1
|
Abril-Parreño L, Krogenæs A, Fair S. Lipidomic profiling of cervical mucus reveals the potential role of pro-inflammatory derived metabolites on sperm transport across the ovine cervix. Animal 2024; 18:101136. [PMID: 38626706 DOI: 10.1016/j.animal.2024.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/18/2024] Open
Abstract
Internationally, cervical artificial insemination (AI) in sheep yields low pregnancy rates when frozen-thawed semen is used. An exception to this is in Norway where vaginal AI of frozen-thawed semen to a natural oestrus yields non-return rates in excess of 60%, which has been attributed to the ewe breed used in Norway. This study used both metabolomics and an RNA-sequencing approach to assess the lipid production and composition from cervical mucus and tissue of four European ewe breeds (n = 28-30 ewes per breed) with previously reported differences in pregnancy rates following cervical AI with frozen-thawed semen. These breeds included Suffolk (exhibiting low fertility), Belclare (medium fertility) as well as Norwegian White Sheep and Fur (both with high fertility and pregnancy rates > 60%) at both a synchronised and natural oestrous cycle. The aim was to explore the differences between ewe breeds in the lipidomic profile and to identify candidate biomarkers associated with an optimal environment for cervical sperm transport. The results revealed the identification of 255 lipids, of which 170, 102 and 83 were different between ewe breeds, types of cycle and affected by their interaction, respectively (P < 0.05). Reduced levels of lipids involved in the resolution of inflammation (i.e. 14-HDoHE,17-HDoHE, 15-HETE) were identified in the low-fertility Suffolk breed compared to high-fertility ewe breeds. However, there was an up-regulation of the COX pathway accompanied by increased levels of prostaglandins in the Suffolk breed. These findings indicated a sub-optimal and pro-inflammatory environment that could have a negative effect on cervical sperm transport.
Collapse
Affiliation(s)
- Laura Abril-Parreño
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering. University of Limerick, V94 T9PX Limerick, Ireland
| | - Anette Krogenæs
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 5003 1432 Ås, Norway
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering. University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|
2
|
Kavishvar D, Ramachandran A. The yielding behaviour of human mucus. Adv Colloid Interface Sci 2023; 322:103049. [PMID: 38039907 DOI: 10.1016/j.cis.2023.103049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Mucus is a viscoelastic material with non-linear rheological properties such as a yield stress of the order of a few hundreds of millipascals to a few tens of pascals, due to a complex network of mucins in water along with non-mucin proteins, DNA and cell debris. In this review, we discuss the origin of the yield stress in human mucus, the changes in the rheology of mucus with the occurrence of diseases, and possible clinical applications in disease detection as well as cure. We delve into the domain of mucus rheology, examining both macro- and microrheology. Macrorheology involves investigations conducted at larger length scales (∼ a few hundreds of μm or higher) using traditional rheometers, which probe properties on a bulk scale. It is significant in elucidating various mucosal functions within the human body. This includes rejecting unwanted irritants out of lungs through mucociliary and cough clearance, protecting the stomach wall from the acidic environment as well as biological entities, safeguarding cervical canal from infections and providing a swimming medium for sperms. Additionally, we explore microrheology, which encompasses studies performed at length scales ranging from a few tens of nm to a μm. These microscale studies find various applications, including the context of drug delivery. Finally, we employ scaling analysis to elucidate a few examples in lung, cervical, and gastric mucus, including settling of irritants in lung mucus, yielding of lung mucus in cough clearance and cilial beating, spreading of exogenous surfactants over yielding mucus, swimming of Helicobacter pylori through gastric mucus, and lining of protective mucus in the stomach. The scaling analyses employed on the applications mentioned above provide us with a deeper understanding of the link between the rheology and the physiology of mucus.
Collapse
Affiliation(s)
- Durgesh Kavishvar
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| | - Arun Ramachandran
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Yeruva T, Yang S, Doski S, Duncan GA. Hydrogels for Mucosal Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:1684-1700. [PMID: 37126538 DOI: 10.1021/acsabm.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mucosal tissues are often a desirable site of drug action to treat disease and engage the immune system. However, systemically administered drugs suffer from limited bioavailability in mucosal tissues where technologies to enable direct, local delivery to these sites would prove useful. In this Spotlight on Applications article, we discuss hydrogels as an attractive means for local delivery of therapeutics to address a range of conditions affecting the eye, nose, oral cavity, gastrointestinal, urinary bladder, and vaginal tracts. Considering the barriers to effective mucosal delivery, we provide an overview of the key parameters in the use of hydrogels for these applications. Finally, we highlight recent work demonstrating their use for inflammatory and infectious diseases affecting these tissues.
Collapse
Affiliation(s)
- Taj Yeruva
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Shadin Doski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
4
|
Wagner CE, Krupkin M, Smith-Dupont KB, Wu CM, Bustos NA, Witten J, Ribbeck K. Comparison of Physicochemical Properties of Native Mucus and Reconstituted Mucin Gels. Biomacromolecules 2023; 24:628-639. [PMID: 36727870 DOI: 10.1021/acs.biomac.2c01016] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Simulating native mucus with model systems such as gels made from reconstituted mucin or commercially available polymers presents experimental advantages including greater sample availability and reduced inter- and intradonor heterogeneity. Understanding whether these gels reproduce the complex physical and biochemical properties of native mucus at multiple length scales is critical to building relevant experimental models, but few systematic comparisons have been reported. Here, we compared bulk mechanical properties, microstructure, and biochemical responses of mucus from different niches, reconstituted mucin gels (with similar pH and polymer concentrations as native tissues), and commonly used commercially available polymers. To evaluate gel properties across these length scales, we used small-amplitude oscillatory shear, single-particle tracking, and microaffinity chromatography with small analytes. With the exception of human saliva, the mechanical response of mucin gels was qualitatively similar to that of native mucus. The transport behavior of charged peptides through native mucus gels was qualitatively reproduced in gels composed of corresponding isolated mucins. Compared to native mucus, we observed substantial differences in the physicochemical properties of gels reconstituted from commercially available mucins and the substitute carboxymethylcellulose, which is currently used in artificial tear and saliva treatments. Our study highlights the importance of selecting a mucus model system guided by the length scale relevant to the scientific investigation or disease application.
Collapse
Affiliation(s)
- Caroline E Wagner
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Miri Krupkin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Kathryn B Smith-Dupont
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Chloe M Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Nicole A Bustos
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Jacob Witten
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Computational and Systems Biology Initiative, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
5
|
Ismail NH, Ibrahim SF, Mokhtar MH, Yahaya A, Zulkefli AF, Ankasha SJ, Osman K. Modulation of vulvovaginal atrophy (VVA) by Gelam honey in bilateral oophorectomized rats. Front Endocrinol (Lausanne) 2023; 14:1031066. [PMID: 36923220 PMCID: PMC10010262 DOI: 10.3389/fendo.2023.1031066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/02/2023] [Indexed: 03/03/2023] Open
Abstract
INTRODUCTION Vulvovaginal atrophy (VVA) is a common condition in post-menopausal women. Symptoms of VVA include dyspareunia, vaginal dryness, vaginal and/or vulvar itching, burning and soreness, dysuria and vaginal bleeding accompanying sexual activity. These symptoms are physiological responses to hypoestrogenicity, inducing atrophy of the vagina epithelia and sudden reduction in mucous production. Prevailing therapy for VVA is hormone replacement therapy (HRT), notably estrogen, progesterone or a combination of the two. However, using HRT is associated with an increased incidence of breast and endometrial cancer, venous thromboembolism in the lungs and legs, stroke and cardiovascular complications. METHODS This study evaluated Malaysian Gelam honey as a nutraceutical alternative to estrogen HRT (ERT) in alleviating VVA. A total of 24 female 8-weekold Sprague Dawley rats underwent bilateral oophorectomy. A minimum of 14 days elapsed from the time of surgery and administration of the first dose of Gelam honey to allow the female hormones to subside to a stable baseline and complete recovery from surgery. Vaginal tissues were harvested following a 2-week administration of Gelam honey, the harvested vagina tissue underwent immunohistochemistry (IHC) analysis for protein localization and qPCR for mRNA expression analysis. RESULTS Results indicated that Gelam honey administration had increased the localization of Aqp1, Aqp5, CFTR and Muc1 proteins in vaginal tissue compared to the menopause group. The effect of Gelam honey on the protein expressions is summarized as Aqp1>CFTR>Aqp5>Muc1. DISCUSSION Gene expression analysis reveals Gelam honey had no effect on Aqp1 and CFTR genes. Gelam honey had up-regulated Aqp5 gene expression. However, its expression was lower than in the ERT+Ovx group. Additionally, Gelam honey up-regulated Muc1 in the vagina, with an expression level higher than those observed either in the ERT+Ovx or SC groups. Gelam honey exhibits a weak estrogenic effect on the genes and proteins responsible for regulating water in the vaginal tissue (Aqp1, Aqp5 and CFTR). In contrast, Gelam honey exhibits a strong estrogenic ability in influencing gene and protein expression for the sialic acid Muc1. Muc1 is associated with mucous production at the vaginal epithelial layer. In conclusion, the protein and gene expression changes in the vagina by Gelam honey had reduced the occurrence of vaginal atrophy in surgically-induced menopause models.
