1
|
Stangel C, Kagkoura A, Pippa N, Stellas D, Zhang M, Okazaki T, Demetzos C, Tagmatarchis N. Preclinical evaluation of modified carbon nanohorns and their complexation with insulin. NANOSCALE ADVANCES 2023; 5:6847-6857. [PMID: 38059018 PMCID: PMC10696926 DOI: 10.1039/d3na00471f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/23/2023] [Indexed: 12/08/2023]
Abstract
The current study emphasizes the minimal toxicity observed in vitro and in vivo for carbon nanohorns (CNHs) modified with third generation polyamidoamine (PAMAM) dendrimers. Initially, we investigated the interactions between CNH-PAMAM and lipid bilayers, which were utilized as representative models of cellular membranes for the evaluation of their toxicity in vitro. We found that the majority of those interactions occur between the modified CNHs and the polar groups of phospholipids, meaning that CNH-PAMAM does not incorporate into the lipid chains, and thus, disruption of the lipid bilayer structure is avoided. This outcome is a very important observation for further evaluation of CNH-PAPAM in cell lines and in animal models. Next, we demonstrated the potential of CNH-PAMAM for complexation with insulin, as a proof of concept for its employment as a delivery platform. Importantly, our study provides comprehensive evidence of low toxicity for CNH-PAMAM both in vitro and in vivo. The assessment of cellular toxicity revealed that the modified CNHs exhibited minimal toxicity, with concentrations of 151 μg mL-1 and 349 μg mL-1, showing negligible harm to EO771 cells and mouse embryonic fibroblasts (MEFs), respectively. Moreover, the histological analysis of the mouse livers demonstrated no evidence of tissue necrosis and inflammation, or any visible signs of severe toxicity. These findings collectively indicate the safe profile of CNH-PAMAM and further contribute to the growing body of knowledge on the safe and efficient utilization of CNH-based nanomaterials in drug and protein delivery applications.
Collapse
Affiliation(s)
- Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Antonia Kagkoura
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens Athens 15771 Greece
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Minfang Zhang
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba 305-8565 Japan
| | - Toshiya Okazaki
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba 305-8565 Japan
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens Athens 15771 Greece
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| |
Collapse
|
2
|
Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B, Xie J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303259. [PMID: 37632708 PMCID: PMC10602574 DOI: 10.1002/advs.202303259] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule that has a central role in signaling pathways involved in numerous physiological processes (e.g., vasodilation, neurotransmission, inflammation, apoptosis, and tumor growth). Due to its gaseous form, NO has a short half-life, and its physiology role is concentration dependent, often restricting its function to a target site. Providing NO from an external source is beneficial in promoting cellular functions and treatment of different pathological conditions. Hence, the multifaceted role of NO in physiology and pathology has garnered massive interest in developing strategies to deliver exogenous NO for the treatment of various regenerative and biomedical complexities. NO-releasing platforms or donors capable of delivering NO in a controlled and sustained manner to target tissues or organs have advanced in the past few decades. This review article discusses in detail the generation of NO via the enzymatic functions of NO synthase as well as from NO donors and the multiple biological and pathological processes that NO modulates. The methods for incorporating of NO donors into diverse biomaterials including physical, chemical, or supramolecular techniques are summarized. Then, these NO-releasing platforms are highlighted in terms of advancing treatment strategies for various medical problems.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Navatha Shree Sharma
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Anik Karan
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Brent Cordon
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bing Ma
- Cell Therapy Manufacturing FacilityMedStar Georgetown University HospitalWashington, DC2007USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska LincolnLincolnNE68588USA
| |
Collapse
|
3
|
Cela EM, Urquiza D, Gómez MI, Gonzalez CD. New Weapons to Fight against Staphylococcus aureus Skin Infections. Antibiotics (Basel) 2023; 12:1477. [PMID: 37887178 PMCID: PMC10603739 DOI: 10.3390/antibiotics12101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
The treatment of Staphylococcus aureus skin and soft tissue infections faces several challenges, such as the increased incidence of antibiotic-resistant strains and the fact that the antibiotics available to treat methicillin-resistant S. aureus present low bioavailability, are not easily metabolized, and cause severe secondary effects. Moreover, besides the susceptibility pattern of the S. aureus isolates detected in vitro, during patient treatment, the antibiotics may never encounter the bacteria because S. aureus hides within biofilms or inside eukaryotic cells. In addition, vascular compromise as well as other comorbidities of the patient may impede proper arrival to the skin when the antibiotic is given parenterally. In this manuscript, we revise some of the more promising strategies to improve antibiotic sensitivity, bioavailability, and delivery, including the combination of antibiotics with bactericidal nanomaterials, chemical inhibitors, antisense oligonucleotides, and lytic enzymes, among others. In addition, alternative non-antibiotic-based experimental therapies, including the delivery of antimicrobial peptides, bioactive glass nanoparticles or nanocrystalline cellulose, phototherapies, and hyperthermia, are also reviewed.
Collapse
Affiliation(s)
- Eliana M. Cela
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Dolores Urquiza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Departamento de Investigaciones Biomédicas y Biotecnológicas, Universidad Maimónides, Buenos Aires C1405BCK, Argentina
| | - Marisa I. Gómez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Departamento de Investigaciones Biomédicas y Biotecnológicas, Universidad Maimónides, Buenos Aires C1405BCK, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Cintia D. Gonzalez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| |
Collapse
|
4
|
Antibacterial gas therapy: Strategies, advances, and prospects. Bioact Mater 2023; 23:129-155. [DOI: 10.1016/j.bioactmat.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
|
5
|
Zhang Q, Zhang Z, Zou X, Liu Z, Li Q, Zhou J, Gao S, Xu H, Guo J, Yan F. Nitric oxide-releasing poly(ionic liquid)-based microneedle for subcutaneous fungal infection treatment. Biomater Sci 2023; 11:3114-3127. [PMID: 36917099 DOI: 10.1039/d2bm02096c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Poor permeation of therapeutic agents and similar eukaryotic cell metabolic and physiological properties of fungi and human cells are two major challenges that lead to the failure of current therapy for fungi-induced skin and soft tissue infections. Herein, a nitric oxide (NO)-releasing poly(ionic liquid)-based microneedle (PILMN-NO) with the capacity of deep persistent NO toward subcutaneous fungal bed is presented as a synergistic antifungal treatment strategy to treat subcutaneous fungal infection. Upon the insertion of PILMN-NO into skin, the contact fungicidal activities induced by electrostatic and hydrophobic effects of poly(ionic liquid) and the released NO sterilization resulting from the peroxidation and nitrification effect of NO achieved enhanced antifungal efficacy against fungi (Candida albicans) both in vitro and in vivo. Simultaneously, PILMN-NO showed biofilm ablation ability and efficiently eliminated mature biofilms. In vivo fungal-induced subcutaneous abscess studies revealed that PILMN-NO could effectively sterilize fungi while suppressing the inflammatory reaction, facilitating collagen deposition and angiogenesis, and promoting wound healing. This work provides a new strategy to overcome the difficulties in deep skin fungal infection treatment and has potential for further exploitation of NO-releasing microbicidal therapy.
Collapse
Affiliation(s)
- Qiuyang Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Zijun Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Qingning Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Jiamei Zhou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Shuna Gao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Hui Xu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
6
|
Cao J, Hlaing SP, Lee J, Kim J, Lee EH, Kang SH, Hong SW, Yoon IS, Yun H, Jung Y, Yoo JW. Bacteria-Adhesive Nitric Oxide-Releasing Graphene Oxide Nanoparticles for MRPA-Infected Wound Healing Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50507-50519. [PMID: 36331408 DOI: 10.1021/acsami.2c13317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A bacteria-infected wound can lead to being life-threatening and raises a great economic burden on the patient. Here, we developed polyethylenimine 1.8k (PEI1.8k) surface modified NO-releasing polyethylenimine 25k (PEI25k)-functionalized graphene oxide (GO) nanoparticles (GO-PEI25k/NO-PEI1.8k NPs) for enhanced antibacterial activity and infected wound healing via binding to the bacterial surface. In vitro antibacterial activity and in vivo wound healing efficacy in an infected wound model were evaluated compared with NO-releasing NPs (GO-PEI25k/NO NPs). Surface modification with PEI1.8k can enhance the ability of nanoparticles to adhere to bacteria. GO-PEI25k/NO-PEI1.8k NPs released NO in a sustained manner for 48 h and exhibited the highest bactericidal activity (99.99% killing) against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MRPA) without cytotoxicity to L929 mouse fibroblast cells at 0.1 mg/mL. In the MRPA-infected wound model, GO-PEI25k/NO-PEI1.8k NPs showed 87% wound size reduction while GO-PEI25k/NO NPs showed 23% wound size reduction at 9 days postinjury. Masson trichrome and hematoxylin and eosin staining revealed that GO-PEI25k/NO-PEI1.8k NPs enhanced re-epithelialization and collagen deposition, which are comparable to healthy mouse skin tissue. GO-PEI25k/NO-PEI1.8k NPs hold promise as effective antibacterial and wound healing agents.
