1
|
Rieck S, Sharma K, Altringer C, Hesse M, Triantafyllou C, Zhang Y, Busskamp V, Fleischmann BK. Forward programming of human induced pluripotent stem cells via the ETS variant transcription factor 2: rapid, reproducible, and cost-effective generation of highly enriched, functional endothelial cells. Cardiovasc Res 2024; 120:1472-1484. [PMID: 38916487 DOI: 10.1093/cvr/cvae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/13/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
AIMS Endothelial cell (EC) dysfunction plays a key role in the initiation and progression of cardiovascular disease. However, studying these disorders in ECs from patients is challenging; hence, the use of human induced pluripotent stem cells (hiPSCs) and their in vitro differentiation into ECs represents a very promising approach. Still, the generation of hiPSC-derived ECs (hECs) remains demanding as a cocktail of growth factors and an intermediate purification step are required for hEC enrichment. Therefore, we probed the utility of a forward programming approach using transgenic hiPSC lines. METHODS AND RESULTS We have used the transgenic hiPSC line PGP1 ETV2 isoform 2 to explore the in vitro differentiation of hECs via doxycycline-dependent induction of the ETS variant transcription factor 2 (ETV2) and compared these with a standard differentiation protocol for hECs using non-transgenic control hiPSCs. The transgenic hECs were highly enriched without an intermediate purification step and expressed-as non-transgenic hECs and human umbilical vein endothelial cells-characteristic EC markers. The viability and yield of transgenic hECs were strongly improved by applying EC growth medium during differentiation. This protocol was successfully applied in two more transgenic hiPSC lines yielding reproducible results with low line-to-line variability. Transgenic hECs displayed typical functional properties, such as tube formation and LDL uptake, and a more mature phenotype than non-transgenic hECs. Transgenic hiPSCs preferentially differentiated into the arterial lineage; this was further enhanced by adding a high concentration of vascular endothelial growth factor to the medium. We also demonstrate that complexing lentivirus with magnetic nanoparticles and application of a magnetic field enables efficient transduction of transgenic hECs. CONCLUSION We have established a highly efficient, cost-effective, and reproducible differentiation protocol for the generation of functional hECs via forward programming. The transgenic hECs can be genetically modified and are a powerful tool for disease modelling, tissue engineering, and translational purposes.
Collapse
Affiliation(s)
- Sarah Rieck
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kritika Sharma
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Carlotta Altringer
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Michael Hesse
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christos Triantafyllou
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Yanhui Zhang
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
2
|
Joshi A, Singh N. Generation of Patterned Cocultures in 2D and 3D: State of the Art. ACS OMEGA 2023; 8:34249-34261. [PMID: 37780002 PMCID: PMC10536108 DOI: 10.1021/acsomega.3c02713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Cells inside the body are embedded into a highly structured microenvironment that consists of cells that lie in direct or close contact with other cell types that regulate the overall tissue function. Therefore, coculture models are versatile tools that can generate tissue engineering constructs with improved mimicking of in vivo conditions. While there are many reviews that have focused on pattering a single cell type, very few reviews have been focused on techniques for coculturing multiple cell types on a single substrate with precise control. In this regard, this Review covers various technologies that have been utilized for the development of these patterned coculture models while mentioning the limitations associated with each of them. Further, the application of these models to various tissue engineering applications has been discussed.
Collapse
Affiliation(s)
- Akshay Joshi
- Centre
for Biomedical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Neetu Singh
- Centre
for Biomedical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
- Biomedical
Engineering Unit, All India Institute of
Medical Sciences, Ansari
Nagar, New Delhi, Delhi 110029, India
| |
Collapse
|
3
|
Yang S, Ooka M, Margolis RJ, Xia M. Liver three-dimensional cellular models for high-throughput chemical testing. CELL REPORTS METHODS 2023; 3:100432. [PMID: 37056374 PMCID: PMC10088249 DOI: 10.1016/j.crmeth.2023.100432] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Drug-induced hepatotoxicity is a leading cause of drug withdrawal from the market. High-throughput screening utilizing in vitro liver models is critical for early-stage liver toxicity testing. Traditionally, monolayer human hepatocytes or immortalized liver cell lines (e.g., HepG2, HepaRG) have been used to test compound liver toxicity. However, monolayer-cultured liver cells sometimes lack the metabolic competence to mimic the in vivo condition and are therefore largely appropriate for short-term toxicological testing. They may not, however, be adequate for identifying chronic and recurring liver damage caused by drugs. Recently, several three-dimensional (3D) liver models have been developed. These 3D liver models better recapitulate normal liver function and metabolic capacity. This review describes the current development of 3D liver models that can be used to test drugs/chemicals for their pharmacologic and toxicologic effects, as well as the advantages and limitations of using these 3D liver models for high-throughput screening.