Collapse
Affiliation(s)
- Nur Hilwani Ismail
- Faculty of Applied Sciences, School of Biological Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azyani Yahaya
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Aini Farzana Zulkefli
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sheril June Ankasha
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairul Osman
- Centre of Diagnostic, Therapeutic & Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- *Correspondence: Khairul Osman,
| |
Collapse
|
6
|
Jory M, Donnarumma D, Blanc C, Bellouma K, Fort A, Vachier I, Casanellas L, Bourdin A, Massiera G. Mucus from human bronchial epithelial cultures: rheology and adhesion across length scales. Interface Focus 2022; 12:20220028. [PMID: 36330325 PMCID: PMC9560788 DOI: 10.1098/rsfs.2022.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/17/2022] [Indexed: 10/16/2023] Open
Abstract
Mucus is a viscoelastic aqueous fluid that participates in the protective barrier of many mammals' epithelia. In the airways, together with cilia beating, mucus rheological properties are crucial for lung mucociliary function, and, when impaired, potentially participate in the onset and progression of chronic obstructive pulmonary disease (COPD). Samples of human mucus collected in vivo are inherently contaminated and are thus poorly characterized. Human bronchial epithelium (HBE) cultures, differentiated from primary cells at an air-liquid interface, are highly reliable models to assess non-contaminated mucus. In this paper, the viscoelastic properties of HBE mucus derived from healthy subjects, patients with COPD and from smokers are measured. Hallmarks of shear-thinning and elasticity are obtained at the macroscale, whereas at the microscale mucus appears as a heterogeneous medium showing an almost Newtonian behaviour in some extended regions and an elastic behaviour close to boundaries. In addition, we developed an original method to probe mucus adhesion at the microscopic scale using optical tweezers. The measured adhesion forces and the comparison with mucus-simulants rheology as well as mucus imaging collectively support a structure composed of a network of elastic adhesive filaments with a large mesh size, embedded in a very soft gel.
Collapse
Affiliation(s)
- Myriam Jory
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Dario Donnarumma
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Christophe Blanc
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Karim Bellouma
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Aurélie Fort
- Inserm U1046, Université de Montpellier, Respiratory Disease, CHU Montpellier, 34295 Montpellier, France
- Médecine Biologie Méditerranée, Montpellier, France
| | - Isabelle Vachier
- Inserm U1046, Université de Montpellier, Respiratory Disease, CHU Montpellier, 34295 Montpellier, France
- Médecine Biologie Méditerranée, Montpellier, France
| | - Laura Casanellas
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Arnaud Bourdin
- Inserm U1046, Université de Montpellier, Respiratory Disease, CHU Montpellier, 34295 Montpellier, France
| | - Gladys Massiera
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| |
Collapse
|
7
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
8
|
Puri V, Kaur VP, Singh A, Singh C. Recent advances on drug delivery applications of mucopenetrative/mucoadhesive particles: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Acupuncture for Female Infertility: Discussion on Action Mechanism and Application. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3854117. [PMID: 35832528 PMCID: PMC9273356 DOI: 10.1155/2022/3854117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022]
Abstract
A higher incidence of female infertility has been reported with an unexpectedly early appearance in recent years. The female infertility treatment and application of assisted reproductive technology have recently gained immense interest from scientists. Many studies have discussed the beneficial effects of acupuncture on female infertility. With advancements in science and medical technology, acupuncture-related research has increased in investigating its effectiveness in treating female infertility. This review focuses on a compilation of research in recent years on acupuncture for female infertility treatment and the exploration of the underlying mechanism. For this purpose, literature was searched using various search engines like PubMed, Web of Science, and Google Scholar. The search was refined by only focusing on recent studies on acupuncture effectiveness and mechanism in female infertility and evaluating pregnancy outcomes.
Collapse
|
10
|
Mao Y, Nielsen P, Ali J. Passive and Active Microrheology for Biomedical Systems. Front Bioeng Biotechnol 2022; 10:916354. [PMID: 35866030 PMCID: PMC9294381 DOI: 10.3389/fbioe.2022.916354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Microrheology encompasses a range of methods to measure the mechanical properties of soft materials. By characterizing the motion of embedded microscopic particles, microrheology extends the probing length scale and frequency range of conventional bulk rheology. Microrheology can be characterized into either passive or active methods based on the driving force exerted on probe particles. Tracer particles are driven by thermal energy in passive methods, applying minimal deformation to the assessed medium. In active techniques, particles are manipulated by an external force, most commonly produced through optical and magnetic fields. Small-scale rheology holds significant advantages over conventional bulk rheology, such as eliminating the need for large sample sizes, the ability to probe fragile materials non-destructively, and a wider probing frequency range. More importantly, some microrheological techniques can obtain spatiotemporal information of local microenvironments and accurately describe the heterogeneity of structurally complex fluids. Recently, there has been significant growth in using these minimally invasive techniques to investigate a wide range of biomedical systems both in vitro and in vivo. Here, we review the latest applications and advancements of microrheology in mammalian cells, tissues, and biofluids and discuss the current challenges and potential future advances on the horizon.
Collapse
Affiliation(s)
- Yating Mao
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Paige Nielsen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| |
Collapse
|
11
|
Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022; 8:2825-2848. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.
Collapse
Affiliation(s)
- Dipesh Dinanath Pednekar
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Madison A Liguori
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | | | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.,BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zejian Zhou
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, West Haven, Connecticut 06516, United States
| | - Kagya Amoako
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
12
|
Watchorn J, Clasky AJ, Prakash G, Johnston IAE, Chen PZ, Gu FX. Untangling Mucosal Drug Delivery: Engineering, Designing, and Testing Nanoparticles to Overcome the Mucus Barrier. ACS Biomater Sci Eng 2022; 8:1396-1426. [PMID: 35294187 DOI: 10.1021/acsbiomaterials.2c00047] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mucus is a complex viscoelastic gel and acts as a barrier covering much of the soft tissue in the human body. High vascularization and accessibility have motivated drug delivery to various mucosal surfaces; however, these benefits are hindered by the mucus layer. To overcome the mucus barrier, many nanomedicines have been developed, with the goal of improving the efficacy and bioavailability of drug payloads. Two major nanoparticle-based strategies have emerged to facilitate mucosal drug delivery, namely, mucoadhesion and mucopenetration. Generally, mucoadhesive nanoparticles promote interactions with mucus for immobilization and sustained drug release, whereas mucopenetrating nanoparticles diffuse through the mucus and enhance drug uptake. The choice of strategy depends on many factors pertaining to the structural and compositional characteristics of the target mucus and mucosa. While there have been promising results in preclinical studies, mucus-nanoparticle interactions remain poorly understood, thus limiting effective clinical translation. This article reviews nanomedicines designed with mucoadhesive or mucopenetrating properties for mucosal delivery, explores the influence of site-dependent physiological variation among mucosal surfaces on efficacy, transport, and bioavailability, and discusses the techniques and models used to investigate mucus-nanoparticle interactions. The effects of non-homeostatic perturbations on protein corona formation, mucus composition, and nanoparticle performance are discussed in the context of mucosal delivery. The complexity of the mucosal barrier necessitates consideration of the interplay between nanoparticle design, tissue-specific differences in mucus structure and composition, and homeostatic or disease-related changes to the mucus barrier to develop effective nanomedicines for mucosal delivery.
