1
|
Hejazi S, Carpentieri A, Marotta A, Restaino OF, AntonellaGiarra, Solimeno I, Zannini D, Mariniello L, Giosafatto CVL, Porta R. Chitosan/poly-γ-glutamic acid crosslinked hydrogels: Characterization and application as bio-glues. Int J Biol Macromol 2024; 277:133653. [PMID: 38992534 DOI: 10.1016/j.ijbiomac.2024.133653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Ecofriendly hydrogels were prepared using chitosan (CH, 285 kDa) and two fractions of low molecular weight microbial poly-γ-glutamic acid (γ-PGA) (R1 and R2 of 59 kDa and 20 kDa, respectively). The hydrogels were synthesized through sustainable physical blending, employing three CH/γ-PGA mass ratios (1/9, 2/8, and 3/7), resulting in the formation of physically crosslinked materials. The six resulting CH/R1 and CH/R2 hydrogels were physico-chemically characterized and the ones with the highest yields (CH/R1 and CH/R2 ratio of 3/7), analyzed for rheological and morphological properties, showed to act as bio-glues on wood and aluminum compared to commercial vinyl- (V1) and acetovinyl (V2) glues. Lap shear analyses of CH/R1 and CH/R2 blends exhibited adhesive strength on wood, as well as adhesive/cohesive failure like that of V1 and V2. Conversely, CH/R2 had higher adhesive strength and adhesive/cohesive failure on aluminum, while CH/R1 showed an adhesion strength with adhesive failure on the metal similar to that of V1 and V2. Scanning electron microscopy revealed the formation of strong physical bonds between the hydrogels and both substrates. Beyond their use as bio-adhesives, the unique properties of the resulting crosslinked materials make them potentially suitable for various applications in paint, coatings, heritage preservation, and medical sector.
Collapse
Affiliation(s)
- Sondos Hejazi
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| | - Angela Marotta
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples "Federico II", 80126 Naples, Italy
| | | | - AntonellaGiarra
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| | - Ilaria Solimeno
- University Suor Orsola Benincasa, Department of Humanities, Via Santa Caterina da Siena, 32, Naples 80132, Italy
| | - Domenico Zannini
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy; Institute for Polymers, Composites, and Biomaterials, National Council of Research, 80078 Pozzuoli, Italy; Institute of Chemical Sciences and Technologies "G. Natta" (SCITEC), National Council of Research, Via De Marini 6, 16149, Genova (GE), Italy
| | - Loredana Mariniello
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| | - C Valeria L Giosafatto
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy.
| | - Raffaele Porta
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| |
Collapse
|
2
|
Li ZL, Lu Q, Honiball JR, Wan SHT, Yeung KWK, Cheung KMC. Mechanical characterization and design of biomaterials for nucleus pulposus replacement and regeneration. J Biomed Mater Res A 2023; 111:1888-1902. [PMID: 37555381 DOI: 10.1002/jbm.a.37593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023]
Abstract
Biomaterials for nucleus pulposus (NP) replacement and regeneration have great potential to restore normal biomechanics in degenerated intervertebral discs following nucleotomy. Mechanical characterizations are essential for assessing the efficacy of biomaterial implants for clinical applications. While traditional compression tests are crucial to quantify various modulus values, relaxation behaviors and fatigue resistance, rheological measurements should also be conducted to investigate the viscoelastic properties, injectability, and overall stability upon deformation. To recapitulate the physiological in vivo environment, the use of spinal models is necessary to evaluate the risk of implant extrusion and the restoration of biomechanics under different loading conditions. When designing devices for NP replacement, injectable materials are ideal to fully fill the nucleus cavity and prevent implant migration. In addition to achieving biocompatibility and desirable mechanical characteristics, biomaterial implants should be optimized to avoid implant extrusion or re-herniation post-operatively. This review discusses the most commonly used testing protocols for assessing mechanical properties of biomaterial implants and serves as reference material for enabling researchers to characterize NP implants through a unified approach whereby newly developed biomaterials may be compared and contrasted to existing devices.
Collapse
Affiliation(s)
- Zhuoqi Lucas Li
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong, China
| | - Qiuji Lu
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong, China
| | - John Robert Honiball
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong, China
| | - Sandra Hiu-Tung Wan
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong, China
| | - Kelvin Wai-Kwok Yeung
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Kenneth Man-Chee Cheung
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Rashid AB, Hoque ME, Kabir N, Rifat FF, Ishrak H, Alqahtani A, Chowdhury MEH. Synthesis, Properties, Applications, and Future Prospective of Cellulose Nanocrystals. Polymers (Basel) 2023; 15:4070. [PMID: 37896314 PMCID: PMC10609962 DOI: 10.3390/polym15204070] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The exploration of nanocellulose has been aided by rapid nanotechnology and material science breakthroughs, resulting in their emergence as desired biomaterials. Nanocellulose has been thoroughly studied in various disciplines, including renewable energy, electronics, environment, food production, biomedicine, healthcare, and so on. Cellulose nanocrystal (CNC) is a part of the organic crystallization of macromolecular compounds found in bacteria's capsular polysaccharides and plant fibers. Owing to numerous reactive chemical groups on its surface, physical adsorption, surface grating, and chemical vapor deposition can all be used to increase its performance, which is the key reason for its wide range of applications. Cellulose nanocrystals (CNCs) have much potential as suitable matrices and advanced materials, and they have been utilized so far, both in terms of modifying and inventing uses for them. This work reviews CNC's synthesis, properties and various industrial applications. This review has also discussed the widespread applications of CNC as sensor, acoustic insulator, and fire retardant material.
Collapse
Affiliation(s)
- Adib Bin Rashid
- Industrial and Production Engineering Department, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| | - Nahiyan Kabir
- Industrial and Production Engineering Department, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| | - Fahim Ferdin Rifat
- Industrial and Production Engineering Department, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| | - Hasin Ishrak
- Industrial and Production Engineering Department, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| | - Abdulrahman Alqahtani
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City 11952, Saudi Arabia
| | | |
Collapse
|
4
|
Ong XR, Chen AX, Li N, Yang YY, Luo HK. Nanocellulose: Recent Advances Toward Biomedical Applications. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xuan-Ran Ong
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| | - Adrielle Xianwen Chen
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Ning Li
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Yi Yan Yang
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - He-Kuan Luo
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| |
Collapse
|
5
|
Subbotina E, Ram F, Dvinskikh SV, Berglund LA, Olsén P. Aqueous synthesis of highly functional, hydrophobic, and chemically recyclable cellulose nanomaterials through oxime ligation. Nat Commun 2022; 13:6924. [PMID: 36376337 PMCID: PMC9663568 DOI: 10.1038/s41467-022-34697-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cellulose nanofibril (CNF) materials are candidates for the sustainable development of high mechanical performance nanomaterials. Due to inherent hydrophilicity and limited functionality range, most applications require chemical modification of CNF. However, targeted transformations directly on CNF are cumbersome due to the propensity of CNF to aggregate in non-aqueous solvents at high concentrations, complicating the choice of suitable reagents and requiring tedious separations of the final product. This work addresses this challenge by developing a general, entirely water-based, and experimentally simple methodology for functionalizing CNF, providing aliphatic, allylic, propargylic, azobenzylic, and substituted benzylic functional groups. The first step is NaIO4 oxidation to dialdehyde-CNF in the wet cake state, followed by oxime ligation with O-substituted hydroxylamines. The increased hydrolytic stability of oximes removes the need for reductive stabilization as often required for the analogous imines where aldehyde groups react with amines in water. Overall, the process provides a tailored degree of nanofibril functionalization (2-4.5 mmol/g) with the possible reversible detachment of the functionality under mildly acidic conditions, resulting in the reformation of dialdehyde CNF. The modified CNF materials were assessed for potential applications in green electronics and triboelectric nanogenerators.
