1
|
Hayes CM, Gallucci GM, Boyer JL, Assis DN, Ghonem NS. PPAR agonists for the treatment of cholestatic liver diseases: Over a decade of clinical progress. Hepatol Commun 2025; 9:e0612. [PMID: 39699308 DOI: 10.1097/hc9.0000000000000612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are characterized by the destruction of the small bile ducts and the formation of multifocal biliary strictures, respectively, impairing bile flow. This leads to the hepatic accumulation of bile acids, causing liver injury and the risk of progression to cirrhosis and liver failure. First-line therapy for PBC is ursodeoxycholic acid, although up to 40% of treated individuals are incomplete responders, and there is no effective therapy for PSC, highlighting the need for better therapeutic options in these diseases. In addition, pruritus is a common symptom of cholestasis that has severe consequences for quality of life and is often undertreated or untreated. Nuclear receptors are pharmacological targets to treat cholestasis due to their multifactorial regulation of hepatic enzymatic pathways, particularly in bile acid metabolism. The peroxisome proliferator-activated receptor (PPAR) is of significant clinical interest due to its role in regulating bile acid synthesis and detoxification pathways. PPAR agonism by fibrates has traditionally been explored due to PPARα's expression in the liver; however, recent interest has expanded to focus on newer PPAR agonists that activate other PPAR isoforms, for example, δ, γ, alone or in combination. Several PPAR agonists have been investigated as second-line therapy for people living with PBC, including the recent accelerated United States Food and Drug Administration approval of elafibranor and seladelpar. This review evaluates available data on the efficacy and safety of the five PPAR agonists investigated for the treatment of cholestasis and associated pruritus in PBC and PSC, namely fenofibrate, bezafibrate, saroglitazar, elafibranor, and seladelpar.
Collapse
Affiliation(s)
- Colleen M Hayes
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Gina M Gallucci
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - James L Boyer
- Section of Digestive Diseases and Yale Liver Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - David N Assis
- Section of Digestive Diseases and Yale Liver Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nisanne S Ghonem
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
2
|
Liu JY, Kuna RS, Pinheiro LV, Nguyen PTT, Welles JE, Drummond JM, Murali N, Sharma PV, Supplee JG, Shiue M, Zhao S, Farria AT, Kumar A, Ruchhoeft ML, Demetriadou C, Kantner DS, Chatoff A, Megill E, Titchenell PM, Snyder NW, Metallo CM, Wellen KE. Bempedoic acid suppresses diet-induced hepatic steatosis independently of ATP-citrate lyase. Cell Metab 2024:S1550-4131(24)00410-8. [PMID: 39471816 DOI: 10.1016/j.cmet.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/07/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024]
Abstract
ATP citrate lyase (ACLY) synthesizes acetyl-CoA for de novo lipogenesis (DNL), which is elevated in metabolic dysfunction-associated steatotic liver disease. Hepatic ACLY is inhibited by the LDL-cholesterol-lowering drug bempedoic acid (BPA), which also improves steatosis in mice. While BPA potently suppresses hepatic DNL and increases fat catabolism, it is unclear if ACLY is its primary molecular target in reducing liver triglyceride. We show that on a Western diet, loss of hepatic ACLY alone or together with the acetyl-CoA synthetase ACSS2 unexpectedly exacerbates steatosis, linked to reduced PPARα target gene expression and fatty acid oxidation. Importantly, BPA treatment ameliorates Western diet-mediated triacylglyceride accumulation in both WT and liver ACLY knockout mice, indicating that its primary effects on hepatic steatosis are ACLY independent. Together, these data indicate that hepatic ACLY plays an unexpected role in restraining diet-dependent lipid accumulation and that BPA exerts substantial effects on hepatic lipid metabolism independently of ACLY.
Collapse
Affiliation(s)
- Joyce Y Liu
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramya S Kuna
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laura V Pinheiro
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phuong T T Nguyen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jaclyn E Welles
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack M Drummond
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nivitha Murali
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Prateek V Sharma
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julianna G Supplee
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mia Shiue
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Zhao
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimee T Farria
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avi Kumar
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mauren L Ruchhoeft
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christina Demetriadou
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daniel S Kantner
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Adam Chatoff
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Emily Megill
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Paul M Titchenell
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel W Snyder
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Christian M Metallo
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Zheng J, Sun B, Berardi D, Lu L, Yan H, Zheng S, Aladelokun O, Xie Y, Cai Y, Godri Pollitt KJ, Khan SA, Johnson CH. Perfluorooctanesulfonic Acid and Perfluorooctanoic Acid Promote Migration of Three-Dimensional Colorectal Cancer Spheroids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21016-21028. [PMID: 38064429 DOI: 10.1021/acs.est.3c04844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are persistent environmental contaminants that are of increasing public concern worldwide. However, their relationship with colorectal cancer (CRC) is poorly understood. This study aims to comprehensively investigate the effect of PFOS and PFOA on the development and progression of CRC in vitro using a series of biological techniques and metabolic profiling. Herein, the migration of three-dimensional (3D) spheroids of two CRC cell lines, SW48 KRAS wide-type (WT) and SW48 KRAS G12A, were observed after exposure to PFOS and PFOA at 2 μM and 10 μM for 7 days. The time and dose-dependent migration phenotype induced by 10 μM PFOS and PFOA was further confirmed by wound healing and trans-well migration assays. To investigate the mechanism of action, derivatization-mass spectrometry-based metabolic profiles were examined from 3D spheroids of SW48 cell lines exposed to PFOS and PFOA (2 μM and 10 μM). Our findings revealed this exposure altered epithelial-mesenchymal transition related metabolic pathways, including fatty acid β-oxidation and synthesis of proteins, nucleotides, and lipids. Furthermore, this phenotype was confirmed by the downregulation of E-cadherin and upregulation of N-cadherin and vimentin. These findings show novel insight into the relationship between PFOS, PFOA, and CRC.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Boshi Sun
- Division of Surgical Oncology, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510, United States
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Domenica Berardi
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Hong Yan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Shujian Zheng
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, United States
| | - Oladimeji Aladelokun
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Yangzhouyun Xie
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Yujun Cai
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Sajid A Khan
- Division of Surgical Oncology, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| |
Collapse
|
4
|
Wang Y, Sun Y, Yang B, Wang Q, Kuang H. The management and metabolic characterization: hyperthyroidism and hypothyroidism. Neuropeptides 2023; 97:102308. [PMID: 36455479 DOI: 10.1016/j.npep.2022.102308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Hyperthyroidism and hypothyroidism are common diseases resulting from thyroid dysfunction, and are simple to diagnose and treat. The traditional treatment for hypothyroidism is thyroid hormone replacement therapy. The traditional treatments for hyperthyroidism include antithyroid drug, iodine radiotherapy, and surgery. Thyroid disease can be fatal in severe cases if untreated. Current statistical reference ranges used for diagnosis based on relevant biochemical parameters have been debated, and insufficient treatment can result in long-term thyroid hormone deficiency, which is associated with increased risk of cardiovascular disease and persistent symptoms. In contrast, overtreatment can result in heart disease and osteoporosis, particularly in older people and pregnant women. Therefore, under- or over-treatment should be avoided and treatment regimens should be monitored closely. A significant proportion of patients who achieve biochemical treatment goals still complain of significant symptoms. Systematic literature review was performed through the Embase (Elsevier), PubMed and Web of Science databases, and studies summarized evidence regarding treatment and management of hypothyroidism and hyperthyroidism, and reviewed clinical practice guidelines. We also reviewed the latest research on the metabolic mechanisms of hyperthyroidism and hypothyroidism, which contributed to understanding of thyroid diseases in the clinic. A reliable algorithm is needed to management, assessment, and treatment patients with hyperthyroidism and hypothyroidism, which can not only improve management efficiency, but also providing a broad application. In addition, the thyroid disorder showed a lipid metabolism tissue specificity in the Ventromedial Hypothalamus, and effect oxidative stress and energy metabolism of whole body. This review summarizes an algorithm for thyroid disease and the latest pathogenesis that would be useful to generalist and subspecialty physicians and others providing care for patients with this condition.
Collapse
Affiliation(s)
- Yangyang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - YanPing Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China.
| |
Collapse
|
5
|
Zeng W, Yin X, Jiang Y, Jin L, Liang W. PPARα at the crossroad of metabolic-immune regulation in cancer. FEBS J 2022; 289:7726-7739. [PMID: 34480827 DOI: 10.1111/febs.16181] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/04/2021] [Accepted: 09/03/2021] [Indexed: 01/14/2023]
Abstract
Rewiring metabolism to sustain cell growth, division, and survival is the most prominent feature of cancer cells. In particular, dysregulated lipid metabolism in cancer has received accumulating interest, since lipid molecules serve as cell membrane structure components, secondary signaling messengers, and energy sources. Given the critical role of immune cells in host defense against cancer, recent studies have revealed that immune cells compete for nutrients with cancer cells in the tumor microenvironment and accordingly develop adaptive metabolic strategies for survival at the expense of compromised immune functions. Among these strategies, lipid metabolism reprogramming toward fatty acid oxidation is closely related to the immunosuppressive phenotype of tumor-infiltrated immune cells, including macrophages and dendritic cells. Therefore, it is important to understand the lipid-mediated crosstalk between cancer cells and immune cells in the tumor microenvironment. Peroxisome proliferator-activated receptors (PPARs) consist of a nuclear receptor family for lipid sensing, and one of the family members PPARα is responsible for fatty acid oxidation, energy homeostasis, and regulation of immune cell functions. In this review, we discuss the emerging role of PPARα-associated metabolic-immune regulation in tumor-infiltrated immune cells, and key metabolic events and pathways involved, as well as their influences on antitumor immunity.
Collapse
Affiliation(s)
- Wenfeng Zeng
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhe Yin
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Yunhan Jiang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lingtao Jin
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Liang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Gabrielle PH. Lipid metabolism and retinal diseases. Acta Ophthalmol 2022; 100 Suppl 269:3-43. [PMID: 36117363 DOI: 10.1111/aos.15226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/24/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE The retina has enormous lipids demands and must meet those needs. Retinal lipid homeostasis appears to be based on the symbiosis between neurons, Müller glial cells (MGC), and retinal pigment epithelium (RPE) cells, which can be impacted in several retinal diseases. The current research challenge is to better understand lipid-related mechanisms involved in retinal diseases, such as age-related macular degeneration (AMD) and glaucoma. RESULTS In a first axis, in vitro and focus on Müller glial cell, we aimed to characterize whether the 24S-hydroxycholesterol (24S-OHC), an overexpressed end-product of cholesterol elimination pathway in neural tissue and likely produced by suffering retinal ganglion cells in glaucoma, may modulate MGC membrane organization, such as lipid rafts, to trigger cellular signalling pathways related to retinal gliosis. We have found that lipid composition appears to be a key factor of membrane architecture, especially for lipid raft microdomain formation, in MGC. However, 24S-OHC did not appear to trigger retinal gliosis via the modulation of lipid or protein composition within lipid rafts microdomains. This study provided a better understanding of the complex mechanisms involved in the pathophysiology of glaucoma. On a second clinical ax, we focused on the lipid-related mechanisms involved in the dysfunction of aging RPE and the appearance of drusenoid deposits in AMD. Using the Montrachet population-based study, we intend to report the frequency of reticular pseudodrusen (RPD) and its ocular and systemic risk factors, particularly related to lipid metabolisms, such as plasma lipoprotein levels, carotenoids levels, and lipid-lowering drug intake. Our study showed that RPD was less common in subjects taking lipid-lowering drugs. Lipid-lowering drugs, such as statins, may reduce the risk of RPD through their effect on the production and function of lipoproteins. This observation highlights the potential role of retinal lipid trafficking via lipoproteins between photoreceptors and retinal pigment epithelium cells in RPD formation. Those findings have been complemented with preliminary results on the analysis of plasma fatty acid (FA) profile, a surrogate marker of short-term dietary lipid intake, according to the type of predominant drusenoid deposit, soft drusen or RPD, in age-related maculopathy. CONCLUSION Further research on lipid metabolism in retinal diseases is warranted to better understand the pathophysiology of retinal diseases and develop new promising diagnostic, prognostic, and therapeutic tools for our patients.
