1
|
Herman RA, Ayepa E, Zhang WX, Li ZN, Zhu X, Ackah M, Yuan SS, You S, Wang J. Molecular modification and biotechnological applications of microbial aspartic proteases. Crit Rev Biotechnol 2024; 44:388-413. [PMID: 36842994 DOI: 10.1080/07388551.2023.2171850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 02/28/2023]
Abstract
The growing preference for incorporating microbial aspartic proteases in industries is due to their high catalytic function and high degree of substrate selectivity. These properties, however, are attributable to molecular alterations in their structure and a variety of other characteristics. Molecular tools, functional genomics, and genome editing technologies coupled with other biotechnological approaches have aided in improving the potential of industrially important microbial proteases by addressing some of their major limitations, such as: low catalytic efficiency, low conversion rates, low thermostability, and less enzyme yield. However, the native folding within their full domain is dependent on a surrounding structure which challenges their functionality in substrate conversion, mainly due to their mutual interactions in the context of complex systems. Hence, manipulating their structure and controlling their expression systems could potentially produce enzymes with high selectivity and catalytic functions. The proteins produced by microbial aspartic proteases are industrially capable and far-reaching in regulating certain harmful distinctive industrial processes and the benefits of being eco-friendly. This review provides: an update on current trends and gaps in microbial protease biotechnology, exploring the relevant recombinant strategies and molecular technologies widely used in expression platforms for engineering microbial aspartic proteases, as well as their potential industrial and biotechnological applications.
Collapse
Affiliation(s)
- Richard Ansah Herman
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, Kusi, Ghana
| | - Wen-Xin Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Zong-Nan Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuang-Shuang Yuan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| |
Collapse
|
2
|
Geers DWT, Gavriel K, Neumann K. Rapid, traceless and facile peptide cyclization enabled by tetrazine-thiol exchange. J Pept Sci 2024; 30:e3548. [PMID: 37779097 DOI: 10.1002/psc.3548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
Cyclic peptides offer many advantages compared to their linear counterparts, including prolonged stability within the biological environment and enhanced binding affinity. Typically, peptides are cyclized by forming an amide bond, either on-resin or in solution, through extensive use of orthogonal protecting groups or chemoselective ligation strategies, respectively. Here, we show that the chemoselective tetrazine-thiol exchange is a powerful tool for rapid in situ cyclization of peptides without the need for additional activation reagents or extensive protecting group reshuffling. The reaction between N-terminal sulfide-bearing unsymmetric tetrazines and internal cysteines occurs spontaneously within a mildly acidic environment (pH 6.5) and is of traceless nature. The rapidly available unsymmetric sulfide tetrazine building blocks can be incorporated on resin using standard solid-phase peptide synthesis protocols and are orthogonal to trifluoroacetic acid cleavage conditions. The cyclized peptides display high stability, even when incubated with a large excess of free thiols. Due to its traceless and mild nature, we expect that the tetrazine-thiol exchange will be of high value for the in situ formation of cyclic peptide libraries, thus being applicable in drug discovery and development.
Collapse
Affiliation(s)
- Daniëlle W T Geers
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Katerina Gavriel
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Kevin Neumann
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Komarov IV, Bugrov VA, Cherednychenko A, Grygorenko OO. Insights into Modeling Approaches in Chemistry: Assessing Ligand-Protein Binding Thermodynamics Based on Rigid-Flexible Model Molecules. CHEM REC 2024; 24:e202300276. [PMID: 37847887 DOI: 10.1002/tcr.202300276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/29/2023] [Indexed: 10/19/2023]
Abstract
In the field of chemistry, model compounds find extensive use for investigating complex objects. One prime example of such object is the protein-ligand supramolecular interaction. Prediction the enthalpic and entropic contribution to the free energy associated with this process, as well as the structural and dynamic characteristics of protein-ligand complexes poses considerable challenges. This review exemplifies modeling approaches used to study protein-ligand binding (PLB) thermodynamics by employing pairs of conformationally constrained/flexible model molecules. Strategically designing the model molecules can reduce the number of variables that influence thermodynamic parameters. This enables scientists to gain deeper insights into the enthalpy and entropy of PLB, which is relevant for medicinal chemistry and drug design. The model studies reviewed here demonstrate that rigidifying ligands may induce compensating changes in the enthalpy and entropy of binding. Some "rules of thumb" have started to emerge on how to minimize entropy-enthalpy compensation and design efficient rigidified or flexible ligands.
Collapse
Affiliation(s)
- Igor V Komarov
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
- Enamine Ltd., Winston Churchill Street 78, Kyiv, 02094, Ukraine
| | - Volodymyr A Bugrov
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Anton Cherednychenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
- Enamine Ltd., Winston Churchill Street 78, Kyiv, 02094, Ukraine
| | - Oleksandr O Grygorenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
- Enamine Ltd., Winston Churchill Street 78, Kyiv, 02094, Ukraine
| |
Collapse
|
4
|
Ji MM, Liu PR, Yan JD, He YY, Li H, Ma AJ, Peng JB. Ruthenium-Catalyzed Carbonylation of α-Aminoaryl-Tethered Alkylidenecyclopropanes: Synthesis of Eight-Membered Benzolactams. Org Lett 2024; 26:231-235. [PMID: 38165133 DOI: 10.1021/acs.orglett.3c03913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The synthesis of medium-sized lactams is a great challenge because of the unfavorable transannular interactions and entropic barriers in the transition state. We have developed a ruthenium-catalyzed carbonylation of α-aminoaryl-tethered alkylidenecyclopropanes (ACPs) that allows for the efficient preparation of valuable eight-membered benzolactams under ligand-free conditions. The amino group served a dual role of both directing group and nucleophile to facilitate the metallacycle formation and the carbonylation.
Collapse
Affiliation(s)
- Miao-Miao Ji
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Peng-Rui Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jun-Dong Yan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Yong-Yu He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Hongguang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|
5
|
A Lewis Acid-Promoted Michael Addition and Ring-Expansion Cascade for the Construction of Nitrogen-Containing Medium-Sized Rings. Molecules 2023; 28:molecules28041650. [PMID: 36838638 PMCID: PMC9966210 DOI: 10.3390/molecules28041650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
A Lewis acid-promoted annulation of azadienes and cyclobutamines was developed. This reaction proceeded through Michael addition and ring-expansion cascade, affording the corresponding nitrogen-containing medium-sized rings with a broad scope in moderate to high yields. The catalytic asymmetric version of this reaction has also been explored using a chiral base.
Collapse
|
6
|
Yang JW, Tan GQ, Liang KC, Xu KD, Su M, Liu F. Copper-Catalyzed, N-Directed Distal C(sp 3)-H Functionalization toward Azepanes. Org Lett 2022; 24:7796-7800. [PMID: 36264027 DOI: 10.1021/acs.orglett.2c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein report a copper-catalyzed formal [5 + 2] aza-annulation of N-fluorosulfonamides and 1,3-dienes/1,3-enynes for synthesis of structurally diverse alkene/alkyne-containing azepanes. The reaction features selective functionalization of distal unactivated C(sp3)-H bonds and a broad substrate scope, thus allowing the late-stage modification of pharmaceuticals and natural products. A radical mechanism involving 1,5-hydrogen atom transfer of N-radicals, facile coupling of alkyl radicals with 1,3-dienes/1,3-enynes, and the construction of azepane motifs via C-N bond formation is proposed.