Collapse
Affiliation(s)
- Elena Subbotina
- grid.5037.10000000121581746Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Farsa Ram
- grid.5037.10000000121581746Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Sergey V. Dvinskikh
- grid.5037.10000000121581746Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 100 44 Stockholm, Sweden
| | - Lars A. Berglund
- grid.5037.10000000121581746Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Peter Olsén
- grid.5037.10000000121581746Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| |
Collapse
|
6
|
Surendran G, Sherje AP. Cellulose nanofibers and composites: An insight on basics and biomedical applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Mishra PK, Pavelek O, Rasticova M, Mishra H, Ekielski A. Nanocellulose-Based Biomedical Scaffolds in Future Bioeconomy: A Techno-Legal Assessment of the State-of-the-Art. Front Bioeng Biotechnol 2022; 9:789603. [PMID: 35223812 PMCID: PMC8873513 DOI: 10.3389/fbioe.2021.789603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022] Open
Abstract
Nanocellulose is a broader term used for nano-scaled cellulosic crystal and/or fibrils of plant or animal origin. Where bacterial nanocellulose was immediately accepted in biomedicine due to its “cleaner” nature, the plant-based nanocellulose has seen several roadblocks. This manuscript assesses the technological aspects (chemistry of cellulose, nanocellulose producing methods, its purity, and biological properties including toxicity and suggested applications in final drug formulation) along with legal aspects in REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals) regulation by the European Union, EMA (European Medicine Agency). The botanical biomass processing methods leading to the nanoscale impurity (lignin and others) on nanocellulose surface, along with surface modification with harsh acid treatments are found to be two major sources of “impurity” in botanical biomass derived nanocellulose. The status of nanocellulose under the light of REACH regulation along with EMA has been covered. The provided information can be directly used by material and biomedical scientists while developing new nanocellulose production strategies as well as formulation design for European markets.
Collapse
Affiliation(s)
- Pawan Kumar Mishra
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
- *Correspondence: Pawan Kumar Mishra,
| | - Ondrej Pavelek
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
| | - Martina Rasticova
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
| | - Harshita Mishra
- Smart Society Research Team, Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
| | - Adam Ekielski
- Department of Production Engineering, Warsaw University Of Life Sciences, Warsaw, Poland
| |
Collapse
|
8
|
|
9
|
Hu S, Zhi Y, Shan S, Ni Y. Research progress of smart response composite hydrogels based on nanocellulose. Carbohydr Polym 2022; 275:118741. [PMID: 34742444 DOI: 10.1016/j.carbpol.2021.118741] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
In recent years, smart-responsive nanocellulose composite hydrogels have attracted extensive attention due to their unique porous substrate, hydrophilic properties, biocompatibility and stimulus responsiveness. At present, the research on smart response nanocellulose composite hydrogel mainly focuses on the selection of composite materials and the construction of internal chemical bonds. The common composite materials and connection methods used for preparation of smart response nanocellulose composite hydrogels are compared according to the different types of response sources such as temperature, pH and so on. The response mechanisms and the application prospects of different response types of nanocellulose composite hydrogels are summarized, and the transformation of internal ions, functional groups and chemical bonds, as well as the changes in mechanical properties such as modulus and strength are discussed. Finally, the shortcomings and application prospects of nanocellulose smart response composite hydrogels are summarized and prospected.
Collapse
Affiliation(s)
- Shuai Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Yonghao Ni
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton E3B 5A3, Canada
| |
Collapse
|
10
|
Saddique A, Cheong IW. Recent advances in three-dimensional bioprinted nanocellulose-based hydrogel scaffolds for biomedical applications. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0926-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Shan S, Sun XF, Xie Y, Li W, Ji T. High-Performance Hydrogel Adsorbent Based on Cellulose, Hemicellulose, and Lignin for Copper(II) Ion Removal. Polymers (Basel) 2021; 13:3063. [PMID: 34577964 PMCID: PMC8473214 DOI: 10.3390/polym13183063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
Cellulose, hemicellulose, and lignin are three kinds of biopolymer in lignocellulosic biomass, and the utilization of the three biopolymers to synthesize hydrogel adsorbent could protect the environment and enhance the economic value of the biomass. A novel hydrogel adsorbent was prepared using cellulose, lignin, and hemicellulose of wheat straw by a one-pot method, and the adsorbent showed excellent adsorption performance for copper(II) ions. Scanning electron microscopy and Fourier transform infrared spectroscopy analysis showed that the prepared straw-biopolymer-based hydrogel had porous structure, and cellulose fibrils had crosslinked with lignin and hemicellulose by poly(acrylic acid) chains. The effects of contact time, initial concentration, and temperature on the copper(II) ion removal using the prepared hydrogels were investigated, and the obtained results indicated that the adsorption kinetics conformed to the pseudo-second-order and Elovich equation models and the adsorption isotherm was in accord with the Freundlich model. The adsorption thermodynamics study indicated that the adsorption process was spontaneous and accompanied by heat. X-ray photoelectron spectroscopy analysis revealed that the adsorption behavior resulted from ion exchange. The prepared hydrogel based on cellulose, hemicellulose, and lignin could be used for water treatment and soil remediation because of its high performances of excellent heavy metal ion removal and water retention.
Collapse
Affiliation(s)
- Shuang Shan
- Shenzhen Research Institute, Northwestern Polytechnical University, Shenzhen 518057, China;
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (Y.X.); (T.J.)
| | - Xiao-Feng Sun
- Shenzhen Research Institute, Northwestern Polytechnical University, Shenzhen 518057, China;
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (Y.X.); (T.J.)
| | - Yangyang Xie
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (Y.X.); (T.J.)
| | - Wenbo Li
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China;
| | - Tiezheng Ji
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (Y.X.); (T.J.)
| |
Collapse
|
12
|
Chitosan-anthracene hydrogels as controlled stiffening networks. Int J Biol Macromol 2021; 185:165-175. [PMID: 34146562 DOI: 10.1016/j.ijbiomac.2021.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022]
Abstract
In this study, we report the synthesis of single and dual-crosslinked anthracene-functional chitosan-based hydrogels in the absence of toxic initiators. Single crosslinking was achieved through dimerization of anthracene, whereas dual-crosslinked hydrogel was formed through dimerization of anthracene and free radical photopolymerization of methacrylated-chitosan in the presence of non-toxic initiator riboflavin, a well-known vitamin B2. Both single and dual-crosslinked hydrogels were found to be elastic, as was determined through rheological analysis. We observed that the dual-crosslinked hydrogels exhibited higher Young's modulus than the single-crosslinked hydrogels, where the modulus for single and dual-crosslinked hydrogels were measured as 9.2 ± 1.0 kPa and 26 ± 2.8 kPa, respectively resulting in significantly high volume of cells in dual-crosslinked hydrogel (2.2 × 107 μm3) compared to single-crosslinked (4.9 × 106 μm3). Furthermore, we investigated the cytotoxicity of both hydrogels towards 3T3-J2 fibroblast cells through CellTiter-Glo assay. Finally, immunofluorescence staining was carried out to evaluate the impact of hydrogel modulus on cell morphology. This study comprehensively presents functionalization of chitosan with anthracene, uses nontoxic initiator riboflavin, modulates the degree of crosslinking through dimerization of anthracene and free radical photopolymerization, and further modulates cell behavior through the alterations of hydrogel properties.