Collapse
Affiliation(s)
- Pierre-Henry Gabrielle
- Eye and Nutrition Research Group, Center for Taste and Feeding Behaviour, AgroSup Dijon, CNRS, INRAe, The University Bourgogne Franche-Comté, Dijon, France.,Department of Ophthalmology, Dijon University Hospital, Dijon, France.,The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
The Effects of Omega-3 Supplementation on Resting Metabolic Rate: A Systematic Review and Meta-Analysis of Clinical Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6213035. [PMID: 34976098 PMCID: PMC8716205 DOI: 10.1155/2021/6213035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/14/2021] [Indexed: 02/08/2023]
Abstract
Background It is uncertain if omega-3 polyunsaturated fatty acids are associated with increase in resting metabolic rate (RMR) in adults. Objective The aim of the present study was to evaluate the overall effects of omega-3 on RMR. Methods Both PubMed and Scopus libraries were searched up to April 2021. Study quality was assessed using the Jadad scale. Random- and fixed-effects models were utilized in order to obtain pooled estimates of omega-3 supplementation impacts on RMR, using weight mean difference (WMD). Results Seven studies including a total of 245 participants were included. There was significantly higher FFM-adjusted RMR in the intervention group than the control group (WMD: 26.666 kcal/kg/day, 95% CI: 9.010 to 44.322, p=0.003). Study quality showed that four of seven included studies were of high quality. However, there was no significant difference in results in the subgroup analysis according to the quality of studies. Subgroup analyses revealed significant changes for sex (for women: WMD = 151.793 kcal/day, 95% CI = 62.249 to 241.337, p=0.001) and BMI (for BMI > 25: WMD = 82.208 kcal/day, 95% CI = 0.937 to 163.480, p=0.047). Influence analysis indicated no outlier among inclusions. Conclusion The current study depicted that omega-3 polyunsaturated acids can significantly increase RMR in adults. However, further assessments of omega-3 supplementation therapy are critical to monitor its long-term outcomes and potential clinical application.
Collapse
|
8
|
Tahri-Joutey M, Andreoletti P, Surapureddi S, Nasser B, Cherkaoui-Malki M, Latruffe N. Mechanisms Mediating the Regulation of Peroxisomal Fatty Acid Beta-Oxidation by PPARα. Int J Mol Sci 2021; 22:ijms22168969. [PMID: 34445672 PMCID: PMC8396561 DOI: 10.3390/ijms22168969] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
In mammalian cells, two cellular organelles, mitochondria and peroxisomes, share the ability to degrade fatty acid chains. Although each organelle harbors its own fatty acid β-oxidation pathway, a distinct mitochondrial system feeds the oxidative phosphorylation pathway for ATP synthesis. At the same time, the peroxisomal β-oxidation pathway participates in cellular thermogenesis. A scientific milestone in 1965 helped discover the hepatomegaly effect in rat liver by clofibrate, subsequently identified as a peroxisome proliferator in rodents and an activator of the peroxisomal fatty acid β-oxidation pathway. These peroxisome proliferators were later identified as activating ligands of Peroxisome Proliferator-Activated Receptor α (PPARα), cloned in 1990. The ligand-activated heterodimer PPARα/RXRα recognizes a DNA sequence, called PPRE (Peroxisome Proliferator Response Element), corresponding to two half-consensus hexanucleotide motifs, AGGTCA, separated by one nucleotide. Accordingly, the assembled complex containing PPRE/PPARα/RXRα/ligands/Coregulators controls the expression of the genes involved in liver peroxisomal fatty acid β-oxidation. This review mobilizes a considerable number of findings that discuss miscellaneous axes, covering the detailed expression pattern of PPARα in species and tissues, the lessons from several PPARα KO mouse models and the modulation of PPARα function by dietary micronutrients.
Collapse
Affiliation(s)
- Mounia Tahri-Joutey
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences & Techniques, University Hassan I, BP 577, 26000 Settat, Morocco;
| | - Pierre Andreoletti
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
| | - Sailesh Surapureddi
- Office of Pollution Prevention and Toxics, United States Environmental Protection Agency, Washington, DC 20460, USA;
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences & Techniques, University Hassan I, BP 577, 26000 Settat, Morocco;
| | - Mustapha Cherkaoui-Malki
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
| | - Norbert Latruffe
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
- Correspondence:
| |
Collapse
|
9
|
Dewsbury LS, Lim CK, Steiner GZ. The Efficacy of Ketogenic Therapies in the Clinical Management of People with Neurodegenerative Disease: A Systematic Review. Adv Nutr 2021; 12:1571-1593. [PMID: 33621313 PMCID: PMC8321843 DOI: 10.1093/advances/nmaa180] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Ketone bodies have potential disease-modifying activity that represent a novel therapeutic approach for neurodegenerative diseases (NDD). The aim of this systematic review was to summarize and evaluate the evidence for the application of ketogenic therapies (dietary or exogenous ketogenic agents) for NDD and provide recommendations for future research. Eight databases were electronically searched for articles reporting on controlled trials (≥4 wk duration) that induced ketosis or elevated serum ketone concentrations in people with NDD. Of 4498 records identified, 17 articles met the inclusion criteria with a total of 979 participants including studies on mild cognitive impairment (MCI; n = 6), multiple sclerosis (n = 4), Alzheimer's disease (n = 5), Parkinson's disease (n = 1), and MCI secondary to Parkinson's disease (n = 1). Of 17 studies, 7 were randomized double-blind placebo-controlled trials. Most studies used dietary interventions (n = 9), followed by medium-chain triglycerides (n = 7) and a fasting protocol (n = 1). Generally, trials were 6 wk in duration and assessed cognition as the primary outcome. Studies were heterogeneous in type and severity of NDD, interventions used, and outcomes assessed. Overall, 3/17 studies carried a low risk of bias. Based on available evidence, exogenous ketogenic agents may be more feasible than dietary interventions in NDD from a compliance and adherence perspective; more research is required to confirm this. Recommendations for future research include improving exogenous formulations to reduce adverse effects, exploring interindividual factors affecting response-to-treatment, and establishing a "minimum required dose" for clinically meaningful improvements in disease-specific symptoms, such as cognition or motor function.
Collapse
Affiliation(s)
- Lauren S Dewsbury
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| | - Chai K Lim
- Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Genevieve Z Steiner
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
- Translational Health Research Institute (THRI), Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
10
|
Tanaka S, Ito S, Shimamoto C, Matsumura H, Inui T, Marunaka Y, Nakahari T. Nitric oxide synthesis stimulated by arachidonic acid accumulation via PPARα in acetylcholine-stimulated gastric mucous cells. Exp Physiol 2021; 106:1939-1949. [PMID: 34216172 DOI: 10.1113/ep089517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of this study? Arachidonic acid (AA) stimulates NO production in antral mucous cells without any increase in [Ca2+ ]i . Given that the intracellular AA concentration is too low to measure, the relationship between AA accumulation and NO production remains uncertain. Is AA accumulation a key step for NO production? What is the main finding and its importance? We demonstrated that AA accumulation is a key step for NO production. The amount of AA released could be measured using fluorescence-HPLC. The intracellular AA concentration was maintained at < 1 μM. Nitric oxide is produced by AA accumulation in antral mucous cells, not as a direct effect of [Ca2+ ]i . ABSTRACT In the present study, we demonstrate that NO production is stimulated by an accumulation of arachidonic acid (AA) mediated via peroxisome proliferation-activated receptor α (PPARα) and that the NO produced enhances Ca2+ -regulated exocytosis in ACh-stimulated antral mucous cells. The amount of AA released from the antral mucosa, measured by fluorescence high-performance liquid chromatography (F-HPLC), was increased by addition of ionomycin (10 μM) or ACh, suggesting that AA accumulation is stimulated by an increase in [Ca2+ ]i . The AA production was inhibited by an inhibitor of cytosolic phospholipase A2 (cPLA2-inhα). GW6471 (a PPARα inhibitor) and cPLA2-inhα inhibited NO synthesis stimulated by ACh. Moreover, indomethacin, an inhibitor of cyclooxygenase, stimulated AA accumulation and NO production. However, acetylsalicylic acid did not stimulate AA production and NO synthesis. An analogue of AA (AACOCF3) alone stimulated NO synthesis, which was inhibited by GW6471. In antral mucous cells, indomethacin enhanced Ca2+ -regulated exocytosis by increasing NO via PPARα, and the enhancement was abolished by GW6471 and cPLA2-inhα. Thus, AA produced via PLA2 activation is the key step for NO synthesis in ACh-stimulated antral mucous cells and plays important roles in maintaining antral mucous secretion, especially in Ca2+ -regulated exocytosis.
Collapse
Affiliation(s)
- Saori Tanaka
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Biwako Kusatsu Campus, Ritsumeikan University, Kusatsu, Japan.,Laboratory of Pharmacotherapy, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Shigenori Ito
- Department of Chemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Chikao Shimamoto
- Laboratory of Pharmacotherapy, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hitoshi Matsumura
- Laboratory of Pharmacotherapy, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Toshio Inui
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Biwako Kusatsu Campus, Ritsumeikan University, Kusatsu, Japan.,Saisei Mirai Clinics, Moriguchi, Japan
| | - Yoshinori Marunaka
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Biwako Kusatsu Campus, Ritsumeikan University, Kusatsu, Japan.,Medical Research Institute, Kyoto Industrial Health Association, Kyoto, Japan.,Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Nakahari
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Biwako Kusatsu Campus, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
11
|
Gordon DM, Hong SH, Kipp ZA, Hinds TD. Identification of Binding Regions of Bilirubin in the Ligand-Binding Pocket of the Peroxisome Proliferator-Activated Receptor-A (PPARalpha). Molecules 2021; 26:molecules26102975. [PMID: 34067839 PMCID: PMC8157031 DOI: 10.3390/molecules26102975] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Recent work has shown that bilirubin has a hormonal function by binding to the peroxisome proliferator-activated receptor-α (PPARα), a nuclear receptor that drives the transcription of genes to control adiposity. Our previous in silico work predicted three potential amino acids that bilirubin may interact with by hydrogen bonding in the PPARα ligand-binding domain (LBD), which could be responsible for the ligand-induced function. To further reveal the amino acids that bilirubin interacts with in the PPARα LBD, we harnessed bilirubin’s known fluorescent properties when bound to proteins such as albumin. Our work here revealed that bilirubin interacts with threonine 283 (T283) and alanine 333 (A333) for ligand binding. Mutational analysis of T283 and A333 showed significantly reduced bilirubin binding, reductions of 11.4% and 17.0%, respectively. Fenofibrate competitive binding studies for the PPARα LBD showed that bilirubin and fenofibrate possibly interact with different amino acid residues. Furthermore, bilirubin showed no interaction with PPARγ. This is the first study to reveal the amino acids responsible for bilirubin binding in the ligand-binding pocket of PPARα. Our work offers new insight into the mechanistic actions of a well-known molecule, bilirubin, and new fronts into its mechanisms.