Collapse
Affiliation(s)
- Jia-Wen Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Guang-Qiang Tan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Kai-Cheng Liang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ke-Dong Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
7
|
Kotwal N, Tamanna, Chauhan P. Catalytic asymmetric synthesis of medium-sized bridged biaryls. Chem Commun (Camb) 2022; 58:11031-11044. [PMID: 36124624 DOI: 10.1039/d2cc04000j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the persistent presence of medium-sized (seven- to nine-membered) scaffolds in natural products and biologically active molecules, their asymmetric syntheses have always been considered a formidable task; therefore, they have remained underdeveloped when compared to the enantioselective synthesis of five- and six-membered ring scaffolds. One important class of such medium-sized ring frameworks includes seven- to nine-membered biaryl bridged carbo- and heterocycles. These medium-ring-sized biaryl frameworks possess more configurational stability than the related smaller ring structures and are common features of valuable natural products, bioactive compounds, chiral catalysts, and molecular motors. Due to these exciting properties and broad applications, over the last few years, the catalytic enantioselective synthesis of medium-sized bridged biaryls has seen an upsurge. This highlight article describes the development of organocatalysed and transition-metal catalysed transformations for procuring seven-, eight-, and nine-membered bridged biaryls bearing a chiral axis/one or more asymmetric carbon centres.
Collapse
Affiliation(s)
- Namrata Kotwal
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221 J&K, India.
| | - Tamanna
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221 J&K, India.
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221 J&K, India.
| |
Collapse
|
8
|
Jia S, Tian Y, Li X, Wang P, Lan Y, Yan H. Atroposelective Construction of Nine-Membered Carbonate-Bridged Biaryls. Angew Chem Int Ed Engl 2022; 61:e202206501. [PMID: 35621411 DOI: 10.1002/anie.202206501] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/27/2022]
Abstract
We herein demonstrated an efficient method for the atroposelective construction of nine-membered carbonate-bridged biaryls through vinylidene ortho-quinone methide (VQM) intermediates. Diverse products with desirable pharmacological features were synthesized in satisfying yields and good to excellent enantioselectivities. In subsequent bioassays, several agents showed considerable antiproliferative activity via the mitochondrial-related apoptosis mechanism. Further transformations produced more structural diversity and may inspire new ideas for developing functional molecules.
Collapse
Affiliation(s)
- Shiqi Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Yuhong Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Xin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China.,School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
9
|
Zeng T, Chen Y, Jian Y, Zhang F, Wu R. Chemotaxonomic investigation of plant terpenoids with an established database (TeroMOL). THE NEW PHYTOLOGIST 2022; 235:662-673. [PMID: 35377469 DOI: 10.1111/nph.18133] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Terpenoids constitute the biggest class of plant-derived natural products with diverse chemical structures and extensive biological activities. Interpreting enzyme functions and mining new structures of terpenoids could be inspired by the cheminformatic and chemotaxonomic analysis, whereas it is hampered by the incompleteness of available data for terpenoids. Here a dedicated terpenoids database, TeroMOL, is developed to collect more than 170 000 terpenoids and their derivatives annotated with reported biological sources, along with a user-friendly and freely accessible webserver to visualise and analyse the terpenoids skeletons and organism sources. The quantitative distributions as well as the qualitative trends between terpenoid skeletons and organism sources in plant kingdom are revealed from a chemotaxonomic view, while no comparisons are attempted due to the inherent data biases. Nevertheless, the terpenoid chemomarkers in several organisms are discussed based on the available data with highly enriched and exclusive carbon skeletons. We believe that the TeroMOL database and its accessory computational tools will be very promising for exploring the chemical space and biological sources of terpenoids, and assisting the terpenoid research community in the future.
Collapse
Affiliation(s)
- Tao Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuxinxin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongxing Jian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Liu H, Chen F, Zhao N, Vummaleti SVC, Sullivan MB, Ying JY, Wang L. Rhodium-Catalyzed Ring Expansion Reactions for the Concise Construction of Densely Functionalized Oxathionines and Oxathiocines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haitao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, P. R. China
| | - Feng Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Nannan Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, P. R. China
| | - Sai V. C. Vummaleti
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-6 Connexis, Singapore 138632, Singapore
| | - Michael B. Sullivan
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-6 Connexis, Singapore 138632, Singapore
| | - Jackie Y. Ying
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Lei Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, P. R. China
| |
Collapse
|
11
|
Jia S, Tian Y, Li X, Wang P, Lan Y, Yan H. Atroposelective Construction of Nine‐Membered Carbonate Bridged Biaryls. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shiqi Jia
- Zhengzhou University Green Catalysis Center 重庆大学虎溪校区药学院 zhengzhou CHINA
| | - Yuhong Tian
- Chongqing University School of Pharmaceutical Sciences Chongqing CHINA
| | - Xin Li
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Pengfei Wang
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Yu Lan
- Chongqing University School of Chemistry and Chemical Engineering CHINA
| | - Hailong Yan
- Chongqing University Innovative Drug Research Center No.55 Daxuecheng South Rd 401331 Chongqing CHINA
| |
Collapse
|
12
|
Cheng HB, Zhang S, Bai E, Cao X, Wang J, Qi J, Liu J, Zhao J, Zhang L, Yoon J. Future-Oriented Advanced Diarylethene Photoswitches: From Molecular Design to Spontaneous Assembly Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108289. [PMID: 34866257 DOI: 10.1002/adma.202108289] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Diarylethene (DAE) photoswitch is a new and promising family of photochromic molecules and has shown superior performance as a smart trigger in stimulus-responsive materials. During the past few decades, the DAE family has achieved a leap from simple molecules to functional molecules and developed toward validity as a universal switching building block. In recent years, the introduction of DAE into an assembly system has been an attractive strategy that enables the photochromic behavior of the building blocks to be manifested at the level of the entire system, beyond the DAE unit itself. This assembly-based strategy will bring many unexpected results that promote the design and manufacture of a new generation of advanced materials. Here, recent advances in the design and fabrication of diarylethene as a trigger in materials science, chemistry, and biomedicine are reviewed.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Enying Bai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Ji Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
13
|
Ivkovic J, Jha S, Lembacher-Fadum C, Puschnig J, Kumar P, Reithofer V, Gruber K, Macheroux P, Breinbauer R. Efficient Entropy-Driven Inhibition of Dipeptidyl Peptidase III by Hydroxyethylene Transition-State Peptidomimetics. Chemistry 2021; 27:14108-14120. [PMID: 34314529 PMCID: PMC8518066 DOI: 10.1002/chem.202102204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 12/30/2022]
Abstract
Dipeptidyl peptidase III (DPP3) is a ubiquitously expressed Zn‐dependent protease, which plays an important role in regulating endogenous peptide hormones, such as enkephalins or angiotensins. In previous biophysical studies, it could be shown that substrate binding is driven by a large entropic contribution due to the release of water molecules from the closing binding cleft. Here, the design, synthesis and biophysical characterization of peptidomimetic inhibitors is reported, using for the first time an hydroxyethylene transition‐state mimetic for a metalloprotease. Efficient routes for the synthesis of both stereoisomers of the pseudopeptide core were developed, which allowed the synthesis of peptidomimetic inhibitors mimicking the VVYPW‐motif of tynorphin. The best inhibitors inhibit DPP3 in the low μM range. Biophysical characterization by means of ITC measurement and X‐ray crystallography confirm the unusual entropy‐driven mode of binding. Stability assays demonstrated the desired stability of these inhibitors, which efficiently inhibited DPP3 in mouse brain homogenate.
Collapse
Affiliation(s)
- Jakov Ivkovic
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | | | - Johannes Puschnig
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - Prashant Kumar
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010, Graz, Austria
| | - Viktoria Reithofer
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010, Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010, Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| |
Collapse
|
14
|
Swain JA, Walker SR, Calvert MB, Brimble MA. The tryptophan connection: cyclic peptide natural products linked via the tryptophan side chain. Nat Prod Rep 2021; 39:410-443. [PMID: 34581375 DOI: 10.1039/d1np00043h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: from 1938 up to March 2021The electron-rich indole side chain of tryptophan is a versatile substrate for peptide modification. Upon the action of various cyclases, the tryptophan side chain may be linked to a nearby amino acid residue, opening the door to a diverse range of cyclic peptide natural products. These compounds exhibit a wide array of biological activity and possess fascinating molecular architectures, which have made them popular targets for total synthesis studies. This review examines the isolation and bioactivity of tryptophan-linked cyclic peptide natural products, along with a discussion of their first total synthesis, and biosynthesis where this has been studied.