Collapse
|
13
|
Kamdem Tamo A, Doench I, Walter L, Montembault A, Sudre G, David L, Morales-Helguera A, Selig M, Rolauffs B, Bernstein A, Hoenders D, Walther A, Osorio-Madrazo A. Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues. Polymers (Basel) 2021; 13:1663. [PMID: 34065272 PMCID: PMC8160918 DOI: 10.3390/polym13101663] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Soft tissues are commonly fiber-reinforced hydrogel composite structures, distinguishable from hard tissues by their low mineral and high water content. In this work, we proposed the development of 3D printed hydrogel constructs of the biopolymers chitosan (CHI) and cellulose nanofibers (CNFs), both without any chemical modification, which processing did not incorporate any chemical crosslinking. The unique mechanical properties of native cellulose nanofibers offer new strategies for the design of environmentally friendly high mechanical performance composites. In the here proposed 3D printed bioinspired CNF-filled CHI hydrogel biomaterials, the chitosan serves as a biocompatible matrix promoting cell growth with balanced hydrophilic properties, while the CNFs provide mechanical reinforcement to the CHI-based hydrogel. By means of extrusion-based printing (EBB), the design and development of 3D functional hydrogel scaffolds was achieved by using low concentrations of chitosan (2.0-3.0% (w/v)) and cellulose nanofibers (0.2-0.4% (w/v)). CHI/CNF printed hydrogels with good mechanical performance (Young's modulus 3.0 MPa, stress at break 1.5 MPa, and strain at break 75%), anisotropic microstructure and suitable biological response, were achieved. The CHI/CNF composition and processing parameters were optimized in terms of 3D printability, resolution, and quality of the constructs (microstructure and mechanical properties), resulting in good cell viability. This work allows expanding the library of the so far used biopolymer compositions for 3D printing of mechanically performant hydrogel constructs, purely based in the natural polymers chitosan and cellulose, offering new perspectives in the engineering of mechanically demanding hydrogel tissues like intervertebral disc (IVD), cartilage, meniscus, among others.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Laboratory for Sensors, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.); (L.W.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Ingo Doench
- Laboratory for Sensors, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.); (L.W.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Lukas Walter
- Laboratory for Sensors, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.); (L.W.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Alexandra Montembault
- Ingénierie des Matériaux Polymères IMP UMR 5223—CNRS, Université Claude Bernard Lyon 1, Université de Lyon, CEDEX, 69622 Villeurbanne, France; (A.M.); (G.S.); (L.D.)
| | - Guillaume Sudre
- Ingénierie des Matériaux Polymères IMP UMR 5223—CNRS, Université Claude Bernard Lyon 1, Université de Lyon, CEDEX, 69622 Villeurbanne, France; (A.M.); (G.S.); (L.D.)
| | - Laurent David
- Ingénierie des Matériaux Polymères IMP UMR 5223—CNRS, Université Claude Bernard Lyon 1, Université de Lyon, CEDEX, 69622 Villeurbanne, France; (A.M.); (G.S.); (L.D.)
| | - Aliuska Morales-Helguera
- Chemical Bioactive Center CBQ, Molecular Simulation and Drug Design Group, Central University of Las Villas, Santa Clara 50400, Cuba;
| | - Mischa Selig
- Center for Tissue Replacement, Regeneration & Neogenesis—G.E.R.N., Department of Orthopedics and Trauma Surgery, University of Freiburg, 79108 Freiburg, Germany; (M.S.); (B.R.); (A.B.)
| | - Bernd Rolauffs
- Center for Tissue Replacement, Regeneration & Neogenesis—G.E.R.N., Department of Orthopedics and Trauma Surgery, University of Freiburg, 79108 Freiburg, Germany; (M.S.); (B.R.); (A.B.)
| | - Anke Bernstein
- Center for Tissue Replacement, Regeneration & Neogenesis—G.E.R.N., Department of Orthopedics and Trauma Surgery, University of Freiburg, 79108 Freiburg, Germany; (M.S.); (B.R.); (A.B.)
| | - Daniel Hoenders
- Department of Chemistry, University Mainz, 55128 Mainz, Germany; (D.H.); (A.W.)
| | - Andreas Walther
- Department of Chemistry, University Mainz, 55128 Mainz, Germany; (D.H.); (A.W.)
| | - Anayancy Osorio-Madrazo
- Laboratory for Sensors, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.); (L.W.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
14
|
Li MC, Wu Q, Moon RJ, Hubbe MA, Bortner MJ. Rheological Aspects of Cellulose Nanomaterials: Governing Factors and Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006052. [PMID: 33870553 DOI: 10.1002/adma.202006052] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/01/2020] [Indexed: 05/20/2023]
Abstract
Cellulose nanomaterials (CNMs), mainly including nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNCs), have attained enormous interest due to their sustainability, biodegradability, biocompatibility, nanoscale dimensions, large surface area, facile modification of surface chemistry, as well as unique optical, mechanical, and rheological performance. One of the most fascinating properties of CNMs is their aqueous suspension rheology, i.e., CNMs helping create viscous suspensions with the formation of percolation networks and chemical interactions (e.g., van der Waals forces, hydrogen bonding, electrostatic attraction/repulsion, and hydrophobic attraction). Under continuous shearing, CNMs in an aqueous suspension can align along the flow direction, producing shear-thinning behavior. At rest, CNM suspensions regain some of their initial structure immediately, allowing rapid recovery of rheological properties. These unique flow features enable CNMs to serve as rheological modifiers in a wide range of fluid-based applications. Herein, the dependence of the rheology of CNM suspensions on test protocols, CNM inherent properties, suspension environments, and postprocessing is systematically described. A critical overview of the recent progress on fluid applications of CNMs as rheology modifiers in some emerging industrial sectors is presented as well. Future perspectives in the field are outlined to guide further research and development in using CNMs as the next generation rheological modifiers.
Collapse
Affiliation(s)
- Mei-Chun Li
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA
| | - Robert J Moon
- Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
| | - Martin A Hubbe
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695-8005, USA
| | - Michael J Bortner
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, 24061, USA
| |
Collapse
|
15
|
Tortorella S, Vetri Buratti V, Maturi M, Sambri L, Comes Franchini M, Locatelli E. Surface-Modified Nanocellulose for Application in Biomedical Engineering and Nanomedicine: A Review. Int J Nanomedicine 2020; 15:9909-9937. [PMID: 33335392 PMCID: PMC7737557 DOI: 10.2147/ijn.s266103] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/07/2020] [Indexed: 01/22/2023] Open
Abstract
Presently, a plenty of concerns related to the environment are due to the overuse of petroleum-based chemicals and products; the synthesis of functional materials, starting from the natural sources, is the current trend in research. The interest for nanocellulose has recently increased in a huge range of fields, from the material science to the biomedical engineering. Nanocellulose gained this leading role because of several reasons: its natural abundance on this planet, the excellent mechanical and optical features, the good biocompatibility and the attractive capability of undergoing surface chemical modifications. Nanocellulose surface tuning techniques are adopted by the high reactivity of the hydroxyl groups available; the chemical modifications are mainly performed to introduce either charged or hydrophobic moieties that include amination, esterification, oxidation, silylation, carboxymethylation, epoxidation, sulfonation, thiol- and azido-functional capability. Despite the several already published papers regarding nanocellulose, the aim of this review involves discussing the surface chemical functional capability of nanocellulose and the subsequent applications in the main areas of nanocellulose research, such as drug delivery, biosensing/bioimaging, tissue regeneration and bioprinting, according to these modifications. The final goal of this review is to provide a novel and unusual overview on this topic that is continuously under expansion for its intrinsic sophisticated properties.