Collapse
Affiliation(s)
- Jeffrey Watchorn
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Gayatri Prakash
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Ian A E Johnston
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Paul Z Chen
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
13
|
Lykke MR, Becher N, Haahr T, Boedtkjer E, Jensen JS, Uldbjerg N. Vaginal, Cervical and Uterine pH in Women with Normal and Abnormal Vaginal Microbiota. Pathogens 2021; 10:pathogens10020090. [PMID: 33498288 PMCID: PMC7909242 DOI: 10.3390/pathogens10020090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 01/02/2023] Open
Abstract
Introduction: Healthy women of reproductive age have a vaginal pH around 4.5, whereas little is known about pH in the upper genital tract. A shift in the vaginal microbiota may result in an elevated pH in the upper genital tract. This might contribute to decreased fertility and increased risk of preterm birth. Therefore, we aimed to measure pH in different compartments of the female genital tract in both nonpregnant and pregnant women, stratifying into a normal and abnormal vaginal microbiota. Material and methods: In this descriptive study, we included 6 nonpregnant, 12 early-pregnant, and 8 term-pregnant women. A pH gradient was recorded with a flexible pH probe. An abnormal vaginal microbiota was diagnosed by a quantitative polymerase chain reaction technique for Atopobium vaginae; Sneathia sanguinegens; Leptotrichia amnionii; bacterial vaginosis-associated bacterium 1, 2, 3, and TM7; and Prevotella spp. among others. Results: In all participants we found the pH gradient in the lower reproductive canal to be most acidic in the lower vagina and most alkaline in the upper uterine cavity. Women with an abnormal vaginal microbiota had an increased pH in the lower vagina compared to the other groups. Conclusions: There is a pronounced pH gradient within the female genital tract. This gradient is not disrupted in women with an abnormal vaginal microbiota.
Collapse
Affiliation(s)
- Malene Risager Lykke
- Department of Obstetrics and Gynecology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (T.H.); (N.U.)
- Correspondence:
| | - Naja Becher
- Department of Molecular Biology and Genetics, Aarhus University Hospital, DK-8200 Aarhus, Denmark;
| | - Thor Haahr
- Department of Obstetrics and Gynecology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (T.H.); (N.U.)
- The Fertility Clinic, Skive Regional Hospital Denmark, DK-7800 Skive, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark;
| | - Jørgen Skov Jensen
- Research Unit for Reproductive Microbiology, Statens Serum Institut, DK-2300 Copenhagen, Denmark;
| | - Niels Uldbjerg
- Department of Obstetrics and Gynecology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (T.H.); (N.U.)
| |
Collapse
|
14
|
Lacroix G, Gouyer V, Gottrand F, Desseyn JL. The Cervicovaginal Mucus Barrier. Int J Mol Sci 2020; 21:ijms21218266. [PMID: 33158227 PMCID: PMC7663572 DOI: 10.3390/ijms21218266] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022] Open
Abstract
Preterm births are a global health priority that affects 15 million babies every year worldwide. There are no effective prognostic and therapeutic strategies relating to preterm delivery, but uterine infections appear to be a major cause. The vaginal epithelium is covered by the cervicovaginal mucus, which is essential to health because of its direct involvement in reproduction and functions as a selective barrier by sheltering the beneficial lactobacilli while helping to clear pathogens. During pregnancy, the cervical canal is sealed with a cervical mucus plug that prevents the vaginal flora from ascending toward the uterine compartment, which protects the fetus from pathogens. Abnormalities of the cervical mucus plug and bacterial vaginosis are associated with a higher risk of preterm delivery. This review addresses the current understanding of the cervicovaginal mucus and the cervical mucus plug and their interactions with the microbial communities in both the physiological state and bacterial vaginosis, with a focus on gel-forming mucins. We also review the current state of knowledge of gel-forming mucins contained in mouse cervicovaginal mucus and the mouse models used to study bacterial vaginosis.
Collapse
|
15
|
Schroeder HA, Newby J, Schaefer A, Subramani B, Tubbs A, Gregory Forest M, Miao E, Lai SK. LPS-binding IgG arrests actively motile Salmonella Typhimurium in gastrointestinal mucus. Mucosal Immunol 2020; 13:814-823. [PMID: 32123309 DOI: 10.1038/s41385-020-0267-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/10/2019] [Accepted: 12/27/2019] [Indexed: 02/04/2023]
Abstract
The gastrointestinal (GI) mucosa is coated with a continuously secreted mucus layer that serves as the first line of defense against invading enteric bacteria. We have previously shown that antigen-specific immunoglobulin G (IgG) can immobilize viruses in both human airway and genital mucus secretions through multiple low-affinity bonds between the array of virion-bound IgG and mucins, thereby facilitating their rapid elimination from mucosal surfaces and preventing mucosal transmission. Nevertheless, it remains unclear whether weak IgG-mucin crosslinks could reinforce the mucus barrier against the permeation of bacteria driven by active flagella beating, or in predominantly MUC2 mucus gel. Here, we performed high-resolution multiple particle tracking to capture the real-time motion of hundreds of individual fluorescent Salmonella Typhimurium in fresh, undiluted GI mucus from Rag1-/- mice, and analyzed the motion using a hidden Markov model framework. In contrast to control IgG, the addition of anti-lipopolysaccharide IgG to GI mucus markedly reduced the progressive motility of Salmonella by lowering the swim speed and retaining individual bacteria in an undirected motion state. Effective crosslinking of Salmonella to mucins was dependent on Fc N-glycans. Our findings implicate IgG-mucin crosslinking as a broadly conserved function that reduces mucous penetration of both bacterial and viral pathogens.
Collapse
Affiliation(s)
- Holly A Schroeder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Jay Newby
- Department of Applied and Computational Mathematics, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Alison Schaefer
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Babu Subramani
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Alan Tubbs
- Department of Microbiology and Immunology, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA
| | - M Gregory Forest
- Department of Applied and Computational Mathematics, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Ed Miao
- Department of Microbiology and Immunology, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA. .,UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA.
| |
Collapse
|
16
|
Čabanová K, Motyka O, Čábalová L, Hrabovská K, Bielniková H, Kuzníková Ľ, Dvořáčková J, Zeleník K, Komínek P, Kukutschová J. Metal particles in mucus and hypertrophic tissue of the inferior nasal turbinates from the human upper respiratory tract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28146-28154. [PMID: 32410192 DOI: 10.1007/s11356-020-09156-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Mucosal surfaces are the first mechanical barrier preventing the entry of foreign particles into the organism. The study addresses the detection and analysis of metal-based solid particles in cytological mucus samples from the surface of human hypertrophic tissue in the inferior nasal turbinates in patients diagnosed with chronic rhinitis. Solid particles were characterized by scanning electron microscopy and Raman microspectroscopy; all the biological samples were also subjected to vibration magnetometry. Since the upper airways are the first part of the respiratory tract, which is exposed to inhaled particles, it can be assumed that inhaled particles may be partially deposited in this region. Scanning electron microscopy revealed the presence of metal-based solid particles/clusters in the majority of the analysed cytological mucus samples and also in hypertrophic tissues; in all groups, the particles were of submicron size. Raman microspectroscopy detected the presence of particles/clusters based on amorphous carbon, graphite, calcium carbonate, anatase and barite only in the hypertrophic tissue. The obtained results show that the composition of some of the solid particles (i.e. Ba, Zn, Fe and Ti) detected in the mucus from the surface of the hypertrophic tissues resembled the particles found in the hypertrophic tissue itself. It can be assumed that after the capture of the inhaled particles by the mucus, they penetrate into the deeper layers of tissue.
Collapse
Affiliation(s)
- Kristina Čabanová
- Center of Advanced Innovation Technologies, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Poruba, 708 33, Ostrava, Czech Republic.