Collapse
Affiliation(s)
- Jiafu Cao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang550014, China
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Jihyun Kim
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Eun Hee Lee
- College of Pharmacy, Korea University, Sejong30019, South Korea
| | - Seok Hee Kang
- College of Nanoscience & Nanotechnology, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan46241, South Korea
| | - Suck Won Hong
- College of Nanoscience & Nanotechnology, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan46241, South Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| |
Collapse
|
7
|
Chen H, Zhang Y, Yu T, Song G, Xu T, Xin T, Lin Y, Han B. Nano-Based Drug Delivery Systems for Periodontal Tissue Regeneration. Pharmaceutics 2022; 14:2250. [PMID: 36297683 PMCID: PMC9612159 DOI: 10.3390/pharmaceutics14102250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Abstract
Periodontitis is a dysbiotic biofilm-induced and host-mediated inflammatory disease of tooth supporting tissues that leads to progressive destruction of periodontal ligament and alveolar bone, thereby resulting in gingival recession, deep periodontal pockets, tooth mobility and exfoliation, and aesthetically and functionally compromised dentition. Due to the improved biopharmaceutical and pharmacokinetic properties and targeted and controlled drug release, nano-based drug delivery systems have emerged as a promising strategy for the treatment of periodontal defects, allowing for increased efficacy and safety in controlling local inflammation, establishing a regenerative microenvironment, and regaining bone and attachments. This review provides an overview of nano-based drug delivery systems and illustrates their practical applications, future prospects, and limitations in the field of periodontal tissue regeneration.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Guangying Song
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianmin Xu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianyi Xin
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
8
|
Opoku‐Damoah Y, Zhang R, Ta HT, Xu ZP. Therapeutic gas-releasing nanomedicines with controlled release: Advances and perspectives. EXPLORATION (BEIJING, CHINA) 2022; 2:20210181. [PMID: 37325503 PMCID: PMC10190986 DOI: 10.1002/exp.20210181] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/15/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticle-based drug delivery has become one of the most popular approaches for maximising drug therapeutic potentials. With the notable improvements, a greater challenge hinges on the formulation of gasotransmitters with unique challenges that are not met in liquid and solid active ingredients. Gas molecules upon release from formulations for therapeutic purposes have not really been discussed extensively. Herein, we take a critical look at four key gasotransmitters, that is, carbon monoxide (CO), nitric oxide (NO), hydrogen sulphide (H2S) and sulphur dioxide (SO2), their possible modification into prodrugs known as gas-releasing molecules (GRMs), and their release from GRMs. Different nanosystems and their mediatory roles for efficient shuttling, targeting and release of these therapeutic gases are also reviewed extensively. This review thoroughly looks at the diverse ways in which these GRM prodrugs in delivery nanosystems are designed to respond to intrinsic and extrinsic stimuli for sustained release. In this review, we seek to provide a succinct summary for the development of therapeutic gases into potent prodrugs that can be adapted in nanomedicine for potential clinical use.
Collapse
Affiliation(s)
- Yaw Opoku‐Damoah
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Run Zhang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Hang T. Ta
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
- School of Environment and ScienceGriffith UniversityBrisbaneQueenslandAustralia
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQueenslandAustralia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
9
|
Chug M, Brisbois EJ. Recent Developments in Multifunctional Antimicrobial Surfaces and Applications toward Advanced Nitric Oxide-Based Biomaterials. ACS MATERIALS AU 2022; 2:525-551. [PMID: 36124001 PMCID: PMC9479141 DOI: 10.1021/acsmaterialsau.2c00040] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
Implant-associated infections arising from biofilm development are known to have detrimental effects with compromised quality of life for the patients, implying a progressing issue in healthcare. It has been a struggle for more than 50 years for the biomaterials field to achieve long-term success of medical implants by discouraging bacterial and protein adhesion without adversely affecting the surrounding tissue and cell functions. However, the rate of infections associated with medical devices is continuously escalating because of the intricate nature of bacterial biofilms, antibiotic resistance, and the lack of ability of monofunctional antibacterial materials to prevent the colonization of bacteria on the device surface. For this reason, many current strategies are focused on the development of novel antibacterial surfaces with dual antimicrobial functionality. These surfaces are based on the combination of two components into one system that can eradicate attached bacteria (antibiotics, peptides, nitric oxide, ammonium salts, light, etc.) and also resist or release adhesion of bacteria (hydrophilic polymers, zwitterionic, antiadhesive, topography, bioinspired surfaces, etc.). This review aims to outline the progress made in the field of biomedical engineering and biomaterials for the development of multifunctional antibacterial biomedical devices. Additionally, principles for material design and fabrication are highlighted using characteristic examples, with a special focus on combinational nitric oxide-releasing biomedical interfaces. A brief perspective on future research directions for engineering of dual-function antibacterial surfaces is also presented.
Collapse
Affiliation(s)
- Manjyot
Kaur Chug
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
10
|
Hawas S, Verderosa AD, Totsika M. Combination Therapies for Biofilm Inhibition and Eradication: A Comparative Review of Laboratory and Preclinical Studies. Front Cell Infect Microbiol 2022; 12:850030. [PMID: 35281447 PMCID: PMC8915430 DOI: 10.3389/fcimb.2022.850030] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/04/2022] [Indexed: 12/26/2022] Open
Abstract
Microbial biofilms are becoming increasingly difficult to treat in the medical setting due to their intrinsic resistance to antibiotics. To combat this, several biofilm dispersal agents are currently being developed as treatments for biofilm infections. Combining biofilm dispersal agents with antibiotics is emerging as a promising strategy to simultaneously disperse and eradicate biofilms or, in some cases, even inhibit biofilm formation. Here we review studies that have investigated the anti-biofilm activity of some well-studied biofilm dispersal agents (e.g., quorum sensing inhibitors, nitric oxide/nitroxides, antimicrobial peptides/amino acids) in combination with antibiotics from various classes. This review aims to directly compare the efficacy of different combination strategies against microbial biofilms and highlight synergistic treatments that warrant further investigation. By comparing across studies that use different measures of efficacy, we can conclude that treating biofilms in vitro and, in some limited cases in vivo, with a combination of an anti-biofilm agent and an antibiotic, appears overall more effective than treating with either compound alone. The review identifies the most promising combination therapies currently under development as biofilm inhibition and eradication therapies.
Collapse
Affiliation(s)
- Sophia Hawas
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Anthony D. Verderosa
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Makrina Totsika,
| |
Collapse
|
11
|
Electrospun Bioscaffold Based on Cellulose Acetate and Dendrimer-modified Cellulose Nanocrystals for Controlled Drug Release. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Poh WH, Rice SA. Recent Developments in Nitric Oxide Donors and Delivery for Antimicrobial and Anti-Biofilm Applications. Molecules 2022; 27:molecules27030674. [PMID: 35163933 PMCID: PMC8839391 DOI: 10.3390/molecules27030674] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
The use of nitric oxide (NO) is emerging as a promising, novel approach for the treatment of antibiotic resistant bacteria and biofilm infections. Depending on the concentration, NO can induce biofilm dispersal, increase bacteria susceptibility to antibiotic treatment, and induce cell damage or cell death via the formation of reactive oxygen or reactive nitrogen species. The use of NO is, however, limited by its reactivity, which can affect NO delivery to its target site and result in off-target effects. To overcome these issues, and enable spatial or temporal control over NO release, various strategies for the design of NO-releasing materials, including the incorporation of photo-activable, charge-switchable, or bacteria-targeting groups, have been developed. Other strategies have focused on increased NO storage and delivery by encapsulation or conjugation of NO donors within a single polymeric framework. This review compiles recent developments in NO drugs and NO-releasing materials designed for applications in antimicrobial or anti-biofilm treatment and discusses limitations and variability in biological responses in response to the use of NO for bacterial eradiation.