Collapse
Affiliation(s)
- Jonathan A Swain
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand.
| | - Stephen R Walker
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand.
| | - Matthew B Calvert
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand.
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
15
|
Kamalinia G, Grindel BJ, Takahashi TT, Millward SW, Roberts RW. Directing evolution of novel ligands by mRNA display. Chem Soc Rev 2021; 50:9055-9103. [PMID: 34165126 PMCID: PMC8725378 DOI: 10.1039/d1cs00160d] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mRNA display is a powerful biological display platform for the directed evolution of proteins and peptides. mRNA display libraries covalently link the displayed peptide or protein (phenotype) with the encoding genetic information (genotype) through the biochemical activity of the small molecule puromycin. Selection for peptide/protein function is followed by amplification of the linked genetic material and generation of a library enriched in functional sequences. Iterative selection cycles are then performed until the desired level of function is achieved, at which time the identity of candidate peptides can be obtained by sequencing the genetic material. The purpose of this review is to discuss the development of mRNA display technology since its inception in 1997 and to comprehensively review its use in the selection of novel peptides and proteins. We begin with an overview of the biochemical mechanism of mRNA display and its variants with a particular focus on its advantages and disadvantages relative to other biological display technologies. We then discuss the importance of scaffold choice in mRNA display selections and review the results of selection experiments with biological (e.g., fibronectin) and linear peptide library architectures. We then explore recent progress in the development of "drug-like" peptides by mRNA display through the post-translational covalent macrocyclization and incorporation of non-proteogenic functionalities. We conclude with an examination of enabling technologies that increase the speed of selection experiments, enhance the information obtained in post-selection sequence analysis, and facilitate high-throughput characterization of lead compounds. We hope to provide the reader with a comprehensive view of current state and future trajectory of mRNA display and its broad utility as a peptide and protein design tool.
Collapse
Affiliation(s)
- Golnaz Kamalinia
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
16
|
Zhang X, Lin L, Li J, Duan S, Long Y, Li J. Recent Progress in the Synthesis of Medium-Sized Ring and Macrocyclic Compounds. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Cramer DL, Cheng B, Tian J, Clements JH, Wypych RM, Martin SF. Some thermodynamic effects of varying nonpolar surfaces in protein-ligand interactions. Eur J Med Chem 2020; 208:112771. [PMID: 32916312 PMCID: PMC7680455 DOI: 10.1016/j.ejmech.2020.112771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 12/18/2022]
Abstract
Understanding how making structural changes in small molecules affects their binding affinities for targeted proteins is central to improving strategies for rational drug design. To assess the effects of varying the nature of nonpolar groups upon binding entropies and enthalpies, we designed and prepared a set of Grb2-SH2 domain ligands, Ac-pTyr-Ac6c-Asn-(CH2)n-R, in which the size and electrostatic nature of R groups at the pTyr+3 site were varied. The complexes of these ligands with the Grb2-SH2 domain were evaluated in a series of studies in which the binding thermodynamics were determined using isothermal titration calorimetry, and binding interactions were examined in crystallographic studies of two different complexes. Notably, adding nonpolar groups to the pTyr+3 site leads to higher binding affinities, but the magnitude and energetic origins of these effects vary with the nature of the R substituent. For example, enhancements to binding affinities using aliphatic R groups are driven by more favorable changes in binding entropies, whereas aryl R groups improve binding free energies through a combination of more favorable changes in binding enthalpies and entropies. However, enthalpy/entropy compensation plays a significant role in these associations and mitigates against any significant variation in binding free energies, which vary by only 0.8 kcal•mol-1, with changes in the electrostatic nature and size of the R group. Crystallographic studies show that differences in ΔG° or ΔH° correlate with buried nonpolar surface area, but they do not correlate with the total number of polar or van der Waals contacts. The relative number of ordered water molecules and relative order in the side chains at pTyr+3 correlate with differences in -TΔS°. Overall, these studies show that burial of nonpolar surface can lead to enhanced binding affinities arising from dominating entropy- or enthalpy-driven hydrophobic effects, depending upon the electrostatic nature of the apolar R group.
Collapse
Affiliation(s)
- David L Cramer
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - Bo Cheng
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - Jianhua Tian
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - John H Clements
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - Rachel M Wypych
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - Stephen F Martin
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Benhamou RI, Vezina-Dawod S, Choudhary S, Won Wang K, Meyer SM, Yildirim I, Disney MD. Macrocyclization of a Ligand Targeting a Toxic RNA Dramatically Improves Potency. Chembiochem 2020; 21:3229-3233. [PMID: 32649032 PMCID: PMC7674229 DOI: 10.1002/cbic.202000445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/21/2022]
Abstract
RNA molecules both contribute to and are causative of many human diseases. One method to perturb RNA function is to target its structure with small molecules. However, discovering bioactive ligands for RNA targets is challenging. Here, we show that the bioactivity of a linear dimeric ligand that inactivates the RNA trinucleotide repeat expansion that causes myotonic dystrophy type 1 [DM1; r(CUG)exp ] can be improved by macrocyclization. Indeed, the macrocyclic compound is ten times more potent than the linear compound for improving DM1-associated defects in cells, including in patient-derived myotubes (muscle cells). This enhancement in potency is due to the macrocycle's increased affinity and selectively for the target, which inhibit r(CUG)exp 's toxic interaction with muscleblind-like 1 (MBNL1), and its superior cell permeability. Macrocyclization could prove to be an effective way to enhance the bioactivity of modularly assembled ligands targeting RNA.
Collapse
Affiliation(s)
- Raphael I Benhamou
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Simon Vezina-Dawod
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Shruti Choudhary
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kye Won Wang
- Department of Chemistry, Florida Atlantic University, John D. MacArthur Campus, Jupiter, FL 33458, USA
| | - Samantha M Meyer
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Ilyas Yildirim
- Department of Chemistry, Florida Atlantic University, John D. MacArthur Campus, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
19
|
Bacon K, Blain A, Burroughs M, McArthur N, Rao BM, Menegatti S. Isolation of Chemically Cyclized Peptide Binders Using Yeast Surface Display. ACS COMBINATORIAL SCIENCE 2020; 22:519-532. [PMID: 32786323 DOI: 10.1021/acscombsci.0c00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyclic peptides with engineered protein-binding activity have gained increasing attention for use in therapeutic and biotechnology applications. We describe the efficient isolation and characterization of cyclic peptide binders from genetically encoded combinatorial libraries using yeast surface display. Here, peptide cyclization is achieved by disuccinimidyl glutarate-mediated cross-linking of amine groups within a linear peptide sequence that is expressed as a yeast cell surface fusion. Using this approach, we first screened a library of cyclic heptapeptides using magnetic selection, followed by fluorescence activated cell sorting (FACS) to isolate binders for a model target (lysozyme) with low micromolar binding affinity (KD ∼ 1.2-3.7 μM). The isolated peptides bind lysozyme selectively and only when cyclized. Importantly, we showed that yeast surface displayed cyclic peptides can be used to efficiently obtain quantitative estimates of binding affinity, circumventing the need for chemical synthesis of the selected peptides. Subsequently, to demonstrate broader applicability of our approach, we isolated cyclic heptapeptides that bind human interleukin-17 (IL-17) using yeast-displayed IL-17 as a target for magnetic selection, followed by FACS using recombinant IL-17. Molecular docking simulations and follow-up experimental analyses identified a candidate cyclic peptide that likely binds IL-17 in its receptor binding region with moderate apparent affinity (KD ∼ 300 nM). Taken together, our results show that yeast surface display can be used to efficiently isolate and characterize cyclic peptides generated by chemical modification from combinatorial libraries.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Abigail Blain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Matthew Burroughs
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Nikki McArthur
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
20
|
Bollenbach M, Ortega M, Orman M, Drennan CL, Balskus EP. Discovery of a Cyclic Choline Analog That Inhibits Anaerobic Choline Metabolism by Human Gut Bacteria. ACS Med Chem Lett 2020; 11:1980-1985. [PMID: 33062182 DOI: 10.1021/acsmedchemlett.0c00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022] Open
Abstract
The anaerobic conversion of choline to trimethylamine (TMA) by the human gut microbiota has been linked to multiple human diseases. The potential impact of this microbial metabolic activity on host health has inspired multiple efforts to identify small molecule inhibitors. Here, we use information about the structure and mechanism of the bacterial enzyme choline TMA-lyase (CutC) to develop a cyclic choline analog that inhibits the conversion of choline to TMA in bacterial whole cells and in a complex gut microbial community. In vitro biochemical assays and a crystal structure suggest that this analog is a competitive, mechanism-based inhibitor. This work demonstrates the utility of structure-based design to access inhibitors of radical enzymes from the human gut microbiota.