| | - Oldřich Motyka
- Nanotechnology Centre, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Lenka Čábalová
- Department of Otorhinolaryngology, Ostrava University Hospital, Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Kamila Hrabovská
- Department of Physics, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Hana Bielniková
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Institute of Pathology, Ostrava University Hospital, Ostrava, Czech Republic
| | - Ľubomíra Kuzníková
- Center of Advanced Innovation Technologies, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Poruba, 708 33, Ostrava, Czech Republic
| | - Jana Dvořáčková
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Karol Zeleník
- Department of Otorhinolaryngology, Ostrava University Hospital, Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Pavel Komínek
- Department of Otorhinolaryngology, Ostrava University Hospital, Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Jana Kukutschová
- Center of Advanced Innovation Technologies, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Poruba, 708 33, Ostrava, Czech Republic
| |
Collapse
|
17
|
Hoang T, Toler E, DeLong K, Mafunda NA, Bloom SM, Zierden HC, Moench TR, Coleman JS, Hanes J, Kwon DS, Lai SK, Cone RA, Ensign LM. The cervicovaginal mucus barrier to HIV-1 is diminished in bacterial vaginosis. PLoS Pathog 2020; 16:e1008236. [PMID: 31971984 PMCID: PMC6999914 DOI: 10.1371/journal.ppat.1008236] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 02/04/2020] [Accepted: 11/25/2019] [Indexed: 11/19/2022] Open
Abstract
Bacterial vaginosis (BV), a condition in which the vaginal microbiota consists of community of obligate and facultative anaerobes rather than dominated by a single species of Lactobacillus, affects ~30% of women in the US. Women with BV are at 60% increased risk for HIV acquisition and are 3-times more likely to transmit HIV to an uninfected partner. As cervicovaginal mucus (CVM) is the first line of defense against mucosal pathogens and the home of the resident vaginal microbiota, we hypothesized the barrier function of CVM to HIV may be diminished in BV. Here, we characterized CVM properties including pH, lactic acid content, and Nugent score to correlate with the microbiota community composition, which was confirmed by 16S rDNA sequencing on a subset of samples. We then quantified the mobility of fluorescently-labeled HIV virions and nanoparticles to characterize the structural and adhesive barrier properties of CVM. Our analyses included women with Nugent scores categorized as intermediate (4–6) and BV (7–10), women that were either symptomatic or asymptomatic, and a small group of women before and after antibiotic treatment for symptomatic BV. Overall, we found that HIV virions had significantly increased mobility in CVM from women with BV compared to CVM from women with Lactobacillus crispatus-dominant microbiota, regardless of whether symptoms were present. We confirmed using nanoparticles and scanning electron microscopy that the impaired barrier function was due to reduced adhesive barrier properties without an obvious degradation of the physical CVM pore structure. We further confirmed a similar increase in HIV mobility in CVM from women with Lactobacillus iners-dominant microbiota, the species most associated with transitions to BV and that persists after antibiotic treatment for BV. Our findings advance the understanding of the protective role of mucus and highlight the interplay between vaginal microbiota and the innate barrier function mucus. Bacterial vaginosis (BV), a condition characterized by the depletion of lactobacillus bacteria in the vagina, is the most common vaginal condition in reproductive age women. BV has been associated with many adverse reproductive and sexual health outcomes, including increased risk of HIV infection. Cervicovaginal mucus is the home to vaginal bacteria and acts as a first line of defense to protect the underlying tissues and cells from infection. Here, we studied the barrier properties of mucus from women with BV compared to women with vaginal bacteria dominated by lactobacilli. We found that mucus from women with BV and women with Lactobacillus iners were permissive to HIV-1, which may allow the virus to more easily reach target cells. These findings are in agreement with the observed increased risk for HIV acquisition seen in women with BV and L. iners bacteria. Furthermore, we found that the barrier against HIV is diminished in women with BV regardless of whether they have symptoms. Our findings highlight the important, yet unexplored interactions between the mucus barrier and the vaginal microbiota and the implications for human health.
Collapse
Affiliation(s)
- Thuy Hoang
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Emily Toler
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kevin DeLong
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nomfuneko A. Mafunda
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
| | - Seth M. Bloom
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hannah C. Zierden
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Thomas R. Moench
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jenell S. Coleman
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Justin Hanes
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Douglas S. Kwon
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samuel K. Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC/NCSU Joint Department of Biomedical Engineering, Department of Microbiology & Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard A. Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Laura M. Ensign
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Xu F, Newby JM, Schiller JL, Schroeder HA, Wessler T, Chen A, Forest MG, Lai SK. Modeling Barrier Properties of Intestinal Mucus Reinforced with IgG and Secretory IgA against Motile Bacteria. ACS Infect Dis 2019; 5:1570-1580. [PMID: 31268295 DOI: 10.1021/acsinfecdis.9b00109] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The gastrointestinal (GI) tract is lined with a layer of viscoelastic mucus gel, characterized by a dense network of entangled and cross-linked mucins together with an abundance of antibodies (Ab). Secretory IgA (sIgA), the predominant Ab isotype in the GI tract, is a dimeric molecule with 4 antigen-binding domains capable of inducing efficient clumping of bacteria, or agglutination. IgG, another common Ab at mucosal surfaces, can cross-link individual viruses to the mucin mesh through multiple weak bonds between IgG-Fc and mucins, a process termed muco-trapping. Relative contributions by agglutination versus muco-trapping in blocking permeation of motile bacteria through mucus remain poorly understood. Here, we developed a mathematical model that takes into account physiologically relevant spatial dimensions and time scales, binding and unbinding rates between Ab and bacteria as well as between Ab and mucins, the diffusivities of Ab, and run-tumble motion of active bacteria. Our model predicts both sIgA and IgG can accumulate on the surface of individual bacteria at sufficient quantities and rates to enable trapping individual bacteria in mucins before they penetrate the mucus layer. Furthermore, our model predicts that agglutination only modestly improves the ability for antibodies to block bacteria permeation through mucus. These results suggest that while sIgA is the most potent Ab isotype overall at stopping bacterial penetration, IgG may represent a practical alternative for mucosal prophylaxis and therapy. Our work improves the mechanistic understanding of Ab-enhanced barrier properties of mucus and highlights the ability for muco-trapping Ab to protect against motile pathogens at mucosal surfaces.
Collapse
|
19
|
Chisholm JF, Shenoy SK, Shade JK, Kim V, Putcha N, Carson KA, Wise R, Hansel NN, Hanes JS, Suk JS, Neptune E. Nanoparticle diffusion in spontaneously expectorated sputum as a biophysical tool to probe disease severity in COPD. Eur Respir J 2019; 54:13993003.00088-2019. [PMID: 31164433 DOI: 10.1183/13993003.00088-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/26/2019] [Indexed: 01/20/2023]
Abstract
Perturbations in airway mucus properties contribute to lung function decline in patients with chronic obstructive pulmonary disease (COPD). While alterations in bulk mucus rheology have been widely explored, microscopic mucus properties that directly impact on the dynamics of microorganisms and immune cells in the COPD lungs are yet to be investigated.We hypothesised that a tightened mesh structure of spontaneously expectorated mucus (i.e. sputum) would contribute to increased COPD disease severity. Here, we investigated whether the mesh size of COPD sputum, quantified by muco-inert nanoparticle (MIP) diffusion, correlated with sputum composition and lung function measurements.The microstructure of COPD sputum was assessed based on the mean squared displacement (MSD) of variously sized MIPs measured by multiple particle tracking. MSD values were correlated with sputum composition and spirometry. In total, 33 samples collected from COPD or non-COPD individuals were analysed.We found that 100 nm MIPs differentiated microstructural features of COPD sputum. The mobility of MIPs was more hindered in sputum samples from patients with severe COPD, suggesting a tighter mucus mesh size. Specifically, MSD values inversely correlated with lung function.These findings suggest that sputum microstructure may serve as a novel risk factor for COPD progression and severity.
Collapse
Affiliation(s)
- Jane F Chisholm
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Dept of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Siddharth K Shenoy
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Dept of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julie K Shade
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Dept of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Victor Kim
- Dept of Thoracic Medicine and Surgery, Temple University School of Medicine, Philadelphia, PA, USA
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn A Carson
- Dept of Epidemiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Wise
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin S Hanes
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Dept of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.,Dept of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Dept of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.,Indicates equal contribution to this work
| | - Jung Soo Suk
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Dept of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.,Dept of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Indicates equal contribution to this work
| | - Enid Neptune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA .,Indicates equal contribution to this work
| |
Collapse
|
20
|
Parlato RM, Greco F, Maffettone PL, Larobina D. Effect of pH on the viscoelastic properties of pig gastric mucus. J Mech Behav Biomed Mater 2019; 98:195-199. [PMID: 31254906 DOI: 10.1016/j.jmbbm.2019.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/19/2019] [Accepted: 06/09/2019] [Indexed: 12/24/2022]
Abstract
Mucus is a biomaterial with peculiar, gel-like viscoelastic properties, and bearing different functionalities, depending on the different mucosae it covers. It is clear that these functionalities have to stay effective throughout the in vivo broad range of physiological pH values at which the mucus is exposed. We sought here to determine the effect of pH on the rheological properties of ex vivo mucus. We demonstrate that viscoelastic properties of gastric mucus are quite "stable" to pH changes, in marked contrast with the pH sensitivity of purified mucin gels. We also find that the rheological features of porcine gastric mucus are reversible when the system is first alkalized up to solubilization (pH > 8.5) and then re-acidified to its initial pH value.