Collapse
Affiliation(s)
- Wee Han Poh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore;
- Correspondence:
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore;
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- The iThree Institute, The University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
13
|
Hu J, Fang Y, Huang X, Qiao R, Quinn JF, Davis TP. Engineering macromolecular nanocarriers for local delivery of gaseous signaling molecules. Adv Drug Deliv Rev 2021; 179:114005. [PMID: 34687822 DOI: 10.1016/j.addr.2021.114005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
In addition to being notorious air pollutants, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have also been known as endogenous gaseous signaling molecules (GSMs). These GSMs play critical roles in maintaining the homeostasis of living organisms. Importantly, the occurrence and development of many diseases such as inflammation and cancer are highly associated with the concentration changes of GSMs. As such, GSMs could also be used as new therapeutic agents, showing great potential in the treatment of many formidable diseases. Although clinically it is possible to directly inhale GSMs, the precise control of the dose and concentration for local delivery of GSMs remains a substantial challenge. The development of gaseous signaling molecule-releasing molecules provides a great tool for the safe and convenient delivery of GSMs. In this review article, we primarily focus on the recent development of macromolecular nanocarriers for the local delivery of various GSMs. Learning from the chemistry of small molecule-based donors, the integration of these gaseous signaling molecule-releasing molecules into polymeric matrices through physical encapsulation, post-modification, or direct polymerization approach renders it possible to fabricate numerous macromolecular nanocarriers with optimized pharmacokinetics and pharmacodynamics, revealing improved therapeutic performance than the small molecule analogs. The development of GSMs represents a new means for many disease treatments with unique therapeutic outcomes.
Collapse
|
14
|
Yang T, Zhou Y, Cheong S, Kong C, Mazur F, Liang K, Chandrawati R. Modulating nitric oxide-generating activity of zinc oxide by morphology control and surface modification. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112428. [PMID: 34702513 DOI: 10.1016/j.msec.2021.112428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022]
Abstract
Zinc oxide (ZnO) has emerged as a promising material for nitric oxide (NO) delivery owing to its intrinsic enzyme-mimicking activities to catalyze NO prodrugs S-nitrosoglutathione (GSNO) and β-gal-NONOate for NO generation. The catalytic performance of enzyme mimics is strongly dependent on their size, shape, and surface chemistry; however, no studies have evaluated the influence of the aforementioned factors on the NO-generating activity of ZnO. Understanding these factors will provide an opportunity to tune NO generation profiles to accommodate diverse biomedical applications. In this paper, for the first time, we demonstrate that the activity of ZnO towards catalytic NO generation is shape-dependent, resulting from the different crystal growth directions of these particles. We modified the surfaces of ZnO particles with zeolitic imidazolate framework (ZIF-8) by in situ synthesis and observed that ZnO/ZIF-8 retained 60% of its NO-generating potency. The newly formed ZnO/ZIF-8 particles were shown to catalytically decompose both endogenous (GSNO) and exogenous (β-gal-NONOate and S-nitroso-N-acetylpenicillamine (SNAP)) prodrugs to generate NO at physiological conditions. In addition, we design the first platform that combines NO-generating and superoxide radical scavenging properties by encapsulating a natural enzyme, superoxidase dismutase (SOD), into ZnO/ZIF-8 particles, which holds great promise towards combinatorial therapy.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Soshan Cheong
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Charlie Kong
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia; Graduate School of Biomedical Engineering, The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| |
Collapse
|
15
|
Paul S, Pan S, Mukherjee A, De P. Nitric Oxide Releasing Delivery Platforms: Design, Detection, Biomedical Applications, and Future Possibilities. Mol Pharm 2021; 18:3181-3205. [PMID: 34433264 DOI: 10.1021/acs.molpharmaceut.1c00486] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gasotransmitters belong to the subfamily of endogenous gaseous signaling molecules, which find a wide range of biomedical applications. Among the various gasotransmitters, nitric oxide (NO) has an enormous effect on the cardiovascular system. Apart from this, NO showed a pivotal role in neurological, respiratory, and immunological systems. Moreover, the paradoxical concentration-dependent activities make this gaseous signaling molecule more interesting. The gaseous NO has negligible stability in physiological conditions (37 °C, pH 7.4), which restricts their potential therapeutic applications. To overcome this issue, various NO delivering carriers were reported so far. Unfortunately, most of these NO donors have low stability, short half-life, or low NO payload. Herein, we review the synthesis of NO delivering motifs, development of macromolecular NO donors, their advantages/disadvantages, and biological applications. Various NO detection analytical techniques are discussed briefly, and finally, a viewpoint about the design of polymeric NO donors with improved physicochemical characteristics is predicted.
Collapse
|
16
|
Gharibi R, Agarwal S. Favorable Antibacterial, Antibiofilm, Antiadhesion to Cells, and Biocompatible Polyurethane by Facile Surface Functionalization. ACS APPLIED BIO MATERIALS 2021; 4:4629-4640. [PMID: 35006800 DOI: 10.1021/acsabm.1c00356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is of paramount importance to prohibit biofilm formation in a wide range of implant devices, such as thermoplastic polyurethane (PU)-based catheters. It is possible only by means of a multifunctional material that provides fast and effective antibacterial activity, proper biocompatibility, and low bacterial and cell adhesion. In this paper, a facile chemistry approach has been developed to modify biomedical-grade PU with PU species, containing reactive uretdione functional groups for functionalization with the contact-type polyguanidine bactericidal agent and oxidized dextran as an antifouling polymer without sacrificing the thermal and mechanical properties. The resulting PU possesses broad-spectrum contact-active antibacterial activity against Gram-negative and Gram-positive bacteria with fast kinetics. The excellent antifouling capacity was confirmed by low nonspecific protein adsorption and reduced adhesion of fibroblast cells by ≥ 90%. In addition to antiadhesive and antibiofilm properties, high cell viability (>90%) and low hemolysis rate (HR < 1%) verified favorable cytocompatibility. Hence, the strategy followed to functionalize PUs in this paper might be considered to modify PU-based biomedical devices.
Collapse
Affiliation(s)
- Reza Gharibi
- Macoliromolecular Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany.,Department of Organic Chemistry and Polymer, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Seema Agarwal
- Macoliromolecular Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| |
Collapse
|
17
|
Tummanapalli SS, Kuppusamy R, Yeo JH, Kumar N, New EJ, Willcox MDP. The role of nitric oxide in ocular surface physiology and pathophysiology. Ocul Surf 2021; 21:37-51. [PMID: 33940170 DOI: 10.1016/j.jtos.2021.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) has a wide array of biological functions including the regulation of vascular tone, neurotransmission, immunomodulation, stimulation of proinflammatory cytokine expression and antimicrobial action. These functions may depend on the type of isoform that is responsible for the synthesis of NO. NO is found in various ocular tissues playing a pivotal role in physiological mechanisms, namely regulating vascular tone in the uvea, retinal blood circulation, aqueous humor dynamics, neurotransmission and phototransduction in retinal layers. Unregulated production of NO in ocular tissues may result in production of toxic superoxide free radicals that participate in ocular diseases such as endotoxin-induced uveitis, ischemic proliferative retinopathy and neurotoxicity of optic nerve head in glaucoma. However, the role of NO on the ocular surface in mediating physiology and pathophysiological processes is not fully understood. Moreover, methods used to measure levels of NO in the biological samples of the ocular surface are not well established due to its rapid oxidation. The purpose of this review is to highlight the role of NO in the physiology and pathophysiology of ocular surface and propose suitable techniques to measure NO levels in ocular surface tissues and tears. This will improve the understanding of NO's role in ocular surface biology and the development of new NO-based therapies to treat various ocular surface diseases. Further, this review summarizes the biochemistry underpinning NO's antimicrobial action.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- School of Optometry & Vision Science, University of New South Wales, Australia; School of Chemistry, University of New South Wales, Australia
| | - Jia Hao Yeo
- The University of Sydney, School of Chemistry, NSW, 2006, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Australia
| | - Elizabeth J New
- The University of Sydney, School of Chemistry, NSW, 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Australia
| | - Mark D P Willcox
- School of Optometry & Vision Science, University of New South Wales, Australia
| |
Collapse
|
18
|
Targeted polymer-based antibiotic delivery system: A promising option for treating bacterial infections via macromolecular approaches. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101389] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Stuart-Walker W, Mahon CS. Glycomacromolecules: Addressing challenges in drug delivery and therapeutic development. Adv Drug Deliv Rev 2021; 171:77-93. [PMID: 33539854 DOI: 10.1016/j.addr.2021.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
Carbohydrate-based materials offer exciting opportunities for drug delivery. They present readily available, biocompatible components for the construction of macromolecular systems which can be loaded with cargo, and can enable targeting of a payload to particular cell types through carbohydrate recognition events established in biological systems. These systems can additionally be engineered to respond to environmental stimuli, enabling triggered release of payload, to encompass multiple modes of therapeutic action, or to simultaneously fulfil a secondary function such as enabling imaging of target tissue. Here, we will explore the use of glycomacromolecules to deliver therapeutic benefits to address key health challenges, and suggest future directions for development of next-generation systems.