Collapse
Affiliation(s)
- Maud Bollenbach
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | | - Marina Orman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
21
|
Affiliation(s)
- Ronald L. Reyes
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomohiro Iwai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
22
|
Abdul-Rashed S, Alachouzos G, Brennessel WW, Frontier AJ. One-Pot Double-Annulation Strategy for the Synthesis of Unusual Fused Bis-Heterocycles. Org Lett 2020; 22:4350-4354. [PMID: 32412769 DOI: 10.1021/acs.orglett.0c01351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel metal-free double-annulation cascade for the construction of unusual fused heterocyclic systems is described. This simple protocol enables the sequential assembly of two rings in one pot from two simple precursors. Acidic conditions promote the condensation and the intramolecular alkynyl Prins reaction of an enyne or arenyne alcohol with a cyclic hemiaminal to form a five-, six-, or seven-membered oxacycle followed by a seven- or eight-membered azacycle. In this transformation, chemical complexity is rapidly generated with the formation of three new bonds (one C-O, one C-C, and one C-N) in one synthetic operation. The strategy is modular and relatively general, providing access to a series of unique fused bicyclic scaffolds.
Collapse
Affiliation(s)
- Shukree Abdul-Rashed
- Department of Chemistry, University of Rochester, 414 Hutchison Hall, 100 Trustee Road, Rochester, New York 14627, United States
| | - Georgios Alachouzos
- Department of Chemistry, University of Rochester, 414 Hutchison Hall, 100 Trustee Road, Rochester, New York 14627, United States
| | - William W Brennessel
- Department of Chemistry, University of Rochester, 414 Hutchison Hall, 100 Trustee Road, Rochester, New York 14627, United States
| | - Alison J Frontier
- Department of Chemistry, University of Rochester, 414 Hutchison Hall, 100 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
23
|
Wypych RM, LaPlante SR, White PW, Martin SF. Structure-thermodynamics-relationships of hepatitis C viral NS3 protease inhibitors. Eur J Med Chem 2020; 192:112195. [PMID: 32151833 DOI: 10.1016/j.ejmech.2020.112195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
Thermodynamic parameters were determined for structurally-related inhibitors of HCV NS3 protease to assess how binding entropies and enthalpies vary with incremental changes at the P2 and P3 inhibitor subsites. Changing the heterocyclic substituent at P2 from a pyridyl to a 7-methoxy-2-phenyl-4-quinolyl group leads to a 710-fold increase in affinity. Annelating a benzene ring onto a pyridine ring leads to quinoline-derived inhibitors having higher affinities, but the individual enthalpy and entropy contributions are markedly different for each ligand pair. Introducing a phenyl group at C2 of the heterocyclic ring at P2 uniformly leads to higher affinity analogs with more favorable binding entropies, while adding a methoxy group at C7 of the quinoline ring at P2 provides derivatives with more favorable binding enthalpies. Significant enthalpy/entropy compensation is observed for structural changes made to inhibitors lacking a 2-phenyl substituent, whereas favorable changes in both binding enthalpies and entropies accompany structural modifications when a 2-phenyl group is present. Overall, binding energetics of inhibitors having a 2-phenyl-4-quinolyl group at P2 are dominated by entropic effects, whereas binding of the corresponding norphenyl analogs are primarily enthalpy driven. Notably, the reversal from an entropy driven association to an enthalpy driven one for this set of inhibitors also correlates with alternate binding modes. When the steric bulk of the side chain at P3 is increased from a hydrogen atom to a tert-butyl group, there is a 770-fold improvement in affinity. The 30-fold increase resulting from the first methyl group is solely the consequence of a more favorable change in entropy, whereas subsequent additions of methyl groups leads to modest increases in affinity that arise primarily from incremental improvements in binding enthalpies accompanied with smaller favorable entropic contributions.
Collapse
Affiliation(s)
- Rachel M Wypych
- The University of Texas at Austin, Department of Chemistry, 105 E 24th St Station A5300, Austin, TX, 78712-1224, USA
| | - Steven R LaPlante
- Université du Québec, INRS-Centre Armand Frappier Santé et Biotechnologie, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
| | - Peter W White
- Boehringer Ingelheim (Canada) Limited, Research and Development, 2100 rue Cunard, Laval, Quebec, H7S 2G5, Canada
| | - Stephen F Martin
- The University of Texas at Austin, Department of Chemistry, 105 E 24th St Station A5300, Austin, TX, 78712-1224, USA.
| |
Collapse
|
24
|
Kim K, Min J, Kirby TW, Gabel SA, Pedersen LC, London RE. Ligand binding characteristics of the Ku80 von Willebrand domain. DNA Repair (Amst) 2020; 85:102739. [PMID: 31733588 PMCID: PMC7495496 DOI: 10.1016/j.dnarep.2019.102739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/18/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
The N-terminal von Willebrand domain of Ku80 supports interactions with a Ku binding motif (KBM) that has been identified in at least three other DNA repair proteins: the non-homologous end joining (NHEJ) scaffold APLF, the modulator of retrovirus infection, MRI, and the Werner syndrome protein (WRN). A second, more recently identified Ku binding motif present in XLF and several other proteins (KBMX) has also been reported to interact with this domain. The isolated Ku80 von Willebrand antigen domain (vWA) from Xenopus laevis has a sequence that is 60% identical with the human domain, is readily expressed and has been used to investigate these interactions. Structural characterization of the complexes formed with the KBM motifs in human APLF, MRI, and WRN identify a conserved binding site that is consistent with previously-reported mutational studies. In contrast with the KBM binding site, structural studies indicate that the KBMX site is occluded by a distorted helix. Fluorescence polarization and 19F NMR studies of a fluorinated XLF C-terminal peptide failed to indicate any interaction with the frog vWA. It was hypothesized that availability of this binding site is conditional, i.e., dependent on specific experimental conditions or other repair factors to make the site available for binding. Modulating the fraction of KBMX-accessible binding site mutationally demonstrated that the more open site is capable of binding the KBMXXLF motif peptide. It is suggested that the conditional nature of KBMX binding limits formation of non-productive complexes so that activation-dependent site availability can more optimally support advancing the synapsis process.