Collapse
Affiliation(s)
- Shu Yang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masato Ooka
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan Jared Margolis
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Wang Y, Keshavarz M, Barhouse P, Smith Q. Strategies for Regenerative Vascular Tissue Engineering. Adv Biol (Weinh) 2022; 7:e2200050. [PMID: 35751461 DOI: 10.1002/adbi.202200050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/15/2022] [Indexed: 11/11/2022]
Abstract
Vascularization remains one of the key challenges in creating functional tissue-engineered constructs for therapeutic applications. This review aims to provide a developmental lens on the necessity of blood vessels in defining tissue function while exploring stem cells as a suitable source for vascular tissue engineering applications. The intersections of stem cell biology, material science, and engineering are explored as potential solutions for directing vascular assembly.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Mozhgan Keshavarz
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Patrick Barhouse
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| |
Collapse
|
5
|
Wang J, Huang D, Yu H, Cheng Y, Ren H, Zhao Y. Developing tissue engineering strategies for liver regeneration. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
Sasikumar S, Chameettachal S, Kingshott P, Cromer B, Pati F. Influence of Liver Extracellular Matrix in Predicting Drug-Induced Liver Injury: An Alternate Paradigm. ACS Biomater Sci Eng 2022; 8:834-846. [PMID: 34978414 DOI: 10.1021/acsbiomaterials.1c00994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vitro drug-induced liver injury (DILI) models are promising tools for drug development to predict adverse events during clinical usage. However, the currently available DILI models are not specific or not able to predict the injury accurately. This is believed to be mainly because of failure to conserve the hepatocyte phenotype, lack of longevity, and difficulty in maintaining the tissue-specific microenvironment. In this study, we have assessed the potential of decellularized liver extracellular matrix (DLM) in retaining the hepatic cellular phenotype and functionality in the presence of a tissue-specific microenvironment along with its role in influencing the effect of the drug on hepatic cells. We show that DLM helps maintain the phenotype of the hepatic cell line HepG2, a well-known cell line for secretion of human proteins that is easily available. Also, the DLM enhanced the expression of a metabolic marker carbamoyl phosphate synthetase I (CPS1), a regulator of urea cycle, and bile salt export pump (BSEP), a marker of hepatocyte polarity. We further validated the DLM for its influence on the sensitivity of cells toward different classes of drugs. Interestingly, the coculture model, in the presence of endothelial cells and stellate cells, exhibited a higher sensitivity for both acetaminophen and trovafloxacin, a toxic compound that does not show any toxicity on preclinical screening. Thus, our results demonstrate for the first time that a multicellular combination along with DLM can be a potential and reliable DILI model to screen multiple drugs.
Collapse
Affiliation(s)
- Shyama Sasikumar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.,Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Shibu Chameettachal
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Brett Cromer
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| |
Collapse
|
7
|
Zheng YB, Ma LD, Wu JL, Wang YM, Meng XS, Hu P, Liang QL, Xie YY, Luo GA. Design and fabrication of an integrated 3D dynamic multicellular liver-on-a-chip and its application in hepatotoxicity screening. Talanta 2022; 241:123262. [DOI: 10.1016/j.talanta.2022.123262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023]
|
8
|
Kopec AK, Yokokawa R, Khan N, Horii I, Finley JE, Bono CP, Donovan C, Roy J, Harney J, Burdick AD, Jessen B, Lu S, Collinge M, Sadeghian RB, Derzi M, Tomlinson L, Burkhardt JE. Microphysiological systems in early stage drug development: Perspectives on current applications and future impact. J Toxicol Sci 2021; 46:99-114. [PMID: 33642521 DOI: 10.2131/jts.46.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microphysiological systems (MPS) are making advances to provide more standardized and predictive physiologically relevant responses to test articles in living tissues and organ systems. The excitement surrounding the potential of MPS to better predict human responses to medicines and improving clinical translation is overshadowed by their relatively slow adoption by the pharmaceutical industry and regulators. Collaboration between multiorganizational consortia and regulators is necessary to build an understanding of the strengths and limitations of MPS models and closing the current gaps. Here, we review some of the advances in MPS research, focusing on liver, intestine, vascular system, kidney and lung and present examples highlighting the context of use for these systems. For MPS to gain a foothold in drug development, they must have added value over existing approaches. Ideally, the application of MPS will augment in vivo studies and reduce the use of animals via tiered screening with less reliance on exploratory toxicology studies to screen compounds. Because MPS support multiple cell types (e.g. primary or stem-cell derived cells) and organ systems, identifying when MPS are more appropriate than simple 2D in vitro models for understanding physiological responses to test articles is necessary. Once identified, MPS models require qualification for that specific context of use and must be reproducible to allow future validation. Ultimately, the challenges of balancing complexity with reproducibility will inform the promise of advancing the MPS field and are critical for realization of the goal to reduce, refine and replace (3Rs) the use of animals in nonclinical research.