Collapse
|
20
|
Banerjee A, Tam A, Dutt M. Dendronized vesicles: formation, self-organization of dendron-grafted amphiphiles and stability. NANOSCALE ADVANCES 2021; 3:725-737. [PMID: 36133832 PMCID: PMC9419559 DOI: 10.1039/d0na00773k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Fundamental bacterial functions like quorum sensing can be targeted to replace conventional antibiotic therapies. Nanoparticles or vesicles that bind interfacially to charged biomolecules could be used to block quorum sensing pathways in bacteria. Towards this goal, dendronized vesicles (DVs) encompassing polyamidoamine dendron-grafted amphiphiles (PDAs) and dipalmitoyl-sn-glycero-3-phosphocholine lipids are investigated using the molecular dynamics simulation technique in conjunction with an explicit solvent coarse-grained force field. The key physical factors determining the stability of DVs as a function of the dendron generation and relative concentration are identified. The threshold concentration of each dendron generation that yields stable DVs is determined. Dendrons with lower generations rupture the DVs at high relative concentrations due to the electrostatic repulsions between the terminally protonated amines. Whereas, dendrons with intermediate generations demonstrate a mushroom-to-brush transition. Conformational changes in the dendrons expand the outer DV surface, resulting in instability in the DV bilayer. DVs encompassing dendrons with higher generations incur stresses on the bilayer due to their high charge density and spontaneous curvature. The self-organization of PDAs on the DV surface are examined to understand how the asymmetric stresses are minimized across the bilayer. A set of conditions are determined to be conducive for the formation of a single cluster of PDAs that decorates the DV surface like a mesh. Results from this study can potentially guide the design and synthesis of nanoparticles which target quorum sensing pathways in bacteria towards the prevention and treatment of bacterial infections. Furthermore, these nanoparticles can be used in diverse applications in biomedicine, energy or electronics that require synthetic dendronized cells or the adsorption and transport of charged species.
Collapse
Affiliation(s)
- Akash Banerjee
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey Piscataway NJ 08854 USA
| | - Acacia Tam
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey Piscataway NJ 08854 USA
| | - Meenakshi Dutt
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey Piscataway NJ 08854 USA
| |
Collapse
|
21
|
Krathumkhet N, Sabrina, Imae T, Krafft MP. Nitric Oxide Gas in Carbon Nanohorn/Fluorinated Dendrimer/Fluorinated Poly(ethylene glycol)-Based Hierarchical Nanocomposites as Therapeutic Nanocarriers. ACS APPLIED BIO MATERIALS 2021; 4:2591-2600. [DOI: 10.1021/acsabm.0c01577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Nattinee Krathumkhet
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 10607, Taiwan, ROC
| | - Sabrina
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 10607, Taiwan, ROC
| | - Toyoko Imae
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 10607, Taiwan, ROC
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 10607, Taiwan, ROC
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 10607, Taiwan, ROC
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 67034 Strasbourg, France
| |
Collapse
|
22
|
Anastasio AT, Paniagua A, Diamond C, Ferlauto HR, Fernandez-Moure JS. Nanomaterial Nitric Oxide Delivery in Traumatic Orthopedic Regenerative Medicine. Front Bioeng Biotechnol 2021; 8:592008. [PMID: 33537289 PMCID: PMC7849904 DOI: 10.3389/fbioe.2020.592008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Achieving bone fracture union after trauma represents a major challenge for the orthopedic surgeon. Fracture non-healing has a multifactorial etiology and there are many risk factors for non-fusion. Environmental factors such as wound contamination, infection, and open fractures can contribute to non-healing, as can patient specific factors such as poor vascular status and improper immunologic response to fracture. Nitric oxide (NO) is a small, neutral, hydrophobic, highly reactive free radical that can diffuse across local cell membranes and exert paracrine functions in the vascular wall. This molecule plays a role in many biologic pathways, and participates in wound healing through decontamination, mediating inflammation, angiogenesis, and tissue remodeling. Additionally, NO is thought to play a role in fighting wound infection by mitigating growth of both Gram negative and Gram positive pathogens. Herein, we discuss recent developments in NO delivery mechanisms and potential implications for patients with bone fractures. NO donors are functional groups that store and release NO, independent of the enzymatic actions of NOS. Donor molecules include organic nitrates/nitrites, metal-NO complexes, and low molecular weight NO donors such as NONOates. Numerous advancements have also been made in developing mechanisms for localized nanomaterial delivery of nitric oxide to bone. NO-releasing aerogels, sol- gel derived nanomaterials, dendrimers, NO-releasing micelles, and core cross linked star (CCS) polymers are all discussed as potential avenues of NO delivery to bone. As a further target for improved fracture healing, 3d bone scaffolds have been developed to include potential for nanoparticulated NO release. These advancements are discussed in detail, and their potential therapeutic advantages are explored. This review aims to provide valuable insight for translational researchers who wish to improve the armamentarium of the feature trauma surgeon through use of NO mediated augmentation of bone healing.
Collapse
Affiliation(s)
| | - Ariana Paniagua
- Duke University School of Medicine, Durham, NC, United States
| | - Carrie Diamond
- Duke University School of Medicine, Durham, NC, United States
| | | | | |
Collapse
|
23
|
Alfei S, Schito AM. From Nanobiotechnology, Positively Charged Biomimetic Dendrimers as Novel Antibacterial Agents: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2022. [PMID: 33066468 PMCID: PMC7602242 DOI: 10.3390/nano10102022] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023]
Abstract
The alarming increase in antimicrobial resistance, based on the built-in abilities of bacteria to nullify the activity of current antibiotics, leaves a growing number of bacterial infections untreatable. An appealing approach, advanced in recent decades, concerns the development of novel agents able to interact with the external layers of bacteria, causing irreparable damage. Regarding this, some natural cationic antimicrobial peptides (CAMPs) have been reconsidered, and synthetic cationic polymers, mimicking CAMPs and able to kill bacteria by non-specific detrimental interaction with the negative bacterial membranes, have been proposed as promising solutions. Lately, also dendrimers were considered suitable macromolecules for the preparation of more advanced cationic biomimetic nanoparticles, able to harmonize the typical properties of dendrimers, including nanosize, mono-dispersion, long-term stability, high functionality, and the non-specific mechanism of action of CAMPs. Although cationic dendrimers are extensively applied in nanomedicine for drug or gene delivery, their application as antimicrobial agents is still in its infancy. The state of the art of their potential applications in this important field has therefore been reviewed here, with particular attention to the innovative case studies in the literature including also amino acid-modified polyester-based dendrimers, practically unexplored as membrane-active antimicrobials and able to kill bacteria on contact.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, I-16132 Genova, Italy;
| |
Collapse
|
24
|
Yu T, Jiang G, Gao R, Chen G, Ren Y, Liu J, van der Mei HC, Busscher HJ. Circumventing antimicrobial-resistance and preventing its development in novel, bacterial infection-control strategies. Expert Opin Drug Deliv 2020; 17:1151-1164. [PMID: 32510243 DOI: 10.1080/17425247.2020.1779697] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Development of new antimicrobials with ever 'better' bacterial killing has long been considered the appropriate response to the growing threat of antimicrobial-resistant infections. However, the time-period between the introduction of a new antibiotic and the appearance of resistance amongst bacterial pathogens is getting shorter and shorter. This suggests that alternative pathways than making ever 'better' antimicrobials should be taken. AREAS COVERED This review aims to answer the questions (1) whether we have means to circumvent existing antibiotic-resistance mechanisms, (2) whether we can revert existing antibiotic-resistance, (3) how we can prevent the development of antimicrobial-resistance against novel infection-control strategies, including nano-antimicrobials. EXPERT OPINION Relying on relieving antibiotic-pressure and natural outcompeting of antimicrobial-resistant bacteria seems an uncertain way out of the antibiotic-crisis facing us. Novel, non-antibiotic, nanotechnology-based infection control-strategies are promising. At the same time, rapid development of new resistance mechanisms once novel strategies is taken into global clinical use, may not be ruled out and must be closely monitored. This suggests focusing research and development on designing suitable combinations of existing antibiotics with new nano-antimicrobials in a way that induction of new antimicrobial-resistance mechanisms is avoided. The latter suggestion, however, requires a change of focus in research and development.
Collapse
Affiliation(s)
- Tianrong Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Jiangsu, P. R. China.,Department of Biomedical Engineering, University of Groningen and University Medical Center , Groningen, The Netherlands
| | - Guimei Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Jiangsu, P. R. China.,Department of Biomedical Engineering, University of Groningen and University Medical Center , Groningen, The Netherlands
| | - Ruifang Gao
- Department of Biomedical Engineering, University of Groningen and University Medical Center , Groningen, The Netherlands.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, P.R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, P.R. China
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center of Groningen , Groningen, The Netherlands
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Jiangsu, P. R. China
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center , Groningen, The Netherlands
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center , Groningen, The Netherlands
| |
Collapse
|
25
|
Free radical-releasing systems for targeting biofilms. J Control Release 2020; 322:248-273. [PMID: 32243972 DOI: 10.1016/j.jconrel.2020.03.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/05/2023]
Abstract
The recent rise in antibiotic drug resistance and biofilm formation by microorganisms has driven scientists from different fields to develop newer strategies to target microorganisms responsible for infectious diseases. There is a growing interest in free radicals as therapeutic agents for antimicrobial applications. However, limitations such as short half-life has hindered their usage. Currently, several research groups are exploring various biomaterials that can prolong the half-life, increase storage duration and control the release of the therapeutic ranges of free radicals required for different applications, including biofilm eradication. This review paper initially provides a background to, and theoretical knowledge on, free radicals; and then proceeds to review studies that have employed various free radical-incorporated drug delivery systems as an approach to target biofilm formation and eradication. Some of the free radical releasing systems highlighted include polymers, nanoparticles and hydrogels, with a focus on biofilm eradication, where they impact significantly. The various challenges associated with their application are also discussed. Further, the review identifies future research and strategies that can potentiate the application of free radical-incorporated drug delivery systems for inhibiting biofilm formation and eradicating formed biofilms.