Collapse
Affiliation(s)
- Kyungmin Kim
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Jungki Min
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Thomas W Kirby
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Scott A Gabel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
25
|
Boyd O, Wang G, Sokolova OO, Calow ADJ, Bertrand SM, Bower JF. Modular Access to Eight‐Membered N‐Heterocycles by Directed Carbonylative C−C Bond Activation of Aminocyclopropanes. Angew Chem Int Ed Engl 2019; 58:18844-18848. [DOI: 10.1002/anie.201910276] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/26/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Olivia Boyd
- School of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Gang‐Wei Wang
- School of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | | | | | - Sophie M. Bertrand
- GlaxoSmithKline R&DMedicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - John F. Bower
- School of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| |
Collapse
|
26
|
Zender M, Witzgall F, Kiefer A, Kirsch B, Maurer CK, Kany AM, Xu N, Schmelz S, Börger C, Blankenfeldt W, Empting M. Flexible Fragment Growing Boosts Potency of Quorum-Sensing Inhibitors against Pseudomonas aeruginosa Virulence. ChemMedChem 2019; 15:188-194. [PMID: 31709767 PMCID: PMC7004148 DOI: 10.1002/cmdc.201900621] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 12/24/2022]
Abstract
Hit-to-lead optimization is a critical phase in drug discovery. Herein, we report on the fragment-based discovery and optimization of 2-aminopyridine derivatives as a novel lead-like structure for the treatment of the dangerous opportunistic pathogen Pseudomonas aeruginosa. We pursue an innovative treatment strategy by interfering with the Pseudomonas quinolone signal (PQS) quorum sensing (QS) system leading to an abolishment of bacterial pathogenicity. Our compounds act on the PQS receptor (PqsR), a key transcription factor controlling the expression of various pathogenicity determinants. In this target-driven approach, we made use of biophysical screening via surface plasmon resonance (SPR) followed by isothermal titration calorimetry (ITC)-enabled enthalpic efficiency (EE) evaluation. Hit optimization then involved growth vector identification and exploitation. Astonishingly, the latter was successfully achieved by introducing flexible linkers rather than rigid motifs leading to a boost in activity on the target receptor and anti-virulence potency.
Collapse
Affiliation(s)
- Michael Zender
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Florian Witzgall
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Alexander Kiefer
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Benjamin Kirsch
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Christine K Maurer
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Andreas M Kany
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Ningna Xu
- Lehrstuhl für Biochemie, Universität Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Stefan Schmelz
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Carsten Börger
- PharmBioTec GmbH, Science Park 1, 66123, Saarbrücken, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124, Braunschweig, Germany.,Biotechnology and Bioinformatics, Institute for Biochemistry, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Martin Empting
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| |
Collapse
|
27
|
Boyd O, Wang G, Sokolova OO, Calow ADJ, Bertrand SM, Bower JF. Modular Access to Eight‐Membered N‐Heterocycles by Directed Carbonylative C−C Bond Activation of Aminocyclopropanes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Olivia Boyd
- School of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Gang‐Wei Wang
- School of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | | | | | - Sophie M. Bertrand
- GlaxoSmithKline R&DMedicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - John F. Bower
- School of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| |
Collapse
|
28
|
Dos Santos RN, Bottino GF, Gozzo FC, Morcos F, Martínez L. Structural complementarity of distance constraints obtained from chemical cross-linking and amino acid coevolution. Proteins 2019; 88:625-632. [PMID: 31693206 DOI: 10.1002/prot.25843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/07/2019] [Accepted: 11/03/2019] [Indexed: 12/11/2022]
Abstract
The analysis of amino acid coevolution has emerged as a practical method for protein structural modeling by providing structural contact information from alignments of amino acid sequences. In parallel, chemical cross-linking/mass spectrometry (XLMS) has gained attention as a universally applicable method for obtaining low-resolution distance constraints to model the quaternary arrangements of proteins, and more recently even protein tertiary structures. Here, we show that the structural information obtained by XLMS and coevolutionary analysis are effectively complementary: the distance constraints obtained by each method are almost exclusively associated with non-coincident pairs of residues, and modeling results obtained by the combination of both sets are improved relative to considering the same total number of constraints of a single type. The structural rationale behind the complementarity of the distance constraints is discussed and illustrated for a representative set of proteins with different sizes and folds.
Collapse
Affiliation(s)
- Ricardo N Dos Santos
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.,Center for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Guilherme F Bottino
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.,Center for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Fábio C Gozzo
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Faruck Morcos
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas.,Department of Bioengineering, University of Texas at Dallas, Richardson, Texas
| | - Leandro Martínez
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.,Center for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
29
|
Trapping rhodium vinylcarbenoids with aminochalcones for the synthesis of medium-sized azacycles. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Iegre J, Brear P, Baker DJ, Tan YS, Atkinson EL, Sore HF, O' Donovan DH, Verma CS, Hyvönen M, Spring DR. Efficient development of stable and highly functionalised peptides targeting the CK2α/CK2β protein-protein interaction. Chem Sci 2019; 10:5056-5063. [PMID: 31183056 PMCID: PMC6530537 DOI: 10.1039/c9sc00798a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
The discovery of new Protein-Protein Interaction (PPI) modulators is currently limited by the difficulties associated with the design and synthesis of selective small molecule inhibitors. Peptides are a potential solution for disrupting PPIs; however, they typically suffer from poor stability in vivo and limited tissue penetration hampering their wide spread use as new chemical biology tools and potential therapeutics. In this work, a combination of CuAAC chemistry, molecular modelling, X-ray crystallography, and biological validation allowed us to develop highly functionalised peptide PPI inhibitors of the protein CK2. The lead peptide, CAM7117, prevents the formation of the holoenzyme assembly in vitro, slows down proliferation, induces apoptosis in cancer cells and is stable in human serum. CAM7117 could aid the development of novel CK2 inhibitors acting at the interface and help to fully understand the intracellular pathways involving CK2. Importantly, the approach adopted herein could be applied to many PPI targets and has the potential to ease the study of PPIs by efficiently providing access to functionalised peptides.
Collapse
Affiliation(s)
- Jessica Iegre
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , Cambridge , UK .
| | - Paul Brear
- Department of Biochemistry , University of Cambridge , Tennis Court Road , CB2 1GA , Cambridge , UK .
| | - David J Baker
- Discovery Sciences , IMED Biotech Unit , AstraZeneca , Cambridge , UK
| | - Yaw Sing Tan
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671
| | - Eleanor L Atkinson
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , Cambridge , UK .
| | - Hannah F Sore
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , Cambridge , UK .
| | | | - Chandra S Verma
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671
- Department of Biological Sciences , National University of Singapore , 14 Science Drive 4 , Singapore 117543
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551
| | - Marko Hyvönen
- Department of Biochemistry , University of Cambridge , Tennis Court Road , CB2 1GA , Cambridge , UK .
| | - David R Spring
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , Cambridge , UK .
| |
Collapse
|
31
|
Guney T, Wenderski TA, Boudreau MW, Tan DS. Synthesis of Benzannulated Medium-ring Lactams via a Tandem Oxidative Dearomatization-Ring Expansion Reaction. Chemistry 2018; 24:13150-13157. [PMID: 29936701 PMCID: PMC6242278 DOI: 10.1002/chem.201802880] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/19/2022]
Abstract
Medium-ring natural products exhibit diverse biological activities but such scaffolds are underrepresented in probe and drug discovery efforts due to the limitations of classical macrocyclization reactions. We report herein a tandem oxidative dearomatization-ring-expanding rearomatization (ODRE) reaction that generates benzannulated medium-ring lactams directly from simple bicyclic substrates. The reaction accommodates diverse aryl substrates (haloarenes, aryl ethers, aryl amides, heterocycles) and strategic incorporation of a bridgehead alcohol generates a versatile ketone moiety in the products amenable to downstream modifications. Cheminformatic analysis indicates that these medium rings access regions of chemical space that overlap with related natural products and are distinct from synthetic drugs, setting the stage for their use in discovery screening against novel biological targets.
