1
|
Petit R, Izambart J, Guillou M, da Silva Almeida JRG, de Oliveira Junior RG, Sol V, Ouk TS, Grougnet R, Quintans-Júnior LJ, Sitarek P, Thiéry V, Picot L. A Review of Phototoxic Plants, Their Phototoxic Metabolites, and Possible Developments as Photosensitizers. Chem Biodivers 2024; 21:e202300494. [PMID: 37983920 DOI: 10.1002/cbdv.202300494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
This study provides a comprehensive overview of the current knowledge regarding phototoxic terrestrial plants and their phototoxic and photosensitizing metabolites. Within the 435,000 land plant species, only around 250 vascular plants have been documented as phototoxic or implicated in phototoxic occurrences in humans and animals. This work compiles a comprehensive catalog of these phototoxic plant species, organized alphabetically based on their taxonomic family. The dataset encompasses meticulous details including taxonomy, geographical distribution, vernacular names, and information on the nature and structure of their phototoxic and photosensitizing molecule(s). Subsequently, this study undertook an in-depth investigation into phototoxic molecules, resulting in the compilation of a comprehensive and up-to-date list of phytochemicals exhibiting phototoxic or photosensitizing activity synthesized by terrestrial plants. For each identified molecule, an extensive review was conducted, encompassing discussions on its phototoxic activity, chemical family, occurrence in plant families or species, distribution within different plant tissues and organs, as well as the biogeographical locations of the producer species worldwide. The analysis also includes a thorough discussion on the potential use of these molecules for the development of new photosensitizers that could be used in topical or injectable formulations for antimicrobial and anticancer phototherapy as well as manufacturing of photoactive devices.
Collapse
Affiliation(s)
- Raphaëlle Petit
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
| | - Jonathan Izambart
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
| | - Mathieu Guillou
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
| | | | - Raimundo Gonçalves de Oliveira Junior
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
- Franco-Brazilian Network on Natural Products, FB2NP
- UMR CNRS 8038 CiTCoM, Université Paris Cité, 75006, Paris, France
| | - Vincent Sol
- Franco-Brazilian Network on Natural Products, FB2NP
- LABCiS, UR 22722, Université de Limoges, 87000, Limoges, France
| | - Tan-Sothea Ouk
- Franco-Brazilian Network on Natural Products, FB2NP
- LABCiS, UR 22722, Université de Limoges, 87000, Limoges, France
| | - Raphaël Grougnet
- Franco-Brazilian Network on Natural Products, FB2NP
- UMR CNRS 8038 CiTCoM, Université Paris Cité, 75006, Paris, France
| | - Lucindo José Quintans-Júnior
- Franco-Brazilian Network on Natural Products, FB2NP
- LANEF, Universidade Federal de Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil
| | | | - Valérie Thiéry
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
- Franco-Brazilian Network on Natural Products, FB2NP
| | - Laurent Picot
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
- Franco-Brazilian Network on Natural Products, FB2NP
| |
Collapse
|
2
|
Savelyeva IO, Zhdanova KA, Gradova MA, Gradov OV, Bragina NA. Cationic Porphyrins as Antimicrobial and Antiviral Agents in Photodynamic Therapy. Curr Issues Mol Biol 2023; 45:9793-9822. [PMID: 38132458 PMCID: PMC10741785 DOI: 10.3390/cimb45120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Antimicrobial photodynamic therapy (APDT) has received a great deal of attention due to its unique ability to kill all currently known classes of microorganisms. To date, infectious diseases caused by bacteria and viruses are one of the main sources of high mortality, mass epidemics and global pandemics among humans. Every year, the emergence of three to four previously unknown species of viruses dangerous to humans is recorded, totaling more than 2/3 of all newly discovered human pathogens. The emergence of bacteria with multidrug resistance leads to the rapid obsolescence of antibiotics and the need to create new types of antibiotics. From this point of view, photodynamic inactivation of viruses and bacteria is of particular interest. This review summarizes the most relevant mechanisms of antiviral and antibacterial action of APDT, molecular targets and correlation between the structure of cationic porphyrins and their photodynamic activity.
Collapse
Affiliation(s)
- Inga O. Savelyeva
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (K.A.Z.); (N.A.B.)
| | - Kseniya A. Zhdanova
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (K.A.Z.); (N.A.B.)
| | - Margarita A. Gradova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia;
| | - Oleg V. Gradov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia;
| | - Natal’ya A. Bragina
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (K.A.Z.); (N.A.B.)
| |
Collapse
|
3
|
Du M, Yi Y, Yin Y, Cai Z, Cai W, Li J, He G, Zhang J. Bacteria-triggered photodynamic nano-system based on hematoporphyrin-modified chitosan for sustainable plant disease control. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Monteiro CJP, Neves MGPMS, Nativi C, Almeida A, Faustino MAF. Porphyrin Photosensitizers Grafted in Cellulose Supports: A Review. Int J Mol Sci 2023; 24:3475. [PMID: 36834886 PMCID: PMC9967812 DOI: 10.3390/ijms24043475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Cellulose is the most abundant natural biopolymer and owing to its compatibility with biological tissues, it is considered a versatile starting material for developing new and sustainable materials from renewable resources. With the advent of drug-resistance among pathogenic microorganisms, recent strategies have focused on the development of novel treatment options and alternative antimicrobial therapies, such as antimicrobial photodynamic therapy (aPDT). This approach encompasses the combination of photoactive dyes and harmless visible light, in the presence of dioxygen, to produce reactive oxygen species that can selectively kill microorganisms. Photosensitizers for aPDT can be adsorbed, entrapped, or linked to cellulose-like supports, providing an increase in the surface area, with improved mechanical strength, barrier, and antimicrobial properties, paving the way to new applications, such as wound disinfection, sterilization of medical materials and surfaces in different contexts (industrial, household and hospital), or prevention of microbial contamination in packaged food. This review will report the development of porphyrinic photosensitizers supported on cellulose/cellulose derivative materials to achieve effective photoinactivation. A brief overview of the efficiency of cellulose based photoactive dyes for cancer, using photodynamic therapy (PDT), will be also discussed. Particular attention will be devoted to the synthetic routes behind the preparation of the photosensitizer-cellulose functional materials.
Collapse
Affiliation(s)
- Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal
| | | | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy
| | - Adelaide Almeida
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | |
Collapse
|
5
|
Calabrese G, De Luca G, Franco D, Morganti D, Rizzo MG, Bonavita A, Neri G, Fazio E, Neri F, Fazio B, Crea F, Leonardi AA, Faro MJL, Guglielmino S, Conoci S. Structural and antibacterial studies of novel ZnO and Zn xMn (1-x)O nanostructured titanium scaffolds for biomedical applications. BIOMATERIALS ADVANCES 2023; 145:213193. [PMID: 36587469 DOI: 10.1016/j.bioadv.2022.213193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
In the biomedical field, the demand for the development of broad-spectrum biomaterials able to inhibit bacterial growth is constantly increasing. Chronic infections represent the most serious and devastating complication related to the use of biomaterials. This is particularly relevant in the orthopaedic field, where infections can lead to implant loosening, arthrodesis, amputations and sometimes death. Antibiotics are the conventional approach for implanted-associated infections, but they have the limitation of increasing antibiotic resistance, a critical worldwide healthcare issue. In this context, the development of anti-infective biomaterials and infection-resistant surfaces can be considered the more effective strategy to prevent the implant colonisation and biofilm formation by bacteria, so reducing the occurrence of implant-associated infections. In the last years, inorganic nanostructures have become extremely appealing for chemical modifications or coatings of Ti surfaces, since they do not generate antibiotic resistance issues and are featured by superior stability, durability, and full compatibility with the sterilization process. In this work, we present a simple, rapid, and cheap chemical nanofunctionalization of titanium (Ti) scaffolds with colloidal ZnO and Mn-doped ZnO nanoparticles (NPs), prepared by a sol-gel method, exhibiting antibacterial activity. ZnO NPs and ZnxMn(1-x)O NPs formation with a size around 10-20nm and band gap values of 3.42 eV and 3.38 eV, respectively, have been displayed by characterization studies. UV-Vis, fluorescence, and Raman investigation suggested that Mn ions acting as dopants in the ZnO lattice. Ti scaffolds have been functionalized through dip coating, obtaining ZnO@Ti and ZnxMn(1-x)O@Ti biomaterials characterized by a continuous nanostructured film. ZnO@Ti and ZnxMn(1-x)O@Ti displayed an enhanced antibacterial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Pseudomonas aeruginosa (P. aeruginosa) bacterial strains, compared to NPs in solution with better performance of ZnxMn(1-x)O@Ti respect to ZnO@Ti. Notably, it has been observed that ZnxMn(1-x)O@Ti scaffolds reach a complete eradication for S. aureus and 90 % of reduction for P. aeruginosa. This can be attributed to Zn2+ and Mn2+ metal ions release (as observed by ICP MS experiments) that is also maintained over time (72 h). To the best of our knowledge, this is the first study reported in the literature describing ZnO and Mn-doped ZnO NPs nanofunctionalized Ti scaffolds with improved antibacterial performance, paving the way for the realization of new hybrid implantable devices through a low-cost process, compatible with the biotechnological industrial chain method.