Collapse
|
26
|
Urzedo AL, Gonçalves MC, Nascimento MHM, Lombello CB, Nakazato G, Seabra AB. Cytotoxicity and Antibacterial Activity of Alginate Hydrogel Containing Nitric Oxide Donor and Silver Nanoparticles for Topical Applications. ACS Biomater Sci Eng 2020; 6:2117-2134. [DOI: 10.1021/acsbiomaterials.9b01685] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alessandro L. Urzedo
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| | - Marcelly C. Gonçalves
- Department of Microbiology, Universidade Estadual de Londrina (UEL), Campus Universitário, CEP 86055-990, Londrina, Paraná, Brazil
| | - Mônica H. M. Nascimento
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| | - Christiane B. Lombello
- Center for Engineering, Modeling and Applied Social Sciences, Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Universidade Estadual de Londrina (UEL), Campus Universitário, CEP 86055-990, Londrina, Paraná, Brazil
| | - Amedea B. Seabra
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| |
Collapse
|
27
|
Liu S, Cai X, Xue W, Ma D, Zhang W. Chitosan derivatives co-delivering nitric oxide and methicillin for the effective therapy to the methicillin-resistant S. aureus infection. Carbohydr Polym 2020; 234:115928. [PMID: 32070544 DOI: 10.1016/j.carbpol.2020.115928] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/02/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
We developed a co-delivery system of nitric oxide (NO) and antibiotic for the antibiotic-resistant bacterial infection therapy. The NO could disperse the bacterial biofilms and convert the bacteria into an antibiotic-susceptible planktonic form. Using the chitosan-graft-poly(amidoamine) dendrimer (CS-PAMAM) as the co-delivery system, methicillin (MET) and NO were conjugated successively to form CS-PAMAM-MET/NONOate. The positive CS-PAMAM could efficiently capture the negatively charged bacteria and PAMAM provide abundant reaction points for high payloads of NO and MET. The CS-PAMAM-MET/NONOate displayed effective and combined antibacterial activity to the E. coli and S. aureus. Particularly, for the MET-resistant S. aureus (MRSA), the CS-PAMAM-MET/NONOate displayed the synergistic antibacterial activity. In vivo wound healing assays also confirmed that CS-PAMAM-MET/NONOate could heal the infection formed by MRSA and then accelerate the wound healing effectively. Moreover, CS-PAMAM-MET/NONOate showed no toxicity towards 3T3 cells in vitro and rats in vivo, providing a readily but high-efficient strategy to drug-resistant bacterial infection therapy.
Collapse
Affiliation(s)
- Shixin Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xiang Cai
- Department of Light Chemical Engineering, Guangdong Polytechnic, No. 20, Lanshi 2th Road, Chancheng District, Foshan, Guangdong, Foshan, 528041, China
| | - Wei Xue
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Dong Ma
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Wu Zhang
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China; School of Stomatology of Jinan University, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
28
|
Hopkins SP, Frost MC. S-Nitroso- N-Acetyl-D-Penicillamine Modified Hyperbranched Polyamidoamine for High-Capacity Nitric Oxide Storage and Release. Bioengineering (Basel) 2020; 7:E9. [PMID: 32284521 PMCID: PMC7175164 DOI: 10.3390/bioengineering7010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022] Open
Abstract
Synthetic nitric oxide (NO)-donating materials have been shown to have many beneficial effects when incorporated into biomedical materials. When released in the correct dosage, NO has been shown to increase the biocompatibility of blood and tissue contacting materials, but materials are often limited in the amount of NO that can be administered over a period of time. To address this, hyperbranched polyamidoamine (HPAMAM) was modified with the S-nitrosothiol, S-nitroso-N-acetyl-D-penicillamine, and nitrosated to form a controlled, high-capacity NO-donating compound (SNAP-HPAMAM). This compound has the potential of modifying polymers to release NO over long periods of time by being blended into a variety of base polymers. Nitric oxide release was triggered by photoinitiation and through passive ion-mediated release seen under physiological conditions. A material that delivers the beneficial dose of NO over a long period of time would be able to greatly increase the biocompatibility of long-term implantable devices. Structural analysis of a generation 2 HPAMAM molecule was done through Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance spectroscopy (NMR), and matrix assisted laser desorption ionization, time of flight (MALDI-TOF) mass spectrometry. The NO capacity of the finalized generation 2 SNAP-HPAMAM compound was approximately 1.90 ± 0.116 µmol NO/mg. Quantification of the functional groups in the compound proved that an average of 6.40 ± 0.309 reactive primary amine sites were present compared to the 8 reactive sites on a perfectly synthesized generation 2 dendrimer. There is a substantial advantage of using the hyper-branched HPAMAM over purified dendrimers in terms of reduced labor and expense while still providing a high-capacity NO donor that can be blended into different polymer matrices.
Collapse
Affiliation(s)
| | - Megan C. Frost
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931, USA;
| |
Collapse
|
29
|
The potential of dendrimer in delivery of therapeutics for dentistry. Heliyon 2019; 5:e02544. [PMID: 31687479 PMCID: PMC6820096 DOI: 10.1016/j.heliyon.2019.e02544] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/25/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022] Open
Abstract
Dendrimers are hyperbranched nanoparticle structures along with its surface modifications can to be used in dental biomaterials for biomimetic remineralisation of enamel and dentin. The review highlights the therapeutic applications of dendrimers in the field of dentistry. It addresses the possible mechanisms of enhancement of mechanical properties of adhesives and resins structure. Dendrimers due to its unique construction of possessing inner hydrophobic and outer hydrophilic structure can act as drug carrier for delivery of antimicrobial drugs for treatment of periodontal diseases and at peripheral dental implant areas. Dendrimers due to its hyperbranched structures can provides a unique drug delivery vehicle for delivery of a drug at specific site for sustained release for therapeutic effects. Thus, dendrimers can be one of the most important constituents which can be incorporated in dental biomaterials for better outcomes in dentistry.
Collapse
|
30
|
Sadrearhami Z, Namivandi-Zangeneh R, Price E, Krasowska M, Al-Bataineh SA, Whittle J, Wong EHH, Blencowe A, Boyer C. S-Nitrosothiol Plasma-Modified Surfaces for the Prevention of Bacterial Biofilm Formation. ACS Biomater Sci Eng 2019; 5:5881-5887. [DOI: 10.1021/acsbiomaterials.9b01063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zahra Sadrearhami
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Emily Price
- Future Industries Institute, The University of South Australia, Mawson Lakes, South Australia 5095, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Marta Krasowska
- Future Industries Institute, The University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Sameer A. Al-Bataineh
- Future Industries Institute, The University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Jason Whittle
- Future Industries Institute, The University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Anton Blencowe
- Future Industries Institute, The University of South Australia, Mawson Lakes, South Australia 5095, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| |
Collapse
|
31
|
Cheng J, He K, Shen Z, Zhang G, Yu Y, Hu J. Nitric Oxide (NO)-Releasing Macromolecules: Rational Design and Biomedical Applications. Front Chem 2019; 7:530. [PMID: 31403044 PMCID: PMC6676249 DOI: 10.3389/fchem.2019.00530] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/11/2019] [Indexed: 01/19/2023] Open
Abstract
Nitric oxide (NO) has been recognized as a ubiquitous gaseous transmitter and the therapeutic potential has nowadays received increasing interest. However, NO cannot be easily directly administered due to its high reactivity in air and high concentration-dependent physiological roles. As such, a plethora of NO donors have been developed that can reversibly store and release NO under specific conditions. To enhance the stability and modulate the NO release profiles, small molecule-based NO donors were covalently linked to polymeric scaffolds, rendering them with multifunctional integration, prolonged release durations, and optimized therapeutic outcomes. In this minireview, we highlight the recent achievements of NO-releasing macromolecules in terms of chemical design and biomedical applications. We hope that more efforts could be devoted to this emerging yet promising field.