Collapse
Affiliation(s)
- Anna K Kopec
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Japan
| | - Nasir Khan
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | - Ikuo Horii
- Drug Safety Research & Development, Pfizer, Inc., Japan
| | - James E Finley
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | | | - Carol Donovan
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | - Jessica Roy
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | - Julie Harney
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | | | - Bart Jessen
- Drug Safety Research & Development, Pfizer, Inc., CA, USA
| | - Shuyan Lu
- Drug Safety Research & Development, Pfizer, Inc., CA, USA
| | - Mark Collinge
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | | | - Mazin Derzi
- Drug Safety Research & Development, Pfizer, Inc., MA, USA
| | | | | |
Collapse
|
9
|
Ali M, Payne SL. Biomaterial-based cell delivery strategies to promote liver regeneration. Biomater Res 2021; 25:5. [PMID: 33632335 PMCID: PMC7905561 DOI: 10.1186/s40824-021-00206-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic liver disease and cirrhosis is a widespread and untreatable condition that leads to lifelong impairment and eventual death. The scarcity of liver transplantation options requires the development of new strategies to attenuate disease progression and reestablish liver function by promoting regeneration. Biomaterials are becoming an increasingly promising option to both culture and deliver cells to support in vivo viability and long-term function. There is a wide variety of both natural and synthetic biomaterials that are becoming established as delivery vehicles with their own unique advantages and disadvantages for liver regeneration. We review the latest developments in cell transplantation strategies to promote liver regeneration, with a focus on the use of both natural and synthetic biomaterials for cell culture and delivery. We conclude that future work will need to refine the use of these biomaterials and combine them with novel strategies that recapitulate liver organization and function in order to translate this strategy to clinical use.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Samantha L Payne
- Department of Biomedical Engineering, School of Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
10
|
Hong J, Shin Y, Lee J, Cha C. Programmable multilayer printing of a mechanically-tunable 3D hydrogel co-culture system for high-throughput investigation of complex cellular behavior. LAB ON A CHIP 2021; 21:710-718. [PMID: 33459335 DOI: 10.1039/d0lc01230k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogels are widely used as a 3D cell culture platform, as they can be tailored to provide suitable microenvironments to induce cellular phenotypes with physiological significance. Hydrogels are especially deemed attractive as a co-culture platform, in which two or more different types of cells are cultured together in close proximity, since the spatial distribution of different cell types can be rendered possible by advanced microfabrication schemes. Herein, programmable multilayer photolithography is employed to develop a 3D hydrogel-based co-culture system in an efficient and scalable manner, which consists of an inner microgel array containing one cell type covered by an outer hydrogel overlay containing another cell type. In particular, the mechanical properties of microgel array and hydrogel overlay are independently controlled in a wide range, with elastic moduli ranging from 1.7 to 31.6 kPa, allowing the high-throughput investigation of both individual hydrogel mechanics and mechanical gradients generated at their interface. Utilizing this system, phenotypical changes (i.e. proliferation, spheroid formation and Mφ polarization) of macrophages encapsulated in microgel array, in response to complex mechanical microenvironment and co-cultured fibroblasts, are comprehensively explored.
Collapse
Affiliation(s)
- Jisu Hong
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea. and Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Yoonkyung Shin
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea.
| | - Jiseok Lee
- Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea and Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea.