Collapse
Affiliation(s)
- Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giovanna De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | | | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Anna Bonavita
- Department of Engineering, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giovanni Neri
- Department of Engineering, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Fortunato Neri
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Barbara Fazio
- LAB Sense Beyond Nano - URT Department of Sciences Physics and Technologies of Matter (DSFTM) CNR, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Francesco Crea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Alessio Leonardi
- Department of Physic and Astronomy, University of Catania (Italy), Via Santa Sofia 64, Catania, Italy
| | - Maria Josè Lo Faro
- Department of Physic and Astronomy, University of Catania (Italy), Via Santa Sofia 64, Catania, Italy
| | - Salvatore Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy; LAB Sense Beyond Nano - URT Department of Sciences Physics and Technologies of Matter (DSFTM) CNR, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy; Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM), Catania, Italy; Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
6
|
Ndlovu KS, Moloto MJ, Sekhosana KE, Nkambule TTI, Managa M. Porphyrins developed for photoinactivation of microbes in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11210-11225. [PMID: 36515881 DOI: 10.1007/s11356-022-24644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Photodynamic antimicrobial chemotherapy (PACT) is extensively studied as a strategic method to inactivate pathogenic microbes in wastewater for addressing the limitations associated with chlorination, ozonation, and ultraviolet irradiation as disinfection methods, which generally promote the development of resistant genes and harmful by-products such as trihalomethanes. PACT is dependent on photons, oxygen, and a photosensitizer to induce cytotoxic effects on various microbes by generating reactive oxygen species. Photosensitizers such as porphyrins have demonstrated significant microbial inactivation through PACT, hence now explored for wastewater phototreatment. This review aims to evaluate the efficacy of porphyrins and porphyrin-conjugates as photosensitizers for wastewater photoinactivation. Concerns relating to the application of photosensitizers in water treatment are also evaluated. This includes recovery and reuse of the photosensitizer when immobilized on solid supports.
Collapse
Affiliation(s)
- Knowledge Siyabonga Ndlovu
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa
| | - Makwena Justice Moloto
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa
| | - Kutloano Edward Sekhosana
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa
| | - Thabo Thokozani Innocent Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa.
| |
Collapse
|
7
|
Bacteria-targeting photoactivated antibacterial nanosystem based on oligoalginate-protoporphyrin IX for plant disease treatment. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Yang L, Dai X, Xu Q, Li Y, Liu X, Gao F. pH-Responsive Hyperbranched Polymer Nanoparticles to Combat Intracellular Infection by Disrupting Bacterial Wall and Regulating Macrophage Polarization. Biomacromolecules 2022; 23:4370-4378. [PMID: 36075109 DOI: 10.1021/acs.biomac.2c00823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intracellular bacterial infections pose a serious threat to public health. Macrophages are a heterogeneous population of immune cells that play a vital role in intracellular bacterial infection. However, bacteria that survive inside macrophages could subvert the cell signaling and eventually reduce the antimicrobial activity of macrophages. Herein, dual pH-responsive polymer (poly[(3-phenylprop-2-ene-1,1-diyl)bis(oxy)bis(enthane-2,1-diyl)diacrylate-co-N-aminoethylpiperazine] (PCA)) nanoparticles were developed to clear intracellular bacteria by activating macrophages and destructing bacterial walls. The presence of acid-labile acetal linkages and tertiary amine groups in the polymer's backbone endow hyperbranched PCA dual pH-response activity that shows acid-induced positive charge increase and cinnamaldehyde release properties. The biodegraded PCA nanoparticles could significantly inhibit the growth of bacteria by damaging the bacterial walls. Meanwhile, PCA nanoparticles could uptake by macrophages, generate reactive oxygen species (ROS), and remodel the immune response by upregulating M1 polarization, leading to the reinforced antimicrobial capacity. Furthermore, PCA nanoparticles could promote bacteria-infected wound healing in vivo. Therefore, these dual pH-responsive PCA nanoparticles enabling bacteria-killing and macrophage activation provide a novel outlook for treating intracellular infection.
Collapse
Affiliation(s)
- Lele Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Qingqing Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xiaojun Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
9
|
Musolino S, Shatila F, Tieman GM, Masarsky AC, Thibodeau MC, Wulff JE, Buckley HL. Light-Induced Anti-Bacterial Effect Against Staphylococcus aureus of Porphyrin Covalently Bonded to a Polyethylene Terephthalate Surface. ACS OMEGA 2022; 7:29517-29525. [PMID: 36033695 PMCID: PMC9404523 DOI: 10.1021/acsomega.2c04294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial photodynamic inactivation represents a promising and potentially greener alternative to conventional antimicrobials, and a solution for multidrug-resistant strains. The current study reports the development and characterization of tetra-substituted diazirine porphyrin covalently bonded to polyethylene terephthalate (PET) and its use as an antimicrobial surface. The diazirine moiety on the porphyrin was activated using a temperature of 120 °C, which initiated a C-H insertion mechanism that irreversibly functionalized the PET surface. Activation of the surface with white LED light in phosphate-buffered saline (PBS) led to singlet oxygen generation, which was detected via the degradation of 9,10-anthracenediylbis(methylene)dimalonic acid (ADMA) over time. The bactericidal effect of the 1O2-producing surface against Staphylococcus aureus was determined qualitatively and quantitatively. The growth of the pathogen beneath porphyrin-functionalized PET coupons was reduced; moreover, the PET coupons resulted in a 1.76-log reduction in cell counts after exposure to white LED light for 6 h. This is a promising material and platform for the development of safer antimicrobial surfaces, with applications in healthcare, food packaging, marine surfaces, and other surfaces in the environment.
Collapse
Affiliation(s)
- Stefania
F. Musolino
- Department
of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Fatima Shatila
- Department
of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Grace M.O. Tieman
- Department
of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
- Institute
for Integrated Energy Systems (IESVic), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Anna C. Masarsky
- Department
of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Matthew C. Thibodeau
- Department
of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Jeremy E. Wulff
- Department
of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Heather L. Buckley
- Department
of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Department
of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
- Institute
for Integrated Energy Systems (IESVic), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
10
|
Sengupta D, Rai M, Hoque Mazumdar Z, Sharma D, Malabika Singha K, Pandey P, Gaur R. Two cationic meso-thiophenium porphyrins and their zinc-complexes as anti-HIV-1 and antibacterial agents under non-photodynamic therapy (PDT) conditions. Bioorg Med Chem Lett 2022; 65:128699. [PMID: 35341921 DOI: 10.1016/j.bmcl.2022.128699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022]
Abstract
The anti-HIV-1 and antimicrobial activities of novel cationic meso-thiophenium porphyrins and their zinc-complex are reported under in vitro non-photodynamic (PDT) conditions. While all the cationic porphyrins led to the inhibition of de novo virus infection, the Zn(II)-complexes of T2(OH)2M (A2B2-type) and T(OH)3M (AB3-type) displayed potent inhibition of HIV-1 entry with T2(OH)2MZn displaying maximal anti-HIV activity. The Zinc complex of both the thiophenium porphyrins T2(OH)2M and T(OH)3M also depicted antibacterial activities against Escherichia coli (ATCC 25922) and more prominently against Staphylococcus aureus (ATCC 25923). Again, the antibacterial activity was more potent for T2(OH)2MZn. Our study highlighted that the presence of two thiophenium groups at the meso-positions of the A2B2-type porphyrins along with zinc strongly enhanced anti-HIV and antimicrobial properties of these novel thiophenium porphyrins under non-PDT conditions.
Collapse
Affiliation(s)
- Devashish Sengupta
- Department of Chemistry, Assam University, Silchar, Assam 788011, India.
| | - Madhu Rai
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | | | - Debdulal Sharma
- Department of Chemistry, Assam University, Silchar, Assam 788011, India
| | - K Malabika Singha
- Department of Microbiology, Assam University, Silchar, Assam 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam 788011, India.