Collapse
Affiliation(s)
- Jian Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Kewu He
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhiqiang Shen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
32
|
Advances in drug delivery, gene delivery and therapeutic agents based on dendritic materials. Future Med Chem 2019; 11:1791-1810. [DOI: 10.4155/fmc-2018-0452] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dendrimers are synthetic polymers that grow in three dimensions into well-defined structures. Their morphological appearance resembles a number of trees connected by a common point. Dendritic nanoparticles have been studied for a large number of pharmaceutical and biomedical applications including gene and drug delivery, clinical diagnosis and MRI. Despite the application of dendrimers, research is still in its childhood in comparison with liposomes and other nanomaterials. They are now playing a key role in several therapeutic strategies, with dendrimer-based products in clinical trials. The aim of this review is to describe the state-of-the-art of biomedical applications of dendrimers – and dendrimer conjugates – such as drug and gene delivery and antiviral activity.
Collapse
|
33
|
Hasan N, Cao J, Lee J, Naeem M, Hlaing SP, Kim J, Jung Y, Lee BL, Yoo JW. PEI/NONOates-doped PLGA nanoparticles for eradicating methicillin-resistant Staphylococcus aureus biofilm in diabetic wounds via binding to the biofilm matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109741. [PMID: 31349480 DOI: 10.1016/j.msec.2019.109741] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 01/23/2023]
Abstract
Wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) biofilm represent a high risk in patients with diabetes. Nitric oxide (NO) has shown promise in dispersing biofilm and wound healing. For an effective treatment of MRSA biofilm-infected wounds, however, NO needs to be supplied to the biofilm matrix in a sustainable manner due to a short half-life and limited diffusion distance of NO. In this study, polyethylenimine/diazeniumdiolate (PEI/NONOate)-doped PLGA nanoparticles (PLGA-PEI/NO NPs) with an ability to bind to the biofilm matrix are developed to facilitate the NO delivery to MRSA biofilm-infected wound. In simulated wound fluid, PLGA-PEI/NO NPs show an extended NO release over 4 days. PLGA-PEI/NO NPs firmly bind to the MRSA biofilm matrix, resulting in a greatly enhanced anti-biofilm activity. Moreover, PLGA-PEI/NO NPs accelerate healing of MRSA biofilm-infected wounds in diabetic mice along with complete biofilm dispersal and reduced bacterial burden. These results suggest that the biofilm-binding NO-releasing NPs represent a promising NO delivery system for the treatments of biofilm-infected chronic wounds.
Collapse
Affiliation(s)
- Nurhasni Hasan
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jiafu Cao
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Juho Lee
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Muhammad Naeem
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Shwe Phyu Hlaing
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jihyun Kim
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea; Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea
| | - Yunjin Jung
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Bok-Leul Lee
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jin-Wook Yoo
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
34
|
Zhang M, Zeng G, Liao X, Wang Y. An antibacterial and biocompatible piperazine polymer. RSC Adv 2019; 9:10135-10147. [PMID: 35520902 PMCID: PMC9062374 DOI: 10.1039/c9ra02219h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
Bacterial repellence by biomedical materials is a desirable property that can potentially improve the healing process. In this study, we described a simple and green method to prepare a novel piperazine polymer (PE), which was based on the raw materials piperazine (PA) and ethylenediaminetetraacetic dianhydride (EDTAD). The structure and thermal stability of the obtained material were characterized using Fourier transform infrared spectrometry (FTIR), nuclear magnetic resonance spectroscopy (NMR), elementary analysis, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). To evaluate the antibacterial properties of PE, a strain of Gram-negative Escherichia coli (E. coli) bacteria and a strain of Gram-positive Staphylococcus aureus (S. aureus) bacteria were used. The results indicated that PE exhibited good antibacterial activity against both strains of bacteria in a short time frame. The initial cytotoxicity test of the obtained material was based on the changes in the morphology and proliferation of osteoblasts, and the results demonstrated that the cytotoxicity of PE was concentration-dependent. Combining the experimental results of these two parts, it was shown that bacteria could be inhibited by a certain concentration of PE, while its toxicity toward osteoblasts was very low. In summary, these results revealed the potential usefulness of PE in biomedical applications.
Collapse
Affiliation(s)
- Maolan Zhang
- Chongqing University of Science and Technology Chongqing 401331 China +86 17830862118 +86 17830862118
| | - Guoming Zeng
- Chongqing University of Science and Technology Chongqing 401331 China +86 17830862118 +86 17830862118
| | - Xiaoling Liao
- Chongqing University of Science and Technology Chongqing 401331 China +86 17830862118 +86 17830862118
| | - Yuanliang Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education Chongqing 400044 China
| |
Collapse
|
35
|
Li G, Wang H, Ma D, Xue W, Zhang W. WITHDRAWN: A star copolymer consisting of a β-cyclodextrin core and poly(amidoamine) dendron arms for co-delivering nitric oxide and triclosan for combined antibacterial effect. Acta Biomater 2019:S1742-7061(19)30227-2. [PMID: 30926578 DOI: 10.1016/j.actbio.2019.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/02/2019] [Accepted: 03/25/2019] [Indexed: 11/20/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Guowei Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Haiyang Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Wu Zhang
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China; School of Stomatology of Jinan University, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
36
|
Zhang M, Zeng G, Wang Y, Zhao Z. MGF‐Ct24E‐modified piperazine polymer: A balance of antimicrobial activity and cytotoxicity. J Appl Polym Sci 2019. [DOI: 10.1002/app.47773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Maolan Zhang
- Institute of Biomedical EngineeringChongqing University of Science and Technology Chongqing 401331 China
| | - Guoming Zeng
- School of Civil Engineering and ArchitectureChongqing University of Science and Technology Chongqing 401331 China
| | - Yuanliang Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of EducationChongqing University Chongqing 400030 China
| | - Zhiping Zhao
- College of Chemical EngineeringSichuan University of Science & Engineering Zigong 643000 China
| |
Collapse
|
37
|
Sadrearhami Z, Shafiee FN, Ho KKK, Kumar N, Krasowska M, Blencowe A, Wong EHH, Boyer C. Antibiofilm Nitric Oxide-Releasing Polydopamine Coatings. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7320-7329. [PMID: 30688429 DOI: 10.1021/acsami.8b16853] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The growing number of patient morbidity related to nosocomial infections has placed an importance on the development of new antibacterial coatings for medical devices. Here, we utilize the versatile adhesion property of polydopamine (pDA) to design an antibacterial coating that possesses low-fouling and nitric oxide (NO)-releasing capabilities. To demonstrate this, glass substrates were functionalized with pDA via immersion in alkaline aqueous solution containing dopamine, followed by grafting of low-fouling polymer (poly(ethylene glycol) (PEG)) via Michael addition and subsequent formation of N-diazeniumdiolate functionalities (NO precursors) by purging with NO gas. X-ray photoelectron spectroscopy confirmed the successful grafting of PEG and formation of N-diazeniumdiolate on polydopamine-coated substrates. NO release from the coating was observed over 2 days, and NO loading is tunable by the pDA film thickness. The antibacterial efficiency of the coatings was assessed using Gram-negative Pseudomonas aeruginosa (i.e., wild-type PAO1 and multidrug-resistant PA37) and Gram-positive Staphylococcus aureus (ATCC 29213). The NO-releasing PEGylated pDA film inhibited biofilm attachment by 96 and 70% after exposure to bacterial culture solution for 24 and 36 h, respectively. In contrast, films that do not contain NO failed to prevent biofilm formation on the surfaces at these time points. Furthermore, this coating also showed 99.9, 97, and 99% killing efficiencies against surface-attached PAO1, PA37, and S. aureus bacteria. Overall, the combination of low-fouling PEG and antibacterial activity of NO in pDA films makes this coating a potential therapeutic option to inhibit biofilm formation on medical devices.
Collapse
Affiliation(s)
| | | | | | | | - Marta Krasowska
- Future Industries Institute , The University of South Australia , Mawson Lakes , SA 5095 , Australia
- School of Information Technology and Mathematical Sciences , University of South Australia , Mawson Lakes Campus , Mawson Lakes , SA 5095 , Australia
| | - Anton Blencowe
- Future Industries Institute , The University of South Australia , Mawson Lakes , SA 5095 , Australia
- School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , SA 5000 , Australia
| | | | | |
Collapse
|
38
|
Yu L, Hu P, Chen Y. Gas-Generating Nanoplatforms: Material Chemistry, Multifunctionality, and Gas Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801964. [PMID: 30066474 DOI: 10.1002/adma.201801964] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Indexed: 05/16/2023]
Abstract
The fast advances of theranostic nanomedicine enable the rational design and construction of diverse functional nanoplatforms for versatile biomedical applications, among which gas-generating nanoplatforms (GGNs) have emerged very recently as unique theranostic nanoplatforms for broad gas therapies. Here, the recent developments of the rational design and chemical construction of versatile GGNs for efficient gas therapies by either exogenous physical triggers or endogenous disease-environment responsiveness are reviewed. These gases involve some therapeutic gases that can directly change disease status, such as oxygen (O2 ), nitric oxide (NO), carbon monoxide (CO), hydrogen (H2 ), hydrogen sulfide (H2 S) and sulfur dioxide (SO2 ), and other gases such as carbon dioxide (CO2 ), dl-menthol (DLM), and gaseous perfluorocarbon (PFC) for supplementary assistance of the theranostic process. Abundant nanocarriers have been adopted for gas delivery into lesions, including poly(d,l-lactic-co-glycolic acid), micelles, silica/mesoporous silica, organosilica, MnO2 , graphene, Bi2 Se3 , upconversion nanoparticles, CaCO3 , etc. Especially, these GGNs have been successfully developed for versatile biomedical applications, including diagnostic imaging and therapeutic use. The biosafety issue, challenges faced, and future developments on the rational construction of GGNs are also discussed for further promotion of their clinical translation to benefit patients.