Collapse
Affiliation(s)
- R M Parlato
- Department of Chemical, Materials, and Manufacturing Engineering, University of Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy
| | - F Greco
- Department of Chemical, Materials, and Manufacturing Engineering, University of Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy
| | - P L Maffettone
- Department of Chemical, Materials, and Manufacturing Engineering, University of Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy
| | - D Larobina
- Institute for Polymers, Composites and Biomaterials - National Research Council of Italy, P.le E. Fermi 1, 80055, Portici (NA), Italy.
| |
Collapse
|
21
|
Development of a mucoinert progesterone nanosuspension for safer and more effective prevention of preterm birth. J Control Release 2019; 295:74-86. [PMID: 30597245 PMCID: PMC6398330 DOI: 10.1016/j.jconrel.2018.12.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 02/03/2023]
Abstract
Preterm birth (PTB) is a significant global problem, but few therapeutic options exist. Vaginal progesterone supplementation has been demonstrated to reduce PTB rates in women with a sonographic short cervix, yet there has been little investigation into the most effective dose or delivery form. Further, vaginal products like progesterone gel often contain excipients that cause local toxicity, irritation, and leakage. Here, we describe the development and characterization of a mucoinert vaginal progesterone nanosuspension formulation for improved drug delivery to the female reproductive tract. We compare the pharmacokinetics and pharmacodynamics to the clinical comparator progesterone gel in pregnant mice and demonstrate increased vaginal absorption and biodistribution via the uterine first-pass effect. Importantly, the unique plasma progesterone double peak observed in humans, reflecting recirculation from the uterus, was also observed in pregnant mice with vaginal dosing. We adapted a mouse model of progesterone withdrawal that was previously believed to be incompatible with testing the efficacy of exogenous progestins, and are first to demonstrate efficacy in preventing preterm birth with vaginal progesterone in this model. Further, improved vaginal progesterone delivery by the nanosuspension led to increased efficacy in PTB prevention. Additionally, we identified histological and transcriptional evidence of cervical and uterine toxicity with a single vaginal administration of the clinical gel that are absent after dosing with the mucoinert nanosuspension formulation. We demonstrate that a progesterone formulation that is designed for improved vaginal progesterone absorption and vaginal biocompatibility could be more effective for PTB prevention.
Collapse
|
22
|
Berardi A, Baldelli Bombelli F, Thuenemann EC, Lomonossoff GP. Viral nanoparticles can elude protein barriers: exploiting rather than imitating nature. NANOSCALE 2019; 11:2306-2316. [PMID: 30662985 DOI: 10.1039/c8nr09067j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein-corona formation in body fluids and/or entrapment of nanoparticles in protein matrices (e.g. food and mucus) can hinder the delivery of nanoparticles, irrespective of the route of administration. Here we demonstrate that certain viral nanoparticles (VNPs) can evade the adhesion of a broad panel of macromolecules from several biological milieus. We also show that the permeability of VNPs through mucin gels is far superior to that of synthetic nanoparticles. The non-sticky nature of VNPs implies that they will be able to readily cross most non-specific protein and glycoprotein barriers encountered, ubiquitously, upon administration through mucosal, and non-mucosal routes.
Collapse
Affiliation(s)
- Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan.
| | | | | | | |
Collapse
|
23
|
Hill DB, Long RF, Kissner WJ, Atieh E, Garbarine IC, Markovetz MR, Fontana NC, Christy M, Habibpour M, Tarran R, Forest MG, Boucher RC, Button B. Pathological mucus and impaired mucus clearance in cystic fibrosis patients result from increased concentration, not altered pH. Eur Respir J 2018; 52:13993003.01297-2018. [PMID: 30361244 DOI: 10.1183/13993003.01297-2018] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/25/2018] [Indexed: 01/17/2023]
Abstract
Cystic fibrosis (CF) is a recessive genetic disease that is characterised by airway mucus plugging and reduced mucus clearance. There are currently alternative hypotheses that attempt to describe the abnormally viscous and elastic mucus that is a hallmark of CF airways disease, including: 1) loss of CF transmembrane regulator (CFTR)-dependent airway surface volume (water) secretion, producing mucus hyperconcentration-dependent increased viscosity, and 2) impaired bicarbonate secretion by CFTR, producing acidification of airway surfaces and increased mucus viscosity.A series of experiments was conducted to determine the contributions of mucus concentration versus pH to the rheological properties of airway mucus across length scales from the nanoscopic to macroscopic.For length scales greater than the nanoscopic, i.e. those relevant to mucociliary clearance, the effect of mucus concentration dominated over the effect of airway acidification.Mucus hydration and chemical reduction of disulfide bonds that connect mucin monomers are more promising therapeutic approaches than alkalisation.
Collapse
Affiliation(s)
- David B Hill
- Dept of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Marsico Lung Institute/CF Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert F Long
- Marsico Lung Institute/CF Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William J Kissner
- Marsico Lung Institute/CF Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eyad Atieh
- Marsico Lung Institute/CF Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ian C Garbarine
- Marsico Lung Institute/CF Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew R Markovetz
- Marsico Lung Institute/CF Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas C Fontana
- Marsico Lung Institute/CF Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew Christy
- Marsico Lung Institute/CF Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mehdi Habibpour
- Marsico Lung Institute/CF Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert Tarran
- Marsico Lung Institute/CF Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Dept of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Gregory Forest
- Dept of Mathematics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Dept of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Dept of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C Boucher
- Marsico Lung Institute/CF Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian Button
- Marsico Lung Institute/CF Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Dept of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Dept of Biophysics and Biochemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Demouveaux B, Gouyer V, Magnien M, Plet S, Gottrand F, Narita T, Desseyn JL. [Gel-forming mucins structure governs mucus gels viscoelasticity]. Med Sci (Paris) 2018; 34:806-812. [PMID: 30451674 DOI: 10.1051/medsci/2018206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mucus is the first line of innate mucosal defense in all mammals. Gel‑forming mucins control the rheological properties of mucus hydrogels by forming a network in which hydrophilic and hydrophobic regions coexist, and it has been revealed that the network is formed through both covalent links and reversible links such as hydrophobic interactions in order to modulate the structure as a function of the physiological necessities. Here, we review the structure and functions of the mucus in terms of the gel-forming mucins protein-protein interactions, also called interactome. Since it is difficult to characterize the low energy reversible interactions due to their dependence on physico-chemical environment, their role is not well understood. Still, they constitute a promising target to counteract mucus abnormalities observed in mucus-associated diseases.
Collapse
Affiliation(s)
- Bastien Demouveaux
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Valérie Gouyer
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Mylène Magnien
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Ségolène Plet
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Frédéric Gottrand
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Tetsuharu Narita
- PSL Research University, UPMC Univ. Paris 06, ESPCI Paris, CNRS UMR 7615, Laboratoire Sciences et Ingénierie de la Matière Molle, 10, rue Vauquelin, 75231, Paris Cedex 05, France - Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japon
| | - Jean-Luc Desseyn
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| |
Collapse
|
25
|
Abstract
We review what is currently understood about how the structure of the primary solid component of mucus, the glycoprotein mucin, gives rise to the mechanical and biochemical properties of mucus that are required for it to perform its diverse physiological roles. Macroscale processes such as lubrication require mucus of a certain stiffness and spinnability, which are set by structural features of the mucin network, including the identity and density of cross-links and the degree of glycosylation. At the microscale, these same features affect the mechanical environment experienced by small particles and play a crucial role in establishing an interaction-based filter. Finally, mucin glycans are critical for regulating microbial interactions, serving as receptor binding sites for adhesion, as nutrient sources, and as environmental signals. We conclude by discussing how these structural principles can be used in the design of synthetic mucin-mimetic materials and provide suggestions for directions of future work in this field.
Collapse
Affiliation(s)
- C E Wagner
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - K M Wheeler
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - K Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
26
|
Demouveaux B, Gouyer V, Gottrand F, Narita T, Desseyn JL. Gel-forming mucin interactome drives mucus viscoelasticity. Adv Colloid Interface Sci 2018; 252:69-82. [PMID: 29329667 DOI: 10.1016/j.cis.2017.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/31/2022]
Abstract
Mucus is a hydrogel that constitutes the first innate defense in all mammals. The main organic component of mucus, gel-forming mucins, forms a complex network through both reversible and irreversible interactions that drive mucus gel formation. Significant advances in the understanding of irreversible gel-forming mucins assembly have been made using recombinant protein approaches. However, little is known about the reversible interactions that may finely modulate mucus viscoelasticity, which can be characterized using rheology. This approach can be used to investigate both the nature of gel-forming mucins interactions and factors that influence hydrogel formation. This knowledge is directly relevant to the development of new drugs to modulate mucus viscoelasticity and to restore normal mucus functions in diseases such as in cystic fibrosis. The aim of the present review is to summarize the current knowledge about the relationship between the mucus protein matrix and its functions, with emphasis on mucus viscoelasticity.