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India.
| |
Collapse
|
11
|
Photodynamic Evaluation of Triazine Appended Porphyrins as Anti-Leishmanial and Anti-tumor Agents. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Dai X, Li Y, Liu X, Lei Z, Yang L, Xu Q, Gao F. Biodegradable Fe( ii)/Fe( iii)-coordination-driven nanoassemblies for chemo/photothermal/chemodynamic synergistic therapy of bacterial infection. NEW J CHEM 2022. [DOI: 10.1039/d2nj03803j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study provides a novel approach for preparing biodegradable nanoassemblies with synergistic chemo/photothermal/chemodynamic performance to selectively combat bacterial infection.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xiaojun Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Zhangyi Lei
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Lele Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Qingqing Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
13
|
Kumari N, Bhattacharya SN, Das S, Datt S, Singh T, Jassal M, Agrawal AK. In Situ Functionalization of Cellulose with Zinc Pyrithione for Antimicrobial Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47382-47393. [PMID: 34606229 DOI: 10.1021/acsami.1c14113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Considering the public health demands for stronger and effective personal protective clothing, herein, antimicrobial fabrics using a known bacteriostatic and fungistatic drug zinc pyrithione (ZPT) have been reported. ZPT was synthesized in situ on cellulosic fabric, viscose (VC), using a zinc metal precursor and 2-mercaptopyridine-N-oxide as a ligand (VC-ZPT). For comparison, viscose was also phosphorylated (VP) before in situ functionalization with ZPT (VP-ZPT). Both approaches provided adequate protection from microbes; however, functionalization of cellulose with phosphate (VP) resulted in the formation of a linking group between cellulose and ZPT, which exhibited better uniformity of ZPT over the fabric surface and higher durability to washing. The functionalization was confirmed by inductively coupled plasma mass spectroscopy (ICP-MS), scanning electron microscopy (SEM), and Raman spectroscopy. Further, the bonding of phosphate with ZPT was confirmed by 31P solid-state NMR. The physical properties, such as appearance, bending length, and mechanical strength, of the treated fabrics remained unchanged. The antimicrobial activities of VP-ZPT with VC-ZPT were studied against Escherichia coli, Staphylococcus aureus, and Candida albicans, which were found to be effective until 20 laundry cycles in VP-ZPT. Additionally, VP-ZPT samples exhibited poor adherence of bacteria on the fabric surface. The functionalized fabrics may find applications for topical skin diseases in reducing the necessity of repeated use of antibiotic ointments.
Collapse
Affiliation(s)
- Neeta Kumari
- SMITA Research Lab, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India
| | - Sambit Nath Bhattacharya
- Department of Dermatology and S.T.D., University College of Medical Sciences (UCMS) and Guru Teg Bahadur Hospital (GTBH), University of Delhi, Dilshad Garden, Delhi 110095, India
| | - Shukla Das
- Department of Microbiology, UCMS and GTB Hospital, University of Delhi, Dilshad Garden, Delhi 110095, India
| | - Shyama Datt
- Department of Microbiology, UCMS and GTB Hospital, University of Delhi, Dilshad Garden, Delhi 110095, India
| | - Taru Singh
- Department of Microbiology, UCMS and GTB Hospital, University of Delhi, Dilshad Garden, Delhi 110095, India
| | - Manjeet Jassal
- SMITA Research Lab, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India
| | - Ashwini K Agrawal
- SMITA Research Lab, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India
| |
Collapse
|
14
|
Yoshida A, Inaba K, Sasaki H, Hamada N, Yoshino F. Impact on Porphyromonas gingivalis of antimicrobial photodynamic therapy with blue light and Rose Bengal in plaque-disclosing solution. Photodiagnosis Photodyn Ther 2021; 36:102576. [PMID: 34628072 DOI: 10.1016/j.pdpdt.2021.102576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/26/2021] [Accepted: 10/04/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Antimicrobial photodynamic therapy (aPDT) in periodontal pockets using lasers is difficult to perform in some cases because of the high cost of irradiation equipment and the narrow irradiation field. The purpose of the present study was to examine the effects of aPDT in combination with a plaque-disclosing solution and blue light-emitting diode (LED), which are used for composite resin polymerization. METHODS The reactive oxygen species generated by irradiating 0.001% RB or MB with blue light were analyzed using electron spin resonance spectroscopy. Blue-light exposure was performed at 6.92, 20.76 and 124.6 J. The microorganism to be sterilized was Porphyromonas gingivalis. After aPDT, colony-forming units (CFUs) were measured to estimate cell survival. Carbonylated protein (PC) levels were used to evaluate oxidative stress. All statistical analyses were performed with Tukey's multiple comparisons test or the unpaired t-test. RESULTS Singlet oxygen (1O2) generation was confirmed by RB+blue LED. 1O2 production was significantly greater with the blue LED irradiation of RB than that of MB (p < 0.0001). CFUs were significantly lower in the blue LED-irradiated group than in the non-LED-irradiated group (p < 0.01). The bactericidal effect increased in a time-dependent manner. aPDT increased PC levels. No morphological changes were observed in P. gingivalis. CONCLUSIONS The present results suggest that aPDT exerts bactericidal effects against P. gingivalis by increasing oxidative stress through the generation of 1O2 in cells. Periodontal disease may be treated by aPDT using the equipment available in dental offices.
Collapse
Affiliation(s)
- Ayaka Yoshida
- Department of Dental Education, Kanagawa Dental University, 82 Inaoka-cho, Kanagawa, Yokosuka 238-8580, Japan
| | - Keitaro Inaba
- Department of Oral Microbiology, Kanagawa Dental University, 82 Inaoka-cho, Kanagawa, Yokosuka 238-8580, Japan
| | - Haruka Sasaki
- Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Nobushiro Hamada
- Department of Oral Microbiology, Kanagawa Dental University, 82 Inaoka-cho, Kanagawa, Yokosuka 238-8580, Japan
| | - Fumihiko Yoshino
- Department of Pharmacology, Kanagawa Dental University, 82 Inaoka-cho, Kanagawa, Yokosuka 238-8580, Japan.
| |
Collapse
|
15
|
Cuthbert TJ, Ennis S, Musolino SF, Buckley HL, Niikura M, Wulff JE, Menon C. Covalent functionalization of polypropylene filters with diazirine-photosensitizer conjugates producing visible light driven virus inactivating materials. Sci Rep 2021; 11:19029. [PMID: 34561486 PMCID: PMC8463589 DOI: 10.1038/s41598-021-98280-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
The SARS-CoV-2 pandemic has highlighted the weaknesses of relying on single-use mask and respirator personal protective equipment (PPE) and the global supply chain that supports this market. There have been no major innovations in filter technology for PPE in the past two decades. Non-woven textiles used for filtering PPE are single-use products in the healthcare environment; use and protection is focused on preventing infection from airborne or aerosolized pathogens such as Influenza A virus or SARS-CoV-2. Recently, C-H bond activation under mild and controllable conditions was reported for crosslinking commodity aliphatic polymers such as polyethylene and polypropylene. Significantly, these are the same types of polymers used in PPE filtration systems. In this report, we take advantage of this C-H insertion method to covalently attach a photosensitizing zinc-porphyrin to the surface of a melt-blow non-woven textile filter material. With the photosensitizer covalently attached to the surface of the textile, illumination with visible light was expected to produce oxidizing 1O2/ROS at the surface of the material that would result in pathogen inactivation. The filter was tested for its ability to inactivate Influenza A virus, an enveloped RNA virus similar to SARS-CoV-2, over a period of four hours with illumination of high intensity visible light. The photosensitizer-functionalized polypropylene filter inactivated our model virus by 99.99% in comparison to a control.
Collapse
Affiliation(s)
- T J Cuthbert
- Department of Health Sciences and Technology, ETH Zürich, 8008, Zürich, Switzerland.
- Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, V5A 1S6, Canada.
| | - S Ennis
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - S F Musolino
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - H L Buckley
- Department of Civil Engineering, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - M Niikura
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - J E Wulff
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - C Menon
- Department of Health Sciences and Technology, ETH Zürich, 8008, Zürich, Switzerland
- Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, V5A 1S6, Canada
| |
Collapse
|
16
|
Elkihel A, Christie C, Vernisse C, Ouk TS, Lucas R, Chaleix V, Sol V. Xylan-Based Cross-Linked Hydrogel for Photodynamic Antimicrobial Chemotherapy. ACS APPLIED BIO MATERIALS 2021; 4:7204-7212. [PMID: 35006952 DOI: 10.1021/acsabm.1c00760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photodynamic antimicrobial chemotherapy or PACT has been shown to be a promising antibacterial treatment that could overcome the challenge of multidrug-resistant bacteria. However, the use of most existing photosensitizers has been severely hampered by their significant self-quenching effect, poor water solubility, lack of selectivity against bacterial cells, and possible damage to the surrounding tissues. The use of hydrogels may overcome some of these limitations. We herein report a simple strategy to synthesize a cross-linked hydrogel from beech xylan. The hydrogel showed a high swelling ratio, up to 62, an interconnected porous structure, and good mechanical integrity, and 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetraiodide (TMPyP) was chosen as a model of hydrophilic photosensitizer (PS) and was encapsulated inside the xylan-based hydrogel. TMPyP-loaded hydrogel prolonged release of PS up to 24 h with a cumulative amount that could reach 100%. TMPyP-loaded hydrogel showed a photocytotoxic effect against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus strains, and Bacillus cereus, while no cytotoxicity was observed in the dark.