Collapse
Affiliation(s)
- Luodan Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
39
|
Yang L, Schoenfisch MH. Nitric oxide-releasing hyperbranched polyaminoglycosides for antibacterial therapy. ACS APPLIED BIO MATERIALS 2018; 1:1066-1073. [PMID: 32309793 PMCID: PMC7164780 DOI: 10.1021/acsabm.8b00304] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hyperbranched polyaminoglycosides were prepared by the polymerization of kanamycin, gentamicin, and neomycin, and N,N'-methylenebis(acrylamide) via a one-pot reaction. The secondary amines at the linear units of the hyperbranched polymers were subsequently reacted with NO gas at high pressure under alkaline conditions to form N-diazeniumdiolate NO donors. The resulting NO-releasing hyperbranched polyaminoglycosides exhibited a wide range of NO payloads (~0.4-1.3 µmol mg-1) and release kinetics (half-lives ~70-180 min). The therapeutic utility of these materials was evaluated by examining their bactericidal activity against common dental pathogens and toxicity to human gingival fibroblast cells. The antibacterial efficacy of NO-releasing hyperbranched polyaminoglycosides was dependent on specific physiochemical properties, with greater degrees of branching and aminoglycoside terminal groups correlating to enhanced action. Nitric oxide-releasing hyperbranched polykanamycin and polyneomycin elicited the least cytotoxicity at bactericidal concentrations, indicating the greatest therapeutic index for future biomedical applications.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
40
|
Neelgund GM, Oki A. Photothermal effect of Ag nanoparticles deposited over poly(amidoamine) grafted carbon nanotubes. J Photochem Photobiol A Chem 2018; 364:309-315. [PMID: 31031549 PMCID: PMC6484833 DOI: 10.1016/j.jphotochem.2018.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This paper illustrates the potential of Ag nanoparticles based nanocomposites to use as effective agents in photothermal therapy apart from their traditional employment as antimicrobial materials. Herein an Near- Infrared active photothermal agent was fabricated by deposition of Ag nanoparticles over aromatic poly(amidoamine) grafted carbon nanotubes. Thus prepared CNTs-PAMAM-Ag possessed strong photothermal effect under exposure to 980 nm laser system and prominent photothermal stability. The photothermal conversion efficiency of CNTs-PAMAM-Ag was found to be higher than readily used Au and CuS based photothermal agents. The photothermal effect of CNTs-PAMAM-Ag was substantial in presence of 980 nm laser compared to 808 nm laser and a linear dependence of photothermal effect on its concentration was identified. The maximum temperature attained by CNTs-PAMAM-Ag during assessment of its photothermal effect was about 66.0 °C, which is significantly higher than the survival temperature level of cancer cells. So CNTs-PAMAM-Ag could be a promising photothermal agent to apply in future photothermal hyperthermia therapy to treat cancer. Moreover CNTs-PAMAM-Ag can synchronous trigger by a single wavelength (980 nm) laser system, so it could simplify the future therapeutic process.
Collapse
Affiliation(s)
- Gururaj M. Neelgund
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, United States
| | - Aderemi Oki
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, United States
| |
Collapse
|
41
|
Hopkins SP, Pant J, Goudie MJ, Schmiedt C, Handa H. Achieving Long-Term Biocompatible Silicone via Covalently Immobilized S-Nitroso- N-acetylpenicillamine (SNAP) That Exhibits 4 Months of Sustained Nitric Oxide Release. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27316-27325. [PMID: 30028941 PMCID: PMC7951114 DOI: 10.1021/acsami.8b08647] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ever since the role of endogenous nitric oxide (NO) in controlling a wide variety of biological functions was discovered approximately three decades back, multiple NO-releasing polymeric materials have been developed. However, most of these materials are typically short lived due to the inefficient incorporation of the NO donor molecules within the polymer matrix. In the present study, S-nitroso- N-acetyl penicillamine (SNAP) is covalently attached to poly(dimethylsiloxane) (PDMS) to create a highly stable nitric oxide (NO) releasing material for biomedical applications. By tethering SNAP to the cross-linker of PDMS, the NO donor is unable to leach into the surrounding environment. This is the first time that a sustainable NO release and bacterial inhibition for over 125 days has been achieved by any NO-releasing polymer with supporting evidence of potential long-term hemocompatibility and biocompatibility. The material proves to have very high antibacterial efficacy against Staphylococcus aureus by demonstrating a 99.99% reduction in the first 3 days in a continuous flow CDC bioreactor, whereas a similar inhibitory potential of 99.50% was maintained by the end of 1 month. Hemocompatibility of SNAP-PDMS was tested using a rabbit extracorporeal circuit (ECC) model over a 4 h period. Thrombus formation was greatly reduced within the SNAP-PDMS-coated ECCs compared to the control circuits, observing a 78% reduction in overall thrombus mass accumulation. These results demonstrate the potential of utilizing this material for blood and tissue contacting biomedical devices in long-term clinical applications where infection and unwanted clotting are major issues.
Collapse
Affiliation(s)
- Sean P. Hopkins
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Jitendra Pant
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Marcus J. Goudie
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Chad Schmiedt
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
42
|
Min KH, Lee HJ, Lee SC, Park K. Biomineralized hybrid nanoparticles for imaging and therapy of cancers. Quant Imaging Med Surg 2018; 8:694-708. [PMID: 30211036 PMCID: PMC6127522 DOI: 10.21037/qims.2018.08.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 01/13/2023]
Abstract
In this review, we describe the research trends of hybrid nanocarriers developed based on a biomimetic mineralization process, and their recent applications in imaging and therapy of cancers. Organic-inorganic hybrid nanostructures formed by diverse biomimetic mineralization approaches are briefly reviewed, and particularly, the biomedical applications of these hybrid nanocarriers for the diagnosis and therapy of cancers are discussed. Biomineralization is an important process in which living organisms produce biominerals, such as calcium phosphate (CaP), calcium carbonate (CaCO3), and silica (SiO2), to strengthen their tissues, as found in the formation of bone and teeth. Introducing the artificial biomimetic mineralization process to nanobiotechnology has inspired researchers to develop smart stimuli-responsive nanoparticles for multiple purposes, such as improved therapeutic activity and activatable imaging of cancers.
Collapse
Affiliation(s)
- Kyung Hyun Min
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hong Jae Lee
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sang Cheon Lee
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| |
Collapse
|
43
|
Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int J Pharm 2018; 548:707-720. [PMID: 30012508 DOI: 10.1016/j.ijpharm.2018.07.030] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 01/04/2023]
Abstract
Dendrimers are novel polymeric nanoarchitectures characterized by hyper-branched 3D-structure having multiple functional groups on the surface that increases their functionality and make them versatile and biocompatible. Their unique properties like nanoscale uniform size, high degree of branching, polyvalency, water solubility, available internal cavities and convenient synthesis approaches make them promising agent for biological and drug delivery applications. Dendrimers have received an enormous attention from researchers among various nanomaterials. Dendrimers can be used as a carrier for diverse therapeutic agents. They can be used for reducing drug toxicities and enhancement of their efficacies. The present review provide a comprehensive outline of synthesis of dendrimers, interaction of dendrimer with guest molecules, properties, characterization and their potential applications in pharmaceutical and biomedical field.
