterations in actin and tubulin isoforms were detected in gills of both bivalve species and digestive gland of M. galloprovincialis when exposed to CYN- and CYN+ cells. Moreover, GST and GPx activities changed in gills and digestive tract of bivalves exposed to both C. raciborskii freeze dried cells, in comparison to control animals exposed to the green alga Chlorella vulgaris. These results suggest the induction of physiological stress and tissue injury in bivalves by C. raciborskii. This condition is supported by the changes observed in GPx and GST activities which indicate alterations in the oxidative stress defense mechanisms. The results also evidence the capacity of CYN non-producing C. raciborskii to induce biochemical responses and therefore its toxicity potential to bivalves. The heat shock protein 60 (HSP60), extrapallial (EP) fluid protein and triosephosphate isomerase homologous proteins from gills of M. galloprovincialis were down-regulated specifically with the presence of CYN+ C. raciborskii cells. The presence of CYN may lead to additional toxic effects in M. galloprovincialis. This work demonstrates that proteomics is a powerful approach to characterize the biochemical effects of C. raciborskii and to investigate the physiological condition of the exposed organisms.
Collapse
Affiliation(s)
- Maria Puerto
- Area of Toxicology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Characterization of the major plasma protein of the eastern oyster, Crassostrea virginica, and a proposed role in host defense. Comp Biochem Physiol B Biochem Mol Biol 2011; 158:9-22. [DOI: 10.1016/j.cbpb.2010.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/18/2010] [Accepted: 06/23/2010] [Indexed: 11/17/2022]
|
47
|
Ji B, Cusack M, Freer A, Dobson PS, Gadegaard N, Yin H. Control of crystal polymorph in microfluidics using molluscan 28 kDa Ca2+-binding protein. Integr Biol (Camb) 2010; 2:528-35. [DOI: 10.1039/c0ib00007h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Masola B, Chibi M, Kandare E, Naik YS, Zaranyika MF. Potential marker enzymes and metal-metal interactions in Helisoma duryi and Lymnaea natalensis exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 70:79-87. [PMID: 17919723 DOI: 10.1016/j.ecoenv.2007.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 05/25/2007] [Accepted: 06/17/2007] [Indexed: 05/25/2023]
Abstract
In this study, we investigate the effects of exposure to cadmium and copper on Lymnaea natalensis and Helisoma duryi. The snails were dosed with Cd2+ or Cu2+ for a period of 96h. Snails dosed with Cd accumulated the metal significantly (P<0.05) in tissues but not in shells. Mortality was observed at approximately 1mg Cd/l of culture water. In tissues and shells of snails dosed with Cd or Cu, synergistic and antagonistic metal-metal interactions involving Cd, Cu, Zn, and Pb were observed and these may affect metal toxicity. Glutamate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase were assayed in whole snail tissue sub-cellular fractions of Cd-dosed snails. Generally, enzyme activity significantly increased at lower concentrations of Cd but decreased at high concentrations of the metal. However, mitochondrial alanine aminotransferase activity progressively declined with increasing Cd concentration. The changes in some of the enzymes' activities suggest biomarker potential.
Collapse
Affiliation(s)
- B Masola
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, P. Bag X54001, University Road, Durban 4000, South Africa.
| | | | | | | | | |
Collapse
|
49
|
Ma Z, Huang J, Sun J, Wang G, Li C, Xie L, Zhang R. A novel extrapallial fluid protein controls the morphology of nacre lamellae in the pearl oyster, Pinctada fucata. J Biol Chem 2007; 282:23253-63. [PMID: 17558025 DOI: 10.1074/jbc.m700001200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mollusk shell nacre is known for its superior mechanical properties and precisely controlled biomineralization process. However, the question of how mollusks control the morphology of nacre lamellae remains unresolved. Here, a novel 38-kDa extrapallial fluid (EPF) protein, named amorphous calcium carbonate-binding protein (ACCBP), may partially answer this question. Although sequence analysis indicated ACCBP is a member of the acetylcholine-binding protein family, it is actively involved in the shell mineralization process. In vitro, ACCBP can inhibit the growth of calcite and induce the formation of amorphous calcium carbonate. When ACCBP functions were restrained in vivo, the nacre lamellae grew in a screw-dislocation pattern, and low crystallinity CaCO(3) precipitated from the EPF. Crystal binding experiments further revealed that ACCBP could recognize different CaCO(3) crystal phases and crystal faces. With this capacity, ACCBP could modify the morphology of nacre lamellae by inhibiting the growth of undesired aragonite crystal faces and meanwhile maintain the stability of CaCO(3)-supersaturated body fluid by ceasing the nucleation and growth of calcite. Furthermore, the crystal growth inhibition capacity of ACCBP was proved to be directly related to its acetylcholine-binding site. Our results suggest that a "safeguard mechanism" of undesired crystal growth is necessary for shell microstructure formation.
Collapse
Affiliation(s)
- Zhuojun Ma
- Institute of Marine Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Abebe AT, Devoid SJ, Sugumaran M, Etter R, Robinson WE. Identification and quantification of histidine-rich glycoprotein (HRG) in the blood plasma of six marine bivalves. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:74-81. [PMID: 17276716 DOI: 10.1016/j.cbpb.2006.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 12/20/2006] [Accepted: 12/29/2006] [Indexed: 11/19/2022]
Abstract
Histidine-rich Glycoprotein (HRG) is a metal-binding protein described from the blood plasma of a pteriomorph bivalve, the marine mussel Mytilus edulis L. We demonstrate here, using Cd-Immobilized Metal Affinity Chromatography (IMAC), SDS-PAGE, Western Blotting, and ELISA, that HRG is present in three additional pteriomorphs and two heterodont bivalves. ELISA indicates that HRG is the predominant blood plasma protein in all six species (41 to 61% of total plasma proteins by weight). Thus, HRG appears to be a widespread metal-binding protein in the plasma of bivalves.
Collapse
Affiliation(s)
- Adal T Abebe
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125-3393, USA
| | | | | | | | | |
Collapse
|