Collapse
Affiliation(s)
- Abdechakour Elkihel
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté des Sciences et Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Camille Christie
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté des Sciences et Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Charlotte Vernisse
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté des Sciences et Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Tan-Sothéa Ouk
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté des Sciences et Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Romain Lucas
- Université de Limoges, IRCER, UMR 7315, F-87068 Limoges, France
| | - Vincent Chaleix
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté des Sciences et Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Vincent Sol
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté des Sciences et Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| |
Collapse
|
17
|
Ghareeb CR, Peddinti BST, Kisthardt SC, Scholle F, Spontak RJ, Ghiladi RA. Toward Universal Photodynamic Coatings for Infection Control. Front Med (Lausanne) 2021; 8:657837. [PMID: 34395464 PMCID: PMC8355428 DOI: 10.3389/fmed.2021.657837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
The dual threats posed by the COVID-19 pandemic and hospital-acquired infections (HAIs) have emphasized the urgent need for self-disinfecting materials for infection control. Despite their highly potent antimicrobial activity, the adoption of photoactive materials to reduce infection transmission in hospitals and related healthcare facilities has been severely hampered by the lack of scalable and cost-effective manufacturing, in which case high-volume production methods for fabricating aPDI-based materials are needed. To address this issue here, we examined the antimicrobial efficacy of a simple bicomponent spray coating composed of the commercially-available UV-photocrosslinkable polymer N-methyl-4(4'-formyl-styryl)pyridinium methosulfate acetal poly(vinyl alcohol) (SbQ-PVA) and one of three aPDI photosensitizers (PSs): zinc-tetra(4-N-methylpyridyl)porphine (ZnTMPyP4+), methylene blue (MB), and Rose Bengal (RB). We applied these photodynamic coatings, collectively termed SbQ-PVA/PS, to a variety of commercially available materials. Scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirmed the successful application of the coatings, while inductively coupled plasma-optical emission spectroscopy (ICP-OES) revealed a photosensitizer loading of 0.09-0.78 nmol PS/mg material. The antimicrobial efficacy of the coated materials was evaluated against methicillin-susceptible Staphylococcus aureus ATCC-29213 and human coronavirus strain HCoV-229E. Upon illumination with visible light (60 min, 400-700 nm, 65 ± 5 mW/cm2), the coated materials inactivated S. aureus by 97-99.999% and HCoV-229E by 92-99.999%, depending on the material and PS employed. Photobleaching studies employing HCoV-229E demonstrated detection limit inactivation (99.999%) even after exposure for 4 weeks to indoor ambient room lighting. Taken together, these results demonstrate the potential for photodynamic SbQ-PVA/PS coatings to be universally applied to a wide range of materials for effectively reducing pathogen transmission.
Collapse
Affiliation(s)
- C Roland Ghareeb
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Bharadwaja S T Peddinti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Samantha C Kisthardt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States.,Center for Advanced Virus Experimentation, North Carolina State University, Raleigh, NC, United States
| | - Richard J Spontak
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States.,Center for Advanced Virus Experimentation, North Carolina State University, Raleigh, NC, United States.,Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States.,Center for Advanced Virus Experimentation, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
18
|
Yang W, Yoon Y, Lee Y, Oh H, Choi J, Shin S, Lee S, Lee H, Lee Y, Seo J. Photosensitizer-peptoid conjugates for photoinactivation of Gram-negative bacteria: structure-activity relationship and mechanistic studies. Org Biomol Chem 2021; 19:6546-6557. [PMID: 34259297 DOI: 10.1039/d1ob00926e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Multitarget engagement is considered an effective strategy to overcome the threat of bacterial infection, and antimicrobials with multiple mechanisms of action have been successful as natural chemical weaponry. Here, we synthesized a library of photosensitizer-peptoid conjugates (PsPCs) as novel antimicrobial photodynamic therapy (aPDT) agents. The peptoids, linkers, and photosensitizers were varied, and their structure-antimicrobial activity relationships against Escherichia coli were evaluated; PsPC 9 was indicated to be the most promising photoresponsive antimicrobial agent among the synthesized PsPCs. Spectroscopic analyses indicated that 9 generated singlet oxygen upon absorption of visible light (420 nm) while maintaining the weakly helical conformation of the peptoid. Mechanistic studies suggested that damage to the bacterial membrane and cleavage of DNA upon light irradiation were the main causes of bactericidal activity, which was supported by flow cytometry and DNA gel electrophoresis experiments. We demonstrated that the optimal combination of membrane-active peptoids and photosensitizers can generate an efficient aPDT agent that targets multiple sites of bacterial components and kills bacteria by membrane disruption and reactive oxygen species generation.
Collapse
Affiliation(s)
- Woojin Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Younggun Yoon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Yunjee Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Hyeongyeol Oh
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Sujin Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), 49 Dosicheomdansaneopro, Nam-gu, Gwangju 61751, South Korea
| | - Hohjai Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| |
Collapse
|
19
|
Nyga A, Czerwińska-Główka D, Krzywiecki M, Przystaś W, Zabłocka-Godlewska E, Student S, Kwoka M, Data P, Blacha-Grzechnik A. Covalent Immobilization of Organic Photosensitizers on the Glass Surface: Toward the Formation of the Light-Activated Antimicrobial Nanocoating. MATERIALS 2021; 14:ma14113093. [PMID: 34200077 PMCID: PMC8201308 DOI: 10.3390/ma14113093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022]
Abstract
Two highly efficient commercial organic photosensitizers—azure A (AA) and 5-(4-aminophenyl)-10,15,20-(triphenyl)porphyrin (APTPP)—were covalently attached to the glass surface to form a photoactive monolayer. The proposed straightforward strategy consists of three steps, i.e., the initial chemical grafting of 3-aminopropyltriethoxysilane (APTES) followed by two chemical postmodification steps. The chemical structure of the resulting mixed monolayer (MIX_TC_APTES@glass) was widely characterized by X-ray photoelectron (XPS) and Raman spectroscopies, while its photoactive properties were investigated in situ by UV–Vis spectroscopy with α-terpinene as a chemical trap. It was shown that both photosensitizers retain their activity toward light-activated generation of reactive oxygen species (ROS) after immobilization on the glassy surface and that the resulting nanolayer shows high stability. Thanks to the complementarity of the spectral properties of AA and APTPP, the effectiveness of the ROS photogeneration under broadband illumination can be optimized. The reported light-activated nanocoating demonstrated promising antimicrobial activity toward Escherichia coli (E. coli), by reducing the number of adhered bacteria compared to the unmodified glass surface.
Collapse
Affiliation(s)
- Aleksandra Nyga
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (A.N.); (D.C.-G.); (P.D.)
| | - Dominika Czerwińska-Główka
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (A.N.); (D.C.-G.); (P.D.)
| | - Maciej Krzywiecki
- Center for Science and Education (CSE), Institute of Physics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland;
| | - Wioletta Przystaś
- Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (W.P.); (E.Z.-G.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Ewa Zabłocka-Godlewska
- Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (W.P.); (E.Z.-G.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Sebastian Student
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Monika Kwoka
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland;
- Institute of Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Przemysław Data
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (A.N.); (D.C.-G.); (P.D.)
| | - Agata Blacha-Grzechnik
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (A.N.); (D.C.-G.); (P.D.)
- Correspondence: ; Tel.: +48-322371024
| |
Collapse
|
20
|
Zhou T, Yin Y, Cai W, Wang H, Fan L, He G, Zhang J, Jiang M, Liu J. A new antibacterial nano-system based on hematoporphyrin-carboxymethyl chitosan conjugate for enhanced photostability and photodynamic activity. Carbohydr Polym 2021; 269:118242. [PMID: 34294284 DOI: 10.1016/j.carbpol.2021.118242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/28/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
To promote bactericidal activity, improve photostability and safety, novel antibacterial nanoparticle system based on photodynamic action (PDA) was prepared here through conjugation of photosensitizer hematoporphyrin (HP) onto carboxymethyl chitosan (CMCS) via amide linkage and followed by ultrasonic treatment. The system was stable in PBS (pH 7.4) and could effectively inhibit the photodegradation of conjugated HP because of aggregation-caused quenching effect. ROS produced by the conjugated HP under light exposure could change the structure of nanoparticles by oxidizing the CMCS skeleton and thereby significantly promote the photodynamic activity of HP and its photodynamic activity after 6 h was higher than that of HP·2HCl under the same conditions. Antibacterial experiments showed that CMCS-HP nanoparticles had excellent photodynamic antibacterial activity, and the bacterial inhibition rates after 60 min of light exposure were greater than 97%. Safety evaluation exhibited that the nanoparticles were safe to mammalian cells, showing great potential for antibacterial therapy.