Collapse
Affiliation(s)
- Tezcan Guney
- Dr. T. Guney, Dr. T. A. W enderski, Prof. Dr. D. S. Tan,
Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, Box 422, New York, New York, 10065, USA
| | - Todd A. Wenderski
- Dr. T. Guney, Dr. T. A. W enderski, Prof. Dr. D. S. Tan,
Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, Box 422, New York, New York, 10065, USA
| | - Matthew W. Boudreau
- M. W. Boudreau, Gerstner Sloan Kettering Summer
Undergraduate Research Program, Memorial Sloan Kettering Cancer Center, 1275 York
Avenue, Box 422, New York, New York, 10065, USA
| | - Derek S. Tan
- Dr. T. Guney, Dr. T. A. W enderski, Prof. Dr. D. S. Tan,
Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, Box 422, New York, New York, 10065, USA
- Prof. Dr. D. S. Tan, Tri-Institutional Research Program,
Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New
York, 10065, USA
| |
Collapse
|
32
|
Komarov IV, Afonin S, Babii O, Schober T, Ulrich AS. Efficiently Photocontrollable or Not? Biological Activity of Photoisomerizable Diarylethenes. Chemistry 2018; 24:11245-11254. [PMID: 29633378 DOI: 10.1002/chem.201801205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 12/14/2022]
Abstract
Diarylethene derivatives, the biological activity of which can be reversibly changed by irradiation with light of different wavelengths, have shown promise as scientific tools and as candidates for photocontrollable drugs. However, examples demonstrating efficient photocontrol of their biological activity are still relatively rare. This concept article discusses the possible reasons for this situation and presents a critical analysis of existing data and hypotheses in this field, in order to extract the design principles enabling the construction of efficient photocontrollable diarylethene-based molecules. Papers addressing biologically relevant interactions between diarylethenes and biomolecules are analyzed; however, in most published cases, the efficiency of photocontrol in living systems remains to be demonstrated. We hope that this article will encourage further discussion of design principles, primarily among pharmacologists, synthetic and medicinal chemists.
Collapse
Affiliation(s)
- Igor V Komarov
- Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 01601, Kyiv, Ukraine.,Lumobiotics GmbH, Auer Str. 2, 76227, Karlsruhe, Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany
| | - Tim Schober
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
33
|
Graham SE, Smith RD, Carlson HA. Predicting Displaceable Water Sites Using Mixed-Solvent Molecular Dynamics. J Chem Inf Model 2018; 58:305-314. [PMID: 29286658 PMCID: PMC6190669 DOI: 10.1021/acs.jcim.7b00268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Water molecules are an important factor in protein-ligand binding. Upon binding of a ligand with a protein's surface, waters can either be displaced by the ligand or may be conserved and possibly bridge interactions between the protein and ligand. Depending on the specific interactions made by the ligand, displacing waters can yield a gain in binding affinity. The extent to which binding affinity may increase is difficult to predict, as the favorable displacement of a water molecule is dependent on the site-specific interactions made by the water and the potential ligand. Several methods have been developed to predict the location of water sites on a protein's surface, but the majority of methods are not able to take into account both protein dynamics and the interactions made by specific functional groups. Mixed-solvent molecular dynamics (MixMD) is a cosolvent simulation technique that explicitly accounts for the interaction of both water and small molecule probes with a protein's surface, allowing for their direct competition. This method has previously been shown to identify both active and allosteric sites on a protein's surface. Using a test set of eight systems, we have developed a method using MixMD to identify conserved and displaceable water sites. Conserved sites can be determined by an occupancy-based metric to identify sites which are consistently occupied by water even in the presence of probe molecules. Conversely, displaceable water sites can be found by considering the sites which preferentially bind probe molecules. Furthermore, the inclusion of six probe types allows the MixMD method to predict which functional groups are capable of displacing which water sites. The MixMD method consistently identifies sites which are likely to be nondisplaceable and predicts the favorable displacement of water sites that are known to be displaced upon ligand binding.
Collapse
Affiliation(s)
- Sarah E. Graham
- Department of Biophysics, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan, 48109-1065
| | - Richard D. Smith
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan, 48109-1065
| | - Heather A. Carlson
- Department of Biophysics, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan, 48109-1065
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan, 48109-1065
| |
Collapse
|
34
|
Abstract
Diverse structural types of natural products and their mimics have served as targets of opportunity in our laboratory to inspire the discovery and development of new methods and strategies to assemble polyfunctional and polycyclic molecular architectures. Furthermore, our efforts toward identifying novel compounds having useful biological properties led to the creation of new targets, many of which posed synthetic challenges that required the invention of new methodology. In this Perspective, selected examples of how we have exploited a diverse range of natural products and their mimics to create, explore, and solve a variety of problems in chemistry and biology will be discussed. The journey was not without its twists and turns, but the unexpected often led to new revelations and insights. Indeed, in our recent excursion into applications of synthetic organic chemistry to neuroscience, avoiding the more-traveled paths was richly rewarding.
Collapse
Affiliation(s)
- Stephen F Martin
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
35
|
Babii O, Afonin S, Schober T, Komarov IV, Ulrich AS. Flexibility vs rigidity of amphipathic peptide conjugates when interacting with lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2505-2515. [PMID: 28958778 PMCID: PMC5667891 DOI: 10.1016/j.bbamem.2017.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/05/2017] [Accepted: 09/21/2017] [Indexed: 01/17/2023]
Abstract
For the first time, the photoisomerization of a diarylethene moiety (DAET) in peptide conjugates was used to probe the effects of molecular rigidity/flexibility on the structure and behavior of model peptides bound to lipid membranes. The DAET unit was incorporated into the backbones of linear peptide-based constructs, connecting two amphipathic sequences (derived from the β-stranded peptide (KIGAKI)3 and/or the α-helical peptide BP100). A β-strand-DAET-α-helix and an α-helix-DAET-α-helix models were synthesized and studied in phospholipid membranes. Light-induced photoisomerization of the linker allowed the generation of two forms of each conjugate, which differed in the conformational mobility of the junction between the α-helical and/or the β-stranded part of these peptidomimetic molecules. A detailed study of their structural, orientational and conformational behavior, both in isotropic solution and in phospholipid model membranes, was carried out using circular dichroism and solid-state 19F-NMR spectroscopy. The study showed that the rigid and flexible forms of the two conjugates had appreciably different structures only when embedded in an anisotropic lipid environment and only in the gel phase. The influence of the rigidity/flexibility of the studied conjugates on the lipid thermotropic phase transition was also investigated by differential scanning calorimetry. Both models were found to destabilize the lamellar gel phases. DAET building blocks can be used to study rigidity/flexibility effects in supramolecular model systems. Photoswitchable DAET linkers perturb only up to 3–4 adjacent amino acid residues. Membrane-bound amphiphilic secondary structure elements exert a negligible influence on each other when linked by DAET. The rigidity of peptide conjugates affected their structural behavior only in the lipid gel phase.
Collapse
Affiliation(s)
- Oleg Babii
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Sergii Afonin
- Karlsruhe Institute of Technology, Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Tim Schober
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Igor V Komarov
- Taras Shevchenko National University of Kyiv, Institute of High Technologies, Volodymyrska 60, 01601 Kyiv, Ukraine.
| | - Anne S Ulrich
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; Karlsruhe Institute of Technology, Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany.
| |
Collapse
|
36
|
Suárez D, Díaz N. Ligand Strain and Entropic Effects on the Binding of Macrocyclic and Linear Inhibitors: Molecular Modeling of Penicillopepsin Complexes. J Chem Inf Model 2017; 57:2045-2055. [PMID: 28737392 DOI: 10.1021/acs.jcim.7b00355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using extensive molecular dynamics simulations, we investigate the structure and dynamics of the complexes formed between penicillopepsin and two peptidomimetic inhibitors: a linear compound, isovaleryl(P4)-valine(P3)-asparagine(P2)-leucine(P1)-phosphonate-phenylalanine(P1'), and its macrocylic analog that includes a methylene bridge between the Asn(P2) and Phe(P1') side chains. The macrocyclic inhibitor, which has a 420-fold stronger affinity than that of the acyclic one, has been considered to lower the entropic penalty for binding. To better understand this binding preference, the solution structure of the inhibitors is studied by molecular dynamics simulations. Subsequently, we assess the influence of the enzyme/inhibitor contacts, the enzyme-induced inhibitor strain, the variation of the ligand configurational entropy and the enzyme reorganization by combining molecular-mechanics Poisson-Boltzmann surface area and normal mode calculations with conformational entropy calculations. We find that there is no relevant entropic stabilization on the binding of the cyclic inhibitor with respect to the acyclic analog because the methylene bridge does not reduce appreciably the conformational flexibility of the free inhibitor. The most important factors explaining the stronger affinity of the macrocyclic inhibitor are the conformational filtering and the lower ligand strain induced by the methylene bridge.