Collapse
Affiliation(s)
- Atul P Sherje
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India.
| | - Mrunal Jadhav
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Bhushan R Dravyakar
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Darshana Kadam
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
44
|
Yang L, Feura ES, Ahonen MJR, Schoenfisch MH. Nitric Oxide-Releasing Macromolecular Scaffolds for Antibacterial Applications. Adv Healthc Mater 2018; 7:e1800155. [PMID: 29756275 PMCID: PMC6159924 DOI: 10.1002/adhm.201800155] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/26/2018] [Indexed: 01/03/2023]
Abstract
Exogenous nitric oxide (NO) represents an attractive antibacterial agent because of its ability to both disperse and directly kill bacterial biofilms while avoiding resistance. Due to the challenges associated with administering gaseous NO, NO-releasing macromolecular scaffolds are developed to facilitate NO delivery. This progress report describes the rational design and application of NO-releasing macromolecular scaffolds as antibacterial therapeutics. Special consideration is given to the role of the physicochemical properties of the NO storage vehicles on antibacterial or anti-biofilm activity.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Evan S. Feura
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mona Jasmine R. Ahonen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
45
|
Yang T, Zelikin AN, Chandrawati R. Progress and Promise of Nitric Oxide-Releasing Platforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1701043. [PMID: 29938181 PMCID: PMC6010811 DOI: 10.1002/advs.201701043] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/24/2018] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO) is a highly potent radical with a wide spectrum of physiological activities. Depending on the concentration, it can enhance endothelial cell proliferation in a growth factor-free medium, mediate angiogenesis, accelerate wound healing, but may also lead to tumor progression or induce inflammation. Due to its multifaceted role, NO must be administered at a right dose and at the specific site. Many efforts have focused on developing NO-releasing biomaterials; however, NO short half-life in human tissues only allows this molecule to diffuse over short distances, and significant challenges remain before the full potential of NO can be realized. Here, an overview of platforms that are engineered to release NO via catalytic or noncatalytic approaches is presented, with a specific emphasis on progress reported in the past five years. A number of NO donors, natural enzymes, and enzyme mimics are highlighted, and recent promising developments of NO-releasing scaffolds, particles, and films are presented. In particular, key parameters of NO delivery are discussed: 1) NO payload, 2) maximum NO flux, 3) NO release half-life, 4) time required to reach maximum flux, and 5) duration of NO release. Advantages and drawbacks are reviewed, and possible further developments are suggested.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemical EngineeringThe University of New South Wales (UNSW Sydney)SydneyNSW2052Australia
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Alexander N. Zelikin
- Department of Chemistry and iNANO Interdisciplinary Nanoscience CenterAarhus UniversityAarhusC 8000Denmark
| | - Rona Chandrawati
- School of Chemical EngineeringThe University of New South Wales (UNSW Sydney)SydneyNSW2052Australia
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
46
|
Namivandi-Zangeneh R, Sadrearhami Z, Bagheri A, Sauvage-Nguyen M, Ho KKK, Kumar N, Wong EHH, Boyer C. Nitric Oxide-Loaded Antimicrobial Polymer for the Synergistic Eradication of Bacterial Biofilm. ACS Macro Lett 2018; 7:592-597. [PMID: 35632937 DOI: 10.1021/acsmacrolett.8b00190] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacterial biofilms are often difficult to treat and represent the main cause of chronic and recurrent infections. In this study, we report the synthesis of a novel antimicrobial/antibiofilm polymer that consists of biocompatible oligoethylene glycol, hydrophobic ethylhexyl, cationic primary amine, and nitric oxide (NO)-releasing functional groups. The NO-loaded polymer has dual-action capability as it can release NO which triggers the dispersion of biofilm, whereas the polymer can induce bacteria cell death via membrane wall disruption. By functionalizing the polymers with NO, we observed a synergistic effect in biofilm dispersal, planktonic and biofilm killing activities against Pseudomonas aeruginosa. The NO-loaded polymer results in 80% reduction in biofilm biomass and kills >99.999% of planktonic and biofilm P. aeruginosa cells within 1 h of treatment at a polymer concentration of 64 μg mL-1. To achieve this synergistic effect, it is imperative that the NO donors and antimicrobial polymer exist as a single chemical entity, instead of a cocktail physical mixture of two individual components. The excellent antimicrobial/antibiofilm activity of this dual-action polymer suggests the advantages of combination therapy in combating bacterial biofilms.
Collapse
Affiliation(s)
- Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Zahra Sadrearhami
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Ali Bagheri
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Maeva Sauvage-Nguyen
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
- Chimie ParisTech, 11 Rue Pierre et Marie Curie, Paris, 75005, France
| | - Kitty Ka Kit Ho
- School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
47
|
Yang C, Jeong S, Ku S, Lee K, Park MH. Use of gasotransmitters for the controlled release of polymer-based nitric oxide carriers in medical applications. J Control Release 2018; 279:157-170. [PMID: 29673643 DOI: 10.1016/j.jconrel.2018.04.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/22/2023]
Abstract
Nitric Oxide (NO) is a small molecule gasotransmitter synthesized by nitric oxide synthase in almost all types of mammalian cells. NO is synthesized by NO synthase by conversion of l-arginine to l-citrulline in the human body. NO then stimulates soluble guanylate cyclase, from which various physiological functions are mediated in a concentration-dependent manner. High concentrations of NO induce apoptosis or antibacterial responses whereas low NO circulation leads to angiogenesis. The bidirectional effect of NO has attracted considerable attention, and efforts to deliver NO in a controlled manner, especially through polymeric carriers, has been the topic of much research. This naturally produced signaling molecule has stood out as a potentially more potent therapeutic agent compared to exogenously synthesized drugs. In this review, we will focus on past efforts of using the controlled release of NO via polymer-based materials to derive specific therapeutic results. We have also added studies and our future suggestions on co-delivery methods with other gasotransmitters as a step towards developing multifunctional carriers.
Collapse
Affiliation(s)
- Chungmo Yang
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Soohyun Jeong
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Seul Ku
- School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA 94305, USA
| | - Kangwon Lee
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Gyeonggi-do 16229, Republic of Korea.
| | - Min Hee Park
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
48
|
Sadrearhami Z, Nguyen TK, Namivandi-Zangeneh R, Jung K, Wong EHH, Boyer C. Recent advances in nitric oxide delivery for antimicrobial applications using polymer-based systems. J Mater Chem B 2018; 6:2945-2959. [PMID: 32254331 DOI: 10.1039/c8tb00299a] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nitric oxide (NO) molecule has gained increasing attention in biological applications to combat biofilm-associated bacterial infections. However, limited NO loading, relatively short half-lives of low molecular weight NO donor compounds, and difficulties in targeted delivery of NO have hindered their practical clinical administration. To overcome these drawbacks, the combination of NO and scaffolds based on biocompatible polymers is an effective way towards realizing the practical utility of NO in biomedical applications. In this regard, the present overview highlights the recent developments in NO-releasing polymeric biomaterials for antimicrobial applications, focusing on antibiofilm treatments and the challenges that need to be overcome.
Collapse
Affiliation(s)
- Zahra Sadrearhami
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, is characterized by its versatility that enables persistent survival under adverse conditions. It can grow on diverse energy sources and readily acquire resistance to antimicrobial agents. As an opportunistic human pathogen, it also causes chronic infections inside the anaerobic mucus airways of cystic fibrosis patients. As a strict respirer, P. aeruginosa can grow by anaerobic nitrate ( [Formula: see text] ) respiration. Nitric oxide (NO) produced as an intermediate during anaerobic respiration exerts many important effects on the biological characteristics of P. aeruginosa. This review provides information regarding (i) how P. aeruginosa grows by anaerobic respiration, (ii) mechanisms by which NO is produced under such growth, and (iii) bacterial adaptation to NO. We also review the clinical relevance of NO in the fitness of P. aeruginosa and the use of NO as a potential therapeutic for treating P. aeruginosa infection.
Collapse
|
50
|
Yang L, Wang X, Suchyta DJ, Schoenfisch MH. Antibacterial Activity of Nitric Oxide-Releasing Hyperbranched Polyamidoamines. Bioconjug Chem 2018; 29:35-43. [PMID: 29243926 PMCID: PMC6773256 DOI: 10.1021/acs.bioconjchem.7b00537] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hyperbranched polyamidoamines (h-PAMAM) were prepared using a one-pot reaction to have similar molecular weight to third generation PAMAM (G3-PAMAM) dendrimers, and then functionalized with N-diazeniumdiolate nitric oxide (NO) donors. A wide range of NO storage capacities (∼1-2.50 μmol mg-1) and NO-release kinetics (t1/2 ∼30-80 min) were achieved by changing the extent of propylene oxide (PO) modification. The therapeutic potential of these materials was evaluated by studying their antibacterial activities and toxicity against common dental pathogens and human gingival fibroblast cells, respectively. Our results indicate that the combination of NO release and PO modification is necessary to yield h-PAMAM materials with efficient bactericidal action without eliciting unwarranted cytotoxicity. Of importance, NO-releasing PO-modified h-PAMAM polymers exhibited comparable biological properties (i.e., antibacterial action and cytotoxicity) to defect-free G3-PAMAM dendrimers, but at a substantially lower synthetic burden.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599
| | - Xingzhi Wang
- Department of Chemistry, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599
| | - Dakota J. Suchyta
- Department of Chemistry, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|