Collapse
Affiliation(s)
- Ting Zhou
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yihua Yin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Rizhao Wuhan University of Technology Biomedicine and New Materials Research Institute, PR China.
| | - Weiquan Cai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Haibo Wang
- Zhuhai Guojia New Materials Co., Ltd., Economic and Technological Development District, Zhuhai 519040, PR China
| | - Lihong Fan
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Rizhao Wuhan University of Technology Biomedicine and New Materials Research Institute, PR China
| | - Guanghua He
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jingli Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Mengqing Jiang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jinsheng Liu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
21
|
Le Guern F, Ouk TS, Yerzhan I, Nurlykyz Y, Arnoux P, Frochot C, Leroy-Lhez S, Sol V. Photophysical and Bactericidal Properties of Pyridinium and Imidazolium Porphyrins for Photodynamic Antimicrobial Chemotherapy. Molecules 2021; 26:molecules26041122. [PMID: 33672630 PMCID: PMC7924203 DOI: 10.3390/molecules26041122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 01/21/2023] Open
Abstract
Despite advances achieved over the last decade, infections caused by multi-drug-resistant bacterial strains are increasingly becoming important societal issues that need to be addressed. New approaches have already been developed in order to overcome this problem. Photodynamic antimicrobial chemotherapy (PACT) could provide an alternative to fight infectious bacteria. Many studies have highlighted the value of cationic photosensitizers in order to improve this approach. This study reports the synthesis and the characterization of cationic porphyrins derived from methylimidazolium and phenylimidazolium porphyrins, along with a comparison of their photophysical properties with the well-known N-methylpyridyl (pyridinium) porphyrin family. PACT tests conducted with the tetracationic porphyrins of these three families showed that these new photosensitizers may offer a good alternative to the classical pyridinium porphyrins, especially against S.aureus and E.coli. In addition, they pave the way to new cationic photosensitizers by the means of derivatization through amide bond formation.
Collapse
Affiliation(s)
- Florent Le Guern
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78035 Versailles, France;
- Laboratoire PEIRENE, Université de Limoges, EA 7500, 123 Avenue Albert Thomas, 87060 Limoges CEDEX, France; (T.-S.O.); (S.L.-L.)
| | - Tan-Sothéa Ouk
- Laboratoire PEIRENE, Université de Limoges, EA 7500, 123 Avenue Albert Thomas, 87060 Limoges CEDEX, France; (T.-S.O.); (S.L.-L.)
| | - Issabayev Yerzhan
- Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine, UMR 7274 CNRS, ENSIC, 1 rue Grandville, 54000 Nancy, France; (I.Y.); (Y.N.); (P.A.); (C.F.)
| | - Yesmurzayeva Nurlykyz
- Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine, UMR 7274 CNRS, ENSIC, 1 rue Grandville, 54000 Nancy, France; (I.Y.); (Y.N.); (P.A.); (C.F.)
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine, UMR 7274 CNRS, ENSIC, 1 rue Grandville, 54000 Nancy, France; (I.Y.); (Y.N.); (P.A.); (C.F.)
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine, UMR 7274 CNRS, ENSIC, 1 rue Grandville, 54000 Nancy, France; (I.Y.); (Y.N.); (P.A.); (C.F.)
| | - Stéphanie Leroy-Lhez
- Laboratoire PEIRENE, Université de Limoges, EA 7500, 123 Avenue Albert Thomas, 87060 Limoges CEDEX, France; (T.-S.O.); (S.L.-L.)
| | - Vincent Sol
- Laboratoire PEIRENE, Université de Limoges, EA 7500, 123 Avenue Albert Thomas, 87060 Limoges CEDEX, France; (T.-S.O.); (S.L.-L.)
- Correspondence:
| |
Collapse
|
22
|
Wang T, Ke H, Chen S, Wang J, Yang W, Cao X, Liu J, Wei Q, Ghiladi RA, Wang Q. Porous protoporphyrin IX-embedded cellulose diacetate electrospun microfibers in antimicrobial photodynamic inactivation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111502. [DOI: 10.1016/j.msec.2020.111502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 01/31/2023]
|
23
|
Fayyaz F, Rassa M, Rahimi R. Antibacterial Photoactivity and Thermal Stability of Tetra-cationic Porphyrins Immobilized on Cellulosic Fabrics. Photochem Photobiol 2020; 97:385-397. [PMID: 33152128 DOI: 10.1111/php.13353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/02/2020] [Indexed: 11/28/2022]
Abstract
The thermal stability and photo-bactericidal effect of several tetra-cationic porphyrins and their zinc ion compounds immobilized onto cellulosic fabrics against S. aureus, P. aeruginosa, and E. coli were investigated and compared using a 100 W tungsten lamp. Immobilization of various concentrations of these photosensitizers onto cellulosic fabrics was carried out and characterized by ATR-FT-IR, DRS, TGA, and SEM. Applied cellulosic fabrics with the photosensitizers exhibited remarkable photo-stability, thermal stability, and antimicrobial activity against these studied strains.
Collapse
Affiliation(s)
- Fatemeh Fayyaz
- Bioinorganic Chemistry Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mehdi Rassa
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Rahmatollah Rahimi
- Bioinorganic Chemistry Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
24
|
Wylie MP, Irwin NJ, Howard D, Heydon K, McCoy CP. Hot-melt extrusion of photodynamic antimicrobial polymers for prevention of microbial contamination. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 214:112098. [PMID: 33276276 DOI: 10.1016/j.jphotobiol.2020.112098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/31/2023]
Abstract
Infectious disease outbreaks within healthcare facilities can exacerbate patient illness and, in some cases, can be fatal. Contaminated surfaces and medical devices can act as a reservoir for transmission of pathogens and have been linked to the rising incidence of healthcare-acquired infections. Antimicrobial surfaces can reduce microbial contamination and transmission and have emerged as a crucial component in healthcare infection control in recent years. The aim of this study was to manufacture antimicrobial polymer surfaces containing the photosensitiser, toluidine blue O (TBO), using hot-melt extrusion (HME). Several concentrations of TBO were combined with a range of medically relevant polymers via HME. TBO-polymer extrudates displayed no significant differences in thermal properties and surface wettability relative to non-loaded polymers. Minimal leaching of TBO from the surface was confirmed through in vitro release studies. Antibacterial activity was observed to vary according to the polymer and concentration of incorporated TBO, with PEBAX® polymers modified with 0.1% w/w TBO demonstrating promising reductions of >99.9% in viable bacterial adherence of a range of common nosocomial pathogens, including Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter baumannii and Escherichia coli. This study demonstrates the use of HME as a facile alternative method to common encapsulation strategies for the production of light-activated antimicrobial polymer surfaces. This method can be easily translated to large-scale manufacture and, in addition, the polymers constitute promising antimicrobial base materials for the rapidly growing additive manufacturing industries.
Collapse
Affiliation(s)
- Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Nicola J Irwin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - David Howard
- IPC - Innovative Polymer Compounds, Midlands Gateway Business Park, Streamstown Road, Kilbeggan, Co. Westmeath, Ireland
| | - Katie Heydon
- IPC - Innovative Polymer Compounds, Midlands Gateway Business Park, Streamstown Road, Kilbeggan, Co. Westmeath, Ireland
| | - Colin P McCoy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
25
|
Qian S, Song L, Sun L, Zhang X, Xin Z, Yin J, Luan S. Metal-organic framework/poly (ε-caprolactone) hybrid electrospun nanofibrous membranes with effective photodynamic antibacterial activities. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Maldonado-Carmona N, Ouk TS, Calvete MJF, Pereira MM, Villandier N, Leroy-Lhez S. Conjugating biomaterials with photosensitizers: advances and perspectives for photodynamic antimicrobial chemotherapy. Photochem Photobiol Sci 2020; 19:445-461. [PMID: 32104827 DOI: 10.1039/c9pp00398c] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial resistance is threatening to overshadow last century's medical advances. Previously eradicated infectious diseases are now resurgent as multi-drug resistant strains, leading to expensive, toxic and, in some cases, ineffective antimicrobial treatments. Given this outlook, researchers are willing to investigate novel antimicrobial treatments that may be able to deal with antimicrobial resistance, namely photodynamic therapy (PDT). PDT relies on the generation of toxic reactive oxygen species (ROS) in the presence of light and a photosensitizer (PS) molecule. PDT has been known for almost a century, but most of its applications have been directed towards the treatment of cancer and topical diseases. Unlike classical antimicrobial chemotherapy treatments, photodynamic antimicrobial chemotherapy (PACT) has a non-target specific mechanism of action, based on the generation of ROS, working against cellular membranes, walls, proteins, lipids and nucleic acids. This non-specific mechanism diminishes the chances of bacteria developing resistance. However, PSs usually are large molecules, prone to aggregation, diminishing their efficiency. This review will report the development of materials obtained from natural sources, as delivery systems for photosensitizing molecules against microorganisms. The present work emphasizes on the biological results rather than on the synthesis routes to prepare the conjugates. Also, it discusses the current state of the art, providing our perspective on the field.