Collapse
Affiliation(s)
- Dimas Suárez
- Departamento de Química Física y Analítica, Universidad de Oviedo , Avda. Julián Claveria 8, 33006 Oviedo, Spain
| | - Natalia Díaz
- Departamento de Química Física y Analítica, Universidad de Oviedo , Avda. Julián Claveria 8, 33006 Oviedo, Spain
| |
Collapse
|
37
|
Barnash KD, Lamb KN, James LI, Frye SV. Peptide Technologies in the Development of Chemical Tools for Chromatin-Associated Machinery. Drug Dev Res 2017. [DOI: 10.1002/ddr.21398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kimberly D. Barnash
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill North Carolina 27599
| | - Kelsey N. Lamb
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill North Carolina 27599
| | - Lindsey I. James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill North Carolina 27599
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill North Carolina 27599
| |
Collapse
|
38
|
Physicochemical properties and antimicrobial activity of new spirocyclic thieno[2,3-d]pyrimidin-4(3H)-one derivatives. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2057-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Maini R, Umemoto S, Suga H. Ribosome-mediated synthesis of natural product-like peptides via cell-free translation. Curr Opin Chem Biol 2016; 34:44-52. [DOI: 10.1016/j.cbpa.2016.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/06/2016] [Indexed: 11/29/2022]
|
40
|
Coutsias EA, Lexa KW, Wester MJ, Pollock SN, Jacobson MP. Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics. J Chem Theory Comput 2016; 12:4674-87. [PMID: 27447193 PMCID: PMC5465426 DOI: 10.1021/acs.jctc.6b00250] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural product and synthetic macrocycles are chemically and topologically diverse. An efficient, accurate, and general method for generating macrocycle conformations would enable structure-based design of macrocycle drugs or host-guest complexes. Computational sampling also provides insight into transiently populated states, complementing crystallographic and NMR data. Here, we report a new algorithm, BRIKARD, that addresses this challenge through computational algebraic geometry and inverse kinematics together with local energy minimization. BRIKARD is demonstrated on 67 diverse macrocycles with structural data, encompassing various ring topologies. We find this approach enumerates diverse structures with macrocyclic RMSD < 1.0 Å to the experimental conformation for 85% of our data set in contrast to success rates of 67-75% with other approaches, while for the subset of 21 more challenging compounds in the data set, these rates are 57% and 10-29%, respectively. Because the algorithm can be efficiently run in parallel on many processors, exhaustive conformational sampling of complex cycles can be obtained in minutes rather than hours: with a 40 processor implementation protocol, BRIKARD samples the conformational diversity of a potential energy landscape in a median of 1.3 minutes of wallclock time, much faster than 3.1-10.3 hours necessary with current programs. By rigorously testing BRIKARD on a broad range of scaffolds with highly complex ring systems, we push the frontiers of macrocycle sampling to encompass multiring compounds, including those with more than 50 ring atoms and up to seven interlaced flexible rings.
Collapse
Affiliation(s)
- Evangelos A. Coutsias
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Katrina W. Lexa
- Department of Pharmaceutical Chemistry, University of California in San Francisco, San Francisco, California 94107, United States
| | - Michael J. Wester
- New Mexico Center for Spatiotemporal Modeling of Cell Signaling, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Sara N. Pollock
- Department of Mathematics, Texas A&M University, College Station, Texas 77843, United States
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California in San Francisco, San Francisco, California 94107, United States
| |
Collapse
|
41
|
Nemmara VV, Nicholas RA, Pratt RF. Synthesis and Kinetic Analysis of Two Conformationally Restricted Peptide Substrates of Escherichia coli Penicillin-Binding Protein 5. Biochemistry 2016; 55:4065-76. [PMID: 27420403 DOI: 10.1021/acs.biochem.6b00576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Escherichia coli PBP5 (penicillin-binding protein 5) is a dd-carboxypeptidase involved in bacterial cell wall maturation. Beyond the C-terminal d-alanyl-d-alanine moiety, PBP5, like the essential high-molecular mass PBPs, has little specificity for other elements of peptidoglycan structure, at least as elicited in vitro by small peptidoglycan fragments. On the basis of the crystal structure of a stem pentapeptide derivative noncovalently bound to E. coli PBP6 (Protein Data Bank entry 3ITB ), closely similar in structure to PBP5, we have modeled a pentapeptide structure at the active site of PBP5. Because the two termini of the pentapeptide are directed into solution in the PBP6 crystal structure, we then modeled a 19-membered cyclic peptide analogue by cross-linking the terminal amines by succinylation. An analogous smaller, 17-membered cyclic peptide, in which the l-lysine of the original was replaced by l-diaminobutyric acid, could also be modeled into the active site. We anticipated that, just as the reactivity of stem peptide fragments of peptidoglycan with PBPs in vivo may be entropically enhanced by immobilization in the polymer, so too would that of our cyclic peptides with respect to their acyclic analogues in vitro. This paper describes the synthesis of the peptides described above that were required to examine this hypothesis and presents an analysis of their structures and reaction kinetics with PBP5.
Collapse
Affiliation(s)
- Venkatesh V Nemmara
- Department of Chemistry, Wesleyan University , Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Robert A Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7365, United States
| | - R F Pratt
- Department of Chemistry, Wesleyan University , Lawn Avenue, Middletown, Connecticut 06459, United States
| |
Collapse
|
42
|
Allen SE, Dokholyan NV, Bowers AA. Dynamic Docking of Conformationally Constrained Macrocycles: Methods and Applications. ACS Chem Biol 2016; 11:10-24. [PMID: 26575401 DOI: 10.1021/acschembio.5b00663] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many natural products consist of large and flexible macrocycles that engage their targets via multiple contact points. This combination of contained flexibility and large contact area often allows natural products to bind at target surfaces rather than deep pockets, making them attractive scaffolds for inhibiting protein-protein interactions and other challenging therapeutic targets. The increasing ability to manipulate such compounds either biosynthetically or via semisynthetic modification means that these compounds can now be considered as starting points for medchem campaigns rather than solely as ends. Modern medchem benefits substantially from rational improvements made on the basis of molecular docking. As such, docking methods have been enhanced in recent years to deal with the complicated binding modalities and flexible scaffolds of macrocyclic natural products and natural product-like structures. Here, we comprehensively review methods for treating and docking these large macrocyclic scaffolds and discuss some of the resulting advances in medicinal chemistry.
Collapse
Affiliation(s)
- Scott E. Allen
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nikolay V. Dokholyan
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
43
|
Hacker DE, Almohaini M, Anbazhagan A, Ma Z, Hartman MCT. Peptide and peptide library cyclization via bromomethylbenzene derivatives. Methods Mol Biol 2015; 1248:105-17. [PMID: 25616329 DOI: 10.1007/978-1-4939-2020-4_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyclization confers several advantages to peptides, cumulatively serving to make them more drug-like. In this protocol, cyclic peptides are generated via bis-alkylation of cysteine-containing peptides using α,α'-dibromo-m-xylene. The reactions are robust and high yielding. Multiple reaction platforms for the application of this versatile strategy are described herein: the cyclization of solid-phase-synthesized peptides, both in solution and on resin, as well as the cyclization of in vitro translated mRNA-peptide fusion libraries on oligo(dT) resin.