Collapse
Affiliation(s)
- Silvia Tortorella
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Veronica Vetri Buratti
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Mirko Maturi
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Letizia Sambri
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Erica Locatelli
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| |
Collapse
|
16
|
Hasan N, Rahman L, Kim SH, Cao J, Arjuna A, Lallo S, Jhun BH, Yoo JW. Recent advances of nanocellulose in drug delivery systems. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00499-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Yan G, Chen B, Zeng X, Sun Y, Tang X, Lin L. Recent advances on sustainable cellulosic materials for pharmaceutical carrier applications. Carbohydr Polym 2020; 244:116492. [DOI: 10.1016/j.carbpol.2020.116492] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
|
18
|
Liu H, Liu K, Han X, Xie H, Si C, Liu W, Bae Y. Cellulose Nanofibrils-based Hydrogels for Biomedical Applications: Progresses and Challenges. Curr Med Chem 2020; 27:4622-4646. [DOI: 10.2174/0929867327666200303102859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 12/15/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023]
Abstract
Background:
Cellulose Nanofibrils (CNFs) are natural nanomaterials with nanometer
dimensions. Compared with ordinary cellulose, CNFs own good mechanical properties, large specific
surface areas, high Young's modulus, strong hydrophilicity and other distinguishing characteristics,
which make them widely used in many fields. This review aims to introduce the preparation
of CNFs-based hydrogels and their recent biomedical application advances.
Methods:
By searching the recent literatures, we have summarized the preparation methods of
CNFs, including mechanical methods and chemical mechanical methods, and also introduced the
fabrication methods of CNFs-based hydrogels, including CNFs cross-linked with metal ion and
with polymers. In addition, we have summarized the biomedical applications of CNFs-based hydrogels,
including scaffold materials and wound dressings.
Results:
CNFs-based hydrogels are new types of materials that are non-toxic and display a certain
mechanical strength. In the tissue scaffold application, they can provide a micro-environment for
the damaged tissue to repair and regenerate it. In wound dressing applications, it can fit the wound
surface and protect the wound from the external environment, thereby effectively promoting the
healing of skin tissue.
Conclusion:
By summarizing the preparation and application of CNFs-based hydrogels, we have
analyzed and forecasted their development trends. At present, the research of CNFs-based hydrogels
is still in the laboratory stage. It needs further exploration to be applied in practice. The development
of medical hydrogels with high mechanical properties and biocompatibility still poses significant
challenges.
Collapse
Affiliation(s)
- Huayu Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiao Han
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hongxiang Xie
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Youngsoo Bae
- Jiangxi Academy of Forestry, Nanchang 33032, China
| |
Collapse
|
19
|
Kamdem Tamo A, Doench I, Morales Helguera A, Hoenders D, Walther A, Madrazo AO. Biodegradation of Crystalline Cellulose Nanofibers by Means of Enzyme Immobilized-Alginate Beads and Microparticles. Polymers (Basel) 2020; 12:E1522. [PMID: 32660071 PMCID: PMC7407417 DOI: 10.3390/polym12071522] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Recent advances in nanocellulose technology have revealed the potential of crystalline cellulose nanofibers to reinforce materials which are useful for tissue engineering, among other functions. However, the low biodegradability of nanocellulose can possess some problems in biomedical applications. In this work, alginate particles with encapsulated enzyme cellulase extracted from Trichoderma reesei were prepared for the biodegradation of crystalline cellulose nanofibers, which carrier system could be incorporated in tissue engineering biomaterials to degrade the crystalline cellulose nanoreinforcement in situ and on-demand during tissue regeneration. Both alginate beads and microparticles were processed by extrusion-dropping and inkjet-based methods, respectively. Processing parameters like the alginate concentration, concentration of ionic crosslinker Ca2+, hardening time, and ionic strength of the medium were varied. The hydrolytic activity of the free and encapsulated enzyme was evaluated for unmodified (CNFs) and TEMPO-oxidized cellulose nanofibers (TOCNFs) in suspension (heterogeneous conditions); in comparison to solubilized cellulose derivatives (homogeneous conditions). The enzymatic activity was evaluated for temperatures between 25-75 °C, pH range from 3.5 to 8.0 and incubation times until 21 d. Encapsulated cellulase in general displayed higher activity compared to the free enzyme over wider temperature and pH ranges and for longer incubation times. A statistical design allowed optimizing the processing parameters for the preparation of enzyme-encapsulated alginate particles presenting the highest enzymatic activity and sphericity. The statistical analysis yielded the optimum particles characteristics and properties by using a formulation of 2% (w/v) alginate, a coagulation bath of 0.2 M CaCl2 and a hardening time of 1 h. In homogeneous conditions the highest catalytic activity was obtained at 55 °C and pH 4.8. These temperature and pH values were considered to study the biodegradation of the crystalline cellulose nanofibers in suspension. The encapsulated cellulase preserved its activity for several weeks over that of the free enzyme, which latter considerably decreased and practically showed deactivation after just 10 d. The alginate microparticles with their high surface area-to-volume ratio effectively allowed the controlled release of the encapsulated enzyme and thereby the sustained hydrolysis of the cellulose nanofibers. The relative activity of cellulase encapsulated in the microparticles leveled-off at around 60% after one day and practically remained at that value for three weeks.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; (D.H.); (A.W.)
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Ingo Doench
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; (D.H.); (A.W.)
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Aliuska Morales Helguera
- Chemical Bioactive Center CBQ, Molecular Simulation and Drug Design Group, Central University of Las Villas, Santa Clara 54830, Cuba;
| | - Daniel Hoenders
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; (D.H.); (A.W.)
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas Walther
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; (D.H.); (A.W.)
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Anayancy Osorio Madrazo
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; (D.H.); (A.W.)
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
20
|
Doench I, Ahn Tran T, David L, Montembault A, Viguier E, Gorzelanny C, Sudre G, Cachon T, Louback-Mohamed M, Horbelt N, Peniche-Covas C, Osorio-Madrazo A. Cellulose Nanofiber-Reinforced Chitosan Hydrogel Composites for Intervertebral Disc Tissue Repair. Biomimetics (Basel) 2019; 4:E19. [PMID: 31105204 PMCID: PMC6477598 DOI: 10.3390/biomimetics4010019] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/18/2022] Open
Abstract
The development of non-cellularized composites of chitosan (CHI) hydrogels, filled with cellulose nanofibers (CNFs) of the type nanofibrillated cellulose, was proposed for the repair and regeneration of the intervertebral disc (IVD) annulus fibrosus (AF) tissue. With the achievement of CNF-filled CHI hydrogels, biomaterial-based implants were designed to restore damaged/degenerated discs. The structural, mechanical and biological properties of the developed hydrogel composites were investigated. The neutralization of weakly acidic aqueous CNF/CHI viscous suspensions in NaOH yielded composites of physical hydrogels in which the cellulose nanofibers reinforced the CHI matrix, as investigated by means of microtensile testing under controlled humidity. We assessed the suitability of the achieved biomaterials for intervertebral disc tissue engineering in ex vivo experiments using spine pig models. Cellulose nanofiber-filled chitosan hydrogels can be used as implants in AF tissue defects to restore IVD biomechanics and constitute contention patches against disc nucleus protrusion while serving as support for IVD regeneration.