Collapse
|
27
|
Sun YD, Zhu YX, Zhang X, Jia HR, Xia Y, Wu FG. Role of Cholesterol Conjugation in the Antibacterial Photodynamic Therapy of Branched Polyethylenimine-Containing Nanoagents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14324-14331. [PMID: 31580079 DOI: 10.1021/acs.langmuir.9b02727] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy is a promising approach for fighting bacterial infections because it can induce few side effects, develop no drug resistance, and realize precise treatment. However, most photosensitizers (PSs) have the disadvantages of poor water-solubility, severe self-quenching, and potential toxicity. Here, the cationic polymer polyethyleneimine (PEI) was used to prepare a cholesterol- and chlorin e6 (Ce6, a common PS)-conjugated compound via the carboxyl-amine reaction or the acyl chloride-amine reaction (abbreviated as Chol-PEI-Ce6). The as-prepared Chol-PEI-Ce6 molecules can self-assemble into close-to-spherical nanoparticles (NPs) with an average diameter of ∼15 nm and can bind to the bacterial surfaces via the synergistic hydrophobic insertion of the cholesterol moieties and electrostatic interaction between the cationic amine groups of PEI and the bacterial surfaces. Upon light irradiation, the NPs can effectively inactivate both Gram-positive and Gram-negative bacteria. Besides, the interaction between Chol-PEI-Ce6 NPs and bacteria markedly enhances the production of intracellular reactive oxygen species after light irradiation, which may account for the excellent antibacterial performance of the NPs. More importantly, the NPs possess negligible dark cytotoxicity and good hemocompatibility. Therefore, the present work may have strong implications for developing novel antibacterial agents to fight against bacterial infections.
Collapse
Affiliation(s)
- Yun-Dan Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , 136 HanZhong Road , Nanjing 210029 , P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| |
Collapse
|
28
|
Sun J, Zhang P, Fan Y, Zhao J, Niu S, Song L, Ma L, Ren L, Ming W. Near-infrared triggered antibacterial nanocomposite membrane containing upconversion nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109797. [DOI: 10.1016/j.msec.2019.109797] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 01/20/2023]
|
29
|
Abstract
Introduction: Bacterial proliferation in health environments may lead to the development of specific pathologies, but can be highly dangerous under particular conditions, such as during chemotherapy. To limit the spread of infections, it is helpful to use gauzes and clothing containing antibacterial agents. As cotton tissues are widespread in health care environments, in this contribution we report the preparation of cellulose fibers characterized by the covalent attachment of lipopeptides as possible antimicrobial agents. Aim: To covalently link peptides to cotton samples and characterize them. Peptides are expected to preserve the features of the fabrics even after repeated washing and use. Peptides are well tolerated by the human body and do not induce resistance in bacteria. Materials and Methods: A commercially available cotton tissue (specific weight of 150 g/m2, 30 Tex yarn fineness, fabric density of 270/230 threads/10 cm in the warp and weft) was washed with alkali and bleached and died. A piece of this tissue was accurately weighed, washed with methanol (MeOH) and N,N-dimethylformamide (DMF), and air-dried. Upon incubation with epibromohydrin, followed by treatment with Fmoc-NH-CH2CH2-NH2 and Fmoc removal, the peptides were synthesized by incorporating one amino acid at a time, beginning with the formation of an amide bond with the free NH2 of 1,2–diaminoethane. We also linked to the fibers a few peptide dendrimers, because the mechanism of action of these peptides often requires the formation of clusters. We prepared and characterized seven peptide-cotton samples. Results: The new peptide-cotton conjugates were characterized by means of FT-IR spectroscopy and X-ray Photoelectron Spectroscopy (XPS). This latter technique allows for discriminating among different amino acids and thus different peptide-cotton samples. Some samples maintain a pretty good whiteness degree even after peptide functionalization. Interestingly, these samples also display encouraging activities against a Gram positive strain. Conclusions: Potentially antimicrobial lipopeptides can be covalently linked to cotton fabrics, step-by-step. It is also possible to build on the cotton Lys-based dendrimers. XPS is a useful technique to discriminate among different types of nitrogen. Two samples displaying some antibacterial potency did also preserve their whiteness index.
Collapse
|
30
|
Chen W, Chen J, Li L, Wang X, Wei Q, Ghiladi RA, Wang Q. Wool/Acrylic Blended Fabrics as Next-Generation Photodynamic Antimicrobial Materials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29557-29568. [PMID: 31356046 DOI: 10.1021/acsami.9b09625] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The adoption of self-sterilizing materials to reduce infection transmission in hospitals and related healthcare facilities has been hampered by the availability of scalable, cost-effective, and potent antimicrobial textiles. Here, we investigated whether photodynamic materials comprising photosensitizer-embedded wool/acrylic blends were able to mediate the photodynamic inactivation of Gram-positive and Gram-negative bacteria. A small library of wool/acrylic (W/A) blended fabrics was constructed wherein the wool fibers were embedded with rose Bengal (RB) as a photosensitizer and the acrylic fibers were dyed with a traditional cationic yellow X-8GL dye, thereby enabling a broader color palette than was achievable with a single photosensitizer. The resultant photodynamic materials were characterized by physical (SEM, DSC, TGA, tensile strength), spectroscopic (fluorescence), colorimetric (K/S and CIELab values), and color fastness (against rubbing, washing) studies, and their photooxidation of the model substrate potassium iodide demonstrated the ability of these materials to generate microbicidal reactive oxygen species (i.e., singlet oxygen) upon illumination. Our best results yielded the photodynamic inactivation of Gram-positive S. aureus (99.98%) and B. subtilis (99.993%) by ∼4 log units upon illumination with visible light (60 min; 65 ± 5 mW/cm2; λ ≥ 420 nm), although more modest activity was observed against Gram-negative P. aeruginosa and E. coli (1-2 log units pathogen reduction). While there were no statistically significant differences for dual-dyed materials that were produced through either sequential or simultaneous dyeing steps, it was noted that high loadings of the cationic yellow X-8GL dye did inhibit the antimicrobial activity of the RB photosensitizer, with the dual-dyed materials able to mediate a 2.9 log unit reduction against S. aureus at a 1% o.w.f X-8GL loading. These findings indicate that the antimicrobial photodynamic inactivation of dual-dyed materials is independent of the dyeing process itself, yet exhibits limitations on the loading of the traditional dye with regards to the activity of the photosensitizer. Taken together, the results suggest the feasibility of photosensitizer-embedded blended fabrics produced through a one-step dyeing process as a low-cost and scalable method for creating effective self-disinfecting textiles for infection prevention, and whose inclusion of a second traditional dye for color variation will further benefit their adoption from a commercial standpoint.
Collapse
Affiliation(s)
- Wangbingfei Chen
- Key Laboratory of Eco-Textiles, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Jiang Chen
- Key Laboratory of Eco-Textiles, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Ling Li
- Key Laboratory of Eco-Textiles, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Xinyi Wang
- Key Laboratory of Eco-Textiles, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Reza A Ghiladi
- Key Laboratory of Eco-Textiles, Ministry of Education , Jiangnan University , Wuxi 214122 , China
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| |
Collapse
|
31
|
Stoll KR, Scholle F, Zhu J, Zhang X, Ghiladi RA. BODIPY-embedded electrospun materials in antimicrobial photodynamic inactivation. Photochem Photobiol Sci 2019; 18:1923-1932. [PMID: 31147667 DOI: 10.1039/c9pp00103d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Drug-resistant pathogens, particularly those that result in hospital acquired infections (HAIs), have emerged as a critical priority for the World Health Organization. To address the need for self-disinfecting materials to counter the threat posed by the transmission of these pathogens from surfaces to new hosts, here we investigated if a cationic BODIPY photosensitizer, embedded via electrospinning into nylon and polyacrylonitrile (PAN) nanofibers, was capable of inactivating both bacteria and viruses via antimicrobial photodynamic inactivation (aPDI). Materials characterization, including fiber morphology and the degree of photosensitizer loading, was assessed by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), and demonstrated that the materials were comprised of nanofibers (125-215 nm avg. diameter) that were thermostable to >300 °C. The antimicrobial potencies of the resultant Nylon-BODIPY(+) and PAN-BODIPY(+) nanofiber materials were evaluated against four strains of bacteria recognized by the World Health Organization as either critical or high priority pathogens: Gram-positive strains methicillin-resistant S. aureus (MRSA; ATCC BAA-44) and vancomycin-resistant E. faecium (VRE; ATCC BAA-2320), and Gram-negative strains multidrug-resistant A. baumannii (MDRAB; ATCC BAA-1605) and NDM-1 positive K. pneumoniae (KP; ATCC BAA-2146). Our results demonstrated the detection limit (99.9999%; 6 log units reduction in CFU mL-1) photodynamic inactivation of three strains upon illumination (30-60 min; 40-65 ± 5 mW cm-2; 400-700 nm): MRSA, VRE, and MDRAB, but only minimal inactivation (47-75%) of KP. Antiviral studies employing PAN-BODIPY(+) against vesicular stomatitis virus (VSV), a model enveloped virus, revealed complete inactivation. Taken together, the results demonstrate the potential for electrospun BODIPY(+)-embedded nanofiber materials as the basis for pathogen-specific anti-infective materials, even at low photosensitizer loadings.
Collapse
Affiliation(s)
- Kevin R Stoll
- Department of Chemistry, United States Air Force Academy, CO 80840, USA
| | | | | | | | | |
Collapse
|
32
|
Huang Y, Yuan Q, Lu Z, Wang W, Liu K, Chen Y, Wang X, Wang D, Qiu Y. Facile preparation and characterization of a nanofiber-coated textile with durable and rechargeable antibacterial activity. NEW J CHEM 2019. [DOI: 10.1039/c9nj04033a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and green method was used to prepare a durable and rechargeable antibacterial cotton textile.