Collapse
Affiliation(s)
- Darren M. Gordon
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (D.M.G.); (S.H.H.)
| | - Stephen H. Hong
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (D.M.G.); (S.H.H.)
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA;
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA;
- Correspondence:
| |
Collapse
|
12
|
Dixon ED, Nardo AD, Claudel T, Trauner M. The Role of Lipid Sensing Nuclear Receptors (PPARs and LXR) and Metabolic Lipases in Obesity, Diabetes and NAFLD. Genes (Basel) 2021; 12:genes12050645. [PMID: 33926085 PMCID: PMC8145571 DOI: 10.3390/genes12050645] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are metabolic disorders characterized by metabolic inflexibility with multiple pathological organ manifestations, including non-alcoholic fatty liver disease (NAFLD). Nuclear receptors are ligand-dependent transcription factors with a multifaceted role in controlling many metabolic activities, such as regulation of genes involved in lipid and glucose metabolism and modulation of inflammatory genes. The activity of nuclear receptors is key in maintaining metabolic flexibility. Their activity depends on the availability of endogenous ligands, like fatty acids or oxysterols, and their derivatives produced by the catabolic action of metabolic lipases, most of which are under the control of nuclear receptors. For example, adipose triglyceride lipase (ATGL) is activated by peroxisome proliferator-activated receptor γ (PPARγ) and conversely releases fatty acids as ligands for PPARα, therefore, demonstrating the interdependency of nuclear receptors and lipases. The diverse biological functions and importance of nuclear receptors in metabolic syndrome and NAFLD has led to substantial effort to target them therapeutically. This review summarizes recent findings on the roles of lipases and selected nuclear receptors, PPARs, and liver X receptor (LXR) in obesity, diabetes, and NAFLD.
Collapse
Affiliation(s)
| | | | | | - Michael Trauner
- Correspondence: ; Tel.: +43-140-4004-7410; Fax: +43-14-0400-4735
| |
Collapse
|
13
|
PPARs in liver physiology. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166097. [PMID: 33524529 DOI: 10.1016/j.bbadis.2021.166097] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and transcriptional modulators with crucial functions in hepatic and whole-body energy homeostasis. Besides their well-documented roles in lipid and glucose metabolism, emerging evidence also implicate PPARs in the control of other processes such as inflammatory responses. Recent technological advances, such as single-cell RNA sequencing, have allowed to unravel an unexpected complexity in the regulation of PPAR expression, activity and downstream signaling. Here we provide an overview of the latest advances in the study of PPARs in liver physiology, with a specific focus on formerly neglected aspects of PPAR regulation, such as tissular zonation, cellular heterogeneity, circadian rhythms, sexual dimorphism and species-specific features.
Collapse
|
14
|
Koh S, Dupuis N, Auvin S. Ketogenic diet and Neuroinflammation. Epilepsy Res 2020; 167:106454. [DOI: 10.1016/j.eplepsyres.2020.106454] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/26/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
|
15
|
Yarizadeh H, Setayesh L, Roberts C, Yekaninejad MS, Mirzaei K. Nutrient pattern of unsaturated fatty acids and vitamin E increase resting metabolic rate of overweight and obese women. INT J VITAM NUTR RES 2020; 92:214-222. [PMID: 32672509 DOI: 10.1024/0300-9831/a000664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Objectives: Obesity plays an important role in the development of chronic diseases including cardiovascular disease and diabetes. A low resting metabolic rate (RMR) for a given body size and composition is a risk factor for obesity, however, there is limited evidence available regarding the association of nutrient patterns and RMR. The aim of this study was to determine the association of nutrient patterns and RMR in overweight and obese women. Study design: This cross-sectional study was conducted on 360 women who were overweight or obese. Method: Dietary intake was assessed using a semi-quantitative standard food frequency questionnaire (FFQ). Nutrient patterns were also extracted by principal components analysis (PCA). All participants were evaluated for their body composition, RMR, and blood parameters. Result: Three nutrient patterns explaining 64% of the variance in dietary nutrients consumption were identified as B-complex-mineral, antioxidant, and unsaturated fatty acid and vitamin E (USFA-vit E) respectively. Participants were categorized into two groups based on the nutrient patterns. High scores of USFA-vit E pattern was significantly associated with the increase of RMR (β = 0.13, 95% CI = 0.79 to 68.16, p = 0.04). No significant associations were found among B-complex-mineral pattern (β = -0.00, 95% CI = -49.67 to 46.03, p = 0.94) and antioxidant pattern (β = 0.03, 95% CI -41.42 to 22.59, p = 0.56) with RMR. Conclusion: Our results suggested that the "USFA-vit E" pattern (such as PUFA, oleic, linoleic, vit.E, α-tocopherol and EPA) was associated with increased RMR.
Collapse
Affiliation(s)
- Habib Yarizadeh
- Students' Scientific Center, Tehran University of Medical Sciences, PO Box 1417755331, Tehran, Iran.,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Leila Setayesh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Caroline Roberts
- Department of Nutritional Sciences School of Life Course Sciences, Faculty of Life Sciences and Medicine, Kings College London, Franklin-Wilkins Building room 4.108
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Medical Sciences/University of Tehran, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
16
|
Liao Y, Xie B, Zhang H, He Q, Guo L, Subramanieapillai M, Fan B, Lu C, McIntyre RS. Efficacy of omega-3 PUFAs in depression: A meta-analysis. Transl Psychiatry 2019; 9:190. [PMID: 31383846 PMCID: PMC6683166 DOI: 10.1038/s41398-019-0515-5 10.1038/s41398-021-01582-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/29/2019] [Accepted: 06/01/2019] [Indexed: 08/13/2023] Open
Abstract
We conducted this meta-analysis of double-blind randomized placebo-controlled trials to estimate the efficacy of omega-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), in the improvement of depression. We applied a systematic bibliographic search in PubMed and EMBASE for articles published prior to 20 December 2017. This meta-analysis was performed using RevMan 5.3 and R 3.4.3, and means and standard deviations were calculated in fixed- or random-effects models based on the results of the Q-test. A sensitivity analysis was also conducted to evaluate the stability of the results, and publication bias was evaluated by a funnel plot and Egger's linear regression analysis. Our search resulted in 180 articles; we analyzed 26 studies, which included 2160 participants. The meta-analysis showed an overall beneficial effect of omega-3 polyunsaturated fatty acids on depression symptoms (SMD = -0.28, P = 0.004). Compared with placebo, EPA-pure (=100% EPA) and EPA-major formulations (≥60% EPA) demonstrated clinical benefits with an EPA dosage ≤1 g/d (SMD = -0.50, P = 0.003, and SMD = -1.03, P = 0.03, respectively), whereas DHA-pure and DHA-major formulations did not exhibit such benefits.Current evidence supports the finding that omega-3 PUFAs with EPA ≥ 60% at a dosage of ≤1 g/d would have beneficial effects on depression. Further studies are warranted to examine supplementation with omega-3 PUFAs for specific subgroups of subjects with inflammation, severity of depression, and the dose response for both EPA and DHA supplementation.
Collapse
Affiliation(s)
- Yuhua Liao
- Department of Psychiatry, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, People's Republic of China
| | - Bo Xie
- Department of Psychiatry, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, People's Republic of China
| | - Huimin Zhang
- Department of Psychiatry, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, People's Republic of China
| | - Qian He
- Department of Psychiatry, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, People's Republic of China
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mehala Subramanieapillai
- Mood Disorders Psychopharmacology Unit, University Health Network; Department of Psychiatry, University of Toronto; Institute of Medical Science, University of Toronto; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Beifang Fan
- Department of Psychiatry, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, People's Republic of China.
| | - Ciyong Lu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network; Department of Psychiatry, University of Toronto; Institute of Medical Science, University of Toronto; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Efficacy of omega-3 PUFAs in depression: A meta-analysis. Transl Psychiatry 2019; 9:190. [PMID: 31383846 PMCID: PMC6683166 DOI: 10.1038/s41398-019-0515-5] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/29/2019] [Accepted: 06/01/2019] [Indexed: 01/05/2023] Open
Abstract
We conducted this meta-analysis of double-blind randomized placebo-controlled trials to estimate the efficacy of omega-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), in the improvement of depression. We applied a systematic bibliographic search in PubMed and EMBASE for articles published prior to 20 December 2017. This meta-analysis was performed using RevMan 5.3 and R 3.4.3, and means and standard deviations were calculated in fixed- or random-effects models based on the results of the Q-test. A sensitivity analysis was also conducted to evaluate the stability of the results, and publication bias was evaluated by a funnel plot and Egger's linear regression analysis. Our search resulted in 180 articles; we analyzed 26 studies, which included 2160 participants. The meta-analysis showed an overall beneficial effect of omega-3 polyunsaturated fatty acids on depression symptoms (SMD = -0.28, P = 0.004). Compared with placebo, EPA-pure (=100% EPA) and EPA-major formulations (≥60% EPA) demonstrated clinical benefits with an EPA dosage ≤1 g/d (SMD = -0.50, P = 0.003, and SMD = -1.03, P = 0.03, respectively), whereas DHA-pure and DHA-major formulations did not exhibit such benefits.Current evidence supports the finding that omega-3 PUFAs with EPA ≥ 60% at a dosage of ≤1 g/d would have beneficial effects on depression. Further studies are warranted to examine supplementation with omega-3 PUFAs for specific subgroups of subjects with inflammation, severity of depression, and the dose response for both EPA and DHA supplementation.