Collapse
Affiliation(s)
- Ingo Doench
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
| | - Tuan Ahn Tran
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
| | - Laurent David
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne CEDEX, France.
| | - Alexandra Montembault
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne CEDEX, France.
| | - Eric Viguier
- Interaction Cells Environment (ICE), VetAgro Sup, Université de Lyon, 69280 Marcy l'Etoile, France.
| | - Christian Gorzelanny
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Guillaume Sudre
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne CEDEX, France.
| | - Thibaut Cachon
- Interaction Cells Environment (ICE), VetAgro Sup, Université de Lyon, 69280 Marcy l'Etoile, France.
| | - Malika Louback-Mohamed
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne CEDEX, France.
| | - Niels Horbelt
- Max-Planck Institute of Colloids and Interfaces, Biomaterials Department, Science Park Golm, 14476 Potsdam, Germany.
| | | | - Anayancy Osorio-Madrazo
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
21
|
Synthesis of Cellulose-Based Hydrogels: Preparation, Formation, Mixture, and Modification. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
|
23
|
Nanocellulose Composite Biomaterials in Industry and Medicine. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Surface Functionalization of Nanocellulose-Based Hydrogels. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Doench I, Torres-Ramos MEW, Montembault A, Nunes de Oliveira P, Halimi C, Viguier E, Heux L, Siadous R, Thiré RMSM, Osorio-Madrazo A. Injectable and Gellable Chitosan Formulations Filled with Cellulose Nanofibers for Intervertebral Disc Tissue Engineering. Polymers (Basel) 2018; 10:E1202. [PMID: 30961127 PMCID: PMC6290636 DOI: 10.3390/polym10111202] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
The development of non-cellularized injectable suspensions of viscous chitosan (CHI) solutions (1.7⁻3.3% (w/w)), filled with cellulose nanofibers (CNF) (0.02⁻0.6% (w/w)) of the type nanofibrillated cellulose, was proposed for viscosupplementation of the intervertebral disc nucleus pulposus tissue. The achievement of CNF/CHI formulations which can gel in situ at the disc injection site constitutes a minimally-invasive approach to restore damaged/degenerated discs. We studied physico-chemical aspects of the sol and gel states of the CNF/CHI formulations, including the rheological behavior in relation to injectability (sol state) and fiber mechanical reinforcement (gel state). CNF-CHI interactions could be evidenced by a double flow behavior due to the relaxation of the CHI polymer chains and those interacting with the CNFs. At high shear rates resembling the injection conditions with needles commonly used in surgical treatments, both the reference CHI viscous solutions and those filled with CNFs exhibited similar rheological behavior. The neutralization of the flowing and weakly acidic CNF/CHI suspensions yielded composite hydrogels in which the nanofibers reinforced the CHI matrix. We performed evaluations in relation to the biomedical application, such as the effect of the intradiscal injection of the CNF/CHI formulation in pig and rabbit spine models on disc biomechanics. We showed that the injectable formulations became hydrogels in situ after intradiscal gelation, due to CHI neutralization occurring in contact with the body fluids. No leakage of the injectate through the injection canal was observed and the gelled formulation restored the disc height and loss of mechanical properties, which is commonly related to disc degeneration.
Collapse
Affiliation(s)
- Ingo Doench
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
| | - Maria E W Torres-Ramos
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
| | - Alexandra Montembault
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne Cedex, France.
| | - Paula Nunes de Oliveira
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne Cedex, France.
| | - Celia Halimi
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne Cedex, France.
| | - Eric Viguier
- VetAgro Sup, Veterinary School, University of Lyon, 69280 Marcy l'Etoile, France.
| | - Laurent Heux
- Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS UPR 5301 Université Grenoble-Alpes, 38041 Grenoble, France.
| | - Robin Siadous
- INSERM U1026 Bioingénierie tissulaire, Université Bordeaux, 33000 Bordeaux, France.
| | - Rossana M S M Thiré
- COPPE/Program of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro, P.O. Box 68505, 21941-972 Rio de Janeiro, Brazil.
| | - Anayancy Osorio-Madrazo
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
26
|
Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials. INT J POLYM SCI 2018. [DOI: 10.1155/2018/7923068] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The recent strategies in preparation of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) were described. CNCs and CNFs are two types of nanocelluloses (NCs), and they possess various superior properties, such as large specific surface area, high tensile strength and stiffness, low density, and low thermal expansion coefficient. Due to various applications in biomedical engineering, food, sensor, packaging, and so on, there are many studies conducted on CNCs and CNFs. In this review, various methods of preparation of CNCs and CNFs are summarized, including mechanical, chemical, and biological methods. The methods of pretreatment of cellulose are described in view of the benefits to fibrillation.
Collapse
|
27
|
Xue Y, Mou Z, Xiao H. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. NANOSCALE 2017; 9:14758-14781. [PMID: 28967940 DOI: 10.1039/c7nr04994c] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanocellulose, extracted from the most abundant biomass material cellulose, has proved to be an environmentally friendly material with excellent mechanical performance owing to its unique nano-scaled structure, and has been used in a variety of applications as engineering and functional materials. The great biocompatibility and biodegradability, in particular, render nanocellulose promising in biomedical applications. In this review, the structure, treatment technology and properties of three different nanocellulose categories, i.e., nanofibrillated cellulose (NFC), nanocrystalline cellulose (NCC) and bacterial nanocellulose (BNC), are introduced and compared. The cytotoxicity, biocompatibility and frontier applications in biomedicine of the three nanocellulose categories were the focus and are detailed in each section. Future prospects concerning the cytotoxicity, applications and industrial production of nanocellulose are also discussed in the last section.
Collapse
Affiliation(s)
- Yan Xue
- School of Chemistry and Chemical Engineering, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, China.
| | | | | |
Collapse
|
28
|
Xin PP, Huang YB, Hse CY, Cheng HN, Huang C, Pan H. Modification of Cellulose with Succinic Anhydride in TBAA/DMSO Mixed Solvent under Catalyst-Free Conditions. MATERIALS 2017; 10:ma10050526. [PMID: 28772885 PMCID: PMC5459046 DOI: 10.3390/ma10050526] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 11/16/2022]
Abstract
Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS) value of 1.191 was obtained in a 10 wt% TBAA/DMSO mixed solvent at 60 °C for 60 min, and the molar ratio of SA/AGU was 6/1. The molar ratio of SA/AGU and the TBAA dosage showed a significant influence on the reaction. The succinoylated cellulose was characterized by ATR-FTIR, TGA, XRD, solid state CP/MAS 13C NMR spectroscopy (CP/MAS 13C NMR), and SEM. Moreover, the modified cellulose was applied for the adsorption of Cu2+ and Cd2+, and both the DS values of modified cellulose and pH of the heavy metal ion solutions affected the adsorption capacity of succinylated cellulose. The highest capacity for Cu2+ and Cd2+ adsorption was 42.05 mg/g and 49.0 mg/g, respectively.
Collapse
Affiliation(s)
- Ping-Ping Xin
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Yao-Bing Huang
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Chung-Yun Hse
- Southern Research Station, USDA Forest Service, Pineville, LA, 71360, USA.
| | - Huai N Cheng
- USDA Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA.