Collapse
Affiliation(s)
- David E Hacker
- Department of Chemistry and Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA, 23298-0037, USA
| | | | | | | | | |
Collapse
|
44
|
Nishio M, Umezawa Y, Fantini J, Weiss MS, Chakrabarti P. CH-π hydrogen bonds in biological macromolecules. Phys Chem Chem Phys 2015; 16:12648-83. [PMID: 24836323 DOI: 10.1039/c4cp00099d] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This is a sequel to the previous Perspective "The CH-π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates", which featured in a PCCP themed issue on "Weak Hydrogen Bonds - Strong Effects?": Phys. Chem. Chem. Phys., 2011, 13, 13873-13900. Evidence that weak hydrogen bonds play an enormously important role in chemistry and biochemistry has now accumulated to an extent that the rigid classical concept of hydrogen bonds formulated by Pauling needs to be seriously revised and extended. The concept of a more generalized hydrogen bond definition is indispensable for understanding the folding mechanisms of proteins. The CH-π hydrogen bond, a weak molecular force occurring between a soft acid CH and a soft base π-electron system, among all is one of the most important and plays a functional role in defining the conformation and stability of 3D structures as well as in many molecular recognition events. This concept is also valuable in structure-based drug design efforts. Despite their frequent occurrence in organic molecules and bio-molecules, the importance of CH-π hydrogen bonds is still largely unknown to many chemists and biochemists. Here we present a review that deals with the evidence, nature, characteristics and consequences of the CH-π hydrogen bond in biological macromolecules (proteins, nucleic acids, lipids and polysaccharides). It is hoped that the present Perspective will show the importance of CH-π hydrogen bonds and stimulate interest in the interactions of biological macromolecules, one of the most fascinating fields in bioorganic chemistry. Implication of this concept is enormous and valuable in the scientific community.
Collapse
Affiliation(s)
- Motohiro Nishio
- The CHPI Institute, 705-6-338, Minamioya, Machida-shi, Tokyo 194-0031, Japan.
| | | | | | | | | |
Collapse
|
45
|
Construction and screening of vast libraries of natural product-like macrocyclic peptides using in vitro display technologies. Curr Opin Chem Biol 2015; 24:131-8. [DOI: 10.1016/j.cbpa.2014.11.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/07/2014] [Accepted: 11/14/2014] [Indexed: 11/20/2022]
|
46
|
Wenderski TA, Stratton CF, Bauer RA, Kopp F, Tan DS. Principal component analysis as a tool for library design: a case study investigating natural products, brand-name drugs, natural product-like libraries, and drug-like libraries. Methods Mol Biol 2015; 1263:225-42. [PMID: 25618349 PMCID: PMC4373534 DOI: 10.1007/978-1-4939-2269-7_18] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Principal component analysis (PCA) is a useful tool in the design and planning of chemical libraries. PCA can be used to reveal differences in structural and physicochemical parameters between various classes of compounds by displaying them in a convenient graphical format. Herein, we demonstrate the use of PCA to gain insight into structural features that differentiate natural products, synthetic drugs, natural product-like libraries, and drug-like libraries, and show how the results can be used to guide library design.
Collapse
Affiliation(s)
- Todd A Wenderski
- Molecular Pharmacology & Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 422, New York, NY, 10065, USA
| | | | | | | | | |
Collapse
|
47
|
Pelà M, Saxena P, Luciani R, Santucci M, Ferrari S, Marverti G, Marraccini C, Martello A, Pirondi S, Genovese F, Salvadori S, D’Arca D, Ponterini G, Costi MP, Guerrini R. Optimization of Peptides That Target Human Thymidylate Synthase to Inhibit Ovarian Cancer Cell Growth. J Med Chem 2014; 57:1355-67. [DOI: 10.1021/jm401574p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michela Pelà
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | - Puneet Saxena
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 183, 41125 Modena, Italy
| | - Rosaria Luciani
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 183, 41125 Modena, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 183, 41125 Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 183, 41125 Modena, Italy
| | - Gaetano Marverti
- Department of Biomedical Sciences, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Chiara Marraccini
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 183, 41125 Modena, Italy
| | - Andrea Martello
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 183, 41125 Modena, Italy
| | - Silvia Pirondi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 183, 41125 Modena, Italy
| | - Filippo Genovese
- C.I.G.S. (Centro Interdipartimentale Grandi Strumenti), University of Modena and Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
| | - Severo Salvadori
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara 17-19, 44100 Ferrara, Italy
- LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | - Domenico D’Arca
- Department of Biomedical Sciences, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Glauco Ponterini
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 183, 41125 Modena, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 183, 41125 Modena, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara 17-19, 44100 Ferrara, Italy
- LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| |
Collapse
|
48
|
Carney D, Schmitz KR, Truong J, Sauer RT, Sello JK. Restriction of the conformational dynamics of the cyclic acyldepsipeptide antibiotics improves their antibacterial activity. J Am Chem Soc 2014; 136:1922-9. [PMID: 24422534 PMCID: PMC4004210 DOI: 10.1021/ja410385c] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Indexed: 02/07/2023]
Abstract
The cyclic acyldepsipeptide (ADEP) antibiotics are a new class of antibacterial agents that kill bacteria via a mechanism that is distinct from all clinically used drugs. These molecules bind and dysregulate the activity of the ClpP peptidase. The potential of these antibiotics as antibacterial drugs has been enhanced by the elimination of pharmacological liabilities through medicinal chemistry efforts. Here, we demonstrate that the ADEP conformation observed in the ADEP-ClpP crystal structure is fortified by transannular hydrogen bonding and can be further stabilized by judicious replacement of constituent amino acids within the peptidolactone core structure with more conformationally constrained counterparts. Evidence supporting constraint of the molecule into the bioactive conformer was obtained by measurements of deuterium-exchange kinetics of hydrogens that were proposed to be engaged in transannular hydrogen bonds. We show that the rigidified ADEP analogs bind and activate ClpP at lower concentrations in vitro. Remarkably, these compounds have up to 1200-fold enhanced antibacterial activity when compared to those with the peptidolactone core structure common to two ADEP natural products. This study compellingly demonstrates how rational modulation of conformational dynamics may be used to improve the bioactivities of natural products.
Collapse
Affiliation(s)
- Daniel
W. Carney
- Department
of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| | - Karl R. Schmitz
- Department
of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jonathan
V. Truong
- Department
of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| | - Robert T. Sauer
- Department
of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jason K. Sello
- Department
of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
49
|
Hussain A, Yousuf SK, Mukherjee D. Importance and synthesis of benzannulated medium-sized and macrocyclic rings (BMRs). RSC Adv 2014. [DOI: 10.1039/c4ra07434c] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cyclic molecular frameworks, especially the benzannulated medium-sized and macrocyclic ring (BMR) systems, constitute an integral component of a large number of biologically significant natural or synthetic molecules.
Collapse
Affiliation(s)
- Altaf Hussain
- Acedemy of Scientific and Innovative Research (AcSIR)
- New Delhi, India
- Indian Institute of Integrative Medicine (CSIR-IIIM)
- , India
| | - S. K. Yousuf
- Indian Institute of Integrative Medicine (CSIR-IIIM)
- , India
| | - Debaraj Mukherjee
- Acedemy of Scientific and Innovative Research (AcSIR)
- New Delhi, India
- Indian Institute of Integrative Medicine (CSIR-IIIM)
- , India
| |
Collapse
|
50
|
Martin SF, Clements JH. Correlating structure and energetics in protein-ligand interactions: paradigms and paradoxes. Annu Rev Biochem 2013; 82:267-93. [PMID: 23746256 DOI: 10.1146/annurev-biochem-060410-105819] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting protein-binding affinities of small molecules, even closely related ones, is a formidable challenge in biomolecular recognition and medicinal chemistry. A thermodynamic approach to optimizing affinity in protein-ligand interactions requires knowledge and understanding of how altering the structure of a small molecule will be manifested in protein-binding enthalpy and entropy changes; however, there is a relative paucity of such detailed information. In this review, we examine two strategies commonly used to increase ligand potency. The first of these involves introducing a cyclic constraint to preorganize a small molecule in its biologically active conformation, and the second entails adding nonpolar groups to a molecule to increase the amount of hydrophobic surface that is buried upon binding. Both of these approaches are motivated by paradigms suggesting that protein-binding entropy changes should become more favorable, but paradoxes can emerge that defy conventional wisdom.
Collapse
Affiliation(s)
- Stephen F Martin
- Department of Chemistry and Biochemistry, Institute of Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|