Collapse
Affiliation(s)
- Yu Huang
- Hubei Key Laboratory of Advanced Textile Materials & Application
- Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application
- College of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430200
| | - Qinwen Yuan
- Hubei Key Laboratory of Advanced Textile Materials & Application
- Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application
- College of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430200
| | - Zhentan Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application
- Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application
- College of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430200
| | - Wenwen Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application
- Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application
- College of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430200
| | - Ke Liu
- Hubei Key Laboratory of Advanced Textile Materials & Application
- Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application
- College of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430200
| | - Yuanli Chen
- Hubei Key Laboratory of Advanced Textile Materials & Application
- Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application
- College of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430200
| | - Xiaojun Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application
- Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application
- College of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430200
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application
- Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application
- College of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430200
| | - Yiming Qiu
- Jiangsu Debang Sanitary Products Co. Ltd
- Jinhu County
- China
| |
Collapse
|
33
|
Wang X, Hao X, Chang D, Zhu C, Chen L, Dong A, Gao G. Novel hydrophilicN-halamine polymer with enhanced antibacterial activity synthesized by inverse emulsion polymerization. J Appl Polym Sci 2018. [DOI: 10.1002/app.47419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao Wang
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| | - Xiufeng Hao
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| | - Dan Chang
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| | - Chongyi Zhu
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| | - Lili Chen
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering; Inner Mongolia University; Hohhot 010021 People's Republic of China
| | - Ge Gao
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| |
Collapse
|
34
|
Gao D, Zhang J, Lyu B, Lyu L, Ma J, Yang L. Poly(quaternary ammonium salt-epoxy) grafted onto Ce doped ZnO composite: An enhanced and durable antibacterial agent. Carbohydr Polym 2018; 200:221-228. [DOI: 10.1016/j.carbpol.2018.07.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/01/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
|
35
|
Müller A, Preuß A, Bornhütter T, Thomas I, Prager A, Schulze A, Röder B. Electron beam functionalized photodynamic polyethersulfone membranes - photophysical characterization and antimicrobial activity. Photochem Photobiol Sci 2018; 17:1346-1354. [PMID: 30141813 DOI: 10.1039/c8pp00254a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymer membranes are powerful filtration tools in medicine and water treatment. Their efficiency and operational lifetime is limited by biofouling caused by microorganisms. This study describes the development of photodynamical active antimicrobial polymer membranes in a one-pot functionalization step using a well-known photosensitizer (PS). Commercially available polyethersulfone (PES) membranes for microfiltration were doped with the polycationic PS TMPyP using electron beam irradiation. These membranes were characterized in terms of binding stability and quantification of the PS and membrane morphology. Furthermore, the photodynamic ability was verified by time resolved singlet oxygen luminescence scans and successfully tested against the Gram-negative bacterium E. coli under low dose white light illumination resulting in the reduction in cell survival of 6 log10 units. Finally, in preliminarily experiments the photodynamic action against the Gram-positive bacteria M. luteus and the Gram-negative P. fluorescence and the mold C. cladosporioides was demonstrated. These promising results show the high photodynamic potential of electron beam functionalization of PES membranes with TMPyP. It preserves the photodynamic abilities of the immobilized PS resulting in efficient photodynamic inactivation of bacteria and mold on the membrane surface. The uprising worldwide spread of antibiotic resistant bacteria makes the development of new antibacterial strategies an inevitable challenge. The photodynamic inactivation of bacteria and its adaptation for antimicrobial surfaces, e.g. filtration membranes for water treatment, displays many advantages in terms of a wide application range, low mutagenic potential and environmental compatibility.
Collapse
|
36
|
George L, Hiltunen A, Santala V, Efimov A. Photo-antimicrobial efficacy of zinc complexes of porphyrin and phthalocyanine activated by inexpensive consumer LED lamp. J Inorg Biochem 2018; 183:94-100. [DOI: 10.1016/j.jinorgbio.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/01/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
|
37
|
Issawi M, Guillaumot D, Sol V, Riou C. Responses of an adventitious fast-growing plant to photodynamic stress: comparative study of anionic and cationic porphyrin effect on Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2018; 162:379-390. [PMID: 29111597 DOI: 10.1111/ppl.12666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Antimicrobial photodynamic treatment (APDT) based on the use of a photosensitizer to produce reactive oxygen species (ROS) that induce cell death could be envisaged to fight against plant pathogens. For setting this strategy, we want to study how plants themselves respond to photodynamic treatment. In previous work we showed that tomato plantlets were able to resist photoactivated tetra (N-methylpyridyl) porphyrin (CP) or the zinc metalated form (CP-Zn). To enlarge our plant expertise related to exogenous porphyrins treatment and to further defend this approach, we studied how a weed like Arabidopsis thaliana responded to exogenous supply of anionic and cationic porphyrins. Both types of photosensitizers had no negative effect on seed germination and did not hamper the development etiolated Arabidopsis plantlet under dark conditions. Thus, post-emergence effects of porphyrin photoactivation on the development of 14 day-old in vitro Arabidopsis plantlet under light were observed. CP-Zn was the most efficient photosensitizer to kill Arabidopsis plantlets while anionic tetra (4-sulfonatophenyl) porphyrin only delayed their growth and development. Indeed only 7% of plantlets could be rescued after CP-Zn treatment. Furthermore, non-enzymatic and enzymatic defense components involved in detoxification of ROS generated by CP-Zn under illumination were downregulated or stable with the exception of sevenfold increase in proline content. As previously demonstrated in the literature for microbial agents and in the present work for Arabidopsis, CP-Zn was efficient enough to eradicate unwanted vegetation and plant pathogens without at the same time killing plants of agronomic interest such as tomato plantlets.
Collapse
Affiliation(s)
- Mohammad Issawi
- Laboratoire de Chimie des Substances Naturelles (EA 1069), Université de Limoges, Faculté des Sciences et Techniques, 87060 Limoges Cedex, France
| | - Damien Guillaumot
- Laboratoire de Chimie des Substances Naturelles (EA 1069), Université de Limoges, Faculté des Sciences et Techniques, 87060 Limoges Cedex, France
| | - Vincent Sol
- Laboratoire de Chimie des Substances Naturelles (EA 1069), Université de Limoges, Faculté des Sciences et Techniques, 87060 Limoges Cedex, France
| | - Catherine Riou
- Laboratoire de Chimie des Substances Naturelles (EA 1069), Université de Limoges, Faculté des Sciences et Techniques, 87060 Limoges Cedex, France
| |
Collapse
|
38
|
Chang D, li Z, Wang X, Zhu C, Dong A, Gao G. N-Halamine polymer from bipolymer to amphiphilic terpolymer with enhancement in antibacterial activity. Colloids Surf B Biointerfaces 2018; 163:402-411. [DOI: 10.1016/j.colsurfb.2018.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/05/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023]
|
39
|
Ringot C, Saad N, Brégier F, Bressollier P, Poli E, Chaleix V, Ouk TS, Sol V. Antibacterial activity of a photosensitive hybrid cellulose fabric. Photochem Photobiol Sci 2018; 17:1780-1786. [DOI: 10.1039/c8pp00212f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new photosensitive hybrid cellulose material, synthesized by polymerization of methacrylic acid (MAA) and PpIX, showed photoantibacterial activity against Staphylococcus aureus.
Collapse
Affiliation(s)
| | - Naïma Saad
- Université de Limoges
- F-87000 Limoges
- France
| | | | | | | | | | | | | |
Collapse
|
40
|
Haase H, Jordan L, Keitel L, Keil C, Mahltig B. Comparison of methods for determining the effectiveness of antibacterial functionalized textiles. PLoS One 2017; 12:e0188304. [PMID: 29161306 PMCID: PMC5697868 DOI: 10.1371/journal.pone.0188304] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/04/2017] [Indexed: 12/03/2022] Open
Abstract
Antimicrobial functionalization of textiles is important for various applications, such as protection of textile materials from decomposition, generation of more effective wound dressings, and the prevention of infections or malodors resulting from bacterial growth. In order to test the efficacy of new products, their antibacterial activity needs to be evaluated. At present, several different procedures are being used for this purpose, hindering comparisons among different studies. The present paper compares five of these assays using a sample panel of different textiles functionalized with copper (Cu) and silver (Ag) as antibacterial agents, and discusses the suitability of these methods for different analytical requirements. Bacterial viability was determined by measuring the optical density at 600 nm, a colorimetric assay based on MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide) conversion, an agar diffusion assay, and colony formation, either after culturing in media containing textile samples, or after recovery from textiles soaked with bacterial suspension. All experiments were performed with a Gram-negative (Escherichia coli) and a Gram-positive (Staphylococcus warneri) model organism. In general, the results yielded by the different methods were of good comparability. To identify the most suitable test system for the particular type of antibacterial coating, several factors need to be taken into account, such as choosing appropriate endpoints for analyzing passive or active antibacterial effects, selection of relevant microorganisms, correcting for potential interference by leaching of colored textile coatings, required hands on time, and the necessary sensitivity.