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea. and Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
11
|
Gonçalves RC, Banfi A, Oliveira MB, Mano JF. Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials 2020; 269:120628. [PMID: 33412374 DOI: 10.1016/j.biomaterials.2020.120628] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022]
Abstract
The maintenance of a healthy vascular system is essential to ensure the proper function of all organs of the human body. While macrovessels have the main role of blood transportation from the heart to all tissues, microvessels, in particular capillaries, are responsible for maintaining tissues' functionality by providing oxygen, nutrients and waste exchanges. Occlusion of blood vessels due to atherosclerotic plaque accumulation remains the leading cause of mortality across the world. Autologous vein and artery grafts bypassing are the current gold standard surgical procedures to substitute primarily obstructed vascular structures. Ischemic scenarios that condition blood supply in downstream tissues may arise from blockage phenomena, as well as from other disease or events leading to trauma. The (i) great demand for new vascular substitutes, arising from both the limited availability of healthy autologous vessels, as well as the shortcomings associated with small-diameter synthetic vascular grafts, and (ii) the challenging induction of the formation of adequate and stable microvasculature are current driving forces for the growing interest in the development of bioinspired strategies to ensure the proper function of vasculature in all its dimensional scales. Here, a critical review of well-established technologies and recent biotechnological advances to substitute or regenerate the vascular system is provided.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Andrea Banfi
- Department of Biomedicine, University of Basel, Basel, 4056, Switzerland; Department of Surgery, University Hospital Basel, Basel, 4056, Switzerland
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
12
|
Huang D, Gibeley SB, Xu C, Xiao Y, Celik O, Ginsberg HN, Leong KW. Engineering liver microtissues for disease modeling and regenerative medicine. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909553. [PMID: 33390875 PMCID: PMC7774671 DOI: 10.1002/adfm.201909553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 05/08/2023]
Abstract
The burden of liver diseases is increasing worldwide, accounting for two million deaths annually. In the past decade, tremendous progress has been made in the basic and translational research of liver tissue engineering. Liver microtissues are small, three-dimensional hepatocyte cultures that recapitulate liver physiology and have been used in biomedical research and regenerative medicine. This review summarizes recent advances, challenges, and future directions in liver microtissue research. Cellular engineering approaches are used to sustain primary hepatocytes or produce hepatocytes derived from pluripotent stem cells and other adult tissues. Three-dimensional microtissues are generated by scaffold-free assembly or scaffold-assisted methods such as macroencapsulation, droplet microfluidics, and bioprinting. Optimization of the hepatic microenvironment entails incorporating the appropriate cell composition for enhanced cell-cell interactions and niche-specific signals, and creating scaffolds with desired chemical, mechanical and physical properties. Perfusion-based culture systems such as bioreactors and microfluidic systems are used to achieve efficient exchange of nutrients and soluble factors. Taken together, systematic optimization of liver microtissues is a multidisciplinary effort focused on creating liver cultures and on-chip models with greater structural complexity and physiological relevance for use in liver disease research, therapeutic development, and regenerative medicine.
Collapse
Affiliation(s)
- Dantong Huang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Sarah B. Gibeley
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Ozgenur Celik
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
13
|
Meng Q, Wang Y, Li Y, Shen C. Hydrogel microfluidic-based liver-on-a-chip: Mimicking the mass transfer and structural features of liver. Biotechnol Bioeng 2020; 118:612-621. [PMID: 33017042 DOI: 10.1002/bit.27589] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023]
Abstract
Liver is fed by nutrition via diffusion across the vascular wall from blood flow. However, hepatocytes in liver models are directly exposed to the perfusion culture medium, where the shear stress reduces the cell viability and liver-specific functions. By mimicking the mass transfer and structural features of hepatic lobule, we designed a microfluidic liver-on-a-chip based on the di-acrylated pluronic F127 hydrogel. In the hydrogel chip, hepatocellular carcinoma HepG2 and human hepatic stellate cell LX-2 were statically cultured inside the microwells on the outer channel. These hepatic cells were fed by the diffused medium from the adjacent but separated inner channel with endothelial cell monolayers, which was perfused by the medium with physiologically relevant shear stress. As found, the hepatic cells in the liver-on-a-chip rapidly formed spheroids within 1-day incubation and expressed about one to two-fold higher viability/liver-specific functions than the corresponding static culture for at least 8 days. Moreover, the presence of endothelial cells also contributed to the expression of liver-specific functions in the liver-on-a-chip. Therefore, the proposed liver-on-a-chip provides a new concept for construction of 3D liver models in vitro, and shows the potential value for a variety of applications including bio-artificial livers and drug toxicity screening.