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Hui Pan
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
29
|
Preparation and Characterization of Nanofibrillated Cellulose from Bamboo Fiber via Ultrasonication Assisted by Repulsive Effect. INT J POLYM SCI 2017. [DOI: 10.1155/2017/9850814] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanofibrillated celluloses (NFCs) have recently drawn much attention because of their exceptional physicochemical properties. However, the existing preparation procedures either produce low yields or severely degrade the cellulose and, moreover, are not energy efficient. The purpose of this study was to develop a novel process using ultrasonic homogenization to isolate fibrils from bamboo fiber (BF) with the assistance of negatively charged entities. The obtained samples were characterized by the degree of substitution (DS) of carboxymethyl, Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis, and transmission electron microscopy (TEM). The results showed that an NFC yield could be obtained above 70% through this route. The enzyme hydrolysis could enhance the surface charge of the fiber, and mechanical activation facilitates an increase in the DS. The disintegrating efficiency of the cellulose fibrils significantly depended on the input power of ultrasonication and the DS. FT-IR spectra confirmed the occurrence of the carboxymethylation reaction based on the appearance of the characteristic signal for the carboxyl group. From XRD analysis, it was observed that the presence of the carboxyl groups makes the isolation more efficient attributed to the ionic repulsion between the carboxylate groups of the cellulose chains.
Collapse
|
30
|
Liu J, Cheng F, Grénman H, Spoljaric S, Seppälä J, E Eriksson J, Willför S, Xu C. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture. Carbohydr Polym 2016; 148:259-71. [PMID: 27185139 DOI: 10.1016/j.carbpol.2016.04.064] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/02/2016] [Accepted: 04/14/2016] [Indexed: 11/26/2022]
Abstract
Swollen three-dimensional nanocellulose films and their resultant aerogels were prepared as scaffolds towards tissue engineering application. The nanocellulose hydrogels with various swelling degree (up to 500 times) and the resultant aerogels with desired porosity (porosity up to 99.7% and specific surface area up to 308m(2)/g) were prepared by tuning the nanocellulose charge density, the swelling media conditions, and the material processing approach. Representative cell-based assays were applied to assess the material biocompatibility and efficacy of the human extracellular matrix (ECM)-mimicking nanocellulose scaffolds. The effects of charge density and porosity of the scaffolds on the biological tests were investigated for the first time. The results reveal that the nanocellulose scaffolds could promote the survival and proliferation of tumor cells, and enhance the transfection of exogenous DNA into the cells. These results suggest the usefulness of the nanocellulose-based matrices in supporting crucial cellular processes during cell growth and proliferation.
Collapse
Affiliation(s)
- Jun Liu
- Johan Gadolin Process Chemistry Centre, c/o Laboratory Wood and Paper Chemistry, Åbo Akademi University, Porthansgatan 3, Åbo/Turku, 20500, Finland.
| | - Fang Cheng
- Department of Biosciences, Åbo Akademi University, Turku, 20520, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, 20521, Finland
| | - Henrik Grénman
- Johan Gadolin Process Chemistry Centre, Laboratory of Industrial Chemistry and Reaction Engineering, Åbo Akademi University, Biskopsgatan 8, Åbo/Turku, 20500, Finland
| | - Steven Spoljaric
- Polymer Technology, Department of Biotechnology and Chemical Technology, Aalto University School of Chemical Technology, P.O. Box 16100, Aalto, 00076, Finland
| | - Jukka Seppälä
- Polymer Technology, Department of Biotechnology and Chemical Technology, Aalto University School of Chemical Technology, P.O. Box 16100, Aalto, 00076, Finland
| | - John E Eriksson
- Department of Biosciences, Åbo Akademi University, Turku, 20520, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, 20521, Finland
| | - Stefan Willför
- Johan Gadolin Process Chemistry Centre, c/o Laboratory Wood and Paper Chemistry, Åbo Akademi University, Porthansgatan 3, Åbo/Turku, 20500, Finland
| | - Chunlin Xu
- Johan Gadolin Process Chemistry Centre, c/o Laboratory Wood and Paper Chemistry, Åbo Akademi University, Porthansgatan 3, Åbo/Turku, 20500, Finland.
| |
Collapse
|
31
|
Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A, Gandía C, Mäkitie A, Partanen J, Ikkala O, Yliperttula M. Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 2016; 82:208-20. [DOI: 10.1016/j.biomaterials.2015.12.020] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 01/07/2023]
|
32
|
|
33
|
Chen Y, Liu WY, Zeng GS. Stimulus-responsive hydrogels reinforced by cellulose nanowhisker for controlled drug release. RSC Adv 2016. [DOI: 10.1039/c6ra14421g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hybrid hydrogels (W–C gels), composed of PDMAEMA, cellulose nanowhisker (CNW) and carboxymethyl chitosan (CMCS), were prepared for developing a stimuli-responsive drug-release system.
Collapse
Affiliation(s)
- Y. Chen
- Institute of Packaging and Materials Engineering
- Department of Polymer Materials and Engineering
- Hunan University of Technology
- Zhuzhou 412008
- China
| | - W. Y. Liu
- Institute of Packaging and Materials Engineering
- Department of Polymer Materials and Engineering
- Hunan University of Technology
- Zhuzhou 412008
- China
| | - G. S. Zeng
- Institute of Packaging and Materials Engineering
- Department of Polymer Materials and Engineering
- Hunan University of Technology
- Zhuzhou 412008
- China
| |
Collapse
|
34
|
Yang J, Zhang X, Ma M, Xu F. Modulation of Assembly and Dynamics in Colloidal Hydrogels via Ionic Bridge from Cellulose Nanofibrils and Poly(ethylene glycol). ACS Macro Lett 2015; 4:829-833. [PMID: 35596504 DOI: 10.1021/acsmacrolett.5b00422] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biologically inspired dynamic materials offer principles for designing man-made systems by using assembly approach. In this work, the hybrid hydrogels consist of cellulose nanofibrils (CNFs) that combine a mechanically strong skeleton with flexible PEG chains. The distinct gel state is observed at room temperature with G' > G″ and an order of magnitude higher G' values from 0.08 to 0.93 kPa upon increasing CNF concentration from 0.2 to 2 wt % at constant 2 wt % PEG. Combined with mechanically strong CNFs and dynamic ionic bridges through amine-terminated tetra-arm PEG adsorption to TEMPO-oxidized colloidal nanofibrils surface, the assembled colloidal hydrogels show high modulus, reversible gel-sol transition, and rapid self-recovery properties. It is envisioned that simply mixing hard CNF and soft polymeric matrix would lead to a facile method to bridge reversible dynamic bonds in a cellulose-based hybrid network and broad cellulose applications in the preparation of high performance supramolecular systems.