Collapse
|
18
|
Feldman A, Mukha D, Maor II, Sedov E, Koren E, Yosefzon Y, Shlomi T, Fuchs Y. Blimp1 + cells generate functional mouse sebaceous gland organoids in vitro. Nat Commun 2019; 10:2348. [PMID: 31138796 PMCID: PMC6538623 DOI: 10.1038/s41467-019-10261-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/25/2019] [Indexed: 11/17/2022] Open
Abstract
Most studies on the skin focus primarily on the hair follicle and interfollicular epidermis, whereas little is known regarding the homeostasis of the sebaceous gland (SG). The SG has been proposed to be replenished by different pools of hair follicle stem cells and cells that resides in the SG base, marked by Blimp1. Here, we demonstrate that single Blimp1+ cells isolated from mice have the potential to generate SG organoids in vitro. Mimicking SG homeostasis, the outer layer of these organoids is composed of proliferating cells that migrate inward, undergo terminal differentiation and generating lipid-filled sebocytes. Performing confocal microscopy and mass-spectrometry, we report that these organoids exhibit known markers and a lipidomic profile similar to SGs in vivo. Furthermore, we identify a role for c-Myc in sebocyte proliferation and differentiation, and determine that SG organoids can serve as a platform for studying initial stages of acne vulgaris, making this a useful platform to identify potential therapeutic targets. The sebaceous gland (SG) has been proposed to be replenished by pools of cells, including a population in the SG base, marked by Blimp1. Here, the authors show that Blimp1+ cells can establish an organoid model of the SG, which is regulated by c-Myc and can recapitulate the early stages of acne vulgaris.
Collapse
Affiliation(s)
- Alona Feldman
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Technion Integrated Cancer Center, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Dzmitry Mukha
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Department of Computer Science, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Itzhak I Maor
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Technion Integrated Cancer Center, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Egor Sedov
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Technion Integrated Cancer Center, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Elle Koren
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Technion Integrated Cancer Center, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yahav Yosefzon
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Technion Integrated Cancer Center, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Tomer Shlomi
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Department of Computer Science, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, 3200003, Haifa, Israel. .,Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel. .,Technion Integrated Cancer Center, Technion Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
19
|
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018; 39:760-802. [PMID: 30020428 DOI: 10.1210/er.2018-00064] [Citation(s) in RCA: 473] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor of clinical interest as a drug target in various metabolic disorders. PPARα also exhibits marked anti-inflammatory capacities. The first-generation PPARα agonists, the fibrates, have however been hampered by drug-drug interaction issues, statin drop-in, and ill-designed cardiovascular intervention trials. Notwithstanding, understanding the molecular mechanisms by which PPARα works will enable control of its activities as a drug target for metabolic diseases with an underlying inflammatory component. Given its role in reshaping the immune system, the full potential of this nuclear receptor subtype as a versatile drug target with high plasticity becomes increasingly clear, and a novel generation of agonists may pave the way for novel fields of applications.
Collapse
Affiliation(s)
- Nadia Bougarne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Basiel Weyers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie J Desmet
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium
| | - David W Ray
- Division of Metabolism and Endocrinology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Bart Staels
- Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
- INSERM, U1011, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
20
|
Murru E, Carta G, Cordeddu L, Melis MP, Desogus E, Ansar H, Chilliard Y, Ferlay A, Stanton C, Coakley M, Ross RP, Piredda G, Addis M, Mele MC, Cannelli G, Banni S, Manca C. Dietary Conjugated Linoleic Acid-Enriched Cheeses Influence the Levels of Circulating n-3 Highly Unsaturated Fatty Acids in Humans. Int J Mol Sci 2018; 19:ijms19061730. [PMID: 29891784 PMCID: PMC6032244 DOI: 10.3390/ijms19061730] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
n-3 highly unsaturated fatty acids (n-3 HUFA) directly and indirectly regulate lipid metabolism, energy balance and the inflammatory response. We investigated changes to the n-3 HUFA score of healthy adults, induced by different types and amounts of conjugated linoleic acid (CLA)-enriched (ENCH) cheeses consumed for different periods of time, compared to dietary fish oil (FO) pills (500 mg, each containing 100 mg of eicosapentaenoic and docosahexaenoic acids—EPA+DHA) or α-linolenic acid (ALA)-rich linseed oil (4 g, containing 2 g of ALA). A significant increase in the n-3 HUFA score was observed, in a dose-dependent manner, after administration of the FO supplement. In terms of the impact on the n-3 HUFA score, the intake of ENCH cheese (90 g/day) for two or four weeks was equivalent to the administration of one or two FO pills, respectively. Conversely, the linseed oil intake did not significantly impact the n-3 HUFA score. Feeding ENCH cheeses from different sources (bovine, ovine and caprine) for two months improved the n-3 HUFA score by increasing plasma DHA, and the effect was proportional to the CLA content in the cheese. We suggest that the improved n-3 HUFA score resulting from ENCH cheese intake may be attributed to increased peroxisome proliferator-activated receptor alpha (PPAR-α) activity. This study demonstrates that natural ENCH cheese is an alternative nutritional source of n-3 HUFA in humans.
Collapse
Affiliation(s)
- Elisabetta Murru
- Dipartimento Scienze Biomediche, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
| | - Gianfranca Carta
- Dipartimento Scienze Biomediche, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
| | - Lina Cordeddu
- Dipartimento Scienze Biomediche, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
| | - Maria Paola Melis
- Dipartimento Scienze Biomediche, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
| | - Erika Desogus
- Dipartimento Scienze Biomediche, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
| | - Hastimansooreh Ansar
- Dipartimento Scienze Biomediche, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
| | - Yves Chilliard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Anne Ferlay
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland.
| | - Mairéad Coakley
- APC Microbiome Ireland, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.
| | - Giovanni Piredda
- Servizio per la Ricerca nei Prodotti di Origine Animale, AGRIS Sardegna, Loc. Bonassai, 07100 Sassari, Italy.
| | - Margherita Addis
- Servizio per la Ricerca nei Prodotti di Origine Animale, AGRIS Sardegna, Loc. Bonassai, 07100 Sassari, Italy.
| | | | - Giorgio Cannelli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
| | - Sebastiano Banni
- Dipartimento Scienze Biomediche, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
| | - Claudia Manca
- Dipartimento Scienze Biomediche, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
| |
Collapse
|
21
|
Poddighe L, Carta G, Serra MP, Melis T, Boi M, Lisai S, Murru E, Muredda L, Collu M, Banni S, Quartu M. Acute administration of beta-caryophyllene prevents endocannabinoid system activation during transient common carotid artery occlusion and reperfusion. Lipids Health Dis 2018; 17:23. [PMID: 29402275 PMCID: PMC5799897 DOI: 10.1186/s12944-018-0661-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/12/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) has been shown to stimulate early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation. The aim of the present study is to probe the possibility to prevent the molecular changes induced by the BCCAO/R with dietary natural compounds known to possess anti-inflammatory activity, such as the phytocannabinoid beta-caryophyllene (BCP). METHODS Two groups of adult Wistar rats were used, sham-operated and submitted to BCCAO/R. In both groups, 6 h before surgery, half of the rats were gavage-fed with a single dose of BCP (40 mg/per rat in 300 μl of sunflower oil as vehicle), while the second half were pre-treated with the vehicle alone. HPLC, Western Blot and immunohistochemistry were used to analyze cerebral cortex and plasma. RESULTS After BCCAO/R, BCP prevented the increase of lipoperoxides occurring in the vehicle-treated rats in both cerebral cortex and plasma. In the frontal cortex, BCP further prevented activation of the endocannabinoid system (ECS), spared the docosahexaenoic acid (DHA), appeared to prevent the increase of cyclooxygenase-2 and increased the peroxisome-proliferator activated receptor-alpha (PPAR-alpha) protein levels, while, in plasma, BCP induced the reduction of arachidonoylethanolamide (AEA) levels as compared to vehicle-treated rats. CONCLUSIONS Collectively, the pre-treatment with BCP, likely acting as agonist for CB2 and PPAR-alpha receptors, modulates in a beneficial way the ECS activation and the lipoperoxidation, taken as indicative of oxidative stress. Furthermore, our results support the evidence that BCP may be used as a dietary supplement to control the physiological response to the hypoperfusion/reperfusion-induced oxidative stress.
Collapse
Affiliation(s)
- Laura Poddighe
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Gianfranca Carta
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Maria Pina Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Tiziana Melis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Marianna Boi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Sara Lisai
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Elisabetta Murru
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Laura Muredda
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Maria Collu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| |
Collapse
|
22
|
Carta G, Poddighe L, Serra MP, Boi M, Melis T, Lisai S, Murru E, Muredda L, Collu M, Banni S, Quartu M. Preventive Effects of Resveratrol on Endocannabinoid System and Synaptic Protein Modifications in Rat Cerebral Cortex Challenged by Bilateral Common Carotid Artery Occlusion and Reperfusion. Int J Mol Sci 2018; 19:ijms19020426. [PMID: 29385102 PMCID: PMC5855648 DOI: 10.3390/ijms19020426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/15/2022] Open
Abstract
This study aims to evaluate the putative roles of a single acute dose of resveratrol (RVT) in preventing cerebral oxidative stress induced by bilateral common carotid artery occlusion, followed by reperfusion (BCCAO/R) and to investigate RVT’s ability to preserve the neuronal structural integrity. Frontal and temporal-occipital cortices were examined in two groups of adult Wistar rats, sham-operated and submitted to BCCAO/R. In both groups, 6 h before surgery, half the rats were gavage-fed with a single dose of RVT (40 mg/per rat in 300 µL of sunflower oil as the vehicle), while the second half received the vehicle alone. In the frontal cortex, RVT pre-treatment prevented the BCCAO/R-induced increase of lipoperoxides, augmented concentrations of palmitoylethanolamide and docosahexaenoic acid, increased relative levels of the cannabinoid receptors type 1 (CB1) and 2 (CB2), and peroxisome-proliferator-activated-receptor (PPAR)-α proteins. Increased expression of CB1/CB2 receptors mirrored that of synaptophysin and post-synaptic density-95 protein. No BCCAO/R-induced changes occurred in the temporal-occipital cortex. Collectively, our results demonstrate that, in the frontal cortex, RVT pre-treatment prevents the BCCAO/R-induced oxidative stress and modulates the endocannabinoid and PPAR-α systems. The increased expression of synaptic structural proteins further suggests the possible efficacy of RVT as a dietary supplement to preserve the nervous tissue metabolism and control the physiological response to the hypoperfusion/reperfusion challenge.
Collapse
Affiliation(s)
| | | | - Maria Pina Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy.
| | - Marianna Boi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy.
| | - Tiziana Melis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy.
| | - Sara Lisai
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy.
| | - Elisabetta Murru
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy.
| | - Laura Muredda
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy.
| | - Maria Collu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy.
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy.
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy.
| |
Collapse
|
23
|
Abstract
Lipids are potent signaling molecules that regulate a multitude of cellular responses, including cell growth and death and inflammation/infection, via receptor-mediated pathways. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. This diversity arises from their synthesis, which occurs via discrete enzymatic pathways and because they elicit responses via different receptors. This review will collate the bioactive lipid research to date and summarize the major pathways involved in their biosynthesis and role in inflammation. Specifically, lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins, and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins, and maresins) will be discussed herein.