Collapse
Affiliation(s)
- Qin Meng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingjun Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chong Shen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Wei J, Lei D, Chen M, Ran P, Li X. Engineering HepG2 spheroids with injectable fiber fragments as predictable models for drug metabolism and tumor infiltration. J Biomed Mater Res B Appl Biomater 2020; 108:3331-3344. [PMID: 32627303 DOI: 10.1002/jbm.b.34669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
In vitro cell and tissue models are playing essential roles in the identification of active pharmaceutical ingredients. Though HepG2 cells have attractive profiles over primary hepatocytes in the availability and viability retention, the expression of metabolizing enzymes is quite low. In the current study, three-dimensional (3D) HepG2 spheroids with smaller sizes of 150 μm (3Ds) and bigger sizes of 300 μm (3Db) are engineered using injectable fiber fragments as the substrate. In contrast to two-dimensional (2D) culture, the enzyme activities for drug metabolisms are restored in 3Ds and the pathophysiological profiles of tumor tissues are rebuilt in 3Db spheroids. Compared with spheroid culture without fiber fragments, 3Ds spheroids show higher activities of metabolizing enzymes (CYP3A4, CYP2A9, and phase II) and higher sensitivities to enzyme inducers (rifampicin and glutathione) and inhibitors (ketoconazole and probenecid). The drug clearance and toxicity to 3Ds spheroids predict better the clinical observations and drug-drug interactions. In addition, compared to scaffold-free spheroid culture, stronger expressions of E-cadherin and hypoxia-inducible factor-1α (HIF-1α) and higher fibronectin secretions are determined in 3Db spheroids, displaying apparent hypoxic and apoptotic regions similar to those found in solid tumors. In contrast to the overestimated drug toxicity in other systems, the infiltrations of free drug and drug-loaded micelles are apparently restricted in 3Db spheroids, exhibiting drug resistance just like in tumor tissues. Thus, this study demonstrates HepG2 spheroids with different sizes as predictable and physiologically relevant models for high-throughput screening of drug metabolism and tumor infiltration.
Collapse
Affiliation(s)
- Jiaojun Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, P. R. China.,School of Bioscience and Technology, Chengdu Medical College, Chengdu, P. R. China
| | - Dongmei Lei
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, P. R. China
| | - Maohua Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, P. R. China
| | - Pan Ran
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, P. R. China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, P. R. China
| |
Collapse
|
15
|
Ramadhan W, Kagawa G, Moriyama K, Wakabayashi R, Minamihata K, Goto M, Kamiya N. Construction of higher-order cellular microstructures by a self-wrapping co-culture strategy using a redox-responsive hydrogel. Sci Rep 2020; 10:6710. [PMID: 32317652 PMCID: PMC7174313 DOI: 10.1038/s41598-020-63362-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
In this report, a strategy for constructing three-dimensional (3D) cellular architectures comprising viable cells is presented. The strategy uses a redox-responsive hydrogel that degrades under mild reductive conditions, and a confluent monolayer of cells (i.e., cell sheet) cultured on the hydrogel surface peels off and self-folds to wrap other cells. As a proof-of-concept, the self-folding of fibroblast cell sheet was triggered by immersion in aqueous cysteine, and this folding process was controlled by the cysteine concentration. Such folding enabled the wrapping of human hepatocellular carcinoma (HepG2) spheroids, human umbilical vein endothelial cells and collagen beads, and this process improved cell viability, the secretion of metabolites and the proliferation rate of the HepG2 cells when compared with a two-dimensional culture under the same conditions. A key concept of this study is the ability to interact with other neighbouring cells, providing a new, simple and fast method to generate higher-order cellular aggregates wherein different types of cellular components are added. We designated the method of using a cell sheet to wrap another cellular aggregate the 'cellular Furoshiki'. The simple self-wrapping Furoshiki technique provides an alternative approach to co-culture cells by microplate-based systems, especially for constructing heterogeneous 3D cellular microstructures.
Collapse
Affiliation(s)
- Wahyu Ramadhan
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka, 819-0395, Japan
| | - Genki Kagawa
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka, 819-0395, Japan
| | - Kousuke Moriyama
- Department of Chemical and Biological Engineering, National Institute of Technology, Sasebo College, Okishin-cho, Sasebo, Nagasaki, 857-1193, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka, 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka, 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka, 819-0395, Japan
- Center for Future Chemistry, Kyushu University, Fukuoka, 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
16
|
Wei J, Xia T, Chen W, Ran P, Chen M, Li X. Glucose and lipid metabolism screening models of hepatocyte spheroids after culture with injectable fiber fragments. J Tissue Eng Regen Med 2020; 14:774-788. [PMID: 32285997 DOI: 10.1002/term.3042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
With the rise of obesity, diabetes, and other metabolic diseases, in vitro hepatic cell and tissue models play an essential role in the identification of active pharmaceutical ingredients. Up to now, three-dimensional (3D) culture models have rarely focused on hepatic glucose and lipid metabolism. In addition, primary human liver cells suffer from limited availability and interdonor difference for establishing reproducible models. Thus, in the current study, the most available human liver cancer cell line (HepG2) and primary hepatocytes from rats (rPH) were proposed to construct 3D spheroids using injectable fiber fragments with galactose grafts (gSF) as the substrate. rPH and HepG2 spheroids show strong cell-cell and cell-fiber fragment interactions to promote the cell viability, albumin, and urea syntheses. Compared with HepG2 spheroids, rPH spheroids indicate stronger glucose metabolism abilities in terms of glucose consumption, intracellular glycogen content, gluconeogenesis rate, and sensitivity to glucose modulator hormones like insulin and glucagon. On the other hand, HepG2 spheroids display strong lipid metabolism abilities in producing significantly higher levels of total cholesterol and triglyceride. Compared with those without fiber fragments, the gSF-supported 3D culture establishes effective models for in vitro glucose (rPH spheroids) and lipid metabolisms (HepG2 spheroids). The screening models are confirmed from the respective enzyme activities and gene expressions and show significantly higher sensitivity and clinically related responses to hypoglycemic and lipid-lowering drugs. Thus, the culture configuration demonstrates a predictable in vitro platform for defining glucose and lipid metabolism profiles and screening therapeutic agents for metabolism disorders like diabetes and obesity.