Collapse
Affiliation(s)
- Hajo Haase
- Department of Food Chemistry and Toxicology, Institute for Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
- * E-mail:
| | - Lisa Jordan
- Department of Food Chemistry and Toxicology, Institute for Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Laura Keitel
- Department of Food Chemistry and Toxicology, Institute for Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Institute for Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Boris Mahltig
- Faculty of Textile and Clothing Technology, Hochschule Niederrhein, University of Applied Science, Mönchengladbach, Germany
| |
Collapse
|
41
|
Li Y, Liu X, Tan L, Cui Z, Yang X, Yeung KK, Pan H, Wu S. Construction of N-halamine labeled silica/zinc oxide hybrid nanoparticles for enhancing antibacterial ability of Ti implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:50-58. [DOI: 10.1016/j.msec.2017.02.160] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 11/28/2022]
|
42
|
Spagnul C, Turner LC, Giuntini F, Greenman J, Boyle RW. Synthesis and bactericidal properties of porphyrins immobilized in a polyacrylamide support: influence of metal complexation on photoactivity. J Mater Chem B 2017; 5:1834-1845. [DOI: 10.1039/c6tb03198f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Development of three porphyrin immobilised polyacrylamide hydrogels active against Gram negative bacteria to be used as antimicrobial materials.
Collapse
Affiliation(s)
- Cinzia Spagnul
- Department of Chemistry
- University of Hull
- Kingston-upon-Hull
- UK
| | | | - Francesca Giuntini
- School of Pharmacy & Biomolecular Sciences
- Liverpool John Moores University
- Liverpool
- UK
| | - John Greenman
- School of Life Sciences
- University of the West of England
- Bristol
- UK
| | - Ross W. Boyle
- Department of Chemistry
- University of Hull
- Kingston-upon-Hull
- UK
| |
Collapse
|
43
|
Molecular interactions, characterization and photoactivity of Chlorophyll a/chitosan/2-HP-β-cyclodextrin composite films as functional and active surfaces for ROS production. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.02.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Jiang L, Gan CRR, Gao J, Loh XJ. A Perspective on the Trends and Challenges Facing Porphyrin-Based Anti-Microbial Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3609-3644. [PMID: 27276371 DOI: 10.1002/smll.201600327] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/05/2016] [Indexed: 06/06/2023]
Abstract
The emergence of multidrug resistant bacterium threatens to unravel global healthcare systems, built up over centuries of medical research and development. Current antibiotics have little resistance against this onslaught as bacterium strains can quickly evolve effective defense mechanisms. Fortunately, alternative therapies exist and, at the forefront of research lays the photodynamic inhibition approach mediated by porphyrin based photosensitizers. This review will focus on the development of various porphyrins compounds and their incorporation as small molecules, into polymers, fibers and thin films as practical therapeutic agents, utilizing photodynamic therapy to inhibit a wide spectrum of bacterium. The use of photodynamic therapy of these porphyrin molecules are discussed and evaluated according to their electronic and bulk material effect on different bacterium strains. This review also provides an insight into the general direction and challenges facing porphyrins and derivatives as full-fledged therapeutic agents and what needs to be further done in order to be bestowed their rightful and equal status in modern medicine, similar to the very first antibiotic; penicillin itself. It is hoped that, with this perspective, new paradigms and strategies in the application of porphyrins and derivatives will progressively flourish and lead to advances against disease.
Collapse
Affiliation(s)
- Lu Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Ching Ruey Raymond Gan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Jian Gao
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Republic of Singapore
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Republic of Singapore
| |
Collapse
|
45
|
Stanley SL, Scholle F, Zhu J, Lu Y, Zhang X, Situ X, Ghiladi RA. Photosensitizer-Embedded Polyacrylonitrile Nanofibers as Antimicrobial Non-Woven Textile. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E77. [PMID: 28335205 PMCID: PMC5302559 DOI: 10.3390/nano6040077] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 11/28/2022]
Abstract
Toward the objective of developing platform technologies for anti-infective materials based upon photodynamic inactivation, we employed electrospinning to prepare a non-woven textile comprised of polyacrylonitrile nanofibers embedded with a porphyrin-based cationic photosensitizer; termed PAN-Por(+). Photosensitizer loading was determined to be 34.8 nmol/mg material; with thermostability to 300 °C. Antibacterial efficacy was evaluated against four bacteria belonging to the ESKAPE family of pathogens (Staphylococcus aureus; vancomycin-resistant Enterococcus faecium; Acinetobacter baumannii; and Klebsiella pneumonia), as well as Escherichia coli. Our results demonstrated broad photodynamic inactivation of all bacterial strains studied upon illumination (30 min; 65 ± 5 mW/cm²; 400-700 nm) by a minimum of 99.9996+% (5.8 log units) regardless of taxonomic classification. PAN-Por(+) also inactivated human adenovirus-5 (~99.8% reduction in PFU/mL) and vesicular stomatitis virus (>7 log units reduction in PFU/mL). When compared to cellulose-based materials employing this same photosensitizer; the higher levels of photodynamic inactivation achieved here with PAN-Por(+) are likely due to the combined effects of higher photosensitizer loading and a greater surface area imparted by the use of nanofibers. These results demonstrate the potential of photosensitizer-embedded polyacrylonitrile nanofibers to serve as scalable scaffolds for anti-infective or self-sterilizing materials against both bacteria and viruses when employing a photodynamic inactivation mode of action.
Collapse
Affiliation(s)
- Sarah L Stanley
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA.
| | - Jiadeng Zhu
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695-8301, USA.
| | - Yao Lu
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695-8301, USA.
| | - Xiangwu Zhang
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695-8301, USA.
| | - Xingci Situ
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| |
Collapse
|
46
|
Menéndez MI, López R, Yañez M, Cárdenas-Jirón G. Tautomerization mechanism and spectral properties of porphyrin–glucose complexes as models of antibacterial material. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1878-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Rahimi R, Fayyaz F, Rassa M. The study of cellulosic fabrics impregnated with porphyrin compounds for use as photo-bactericidal polymers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:661-668. [DOI: 10.1016/j.msec.2015.10.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/03/2015] [Accepted: 10/20/2015] [Indexed: 11/25/2022]
|
48
|
Hou A, Feng G, Zhuo J, Sun G. UV Light-Induced Generation of Reactive Oxygen Species and Antimicrobial Properties of Cellulose Fabric Modified by 3,3',4,4'-Benzophenone Tetracarboxylic Acid. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27918-24. [PMID: 26636826 DOI: 10.1021/acsami.5b09993] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
3,3',4,4'-Benzophenone tetracarboxylic acid (BPTCA) could directly react with hydroxyl groups on cellulose to form ester bonds. The modified cotton fabrics not only provided good wrinkle-free and ultraviolet (UV) protective functions, but also exhibited important photochemical properties such as producing reactive oxygen species (ROS) including hydroxyl radicals (HO(•)) and hydrogen peroxide (H2O2) under UV light exposure. The amounts of the produced hydroxyl radical and hydrogen peroxide were measured, and photochemical reactive mechanism of the BPTCA treated cellulose was discussed. The results reveal that the fabrics possess good washing durability in generation of hydroxyl radicals and hydrogen peroxide. The cotton fabrics modified with different concentrations of BPTCA and cured at an elevated temperature demonstrated excellent antimicrobial activities, which provided 99.99% antibacterial activities against both E. coli and S. aureus. The advanced materials have potential applications in medical textiles and biological material fields.
Collapse
Affiliation(s)
- Aiqin Hou
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University , Shanghai 201620, China
- Division of Textiles and Clothing, University of California , Davis, California 95616, United States
| | - Guanchen Feng
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University , Shanghai 201620, China
| | - Jingyuan Zhuo
- Division of Textiles and Clothing, University of California , Davis, California 95616, United States
| | - Gang Sun
- Division of Textiles and Clothing, University of California , Davis, California 95616, United States
| |
Collapse
|
49
|
Immobilized photosensitizers for antimicrobial applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 150:11-30. [DOI: 10.1016/j.jphotobiol.2015.04.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 01/21/2023]
|
50
|
Carpenter BL, Scholle F, Sadeghifar H, Francis AJ, Boltersdorf J, Weare WW, Argyropoulos DS, Maggard PA, Ghiladi RA. Synthesis, Characterization, and Antimicrobial Efficacy of Photomicrobicidal Cellulose Paper. Biomacromolecules 2015; 16:2482-92. [DOI: 10.1021/acs.biomac.5b00758] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | - Hasan Sadeghifar
- Department
of Wood and Paper Science, Sari Branch, Islamic Azad University, P.O. Box 48161-19318, Sari, Iran
| | | | | | | | | | | | | |
Collapse
|