Collapse
|
24
|
Kim GW, Jo HK, Chung SH. Ginseng seed oil ameliorates hepatic lipid accumulation in vitro and in vivo. J Ginseng Res 2017; 42:419-428. [PMID: 30344430 PMCID: PMC6191945 DOI: 10.1016/j.jgr.2017.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 01/14/2023] Open
Abstract
Background Despite the large number of studies on ginseng, pharmacological activities of ginseng seed oil (GSO) have not been established. GSO is rich in unsaturated fatty acids, mostly oleic and linoleic acids. Unsaturated fatty acids are known to exert a therapeutic effect in nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the protective effect and underlying mechanisms of GSO against NAFLD using in vitro and in vivo models. Methods In vitro lipid accumulation was induced by free fatty acid mixture in HepG2 cells and by 3 wk of high fat diet (HFD)-feeding in Sprague-Dawley rats prior to hepatocyte isolation. The effects of GSO against diet-induced hepatic steatosis were further examined in C57BL/6J mice fed a HFD for 12 wk. Results Oil Red O staining and intracellular triglyceride levels showed marked accumulation of lipid droplets in both HepG2 cells and rat hepatocytes, and these were attenuated by GSO treatment. In HFD-fed mice, GSO improved HFD-induced dyslipidemia and hepatic insulin resistance. Increased hepatic lipid contents were observed in HFD-fed mice and it was lowered in GSO (500 mg/kg)-treated mice by 26.4% which was evident in histological analysis. Pathway analysis of hepatic global gene expression indicated that GSO increased the expression of genes associated with β-oxidation (Ppara, Ppargc1a, Sirt1, and Cpt1a) and decreased the expression of lipogenic genes (Srebf1 and Mlxipl), and these were confirmed with reverse transcription and quantitative polymerase-chain reaction. Conclusion These findings suggest that GSO has a beneficial effect on NAFLD through the suppression of lipogenesis and stimulation of fatty acid degradation pathway.
Collapse
Affiliation(s)
- Go Woon Kim
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Hee Kyung Jo
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Hyun Chung
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Malamas A, Chranioti A, Tsakalidis C, Dimitrakos SA, Mataftsi A. The omega-3 and retinopathy of prematurity relationship. Int J Ophthalmol 2017; 10:300-305. [PMID: 28251092 DOI: 10.18240/ijo.2017.02.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/12/2016] [Indexed: 11/23/2022] Open
Abstract
The aim of this article is to examine the effect of omega-3 (ω-3) long-chain polyunsaturated fatty acids (LCPUFAs) intake on retinopathy of prematurity (ROP) by reviewing the experimental and clinical trials conducted on animal models and infants. LCPUFAs demonstrate cytoprotective and cytotherapeutic actions contributing to a number of anti-angiogenic and neuroprotective mechanisms within the retina. Their intake appears to have a beneficial effect on ischemia, oxidative stress, inflammation and cellular signaling mechanisms, influencing retinal cell gene expression and cellular differentiation. ω-3 LCPUFAs may modulate metabolic processes that activate molecules implicated in the pathogenesis of vasoproliferative and neurodegenerative retinal diseases such as ROP.
Collapse
Affiliation(s)
- Angelakis Malamas
- Royal Victoria Infirmary, Eye Department, Newcastle Upon Tyne, NE1 4LP, UK
| | - Angeliki Chranioti
- First Department of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki 54621, Greece
| | - Christos Tsakalidis
- Second NICU and Neonatology Department, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki 56403, Greece
| | - Stavros A Dimitrakos
- Second Department of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki 56403, Greece
| | - Asimina Mataftsi
- Second Department of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki 56403, Greece
| |
Collapse
|
26
|
Bennett M, Gilroy DW. Lipid Mediators in Inflammation. MYELOID CELLS IN HEALTH AND DISEASE 2017:343-366. [DOI: 10.1128/9781555819194.ch19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Melanie Bennett
- Roche Products Limited, Shire Park; Welwyn Garden City AL7 1TW United Kingdom
| | - Derek W. Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London; London WC1 E6JJ United Kingdom
| |
Collapse
|
27
|
Hooper C, De Souto Barreto P, Coley N, Cantet C, Cesari M, Andrieu S, Vellas B. Cognitive Changes with Omega-3 Polyunsaturated Fatty Acids in Non-Demented Older Adults with Low Omega-3 Index. J Nutr Health Aging 2017; 21:988-993. [PMID: 29083439 DOI: 10.1007/s12603-017-0957-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To investigate the changes in specific domains of cognitive function in older adults reporting subjective memory complaints with a low omega-3 index receiving omega 3 polyunsaturated fatty acid (n-3 PUFA) supplementation or placebo. DESIGN This is a secondary exploratory analysis of the Multidomain Alzheimer Preventive Trial (MAPT) using subjects randomized to the n-3 PUFA supplementation or placebo group. SETTING French community dwellers aged 70 or over reporting subjective memory complaints, but free from clinical dementia. PARTICIPANTS A subgroup of MAPT subjects in the lowest quartile of omega-3 index distribution with baseline values ≤ 4.83 % (n = 183). INTERVENTION The n-3 PUFA supplementation group consumed a daily dose of DHA (800 mg) and EPA (a maximum amount of 225 mg) for 3 years. The placebo group received identical capsules comprising liquid paraffin oil. MEASUREMENTS Linear mixed-model repeated-measures analyses were used including baseline, 6, 12, 24 and 36-month follow-up data to assess between-group differences in the change in eight cognitive tests over 36 months. RESULTS There was less decline on the Controlled Oral Word Association Test (COWAT) in the n-3 PUFA supplementation group compared to placebo (p = 0.009; between group mean difference over 36 months, 2.3; 95% CI, 0.6,4.0). No significant differences for any of the other cognitive tests were found, including other tests of executive functioning, although, numerically all results were in favour of the n-3 PUFA supplementation. CONCLUSIONS We found some evidence that n-3 PUFAs might be beneficial for the maintenance of executive functioning in older adults at risk of dementia with low omega-3 index, but this exploratory finding requires further confirmation. A larger specifically designed randomised controlled trial could be merited.
Collapse
Affiliation(s)
- C Hooper
- Claudie Hooper, Gérontopôle, Department of Geriatrics, CHU Toulouse, Purpan University Hospital, Toulouse, France: , Tel : +33 (5) 61 77 64 25, Fax : +33 (5) 61 77 64 75
| | | | | | | | | | | | | |
Collapse
|
28
|
Hallahan B, Ryan T, Hibbeln JR, Murray IT, Glynn S, Ramsden CE, SanGiovanni JP, Davis JM. Efficacy of omega-3 highly unsaturated fatty acids in the treatment of depression. Br J Psychiatry 2016; 209:192-201. [PMID: 27103682 PMCID: PMC9406129 DOI: 10.1192/bjp.bp.114.160242] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/05/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Trials evaluating efficacy of omega-3 highly unsaturated fatty acids (HUFAs) in major depressive disorder report discrepant findings. AIMS To establish the reasons underlying inconsistent findings among randomised controlled trials (RCTs) of omega-3 HUFAs for depression and to assess implications for further trials. METHOD A systematic bibliographic search of double-blind RCTs was conducted between January 1980 and July 2014 and an exploratory hypothesis-testing meta-analysis performed in 35 RCTs including 6665 participants receiving omega-3 HUFAs and 4373 participants receiving placebo. RESULTS Among participants with diagnosed depression, eicosapentaenoic acid (EPA)-predominant formulations (>50% EPA) demonstrated clinical benefits compared with placebo (Hedge's G = 0.61, P<0.001) whereas docosahexaenoic acid (DHA)-predominant formulations (>50% DHA) did not. EPA failed to prevent depressive symptoms among populations not diagnosed for depression. CONCLUSIONS Further RCTs should be conducted on study populations with diagnosed or clinically significant depression of adequate duration using EPA-predominant omega-3 HUFA formulations.
Collapse
Affiliation(s)
- Brian Hallahan
- Brian Hallahan, MRCPsych, MD, Department of Psychiatry, Clinical Science Institute, National University of Ireland Galway, Galway, Ireland; Timothy Ryan, BA, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Joseph R. Hibbeln, MD, Section on Nutritional Neurosciences, Laboratory of Membrane Biochemistry & Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA; Ivan T. Murray, MRCPsych, Department of Psychiatry, University Hospital Galway, Galway, Ireland; Shauna Glynn, MRCPsych, Child and Adolescent Mental Health Services, Castlebar, Mayo, Ireland; Christopher E. Ramsden, MD, John Paul SanGiovanni, ScD, Section on Nutritional Neurosciences, Laboratory of Membrane Biochemistry & Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA; John M. Davis, MD, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Logan SL, Spriet LL. Omega-3 Fatty Acid Supplementation for 12 Weeks Increases Resting and Exercise Metabolic Rate in Healthy Community-Dwelling Older Females. PLoS One 2015; 10:e0144828. [PMID: 26679702 PMCID: PMC4682991 DOI: 10.1371/journal.pone.0144828] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/19/2015] [Indexed: 12/20/2022] Open
Abstract
Critical among the changes that occur with aging are decreases in muscle mass and metabolic rate and an increase in fat mass. These changes may predispose older adults to chronic disease and functional impairment; ultimately resulting in a decrease in the quality of life. Research has suggested that long chain omega-3 fatty acids, found predominantly in fatty fish, may assist in reducing these changes. The objective of this study was to evaluate the effect of fish oil (FO) supplementation in a cohort of healthy, community-dwelling older females on 1) metabolic rate and substrate oxidation at rest and during exercise; 2) resting blood pressure and resting and exercise heart rates; 3) body composition; 4) strength and physical function, and; 5) blood measures of insulin, glucose, c-reactive protein, and triglycerides. Twenty-four females (66 ± 1 yr) were recruited and randomly assigned to receive either 3g/d of EPA and DHA or a placebo (PL, olive oil) for 12 wk. Exercise measurements were taken before and after 12 wk of supplementation and resting metabolic measures were made before and at 6 and 12 wk of supplementation. The results demonstrated that FO supplementation significantly increased resting metabolic rate by 14%, energy expenditure during exercise by 10%, and the rate of fat oxidation during rest by 19% and during exercise by 27%. In addition, FO consumption lowered triglyceride levels by 29% and increased lean mass by 4% and functional capacity by 7%, while no changes occurred in the PL group. In conclusion, FO may be a strategy to improve age-related physical and metabolic changes in healthy older females. Trial registration: ClinicalTrials.gov NCT01734538.
Collapse
Affiliation(s)
- Samantha L. Logan
- Department of Human Health and Nutritional Sciences, 50 Stone Road East, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- * E-mail:
| | - Lawrence L. Spriet
- Department of Human Health and Nutritional Sciences, 50 Stone Road East, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
30
|
Saturated fatty acids regulate retinoic acid signalling and suppress tumorigenesis by targeting fatty acid-binding protein 5. Nat Commun 2015; 6:8794. [PMID: 26592976 PMCID: PMC4662070 DOI: 10.1038/ncomms9794] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022] Open
Abstract
Long chain fatty acids (LCFA) serve as energy sources, components of cell membranes, and precursors for signalling molecules. Here we show that these biological compounds also regulate gene expression and that they do so by controlling the transcriptional activities of the retinoic acid (RA)-activated nuclear receptors RAR and PPARβ/δ. The data indicate that these activities of LCFA are mediated by FABP5 which delivers ligands from the cytosol to nuclear PPARβ/δ. Both saturated and unsaturated LCFA (SLCFA, ULCFA) bind to FABP5, thereby displacing RA and diverting it to RAR. However, while SLCFA inhibit, ULCFA activate the FABP5/PPARβ/δ pathway. We show further that, by concomitantly promoting activation of RAR and inhibiting the activation of PPARβ/δ, SLCFA suppress the oncogenic properties of FABP5-expressing carcinoma cells in cultured cells and in vivo. The observations suggest that compounds that inhibit FABP5 may constitute a new class of drugs for therapy of certain types of cancer.