Collapse
Affiliation(s)
- Jiaojun Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Tian Xia
- Department of Pathology, Western Theater Command Air Force Hospital, Chengdu, China
| | - Weijia Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Pan Ran
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Maohua Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
17
|
Lee H, Ahn J, Jung C, Jeung Y, Cho H, Son MJ, Chung K. Optimization of 3D hydrogel microenvironment for enhanced hepatic functionality of primary human hepatocytes. Biotechnol Bioeng 2020; 117:1864-1876. [DOI: 10.1002/bit.27328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/03/2020] [Accepted: 03/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Ho‐Joon Lee
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Jiwon Ahn
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Cho‐Rock Jung
- Gene Therapy UnitKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
- Department of Functional GenomicsKorea University of Science and Technology (UST) Daejeon Republic of Korea
| | - Yun‐Ji Jeung
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Hyun‐Soo Cho
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Myung Jin Son
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
- Department of Functional GenomicsKorea University of Science and Technology (UST) Daejeon Republic of Korea
| | - Kyung‐Sook Chung
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
- Department of Functional GenomicsKorea University of Science and Technology (UST) Daejeon Republic of Korea
- Biomedical Translational Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| |
Collapse
|
18
|
da Silva Morais A, Vieira S, Zhao X, Mao Z, Gao C, Oliveira JM, Reis RL. Advanced Biomaterials and Processing Methods for Liver Regeneration: State-of-the-Art and Future Trends. Adv Healthc Mater 2020; 9:e1901435. [PMID: 31977159 DOI: 10.1002/adhm.201901435] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Liver diseases contribute markedly to the global burden of mortality and disease. The limited organ disposal for orthotopic liver transplantation results in a continuing need for alternative strategies. Over the past years, important progress has been made in the field of tissue engineering (TE). Many of the early trials to improve the development of an engineered tissue construct are based on seeding cells onto biomaterial scaffolds. Nowadays, several TE approaches have been developed and are applied to one vital organ: the liver. Essential elements must be considered in liver TE-cells and culturing systems, bioactive agents or growth factors (GF), and biomaterials and processing methods. The potential of hepatocytes, mesenchymal stem cells, and others as cell sources is demonstrated. They need engineered biomaterial-based scaffolds with perfect biocompatibility and bioactivity to support cell proliferation and hepatic differentiation as well as allowing extracellular matrix deposition and vascularization. Moreover, they require a microenvironment provided using conventional or advanced processing technologies in order to supply oxygen, nutrients, and GF. Herein the biomaterials and the conventional and advanced processing technologies, including cell-sheets process, 3D bioprinting, and microfluidic systems, as well as the future trends in these major fields are discussed.
Collapse
Affiliation(s)
- Alain da Silva Morais
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Sílvia Vieira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Xinlian Zhao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Joaquim M. Oliveira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
19
|
Hesh CA, Qiu Y, Lam WA. Vascularized Microfluidics and the Blood-Endothelium Interface. MICROMACHINES 2019; 11:E18. [PMID: 31878018 PMCID: PMC7019435 DOI: 10.3390/mi11010018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
The microvasculature is the primary conduit through which the human body transmits oxygen, nutrients, and other biological information to its peripheral tissues. It does this through bidirectional communication between the blood, consisting of plasma and non-adherent cells, and the microvascular endothelium. Current understanding of this blood-endothelium interface has been predominantly derived from a combination of reductionist two-dimensional in vitro models and biologically complex in vivo animal models, both of which recapitulate the human microvasculature to varying but limited degrees. In an effort to address these limitations, vascularized microfluidics have become a platform of increasing importance as a consequence of their ability to isolate biologically complex phenomena while also recapitulating biochemical and biophysical behaviors known to be important to the function of the blood-endothelium interface. In this review, we discuss the basic principles of vascularized microfluidic fabrication, the contribution this platform has made to our understanding of the blood-endothelium interface in both homeostasis and disease, the limitations and challenges of these vascularized microfluidics for studying this interface, and how these inform future directions.