Collapse
Affiliation(s)
- Jun Yang
- Beijing Key Laboratory of
Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Xueming Zhang
- Beijing Key Laboratory of
Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Mingguo Ma
- Beijing Key Laboratory of
Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Feng Xu
- Beijing Key Laboratory of
Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
35
|
Hua K, Ålander E, Lindström T, Mihranyan A, Strømme M, Ferraz N. Surface Chemistry of Nanocellulose Fibers Directs Monocyte/Macrophage Response. Biomacromolecules 2015; 16:2787-95. [DOI: 10.1021/acs.biomac.5b00727] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kai Hua
- Nanotechnology
and Functional Materials, Department of Engineering Sciences, Uppsala University, Box
534, 75121 Uppsala, Sweden
| | - Eva Ålander
- Innventia AB, Drottning Kristinas
väg 55, 11486 Stockholm, Sweden
| | - Tom Lindström
- Innventia AB, Drottning Kristinas
väg 55, 11486 Stockholm, Sweden
| | - Albert Mihranyan
- Nanotechnology
and Functional Materials, Department of Engineering Sciences, Uppsala University, Box
534, 75121 Uppsala, Sweden
| | - Maria Strømme
- Nanotechnology
and Functional Materials, Department of Engineering Sciences, Uppsala University, Box
534, 75121 Uppsala, Sweden
| | - Natalia Ferraz
- Nanotechnology
and Functional Materials, Department of Engineering Sciences, Uppsala University, Box
534, 75121 Uppsala, Sweden
| |
Collapse
|
36
|
Schmocker A, Khoushabi A, Schizas C, Bourban PE, Pioletti DP, Moser C. Miniature probe for the delivery and monitoring of a photopolymerizable material. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:127001. [PMID: 26662066 DOI: 10.1117/1.jbo.20.12.127001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
Photopolymerization is a common method to cure materials initially in a liquid state, such as dental implants or bone or tissue fillers. Recent advances in the development of biocompatible gel- and cement-systems open up an avenue for in situ photopolymerization. For minimally invasive surgery, such procedures require miniaturized surgical endoscopic probes to activate and control photopolymerization in situ. We present a miniaturized light probe in which a photoactive material can be (1) mixed, pressurized, and injected, (2) photopolymerized/photoactivated, and (3) monitored during the chemical reaction. The device is used to implant and cure poly(ethylene glycol) dimethacrylate-hydrogel-precursor in situ with ultraviolet A (UVA) light (365 nm) while the polymerization reaction is monitored in real time by collecting the fluorescence and Raman signals generated by the 532-nm excitation light source. Hydrogels could be delivered, photopolymerized, and monitored by the probe up to a curing depth of 4 cm. The size of the photopolymerized samples could be correlated to the fluorescent signal collected by the probe, and the reproducibility of the procedure could be demonstrated. The position of the probe tip inside a bovine caudal intervertebral disc could be estimated in vitro based on the collected fluorescence and Raman signal.
Collapse
Affiliation(s)
- Andreas Schmocker
- Swiss Federal Institute of Technology Lausanne, Microengineering Institute, Laboratory of Applied Photonics Devices, Station 17, Lausanne 1015, SwitzerlandbSwiss Federal Institute of Technology Lausanne, Institute of Bioengineering, Laboratory of Biomecha
| | - Azadeh Khoushabi
- Swiss Federal Institute of Technology Lausanne, Institute of Bioengineering, Laboratory of Biomechanical Orthopedics, Station 19, Lausanne 1015, SwitzerlandcSwiss Federal Institute of Technology Lausanne, Institute of Materials, Laboratory of Polymer and
| | - Constantin Schizas
- Clinic Cecil, Neuro-orthopedic Spine Unit, Avenue Louis-Ruchonnet 53, Lausanne 1003, Switzerland
| | - Pierre-Etienne Bourban
- Swiss Federal Institute of Technology Lausanne, Institute of Materials, Laboratory of Polymer and Composite Technology, Station 12, Lausanne 1015, Switzerland
| | - Dominique P Pioletti
- Swiss Federal Institute of Technology Lausanne, Institute of Bioengineering, Laboratory of Biomechanical Orthopedics, Station 19, Lausanne 1015, Switzerland
| | - Christophe Moser
- Swiss Federal Institute of Technology Lausanne, Microengineering Institute, Laboratory of Applied Photonics Devices, Station 17, Lausanne 1015, Switzerland
| |
Collapse
|
37
|
Abstract
This contribution provides a brief overview of recent progress in cellulose-based superabsorbent hydrogels, fabrication approaches, materials and promising applications.
Collapse
Affiliation(s)
- Jianzhong Ma
- College of Resource and Environment
- Shaanxi University of Science & Technology
- Xi'an
- China
- Shaanxi Research Institutes of Agricultural Products Processing Technology
| | - Xiaolu Li
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science & Technology
- Xi'an
- China
- Shaanxi Research Institutes of Agricultural Products Processing Technology
| | - Yan Bao
- College of Resource and Environment
- Shaanxi University of Science & Technology
- Xi'an
- China
- Shaanxi Research Institutes of Agricultural Products Processing Technology
| |
Collapse
|
38
|
Sun XF, Gan Z, Jing Z, Wang H, Wang D, Jin Y. Adsorption of methylene blue on hemicellulose-based stimuli-responsive porous hydrogel. J Appl Polym Sci 2014. [DOI: 10.1002/app.41606] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao-Feng Sun
- MOE Key Lab of Applied Physics and Chemistry in Space; Department of Applied Chemistry; College of Science, Northwestern Polytechnic University; Xi'an 710072 China
| | - Zhou Gan
- MOE Key Lab of Applied Physics and Chemistry in Space; Department of Applied Chemistry; College of Science, Northwestern Polytechnic University; Xi'an 710072 China
| | - Zhanxin Jing
- MOE Key Lab of Applied Physics and Chemistry in Space; Department of Applied Chemistry; College of Science, Northwestern Polytechnic University; Xi'an 710072 China
| | - Haihong Wang
- MOE Key Lab of Applied Physics and Chemistry in Space; Department of Applied Chemistry; College of Science, Northwestern Polytechnic University; Xi'an 710072 China
| | - Duo Wang
- MOE Key Lab of Applied Physics and Chemistry in Space; Department of Applied Chemistry; College of Science, Northwestern Polytechnic University; Xi'an 710072 China
| | - Yinan Jin
- MOE Key Lab of Applied Physics and Chemistry in Space; Department of Applied Chemistry; College of Science, Northwestern Polytechnic University; Xi'an 710072 China
| |
Collapse
|
39
|
|
40
|
Spoljaric S, Salminen A, Luong ND, Seppälä J. Stable, self-healing hydrogels from nanofibrillated cellulose, poly(vinyl alcohol) and borax via reversible crosslinking. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.03.009] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
41
|
Shock absorbing function study on denucleated intervertebral disc with or without hydrogel injection through static and dynamic biomechanical tests in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:461724. [PMID: 25045680 PMCID: PMC4090528 DOI: 10.1155/2014/461724] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/13/2014] [Accepted: 06/02/2014] [Indexed: 11/17/2022]
Abstract
Hydrogel injection has been recently proposed as a novel therapy for disc degenerative diseases, with the potential to restore the spine motion and the intervertebral disc height. However, it remains unknown whether the new technique could also maintain the shock absorbing property of the treated intervertebral disc. In this study, 18 porcine lumbar bone-disc-bone specimens were collected and randomly divided into three groups: the normal with intact intervertebral discs, the mimic for the injection of disulfide cross-linked hyaluronan hydrogels following discectomy, and the control disc with discectomy only. In the static compression test, specimens in the mimic group exhibited displacements similar to those in the normal discs, whereas the control group showed a significantly larger displacement range in the first two steps (P < 0.05). With the frequency increasing, all specimens generally displayed an increasing storage modulus, decreasing loss modulus, and tanδ. At any frequency point, the control group exhibited the largest value in all the three parameters among three groups while the normal group was the lowest, with the mimic group being mostly close to the normal group. Therefore, the hydrogel injection into the intervertebral discs greatly restored their shock absorbing function, suggesting that the technique could serve as an effective approach to maintaining biomechanical properties of the degenerative intervertebral disc.