Collapse
Affiliation(s)
| | - Valérie Gouyer
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Tetsuharu Narita
- Laboratoire Sciences et Ingénierie de la Matière Molle, PSL Research University, UPMC Univ Paris 06, ESPCI Paris, CNRS, 10 rue Vauquelin, 75231 Paris Cedex 05, France; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Jean-Luc Desseyn
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, F-59000 Lille, France.
| |
Collapse
|
27
|
Huckaby JT, Lai SK. PEGylation for enhancing nanoparticle diffusion in mucus. Adv Drug Deliv Rev 2018; 124:125-139. [PMID: 28882703 DOI: 10.1016/j.addr.2017.08.010] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
The viscoelastic mucus secretions coating exposed organs such as the lung airways and the female reproductive tract can trap and quickly eliminate not only foreign pathogens and ultrafine particles but also particle-based drug delivery systems, thus limiting sustained and targeted drug delivery at mucosal surfaces. To improve particle distribution across the mucosa and enhance delivery to the underlying epithelium, many investigators have sought to develop nanoparticles capable of readily traversing mucus. The first synthetic nanoparticles shown capable of rapidly penetrating physiological mucus secretions utilized a dense coating of polyethylene glycol (PEG) covalently grafted onto the surface of preformed polymeric nanoparticles. In the decade since, PEG has become the gold standard in engineering mucus-penetrating drug carriers for sustained and targeted drug delivery to the lungs, gastrointestinal tract, eyes, and female reproductive tract. This review summarizes the history of the development of various PEG-based mucus-penetrating particles, and highlights the key physicochemical properties of PEG coatings and PEGylation strategies to achieve muco-inert PEG coatings on nanoparticle drug carriers for improved drug and gene delivery at mucosal surfaces.
Collapse
|
28
|
García-Díaz M, Birch D, Wan F, Nielsen HM. The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles. Adv Drug Deliv Rev 2018; 124:107-124. [PMID: 29117511 DOI: 10.1016/j.addr.2017.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023]
Abstract
Mucosal administration of drugs and drug delivery systems has gained increasing interest. However, nanoparticles intended to protect and deliver drugs to epithelial surfaces require transport through the surface-lining mucus. Translation from bench to bedside is particularly challenging for mucosal administration since a variety of parameters will influence the specific barrier properties of the mucus including the luminal fluids, the microbiota, the mucus composition and clearance rate, and the condition of the underlying epithelia. Besides, after administration, nanoparticles interact with the mucosal components, forming a biomolecular corona that modulates their behavior and fate after mucosal administration. These interactions are greatly influenced by the nanoparticle properties, and therefore different designs and surface-engineering strategies have been proposed. Overall, it is essential to evaluate these biomolecule-nanoparticle interactions by complementary techniques using complex and relevant mucus barrier matrices.
Collapse
Affiliation(s)
- María García-Díaz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Ditlev Birch
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Feng Wan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
29
|
Wagner CE, Turner BS, Rubinstein M, McKinley GH, Ribbeck K. A Rheological Study of the Association and Dynamics of MUC5AC Gels. Biomacromolecules 2017; 18:3654-3664. [PMID: 28903557 PMCID: PMC5776034 DOI: 10.1021/acs.biomac.7b00809] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The details of how a mucus hydrogel forms from its primary structural component, mucin polymers, remain incompletely resolved. To explore this, we use a combination of macrorheology and single-particle tracking to investigate the bulk and microscopic mechanical properties of reconstituted MUC5AC mucin gels. We find that analyses of thermal fluctuations on the length scale of the micrometer-sized particles are not predictive of the linear viscoelastic response of the mucin gels, and that taken together, the results from both techniques help to provide complementary insight into the structure of the network. In particular, we show that macroscopic stiffening of MUC5AC gels can be brought about in different ways by targeting specific associations within the network using environmental triggers such as modifications to the pH, surfactant, and salt concentration. Our work may be important for understanding how environmental factors, including pathogens and therapeutic agents, alter the mechanical properties of fully constituted mucus.
Collapse
Affiliation(s)
- Caroline E. Wagner
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Bradley S. Turner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Michael Rubinstein
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Gareth H. McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
30
|
Probing the potential of mucus permeability to signify preterm birth risk. Sci Rep 2017; 7:10302. [PMID: 28871085 PMCID: PMC5583328 DOI: 10.1038/s41598-017-08057-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022] Open
Abstract
Preterm birth is the leading cause of neonatal mortality, and is frequently associated with intra-amniotic infection hypothesized to arise from bacterial ascension across a dysfunctional cervical mucus plug. To study this dysfunction, we assessed the permeability of cervical mucus from non-pregnant ovulating (n = 20) and high- (n = 9) and low-risk (n = 16) pregnant women to probes of varying sizes and surface chemistries. We found that the motion of negatively charged, carboxylated microspheres in mucus from pregnant patients was significantly restricted compared to ovulating patients, but not significantly different between high- and low-risk pregnant women. In contrast, charged peptide probes small enough to avoid steric interactions, but sensitive to the biochemical modifications of mucus components exhibited significantly different transport profiles through mucus from high- and low-risk patients. Thus, although both microstructural rearrangements of the components of mucus as well as biochemical modifications to their adhesiveness may alter the overall permeability of the cervical mucus plug, our findings suggest that the latter mechanism plays a dominant role in the impairment of the function of this barrier during preterm birth. We expect that these probes may be readily adapted to study the mechanisms underlying disease progression on all mucosal epithelia, including those in the mouth, lungs, and gut.
Collapse
|
31
|
Ex-Vivo Force Spectroscopy of Intestinal Mucosa Reveals the Mechanical Properties of Mucus Blankets. Sci Rep 2017; 7:7270. [PMID: 28779181 PMCID: PMC5544714 DOI: 10.1038/s41598-017-07552-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/27/2017] [Indexed: 01/03/2023] Open
Abstract
Mucus is the viscous gel that protects mucosal surfaces. It also plays a crucial role in several diseases as well as in mucosal drug delivery. Because of technical limitations, mucus properties have mainly been addressed by in-vitro studies. However, this approach can lead to artifacts as mucus collection can alter its structure. Here we show that by using an implemented atomic force microscope it is possible to measure the interactions between micro-particles and mucus blankets ex-vivo i.e., on fresh excised mucus-covered tissues. By applying this method to study the small intestine, we were able to quantify the stiffness and adhesiveness of its mucus blanket at different pH values. We also demonstrate the ability of mucus blankets to bind and attract particles hundreds of µm away from their surface, and to trap and bury them even if their size is as big as 15 µm.
Collapse
|
32
|
Weigand WJ, Messmore A, Tu J, Morales-Sanz A, Blair DL, Deheyn DD, Urbach JS, Robertson-Anderson RM. Active microrheology determines scale-dependent material properties of Chaetopterus mucus. PLoS One 2017; 12:e0176732. [PMID: 28562662 PMCID: PMC5451080 DOI: 10.1371/journal.pone.0176732] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/15/2017] [Indexed: 12/24/2022] Open
Abstract
We characterize the lengthscale-dependent rheological properties of mucus from the ubiquitous Chaetopterus marine worm. We use optically trapped probes (2-10 μm) to induce microscopic strains and measure the stress response as a function of oscillation amplitude. Our results show that viscoelastic properties are highly dependent on strain scale (l), indicating three distinct lengthscale-dependent regimes at l1 ≤4 μm, l2≈4-10 μm, and l3≥10 μm. While mucus response is similar to water for l1, suggesting that probes rarely contact the mucus mesh, the response for l2 is distinctly more viscous and independent of probe size, indicative of continuum mechanics. Only for l3 does the response match the macroscopic elasticity, likely due to additional stiffer constraints that strongly resist probe displacement. Our results suggest that, rather than a single lengthscale governing crossover from viscous to elastic, mucus responds as a hierarchical network with a loose biopolymer mesh coupled to a larger scaffold responsible for macroscopic gel-like mechanics.