Collapse
Affiliation(s)
- Christopher A. Hesh
- Department of Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Yongzhi Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
| |
Collapse
|
20
|
Wei J, Lu J, Chen M, Xie S, Wang T, Li X. 3D spheroids generated on carbon nanotube-functionalized fibrous scaffolds for drug metabolism and toxicity screening. Biomater Sci 2019; 8:426-437. [PMID: 31746843 DOI: 10.1039/c9bm01310e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanical and electrical stimuli have a profound effect on the cellular behavior and function. In this study, a series of conductive nanofibrous scaffolds are developed by blend electrospinning of poly(styrene-co-maleic acid) (PSMA) and multiwalled-carbon nanotubes (CNTs), followed by grafting galactose as cell adhesion cues. When the mass ratios of CNTs to PSMA increase up to 5%, the alignment, Young's modulus and conductivity of fibrous scaffolds increase, whereas the average diameter, pore size and elongation at break decrease. Primary hepatocytes cultured on the scaffolds are self-assembled into 3D spheroids, which restores the hepatocyte polarity and sufficient expression of drug metabolism enzymes over an extended period of time. Among these conductive scaffolds, hepatocytes cultured on fibers containing 3% of CNTs (F3) show the highest clearance rates of model drugs, offering a better prediction of the in vivo data with a high correlation value. Moreover, the drug metabolism capability is maintained over 15 days and is more sensitive towards the inducers and inhibitors of metabolizing enzymes, demonstrating the applicability for drug-drug interaction studies. Thus, this culture system has been demonstrated as a reliable in vitro model for high-throughput screening of metabolism and toxicity in the early phases of drug development.
Collapse
Affiliation(s)
- Jiaojun Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China.
| | | | | | | | | | | |
Collapse
|
21
|
Wang Z, Mithieux SM, Weiss AS. Fabrication Techniques for Vascular and Vascularized Tissue Engineering. Adv Healthc Mater 2019; 8:e1900742. [PMID: 31402593 DOI: 10.1002/adhm.201900742] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Indexed: 12/19/2022]
Abstract
Impaired or damaged blood vessels can occur at all levels in the hierarchy of vascular systems from large vasculatures such as arteries and veins to meso- and microvasculatures such as arterioles, venules, and capillary networks. Vascular tissue engineering has become a promising approach for fabricating small-diameter vascular grafts for occlusive arteries. Vascularized tissue engineering aims to fabricate meso- and microvasculatures for the prevascularization of engineered tissues and organs. The ideal small-diameter vascular graft is biocompatible, bridgeable, and mechanically robust to maintain patency while promoting tissue remodeling. The desirable fabricated meso- and microvasculatures should rapidly integrate with the host blood vessels and allow nutrient and waste exchange throughout the construct after implantation. A number of techniques used, including engineering-based and cell-based approaches, to fabricate these synthetic vasculatures are herein explored, as well as the techniques developed to fabricate hierarchical structures that comprise multiple levels of vasculature.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
| | - Suzanne M. Mithieux
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
| | - Anthony S. Weiss
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
- Bosch Institute University of Sydney NSW 2006 Australia
- Sydney Nano Institute University of Sydney NSW 2006 Australia
| |
Collapse
|
22
|
Deng J, Zhang X, Chen Z, Luo Y, Lu Y, Liu T, Wu Z, Jin Y, Zhao W, Lin B. A cell lines derived microfluidic liver model for investigation of hepatotoxicity induced by drug-drug interaction. BIOMICROFLUIDICS 2019; 13:024101. [PMID: 31040885 PMCID: PMC6456354 DOI: 10.1063/1.5070088] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/28/2019] [Indexed: 05/18/2023]
Abstract
The poor metabolic ability of cell lines fails to meet the requirements of an in vitro model for drug interaction testing which is crucial for the development or clinical application of drugs. Herein, we describe a liver sinusoid-on-a-chip device composed of four kinds of transformed cell lines (HepG2 cells, LX-2 cells, EAhy926 cells, and U937 cells) that were ordered in a physiological distribution with artificial liver blood flow and biliary efflux flowing in the opposite direction. This microfluidic device applied three-dimensional culturing of HepG2 cells with high density (107 ml-1), forming a tightly connected monolayer of EAhy926 cells and achieving the active transport of drugs in HepG2 cells. Results showed that the device maintained synthetic and secretory functions, preserved cytochrome P450 1A1/2 and uridine diphosphate glucuronyltransferase enzymatic activities, as well as sensitivity of drug metabolism. The cell lines derived device enables the investigation of a drug-drug interaction study. We used it to test the hepatotoxicity of acetaminophen and the following combinations: "acetaminophen + rifampicin," "acetaminophen + omeprazole," and "acetaminophen + ciprofloxacin." The variations in hepatotoxicity of the combinations compared to acetaminophen alone, which is not found in a 96-well plate model, in the device were -17.15%, 14.88%, and -19.74%. In addition, this result was similar to the one tested by the classical primary hepatocyte plate model (-13.22%, 13.51%, and -15.81%). Thus, this cell lines derived liver model provides an alternative to investigate drug hepatotoxicity, drug-drug interaction.