Collapse
|
31
|
Montgomery DC, Sorum AW, Guasch L, Nicklaus MC, Meier JL. Metabolic Regulation of Histone Acetyltransferases by Endogenous Acyl-CoA Cofactors. ACTA ACUST UNITED AC 2015; 22:1030-1039. [PMID: 26190825 DOI: 10.1016/j.chembiol.2015.06.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 10/23/2022]
Abstract
The finding that chromatin modifications are sensitive to changes in cellular cofactor levels potentially links altered tumor cell metabolism and gene expression. However, the specific enzymes and metabolites that connect these two processes remain obscure. Characterizing these metabolic-epigenetic axes is critical to understanding how metabolism supports signaling in cancer, and developing therapeutic strategies to disrupt this process. Here, we describe a chemical approach to define the metabolic regulation of lysine acetyltransferase (KAT) enzymes. Using a novel chemoproteomic probe, we identify a previously unreported interaction between palmitoyl coenzyme A (palmitoyl-CoA) and KAT enzymes. Further analysis reveals that palmitoyl-CoA is a potent inhibitor of KAT activity and that fatty acyl-CoA precursors reduce cellular histone acetylation levels. These studies implicate fatty acyl-CoAs as endogenous regulators of histone acetylation, and suggest novel strategies for the investigation and metabolic modulation of epigenetic signaling.
Collapse
Affiliation(s)
- David C Montgomery
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick MD, 21702, USA
| | - Alexander W Sorum
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick MD, 21702, USA
| | - Laura Guasch
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick MD, 21702, USA
| | - Marc C Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick MD, 21702, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick MD, 21702, USA
| |
Collapse
|
32
|
Morato PN, Rodrigues JB, Moura CS, e Silva FGD, Esmerino EA, Cruz AG, Bolini HMA, Amaya-Farfan J, Lollo PCB. Omega-3 enriched chocolate milk: A functional drink to improve health during exhaustive exercise. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
33
|
Fang M, Webster TF, Ferguson PL, Stapleton HM. Characterizing the peroxisome proliferator-activated receptor (PPARγ) ligand binding potential of several major flame retardants, their metabolites, and chemical mixtures in house dust. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:166-72. [PMID: 25314719 PMCID: PMC4314249 DOI: 10.1289/ehp.1408522] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 10/09/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Accumulating evidence has shown that some environmental contaminants can alter adipogenesis and act as obesogens. Many of these contaminants act via the activation of the peroxisome proliferator-activated receptor γ (PPARγ) nuclear receptor. OBJECTIVES Our goal was to determine the PPARγ ligand binding potency of several major flame retardants, including polybrominated diphenyl ethers (PBDEs), halogenated phenols and bisphenols, and their metabolites. Ligand binding activity of indoor dust and its bioactivated extracts were also investigated. METHODS We used a commercially available fluorescence polarization ligand binding assay to investigate the binding potency of flame retardants and dust extracts to human PPARγ ligand-binding domain. Rosiglitazone was used as a positive control. RESULTS Most of the tested compounds exhibited dose-dependent binding to PPARγ. Mono(2-ethylhexyl) tetrabromophthalate, halogenated bisphenols and phenols, and hydroxylated PBDEs were found to be potent PPARγ ligands. The most potent compound was 3-OH-BDE-47, with an IC50 (concentration required to reduce effect by 50%) of 0.24 μM. The extent of halogenation and the position of the hydroxyl group strongly affected binding. In the dust samples, 21 of the 24 samples tested showed significant binding potency at a concentration of 3 mg dust equivalent (DEQ)/mL. A 3-16% increase in PPARγ binding potency was observed following bioactivation of the dust using rat hepatic S9 fractions. CONCLUSION Our results suggest that several flame retardants are potential PPARγ ligands and that metabolism may lead to increased binding affinity. The PPARγ binding activity of house dust extracts at levels comparable to human exposure warrants further studies into agonistic or antagonistic activities and their potential health effects.
Collapse
Affiliation(s)
- Mingliang Fang
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | | | | | | |
Collapse
|
34
|
Sertznig P, Reichrath J. Peroxisome proliferator-activated receptors (PPARs) in dermatology. DERMATO-ENDOCRINOLOGY 2014. [DOI: 10.4161/derm.15025] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Liu X, Liu J, Liang S, Schlüter A, Fourcade S, Aslibekyan S, Pujol A, Graf GA. ABCD2 alters peroxisome proliferator-activated receptor α signaling in vitro, but does not impair responses to fenofibrate therapy in a mouse model of diet-induced obesity. Mol Pharmacol 2014; 86:505-13. [PMID: 25123288 DOI: 10.1124/mol.114.092742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fenofibrate is a peroxisome proliferator-activated receptor (PPAR) α ligand that has been widely used as a lipid-lowering agent in the treatment of hypertriglyceridemia. ABCD2 (D2) is a peroxisomal long-chain acyl-CoA transporter that is highly induced by fenofibrate in the livers of mice. To determine whether D2 is a modifier of fibrate responses, wild-type and D2-deficient mice were treated with fenofibrate for 14 days. The absence of D2 altered expression of gene clusters associated with lipid metabolism, including PPARα signaling. Using 3T3-L1 adipocytes, which express high levels of D2, we confirmed that knockdown of D2 modified genomic responses to fibrate treatment. We next evaluated the impact of D2 on effects of fibrates in a mouse model of diet-induced obesity. Fenofibrate treatment opposed the development of obesity, hypertriglyceridemia, and insulin resistance. However, these effects were unaffected by D2 genotype. We concluded that D2 can modulate genomic responses to fibrates, but that these effects are not sufficiently robust to alter the effects of fibrates on diet-induced obesity phenotypes.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky (X.L., J.L., S.L., G.A.G.); Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain (A.S., S.F., A.P.); Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), Valencia, Spain (A.S., S.F., A.P.); Catalan Institution of Research and Advanced Studies, Barcelona, Spain (A.P.); and Department of Epidemiology, University of Alabama, Birmingham, Alabama (S.A.)
| | - Jingjing Liu
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky (X.L., J.L., S.L., G.A.G.); Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain (A.S., S.F., A.P.); Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), Valencia, Spain (A.S., S.F., A.P.); Catalan Institution of Research and Advanced Studies, Barcelona, Spain (A.P.); and Department of Epidemiology, University of Alabama, Birmingham, Alabama (S.A.)
| | - Shuang Liang
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky (X.L., J.L., S.L., G.A.G.); Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain (A.S., S.F., A.P.); Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), Valencia, Spain (A.S., S.F., A.P.); Catalan Institution of Research and Advanced Studies, Barcelona, Spain (A.P.); and Department of Epidemiology, University of Alabama, Birmingham, Alabama (S.A.)
| | - Agatha Schlüter
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky (X.L., J.L., S.L., G.A.G.); Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain (A.S., S.F., A.P.); Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), Valencia, Spain (A.S., S.F., A.P.); Catalan Institution of Research and Advanced Studies, Barcelona, Spain (A.P.); and Department of Epidemiology, University of Alabama, Birmingham, Alabama (S.A.)
| | - Stephane Fourcade
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky (X.L., J.L., S.L., G.A.G.); Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain (A.S., S.F., A.P.); Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), Valencia, Spain (A.S., S.F., A.P.); Catalan Institution of Research and Advanced Studies, Barcelona, Spain (A.P.); and Department of Epidemiology, University of Alabama, Birmingham, Alabama (S.A.)
| | - Stella Aslibekyan
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky (X.L., J.L., S.L., G.A.G.); Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain (A.S., S.F., A.P.); Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), Valencia, Spain (A.S., S.F., A.P.); Catalan Institution of Research and Advanced Studies, Barcelona, Spain (A.P.); and Department of Epidemiology, University of Alabama, Birmingham, Alabama (S.A.)
| | - Aurora Pujol
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky (X.L., J.L., S.L., G.A.G.); Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain (A.S., S.F., A.P.); Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), Valencia, Spain (A.S., S.F., A.P.); Catalan Institution of Research and Advanced Studies, Barcelona, Spain (A.P.); and Department of Epidemiology, University of Alabama, Birmingham, Alabama (S.A.)
| | - Gregory A Graf
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky (X.L., J.L., S.L., G.A.G.); Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain (A.S., S.F., A.P.); Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), Valencia, Spain (A.S., S.F., A.P.); Catalan Institution of Research and Advanced Studies, Barcelona, Spain (A.P.); and Department of Epidemiology, University of Alabama, Birmingham, Alabama (S.A.)
| |
Collapse
|
36
|
Yu S, Levi L, Casadesus G, Kunos G, Noy N. Fatty acid-binding protein 5 (FABP5) regulates cognitive function both by decreasing anandamide levels and by activating the nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in the brain. J Biol Chem 2014; 289:12748-58. [PMID: 24644281 DOI: 10.1074/jbc.m114.559062] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Endocannabinoids modulate multiple behaviors, including learning and memory. We show that the endocannabinoid anandamide (AEA) can alter neuronal cell function both through its established role in activation of the G-protein-coupled receptor CB1, and by serving as a precursor for a potent agonist of the nuclear receptor PPARβ/δ, in turn up-regulating multiple cognition-associated genes. We show further that the fatty acid-binding protein FABP5 controls both of these functions in vivo. FABP5 both promotes the hydrolysis of AEA into arachidonic acid and thus reduces brain endocannabinoid levels, and directly shuttles arachidonic acid to the nucleus where it delivers it to PPARβ/δ, enabling its activation. In accordance, ablation of FABP5 in mice results in excess accumulation of AEA, abolishes PPARβ/δ activation in the brain, and markedly impairs hippocampus-based learning and memory. The data indicate that, by controlling anandamide disposition and activities, FABP5 plays a key role in regulating hippocampal cognitive function.
Collapse
|
37
|
Integrated physiology and systems biology of PPARα. Mol Metab 2014; 3:354-71. [PMID: 24944896 PMCID: PMC4060217 DOI: 10.1016/j.molmet.2014.02.002] [Citation(s) in RCA: 422] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 12/23/2022] Open
Abstract
The Peroxisome Proliferator Activated Receptor alpha (PPARα) is a transcription factor that plays a major role in metabolic regulation. This review addresses the functional role of PPARα in intermediary metabolism and provides a detailed overview of metabolic genes targeted by PPARα, with a focus on liver. A distinction is made between the impact of PPARα on metabolism upon physiological, pharmacological, and nutritional activation. Low and high throughput gene expression analyses have allowed the creation of a comprehensive map illustrating the role of PPARα as master regulator of lipid metabolism via regulation of numerous genes. The map puts PPARα at the center of a regulatory hub impacting fatty acid uptake, fatty acid activation, intracellular fatty acid binding, mitochondrial and peroxisomal fatty acid oxidation, ketogenesis, triglyceride turnover, lipid droplet biology, gluconeogenesis, and bile synthesis/secretion. In addition, PPARα governs the expression of several secreted proteins that exert local and endocrine functions.