Collapse
Affiliation(s)
- W. J. Weigand
- Department of Physics and Biophysics, University of San Diego, San Diego, California, United States of America
| | - A. Messmore
- Department of Physics and Biophysics, University of San Diego, San Diego, California, United States of America
| | - J. Tu
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California, United States of America
| | - A. Morales-Sanz
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC, United States of America
| | - D. L. Blair
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC, United States of America
| | - D. D. Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California, United States of America
| | - J. S. Urbach
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC, United States of America
| | - R. M. Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, San Diego, California, United States of America
| |
Collapse
|
33
|
Schneider CS, Xu Q, Boylan NJ, Chisholm J, Tang BC, Schuster BS, Henning A, Ensign LM, Lee E, Adstamongkonkul P, Simons BW, Wang SYS, Gong X, Yu T, Boyle MP, Suk JS, Hanes J. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. SCIENCE ADVANCES 2017; 3:e1601556. [PMID: 28435870 PMCID: PMC5381952 DOI: 10.1126/sciadv.1601556] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/10/2017] [Indexed: 05/17/2023]
Abstract
Mucoadhesive particles (MAP) have been widely explored for pulmonary drug delivery because of their perceived benefits in improving particle residence in the lungs. However, retention of particles adhesively trapped in airway mucus may be limited by physiologic mucus clearance mechanisms. In contrast, particles that avoid mucoadhesion and have diameters smaller than mucus mesh spacings rapidly penetrate mucus layers [mucus-penetrating particles (MPP)], which we hypothesized would provide prolonged lung retention compared to MAP. We compared in vivo behaviors of variously sized, polystyrene-based MAP and MPP in the lungs following inhalation. MAP, regardless of particle size, were aggregated and poorly distributed throughout the airways, leading to rapid clearance from the lungs. Conversely, MPP as large as 300 nm exhibited uniform distribution and markedly enhanced retention compared to size-matched MAP. On the basis of these findings, we formulated biodegradable MPP (b-MPP) with an average diameter of <300 nm and examined their behavior following inhalation relative to similarly sized biodegradable MAP (b-MAP). Although b-MPP diffused rapidly through human airway mucus ex vivo, b-MAP did not. Rapid b-MPP movements in mucus ex vivo correlated to a more uniform distribution within the airways and enhanced lung retention time as compared to b-MAP. Furthermore, inhalation of b-MPP loaded with dexamethasone sodium phosphate (DP) significantly reduced inflammation in a mouse model of acute lung inflammation compared to both carrier-free DP and DP-loaded MAP. These studies provide a careful head-to-head comparison of MAP versus MPP following inhalation and challenge a long-standing dogma that favored the use of MAP for pulmonary drug delivery.
Collapse
Affiliation(s)
- Craig S. Schneider
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Qingguo Xu
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Wilmer Eye Institute, Johns Hopkins Medical Institute, Baltimore, MD 21287, USA
| | - Nicholas J. Boylan
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jane Chisholm
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Benjamin C. Tang
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Benjamin S. Schuster
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andreas Henning
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Laura M. Ensign
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Wilmer Eye Institute, Johns Hopkins Medical Institute, Baltimore, MD 21287, USA
| | - Ethan Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pichet Adstamongkonkul
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Brian W. Simons
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sho-Yu S. Wang
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiaoqun Gong
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- School of Life Sciences, Tianjin University, Tianjin 300072, People‘s Republic of China
| | - Tao Yu
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael P. Boyle
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Wilmer Eye Institute, Johns Hopkins Medical Institute, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Corresponding author. (J.S.S.); (J.H.)
| | - Justin Hanes
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Wilmer Eye Institute, Johns Hopkins Medical Institute, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Corresponding author. (J.S.S.); (J.H.)
| |
Collapse
|
34
|
Maddison JW, Rickard JP, Bernecic NC, Tsikis G, Soleilhavoup C, Labas V, Combes-Soia L, Harichaux G, Druart X, Leahy T, de Graaf SP. Oestrus synchronisation and superovulation alter the cervicovaginal mucus proteome of the ewe. J Proteomics 2017; 155:1-10. [DOI: 10.1016/j.jprot.2017.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 01/06/2023]
|
35
|
González-Abreu D, García-Martínez S, Fernández-Espín V, Romar R, Gadea J. Incubation of boar spermatozoa in viscous media by addition of methylcellulose improves sperm quality and penetration rates during in vitro fertilization. Theriogenology 2017; 92:14-23. [PMID: 28237329 DOI: 10.1016/j.theriogenology.2017.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/16/2016] [Accepted: 01/07/2017] [Indexed: 12/16/2022]
Abstract
This work was designed to study whether viscous media can improve the in vitro sperm functionality in pigs by using methylcellulose as a thickener. Viscosity of porcine oviductal fluid (POF) was compared with culture medium (Tyrode's) supplemented with methylcellulose (MET 0, 0.5 and 1% w/v). Spermatozoa were incubated in the different media (0, 1 and 2 h) and sperm motion parameters, lipid membrane disorder, plasma membrane integrity and reactive oxygen species (ROS) formation were assessed. Fertilization results were assessed i) preincubating spermatozoa in the viscous media followed by gamete coculture in a non-viscous medium; and ii) gamete coculture in the viscous media. Viscosity of POF from early luteal phase was higher than late follicular phase. Medium without methylcellulose presented constant viscosity with increased shear rate, while viscosity of the POF and media with methylcellulose was reduced by increased shear rates. Methylcellulose improved sperm linearity, straightness and the proportion of fast-linear spermatozoa. Moreover, methylcellulose increased the rate of viable spermatozoa with intact acrosome and low lipid disorder, reducing the ROS generation. Preincubation in viscous media increased the penetration rate and the mean number of spermatozoa bound to the zona pellucida (both with 0.5 and 1% MET) and reduced monospermy with 1% MET. On the other hand fertilization in the viscous media reduced penetration rate and increased monospermy. The efficiency of the IVF system was not improved with the use of viscous media. The results show the relevance of increasing viscosity thus making the in vitro media more comparable to physiological conditions.
Collapse
Affiliation(s)
- David González-Abreu
- Department of Physiology, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, 30100, Spain
| | - Soledad García-Martínez
- Department of Physiology, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, 30100, Spain
| | - Vanesa Fernández-Espín
- Department of Physical Chemistry, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, 30100, Spain
| | - Raquel Romar
- Department of Physiology, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, 30100, Spain; Institute for Biomedical Research of Murcia IMIB-Arrixaca, Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, 30100, Spain; Institute for Biomedical Research of Murcia IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
36
|
Bhattacharjee S, Mahon E, Harrison SM, McGetrick J, Muniyappa M, Carrington SD, Brayden DJ. Nanoparticle passage through porcine jejunal mucus: Microfluidics and rheology. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:863-873. [PMID: 27965167 DOI: 10.1016/j.nano.2016.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/09/2016] [Accepted: 11/23/2016] [Indexed: 02/03/2023]
Abstract
A micro-slide chamber was used to screen and rank sixteen functionalized fluorescent silica nanoparticles (SiNP) of different sizes (10, 50, 100 and 200 nm) and surface coatings (aminated, carboxylated, methyl-PEG1000ylated, and methyl-PEG2000ylated) according to their capacity to permeate porcine jejunal mucus. Variables investigated were influence of particle size, surface charge and methyl-PEGylation. The anionic SiNP showed higher transport through mucus whereas the cationic SiNP exhibited higher binding with lower transport. A size-dependence in transport was identified - 10 and 50 nm anionic (uncoated or methyl-PEGylated) SiNP showed higher transport compared to the larger 100 and 200 nm SiNP. The cationic SiNP of all sizes interacted with the mucus, making it more viscous and less capable of swelling. In contrast, the anionic SiNP (uncoated or methyl-PEGylated) caused minimal changes in the viscoelasticity of mucus. The data provide insights into mucus-NP interactions and suggest a rationale for designing oral nanomedicines with improved mucopermeability.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland; School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| | - Eugene Mahon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Sabine M Harrison
- School of Agriculture and Food Science, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Jim McGetrick
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Mohankumar Muniyappa
- National Institute for Bioprocessing Research and Training (NIBRT), University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Stephen D Carrington
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - David J Brayden
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland; School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| |
Collapse
|
37
|
Carrillo L, Sumano H, Medina-Torres L, Tapia G, Gutiérrez L. Rheological study of healthy chicken's pooled tracheobronchial secretions and its modification by mucolytics drugs. Poult Sci 2016; 95:2667-2672. [PMID: 27418656 DOI: 10.3382/ps/pew209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 11/20/2022] Open
Abstract
The rheological properties of pooled tracheobronchial secretions (TBS) of chicken, including mucus, have not been characterized. Yet mucolytic drugs are frequently used in poultry medicine. To define such properties, TBS from healthy untreated and from chickens treated with various mucolytic drugs was studied. Three hundred, three-week-old Rhode Island Red chickens were divided into five groups, with three repetitions each (n = 20) as follows: ambroxol (GAmb), ethylene diamine dihydro-iodide (GEddi), carbocysteine (GCs), bromhexine (GBr), and an untreated control group (CG). Under anesthesia, samples of TBS were taken by gently flushing saline solution through the tracheobronchial tree, and rheological evaluations were made to determine viscosity, yield stress, and viscoelasticity by means of a rheometer using controlled efforts with a geometry system of concentric cylinders. It was found that TBS in the CG and in all treatments showed a non-Newtonian behavior (n < 1). TBS from all treatments possess yield stress (necessary force applied for a fluid to flow) and a pseudo-solid type behavior (viscoelastic test) as far as elasticity is concerned. TBS from treated animals revealed that yield stress was higher for the GBr and lowest for GAmb. Statistically significant differences in viscosity were observed among all treatments, including CG (P < 0.05). Considering yield stress, little effort would be required for respiratory cilia to displace TBS in ambroxol medicated chickens, followed by carbocysteine. Contrary to expectation, cilia from healthy chickens medicated with bromhexine or ethylene diamine dihydro-iodide, would require greater force to displace mucus as compared to untreated healthy birds.