Collapse
|
42
|
Chen Q, de Larraya UP, Garmendia N, Lasheras-Zubiate M, Cordero-Arias L, Virtanen S, Boccaccini AR. Electrophoretic deposition of cellulose nanocrystals (CNs) and CNs/alginate nanocomposite coatings and free standing membranes. Colloids Surf B Biointerfaces 2014; 118:41-8. [PMID: 24727117 DOI: 10.1016/j.colsurfb.2014.03.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
This study presents the electrophoretic deposition (EPD) of cellulose nanocrystals (CNs) and CNs-based alginate composite coatings for biomedical applications. The mechanism of anodic deposition of CNs and co-deposition of CNs/alginate composites was analyzed based on the results of zeta-potential, Fourier transform infrared spectroscopy and scanning electron microscopy (SEM) analyses. The capability of the EPD technique for manipulating the orientation of CNs and for the preparation of multilayer CNs coatings was demonstrated. The nanotopographic surface roughness and hydrophilicity of the deposited coatings were measured and discussed. Electrochemical testing demonstrated that a significant degree of corrosion protection of stainless steel could be achieved when CNs-containing coatings were present. Additionally, the one-step EPD-based processing of free-standing CNs/alginate membranes was demonstrated confirming the versatility of EPD to fabricate free-standing membrane structures compared to a layer-by-layer deposition technique. CNs and CNs/alginate nanocomposite coatings produced by EPD are potential candidates for biomedical, cell technology and drug delivery applications.
Collapse
Affiliation(s)
- Qiang Chen
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Uxua Pérez de Larraya
- CEMITEC, Materials Department, Polígono Mocholí, Plaza Cein 4, 31110 Noain, Navarra, Spain
| | - Nere Garmendia
- CEMITEC, Materials Department, Polígono Mocholí, Plaza Cein 4, 31110 Noain, Navarra, Spain
| | - María Lasheras-Zubiate
- CEMITEC, Materials Department, Polígono Mocholí, Plaza Cein 4, 31110 Noain, Navarra, Spain
| | - Luis Cordero-Arias
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Sannakaisa Virtanen
- Institute for Surface Science and Corrosion, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse7, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany.
| |
Collapse
|
43
|
Schmocker A, Khoushabi A, Schizas C, Bourban PE, Pioletti DP, Moser C. Photopolymerizable hydrogels for implants: Monte-Carlo modeling and experimental in vitro validation. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:35004. [PMID: 24615642 DOI: 10.1117/1.jbo.19.3.035004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Photopolymerization is commonly used in a broad range of bioapplications, such as drug delivery, tissue engineering, and surgical implants, where liquid materials are injected and then hardened by means of illumination to create a solid polymer network. However, photopolymerization using a probe, e.g., needle guiding both the liquid and the curing illumination, has not been thoroughly investigated. We present a Monte Carlo model that takes into account the dynamic absorption and scattering parameters as well as solid-liquid boundaries of the photopolymer to yield the shape and volume of minimally invasively injected, photopolymerized hydrogels. In the first part of the article, our model is validated using a set of well-known poly(ethylene glycol) dimethacrylate hydrogels showing an excellent agreement between simulated and experimental volume-growth-rates. In the second part, in situ experimental results and simulations for photopolymerization in tissue cavities are presented. It was found that a cavity with a volume of 152 mm3 can be photopolymerized from the output of a 0.28-mm2 fiber by adding scattering lipid particles while only a volume of 38 mm3 (25%) was achieved without particles. The proposed model provides a simple and robust method to solve complex photopolymerization problems, where the dimension of the light source is much smaller than the volume of the photopolymerizable hydrogel.
Collapse
Affiliation(s)
- Andreas Schmocker
- Swiss Federal Institute of Technology Lausanne, Microengineering Institute, Laboratory of Applied Photonics Devices, station 17, Lausanne 1015, SwitzerlandbSwiss Federal Institute of Technology Lausanne, Institute of Bioengineering, Laboratory of Biomecha
| | - Azadeh Khoushabi
- Swiss Federal Institute of Technology Lausanne, Institute of Bioengineering, Laboratory of Biomechanical Orthopedics, station 19, Lausanne 1015, SwitzerlandcSwiss Federal Institute of Technology Lausanne, Institute of Materials, Laboratory of Polymer and
| | - Constantin Schizas
- Centre Hospitalier Universitaire Vaudois, Orthopedic Department, Avenue P. Decker 4, Lausanne 1011, Switzerland
| | - Pierre-Etienne Bourban
- Swiss Federal Institute of Technology Lausanne, Institute of Materials, Laboratory of Polymer and Composite Technology, station 12, Lausanne 1015, Switzerland
| | - Dominique P Pioletti
- Swiss Federal Institute of Technology Lausanne, Institute of Bioengineering, Laboratory of Biomechanical Orthopedics, station 19, Lausanne 1015, Switzerland
| | - Christophe Moser
- Swiss Federal Institute of Technology Lausanne, Microengineering Institute, Laboratory of Applied Photonics Devices, station 17, Lausanne 1015, Switzerland
| |
Collapse
|
44
|
Abdul Khalil H, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M. Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydr Polym 2014; 99:649-65. [DOI: 10.1016/j.carbpol.2013.08.069] [Citation(s) in RCA: 836] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/19/2013] [Accepted: 08/23/2013] [Indexed: 11/25/2022]
|
45
|
|
46
|
Kalia S, Boufi S, Celli A, Kango S. Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3112-9] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Fernandes EM, Pires RA, Mano JF, Reis RL. Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2013.05.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Mahanta N, Teow Y, Valiyaveettil S. Viscoelastic hydrogels from poly(vinyl alcohol)–Fe(iii) complex. Biomater Sci 2013; 1:519-527. [DOI: 10.1039/c3bm00167a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Mathew AP, Oksman K, Pierron D, Harmand MF. Biocompatible fibrous networks of cellulose nanofibres and collagen crosslinked using genipin: potential as artificial ligament/tendons. Macromol Biosci 2012; 13:289-98. [PMID: 23225770 DOI: 10.1002/mabi.201200317] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/10/2012] [Indexed: 11/05/2022]
Abstract
Bio-based fibrous nanocomposites of cellulose nanofibres and non-crosslinked/crosslinked collagen were prepared by in situ pH-induced fibrillation of collagen phase and sterilized using gamma rays at 25 KGy. Collagen phase is crosslinked using genipin, a bio-based crosslinker that introduces flexible crosslinks. Microscopy studies of the prepared materials showed nanostructured fibrous collagen and cellulose dispersed in collagen matrix. Mechanical performance of the sterilized nanocomposites was close to that of natural ligament and tendon, in simulated body conditions. Cytocompatibility studies indicated that these nanocomposites allowed human ligament cell and human endothelial cell adhesion, growth, and differentiation; which is eminently favourable to ligament tissue engineering.
Collapse
Affiliation(s)
- Aji P Mathew
- Division of Materials Science, Luleå University of Technology, 97187-Luleå, Sweden.
| | | | | | | |
Collapse
|
50
|
Borges AC, Jayakrishnan A, Bourban PE, Plummer CJ, Pioletti DP, Månson JAE. Synthesis and Photopolymerization of Tween 20 Methacrylate/N-vinyl-2-Pyrrolidone Blends. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|