Collapse
|
38
|
Yoon JR, Lee EJ, Kim HD, Lee JH, Kang HC. Polyunsaturated fatty acid-enriched diet therapy for a child with epilepsy. Brain Dev 2014; 36:163-6. [PMID: 23465587 DOI: 10.1016/j.braindev.2013.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/20/2013] [Accepted: 01/27/2013] [Indexed: 10/27/2022]
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate diet with an established efficacy for treating medically refractory epilepsy in children. Fatty acids are the most important constituent of the KD in all aspects of efficacy and complications. Among fatty acids, polyunsaturated fatty acids (PUFAs) increase anticonvulsant properties and reduce the complications associated with the high-fat diet. Here, we report a 7-year-old boy with Lennox-Gastaut syndrome combined with mitochondrial respiratory chain complex I deficiency, whose medically intractable seizures have been successfully controlled with a PUFA-enriched modified Atkins diet without any significant adverse events. The diet consists of canola oil and diverse menu items like fish and nuts instead of olive oil and has an ideal 1:2.8 ratio of omega-3 to omega-6. In addition, fractionation of this boy's plasma showed normal levels of fatty acids, including omega-3 (alpha-linoleic acid, eicosapentaenoic acid) and omega-6 (linoleic acid, arachidonic acid) as well as monounsaturated fatty acids (oleic acid). Plasma docosahexanoic acid remained low after PUFA-enriched diet therapy. PUFA-enriched diet therapy is likely to increase the efficacy of diet therapy and reduce complications of a high-fat diet in children with refractory epilepsy.
Collapse
Affiliation(s)
- Jung-Rim Yoon
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Eun Joo Lee
- Division of Dietetics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heung Dong Kim
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Epilepsy Clinic, Severance Children's Hospital, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hwan Lee
- Family Medicine, Hyo Sarang Clinic, Seoul, Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Epilepsy Clinic, Severance Children's Hospital, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 2013; 53:124-44. [PMID: 24362249 DOI: 10.1016/j.plipres.2013.12.001] [Citation(s) in RCA: 511] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022]
Abstract
In mammals, excess energy is stored primarily as triglycerides, which are mobilized when energy demands arise. This review mainly focuses on the role of long chain fatty acids (LCFAs) in regulating energy metabolism as ligands of peroxisome proliferator-activated receptors (PPARs). PPAR-alpha expressed primarily in liver is essential for metabolic adaptation to starvation by inducing genes for beta-oxidation and ketogenesis and by downregulating energy expenditure through fibroblast growth factor 21. PPAR-delta is highly expressed in skeletal muscle and induces genes for LCFA oxidation during fasting and endurance exercise. PPAR-delta also regulates glucose metabolism and mitochondrial biogenesis by inducing FOXO1 and PGC1-alpha. Genes targeted by PPAR-gamma in adipocytes suggest that PPAR-gamma senses incoming non-esterified LCFAs and induces the pathways to store LCFAs as triglycerides. Adiponectin, another important target of PPAR-gamma may act as a spacer between adipocytes to maintain their metabolic activity and insulin sensitivity. Another topic of this review is effects of skin LCFAs on energy metabolism. Specific LCFAs are required for the synthesis of skin lipids, which are essential for water barrier and thermal insulation functions of the skin. Disturbance of skin lipid metabolism often causes apparent resistance to developing obesity at the expense of normal skin function.
Collapse
Affiliation(s)
- Manabu T Nakamura
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA.
| | - Barbara E Yudell
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Juan J Loor
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
40
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 505] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
41
|
Martins DA, Rocha F, Castanheira F, Mendes A, Pousão-Ferreira P, Bandarra N, Coutinho J, Morais S, Yúfera M, Conceição LEC, Martínez-Rodríguez G. Effects of dietary arachidonic acid on cortisol production and gene expression in stress response in Senegalese sole (Solea senegalensis) post-larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1223-1238. [PMID: 23443720 DOI: 10.1007/s10695-013-9778-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 02/18/2013] [Indexed: 06/01/2023]
Abstract
Dietary fatty acids, particularly arachidonic acid (ARA), affect cortisol and may influence the expression of genes involved in stress response in fish. The involvement of ARA on stress, lipid, and eicosanoid metabolism genes, in Senegalese sole, was tested. Post-larvae were fed Artemia presenting graded ARA levels (0.1, 0.4, 0.8, 1.7, and 2.3%, dry matter basis), from 22 to 35 days after hatch. Whole-body cortisol levels were determined, before and 3 h after a 2 min air exposure, as well as the expression of phospholipase A2 (PLA 2 ), cyclooxygenase-2 (COX-2), steroidogenic acute regulatory protein (StAR), glucocorticoid receptors (GRs), phosphoenolpyruvate carboxykinase (PEPCK), and peroxisome proliferator-activated receptor alpha (PPARα). Relative growth rate (6.0-7.8% day(-1)) and survival at the end of the experiment (91-96%) and after stress (100%) were unaffected. Fish reflected dietary ARA content and post-stress cortisol increased with ARA supply up to 1.7%, whereas 2.3% ARA seemed to enhance basal cortisol slightly and alter the response to stress. Results suggested that elevating StAR transcription might not be necessary for a short-term response to acute stress. Basal cortisol and PLA 2 expression were strongly correlated, indicating a potential role for this enzyme in steroidogenesis. Under basal conditions, larval ARA was associated with GR1 expression, whereas the glucocorticoid responsive gene PEPCK was strongly related with cortisol but not GR1 mRNA levels, suggesting the latter might not reflect the amount of GR1 protein in sole. Furthermore, a possible role for PPARα in the expression of PEPCK following acute stress is proposed.
Collapse
Affiliation(s)
- Dulce Alves Martins
- Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Alemán G, Ortiz V, Contreras AV, Quiroz G, Ordaz-Nava G, Langley E, Torres N, Tovar AR. Hepatic amino acid-degrading enzyme expression is downregulated by natural and synthetic ligands of PPARα in rats. J Nutr 2013; 143:1211-8. [PMID: 23761645 DOI: 10.3945/jn.113.176354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Body nitrogen retention is dependent on the amount of dietary protein consumed, as well as the fat and carbohydrate content in the diet, due to the modulation of amino acid oxidation. PPARα is a transcription factor involved in the upregulation of the expression of enzymes of fatty acid oxidation. However, the role of putative PPARα response elements (PPREs) in the promoter of several amino acid-degrading enzymes (AADEs) is not known. The aim of this work was to study the effect of the synthetic ligand Wy 14643 and the natural ligands palmitate, oleate, and linoleate in rats fed graded concentrations of dietary protein (6, 20, or 50 g/100 g of total diet) on the expression of the AADEs histidase, serine dehydratase, and tyrosine aminotransferase. Thus, we fed male Wistar rats diets containing 6, 20, or 50% casein for 10 d. The results showed that addition of Wy 14643 to the diet significantly reduced the expression of the AADEs. Furthermore, the incubation of hepatocytes with natural ligands of PPARα or feeding rats with diets containing soybean oil, safflower oil, lard, or coconut oil as sources of dietary fat significantly repressed the expression of the AADEs. Gene reporter assays and mobility shift assays demonstrated that the PPRE located at -482 bp of the histidase gene actively bound PPARα in rat hepatocytes. These data indicate that PPARα ligands may reduce amino acid catabolism in rats.
Collapse
Affiliation(s)
- Gabriela Alemán
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, DF, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Contreras AV, Torres N, Tovar AR. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv Nutr 2013; 4:439-52. [PMID: 23858092 PMCID: PMC3941823 DOI: 10.3945/an.113.003798] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcription factors that belong to the superfamily of nuclear hormone receptors and regulate the expression of several genes involved in metabolic processes that are potentially linked to the development of some diseases such as hyperlipidemia, diabetes, and obesity. One type of PPAR, PPAR-α, is a transcription factor that regulates the metabolism of lipids, carbohydrates, and amino acids and is activated by ligands such as polyunsaturated fatty acids and drugs used to treat dyslipidemias. There is evidence that genetic variants within the PPARα gene have been associated with a risk of the development of dyslipidemia and cardiovascular disease by influencing fasting and postprandial lipid concentrations; the gene variants have also been associated with an acceleration of the progression of type 2 diabetes. The interactions between genetic PPARα variants and the response to dietary factors will help to identify individuals or populations who can benefit from specific dietary recommendations. Interestingly, certain nutritional conditions, such as the prolonged consumption of a protein-restricted diet, can produce long-lasting effects on PPARα gene expression through modifications in the methylation of a specific locus surrounding the PPARα gene. Thus, this review underlines our current knowledge about the important role of PPAR-α as a mediator of the metabolic response to nutritional and environmental factors.
Collapse
Affiliation(s)
- Alejandra V. Contreras
- Faculty of Medicine, National University Autonomous of Mexico, PhD Program in Biomedical Sciences,National Institute of Genomic Medicine
| | - Nimbe Torres
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico D.F. Mexico
| | - Armando R. Tovar
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico D.F. Mexico,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Ramkumar HL, Tuo J, Shen DF, Zhang J, Cao X, Chew EY, Chan CC. Nutrient supplementation with n3 polyunsaturated fatty acids, lutein, and zeaxanthin decrease A2E accumulation and VEGF expression in the retinas of Ccl2/Cx3cr1-deficient mice on Crb1rd8 background. J Nutr 2013; 143:1129-35. [PMID: 23677863 PMCID: PMC3681547 DOI: 10.3945/jn.112.169649] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Age-Related Eye Diseases Study 2 (AREDS2) clinical trial is assessing the effects of higher dietary xanthophyll (lutein and zeaxanthin) and long-chain n3 polyunsaturated fatty acid (LCPUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) intake on progression to advanced age-related macular degeneration (AMD). This study's purpose was to examine the retinal effects of the AREDS2 formulation on Chemokine (C-C motif) ligand 2 (Ccl2(-/-))/CX3C chemokine receptor 1 (Cx3cr1(-/-)) mice on Crumbs homolog 1 retinal degeneration phenotype 8 (Crb1(rd8)) background (DKO), which develop focal retinal lesions with certain features similar to AMD. DKO and C57BL/6N rd8 background mice (WT) were bred and randomized into 4 groups. Two groups, WT mice on AREDS2 diet (A-WT) and DKO mice on AREDS2 diet (A-DKO), were supplemented daily with 1.76 μmol of lutein, 35.1 μmol of zeaxanthin, 215 μmol EPA, and 107 μmol of DHA, and 2 control groups, WT mice on control diet (C-WT) and DKO mice on control diet (C-DKO), were fed an isocaloric diet. All mice had monthly fundus photos and were killed after 3 mo for biochemical and histologic analyses. After 3 mo, 81% of A-DKO mice had lesion regression compared with 25% of C-DKO mice (P < 0.05). Toxic retinal 2-[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetra-enyl]-1-(2-hydroxyethyl)-4-[4-methyl-6(2,6,6-trimethyl-1-cyclohexen-1-yl) 1E,3E,5E,7E-hexatrienyl]-pyridinium (A2E) concentrations were significantly lower in A-DKO compared with C-DKO mice. The outer nuclear layer thickness in A-DKO mice was significantly greater than that in C-DKO mice. Retinal expression of inducible nitric oxide synthase (iNos) tumor necrosis factor-α (Tnf-α), Cyclooxygenase-2 (Cox-2), interleukin1beta (IL-1β), and vascular endothelial growth factor (Vegf) was significantly lower in A-DKO compared with C-DKO mice. Xanthophylls and LCPUFAs have antiinflammatory, neuroprotective, and antiangiogenic properties. Our data provide potential mechanisms by which the AREDS2 formula has a protective effect on retinal lesions in DKO mice.