Collapse
Affiliation(s)
- Lizbeth Carrillo
- Departamento de Fisiología y Farmacología., Facultad de Medicina Veterinaria y Zootecnia., Universidad Nacional Autónoma de México., Av. Universidad 3000, Delegación Coyoacán, 04360., México
| | - Héctor Sumano
- Departamento de Fisiología y Farmacología., Facultad de Medicina Veterinaria y Zootecnia., Universidad Nacional Autónoma de México., Av. Universidad 3000, Delegación Coyoacán, 04360., México
| | - Luis Medina-Torres
- Facultad de Química., Universidad Nacional Autónoma de México., Av. Universidad 3000, Delegación Coyoacán, 04360., México
| | - Graciela Tapia
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia., Universidad Nacional Autónoma de México., Av. Universidad 3000, Coyoacán, México City 04510, México
| | - Lilia Gutiérrez
- Departamento de Fisiología y Farmacología., Facultad de Medicina Veterinaria y Zootecnia., Universidad Nacional Autónoma de México., Av. Universidad 3000, Delegación Coyoacán, 04360., México
| |
Collapse
|
38
|
Wang X, Du M, Han H, Song Y, Zheng Q. Boundary lubrication by associative mucin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4733-40. [PMID: 25843576 DOI: 10.1021/acs.langmuir.5b00604] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mucus lubricants are widely distributed in living organisms. Such lubricants consist of a gel structure constructed by associative mucin. However, limited tribological studies exist on associative mucin fluids. The present research is the first to investigate the frictional behavior of a typical intact vertebrate mucin (loach skin mucin), which can recover the gel structure of mucus via hydrophobic association under physiological conditions (5-10 mg/mL loach skin mucin dissolved in water). Both rough hydrophobic and hydrophilic polydimethylsiloxane (PDMS) rubber plates were used as friction substrates. Up to 10 mg/mL loach skin mucin dissolved in water led to a 10-fold reduction in boundary friction of the two substrates. The boundary-lubricating ability for hydrophilic PDMS decreased with rubbing time, whereas that for hydrophobic PDMS remained constant. The boundary-lubricating abilities of the mucin on hydrophobic PDMS and hydrophilic PDMS showed almost similar responses toward changing concentration or sodium dodecyl sulfate (SDS). The mucin fluids reduced boundary friction coefficients (μ) only at concentrations (c) in which intermucin associations were formed, with a relationship shown as μ ∼ c(-0.7). Destroying intermucin associations by SDS largely impaired the boundary-lubricating ability. Results reveal for the first time that intermolecular association of intact mucin in bulk solution largely enhances boundary lubrication, whereas tightly adsorbed layer plays a minor role in the lubrication. This study indicates that associated mucin should contribute considerably to the lubricating ability of biological mucus in vivo.
Collapse
Affiliation(s)
- Xiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Miao Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongpeng Han
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yihu Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
39
|
Boegh M, Nielsen HM. Mucus as a Barrier to Drug Delivery - Understanding and Mimicking the Barrier Properties. Basic Clin Pharmacol Toxicol 2014; 116:179-86. [DOI: 10.1111/bcpt.12342] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/08/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Marie Boegh
- Department of Pharmacy; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
40
|
Ensign LM, Lai SK, Wang YY, Yang M, Mert O, Hanes J, Cone R. Pretreatment of human cervicovaginal mucus with pluronic F127 enhances nanoparticle penetration without compromising mucus barrier properties to herpes simplex virus. Biomacromolecules 2014; 15:4403-9. [PMID: 25347518 PMCID: PMC4261994 DOI: 10.1021/bm501419z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/23/2014] [Indexed: 12/28/2022]
Abstract
Mucosal drug delivery nanotechnologies are limited by the mucus barrier that protects nearly all epithelial surfaces not covered with skin. Most polymeric nanoparticles, including polystyrene nanoparticles (PS), strongly adhere to mucus, thereby limiting penetration and facilitating rapid clearance from the body. Here, we demonstrate that PS rapidly penetrate human cervicovaginal mucus (CVM), if the CVM has been pretreated with sufficient concentrations of Pluronic F127. Importantly, the diffusion rate of large polyethylene glycol (PEG)-coated, nonmucoadhesive nanoparticles (PS-PEG) did not change in F127-pretreated CVM, implying that F127 did not significantly alter the native pore structure of CVM. Additionally, herpes simplex virus type 1 (HSV-1) remains adherent in F127-pretreated CVM, indicating that the presence of F127 did not reduce adhesive interactions between CVM and the virions. In contrast to treatment with a surfactant that has been approved for vaginal use as a spermicide (nonoxynol-9 or N9), there was no increase in inflammatory cytokine release in the vaginal tract of mice after daily application of 1% F127 for 1 week. Pluronic F127 pretreatment holds potential as a method to safely improve the distribution, retention, and efficacy of nanoparticle formulations without compromising CVM barrier properties to pathogens.
Collapse
Affiliation(s)
- Laura M. Ensign
- Center for Nanomedicine, Department of Ophthalmology, The
Wilmer Eye Institute, Department of Biomedical
Engineering, and Departments of Neurosurgery and Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States
- Department of Chemical and Biomolecular
Engineering, Department of Biophysics, and Center for Cancer Nanotechnology
Excellence, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Samuel K. Lai
- Department of Chemical and Biomolecular
Engineering, Department of Biophysics, and Center for Cancer Nanotechnology
Excellence, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Ying-Ying Wang
- Center for Nanomedicine, Department of Ophthalmology, The
Wilmer Eye Institute, Department of Biomedical
Engineering, and Departments of Neurosurgery and Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States
- Department of Chemical and Biomolecular
Engineering, Department of Biophysics, and Center for Cancer Nanotechnology
Excellence, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Ming Yang
- Center for Nanomedicine, Department of Ophthalmology, The
Wilmer Eye Institute, Department of Biomedical
Engineering, and Departments of Neurosurgery and Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States
| | - Olcay Mert
- Department of Chemical and Biomolecular
Engineering, Department of Biophysics, and Center for Cancer Nanotechnology
Excellence, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Justin Hanes
- Center for Nanomedicine, Department of Ophthalmology, The
Wilmer Eye Institute, Department of Biomedical
Engineering, and Departments of Neurosurgery and Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States
- Department of Chemical and Biomolecular
Engineering, Department of Biophysics, and Center for Cancer Nanotechnology
Excellence, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Richard Cone
- Center for Nanomedicine, Department of Ophthalmology, The
Wilmer Eye Institute, Department of Biomedical
Engineering, and Departments of Neurosurgery and Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States
- Department of Chemical and Biomolecular
Engineering, Department of Biophysics, and Center for Cancer Nanotechnology
Excellence, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
41
|
Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.07.010] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Barua S, Mitragotri S. Challenges associated with Penetration of Nanoparticles across Cell and Tissue Barriers: A Review of Current Status and Future Prospects. NANO TODAY 2014; 9:223-243. [PMID: 25132862 PMCID: PMC4129396 DOI: 10.1016/j.nantod.2014.04.008] [Citation(s) in RCA: 706] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nanoparticles (NPs) have emerged as an effective modality for the treatment of various diseases including cancer, cardiovascular and inflammatory diseases. Various forms of NPs including liposomes, polymer particles, micelles, dendrimers, quantum dots, gold NPs and carbon nanotubes have been synthesized and tested for therapeutic applications. One of the greatest challenges that limit the success of NPs is their ability to reach the therapeutic site at necessary doses while minimizing accumulation at undesired sites. The biodistribution of NPs is determined by body's biological barriers that manifest in several distinct ways. For intravascular delivery of NPs, the barrier manifests in the form of: (i) immune clearance in the liver and spleen, (ii) permeation across the endothelium into target tissues, (iii) penetration through the tissue interstitium, (iv) endocytosis in target cells, (v) diffusion through cytoplasm and (vi) eventually entry into the nucleus, if required. Certain applications of NPs also rely on delivery through alternate routes including skin and mucosal membranes of the nose, lungs, intestine and vagina. In these cases, the diffusive resistance of these tissues poses a significant barrier to delivery. This review focuses on the current understanding of penetration of NPs through biological barriers. Emphasis is placed on transport barriers and not immunological barriers. The review also discusses design strategies for overcoming the barrier properties.
Collapse
Affiliation(s)
- Sutapa Barua
- Center for Bioengineering, Department of Chemical Engineering University of California, Santa Barbara, CA 93106
| | - Samir Mitragotri
- Center for Bioengineering, Department of Chemical Engineering University of California, Santa Barbara, CA 93106
| |
Collapse
|