Collapse
Affiliation(s)
- Hema L. Ramkumar
- Laboratory of Immunology,Howard Hughes Medical Institute, Chevy Chase, MD,Department of Ophthalmology, Shiley Eye Center, University of California-San Diego, San Diego, CA
| | | | | | | | - Xiaoguang Cao
- Laboratory of Immunology,Department of Ophthalmology, Peking University People’s Hospital, Beijing, China
| | - Emily Y. Chew
- Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Chi-Chao Chan
- Laboratory of Immunology,Histology Core, and,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Oswal DP, Balanarasimha M, Loyer JK, Bedi S, Soman FL, Rider SD, Hostetler HA. Divergence between human and murine peroxisome proliferator-activated receptor alpha ligand specificities. J Lipid Res 2013; 54:2354-65. [PMID: 23797899 DOI: 10.1194/jlr.m035436] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) belongs to the family of ligand-dependent nuclear transcription factors that regulate energy metabolism. Although there exists remarkable overlap in the activities of PPARα across species, studies utilizing exogenous PPARα ligands suggest species differences in binding, activation, and physiological effects. While unsaturated long-chain fatty acids (LCFA) and their thioesters (long-chain fatty acyl-CoA; LCFA-CoA) function as ligands for recombinant mouse PPARα (mPPARα), no such studies have been conducted with full-length human PPARα (hPPARα). The objective of the current study was to determine whether LCFA and LCFA-CoA constitute high-affinity endogenous ligands for hPPARα or whether there exist species differences for ligand specificity and affinity. Both hPPARα and mPPARα bound with high affinity to LCFA-CoA; however, differences were noted in LCFA affinities. A fluorescent LCFA analog was bound strongly only by mPPARα, and naturally occurring saturated LCFA was bound more strongly by hPPARα than mPPARα. Similarly, unsaturated LCFA induced transactivation of both hPPARα and mPPARα, whereas saturated LCFA induced transactivation only in hPPARα-expressing cells. These data identified LCFA and LCFA-CoA as endogenous ligands of hPPARα, demonstrated species differences in binding specificity and activity, and may help delineate the role of PPARα as a nutrient sensor in metabolic regulation.
Collapse
Affiliation(s)
- Dhawal P Oswal
- Department of Biochemistry & Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
High glucose potentiates L-FABP mediated fibrate induction of PPARα in mouse hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1412-25. [PMID: 23747828 DOI: 10.1016/j.bbalip.2013.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/17/2013] [Accepted: 05/30/2013] [Indexed: 01/22/2023]
Abstract
Although liver fatty acid binding protein (L-FABP) binds fibrates and PPARα in vitro and enhances fibrate induction of PPARα in transformed cells, the functional significance of these findings is unclear, especially in normal hepatocytes. Studies with cultured primary mouse hepatocytes show that: 1) At physiological (6mM) glucose, fibrates (bezafibrate, fenofibrate) only weakly activated PPARα transcription of genes in LCFA β-oxidation; 2) High (11-20mM) glucose, but not maltose (osmotic control), significantly potentiated fibrate-induction of mRNA of these and other PPARα target genes to increase LCFA β-oxidation. These effects were associated with fibrate-mediated redistribution of L-FABP into nuclei-an effect prolonged by high glucose-but not with increased de novo fatty acid synthesis from glucose; 3) Potentiation of bezafibrate action by high glucose required an intact L-FABP/PPARα signaling pathway as shown with L-FABP null, PPARα null, PPARα inhibitor-treated WT, or PPARα-specific fenofibrate-treated WT hepatocytes. High glucose alone in the absence of fibrate was ineffective. Thus, high glucose potentiation of PPARα occurred through FABP/PPARα rather than indirectly through other PPARs or glucose induced signaling pathways. These data indicated L-FABP's importance in fibrate-induction of hepatic PPARα LCFA β-oxidative genes, especially in the context of high glucose levels.
Collapse
|
47
|
Levi L, Lobo G, Doud MK, von Lintig J, Seachrist D, Tochtrop GP, Noy N. Genetic ablation of the fatty acid-binding protein FABP5 suppresses HER2-induced mammary tumorigenesis. Cancer Res 2013; 73:4770-80. [PMID: 23722546 DOI: 10.1158/0008-5472.can-13-0384] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fatty acid-binding protein FABP5 shuttles ligands from the cytosol to the nuclear receptor PPARβ/δ (encoded for by Pparδ), thereby enhancing the transcriptional activity of the receptor. This FABP5/PPARδ pathway is critical for induction of proliferation of breast carcinoma cells by activated epidermal growth factor receptor (EGFR). In this study, we show that FABP5 is highly upregulated in human breast cancers and we provide genetic evidence of the pathophysiologic significance of FABP5 in mammary tumorigenesis. Ectopic expression of FABP5 was found to be oncogenic in 3T3 fibroblasts where it augmented the ability of PPARδ to enhance cell proliferation, migration, and invasion. To determine whether FABP5 is essential for EGFR-induced mammary tumor growth, we interbred FABP5-null mice with MMTV-ErbB2/HER2 oncomice, which spontaneously develop mammary tumors. FABP5 ablation relieved activation of EGFR downstream effector signals, decreased expression of PPARδ target genes that drive cell proliferation, and suppressed mammary tumor development. Our findings establish that FABP5 is critical for mammary tumor development, rationalizing the development of FABP5 inhibitors as novel anticarcinogenic drugs.
Collapse
Affiliation(s)
- Liraz Levi
- Departments of Pharmacology, Chemistry, and Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH44106, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Barrett KG, Fang H, Gargano MD, Markovich D, Kocarek TA, Runge-Morris M. Regulation of murine hepatic hydroxysteroid sulfotransferase expression in hyposulfatemic mice and in a cell model of 3'-phosphoadenosine-5'-phosphosulfate deficiency. Drug Metab Dispos 2013; 41:1505-13. [PMID: 23674610 DOI: 10.1124/dmd.113.051912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The cytosolic sulfotransferases (SULTs) catalyze the sulfate conjugation of nucleophilic substrates, and the cofactor for sulfonation, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), is biosynthesized from sulfate and ATP. The phenotype of male knockout mice for the NaS1 sodium sulfate cotransporter includes hyposulfatemia and increased hepatic expression of mouse cytoplasmic sulfotransferase Sult2a and Sult3a1. Here we report that in 8-week-old female NaS1-null mice, hepatic Sult2a1 mRNA levels were ∼51-fold higher than they were in a wild-type liver but expression of no other Sult was affected. To address whether hyposulfatemia-inducible Sult2a1 expression might be due to reduced PAPS levels, we stably knocked down PAPS synthases 1 and 2 in HepG2 cells (shPAPSS1/2 cells). When a reporter plasmid containing at least 233 nucleotides (nt) of Sult2a1 5'-flanking sequence was transfected into shPAPSS1/2 cells, reporter activity was significantly increased relative to the activity that was seen for reporters containing 179 or fewer nucleotides. Mutation of an IR0 (inverted repeat of AGGTCA, with 0 intervening bases) nuclear receptor motif at nt -191 to 180 significantly attenuated the PAPSS1/2 knockdown-mediated increase. PAPSS1/2 knockdown significantly activated farnesoid X receptor (FXR), retinoid-related orphan receptor, and pregnane X receptor responsive reporters, and treatment with the FXR agonist GW4064 [3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole] increased Sult2a1 promoter activity when the IR0 was intact. Transfection of shPAPSS1/2 cells with FXR small interfering RNA (siRNA) significantly reduced the Sult2a1 promoter activity. The impact of PAPSS1/2 knockdown on Sult2a1 promoter activity was recapitulated by knocking down endogenous SULT2A1 expression in HepG2 cells. We propose that hyposulfatemia leads to hepatic PAPS depletion, which causes loss of SULT2A1 activity and results in accumulation of nonsulfated bile acids and FXR activation.
Collapse
Affiliation(s)
- Kathleen G Barrett
- Institute of Environmental Health Sciences, 259 Mack Avenue, Room 4118, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
49
|
Shiue YL, Chen LR, Tsai CJ, Yeh CY, Huang CT. Emerging roles of peroxisome proliferator-activated receptors in the pituitary gland in female reproduction. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.gmbhs.2013.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Inhibitors of Fatty Acid Synthesis Induce PPAR α -Regulated Fatty Acid β -Oxidative Genes: Synergistic Roles of L-FABP and Glucose. PPAR Res 2013; 2013:865604. [PMID: 23533380 PMCID: PMC3600304 DOI: 10.1155/2013/865604] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/21/2012] [Indexed: 12/21/2022] Open
Abstract
While TOFA (acetyl CoA carboxylase inhibitor) and C75 (fatty acid synthase inhibitor) prevent lipid accumulation by inhibiting fatty acid synthesis, the mechanism of action is not simply accounted for by inhibition of the enzymes alone.
Liver fatty acid binding protein (L-FABP), a mediator of long chain fatty acid signaling to peroxisome
proliferator-activated receptor-α (PPARα) in the nucleus, was found to bind
TOFA and its activated CoA thioester, TOFyl-CoA, with high affinity while binding C75 and C75-CoA
with lower affinity. Binding of TOFA and C75-CoA significantly altered L-FABP secondary structure. High (20 mM) but not physiological
(6 mM) glucose conferred on both TOFA and C75 the ability to induce PPARα transcription of the fatty
acid β-oxidative enzymes CPT1A, CPT2, and ACOX1 in cultured primary hepatocytes from wild-type (WT) mice.
However, L-FABP gene ablation abolished the effects of TOFA and C75 in the context of high glucose. These effects were not associated
with an increased cellular level of unesterified fatty acids but rather by increased intracellular glucose. These findings suggested that L-FABP may function as an intracellular fatty acid synthesis inhibitor binding protein
facilitating TOFA and C75-mediated induction of PPARα in the context of high glucose at levels similar to those in uncontrolled diabetes.
Collapse
|