Collapse
Affiliation(s)
- Jiu Deng
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiuli Zhang
- College of Pharmaceutical Science, Soochow University, Soochow 215123, China
| | - Zongzheng Chen
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yao Lu
- Biotechnologhy Division, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China
| | - Tingjiao Liu
- College of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Zhengzhi Wu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yu Jin
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Weijie Zhao
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bingcheng Lin
- Authors to whom correspondence should be addressed: ; ; and
| |
Collapse
|
23
|
Zhou T, Wang W, Aimaiti Y, Jin X, Chen Z, Chen L, Li D. Direct and indirect coculture of mouse hepatic progenitor cells with mouse embryonic fibroblasts for the generation of hepatocytes and cholangiocytes. Cytotechnology 2019; 71:267-275. [PMID: 30603925 DOI: 10.1007/s10616-018-0282-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
The widespread use of hepatocytes and cholangiocytes for regenerative medicine and tissue engineering is restricted by the limited number of hepatocytes and cholangiocytes; a simple and effective method for the expansion and differentiation of the hepatic progenitor cells (HPCs) is required. Recent studies demonstrated that mouse embryonic fibroblasts (MEFs) play an important role in supporting the proliferation of the mouse hepatic progenitor cells (mHPCs). However, the effect of direct and indirect coculture of MEFs with mHPCs on the differentiation of mHPCs is poorly studied. Herein, we show that mHPCs rapidly proliferate and form colonies in direct or indirect contact coculture with MEFs in the serum-free medium. Importantly, after direct contact coculture of the mHPCs with MEFs for 6 days, mHPCs expressed the hepatic marker albumin (ALB) and did not express the cholangiocyte marker CK19, indicating their differentiation into hepatocytes. In contrast, after indirect contact coculture of the mHPCs with MEFs for 6 days, mHPCs expressed the cholangiocyte marker CK19 and did not express the hepatic marker ALB, indicating their differentiation into cholangiocytes. These results indicate that direct and indirect contact cocultures of the mHPCs with MEFs are useful for rapidly producing hepatocytes and cholangiocytes.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yasen Aimaiti
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xin Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhixin Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Liang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dewei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
24
|
Shao C, Liu Y, Chi J, Wang J, Zhao Z, Zhao Y. Responsive Inverse Opal Scaffolds with Biomimetic Enrichment Capability for Cell Culture. RESEARCH (WASHINGTON, D.C.) 2019; 2019:9783793. [PMID: 31922149 PMCID: PMC6946249 DOI: 10.34133/2019/9783793] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022]
Abstract
Three-dimensional (3D) porous scaffolds have a demonstrated value for tissue engineering and regenerative medicine. Inspired by the predation processes of marine predators in nature, we present new photocontrolled shrinkable inverse opal graphene oxide (GO) hydrogel scaffolds for cell enrichment and 3D culture. The scaffolds with adjustable pore sizes and morphologies were created using a GO and N-isopropylacrylamide dispersed solution as a continuous phase of microfluidic emulsions for polymerizing and replicating. Because of the interconnected porous structures and the remotely controllable volume responsiveness of the scaffolds, the suspended cells could be enriched into the inner spaces of the scaffolds through predator-like swallowing and discharging processes. Hepatocyte cells concentrated in the scaffold pores could form denser 3D spheroids more quickly via the controlled compression force caused by the shrinking of the dynamic scaffolds. More importantly, with a program of scaffold enrichment with different cells, an unprecedented 3D multilayer coculture system of endothelial-cell-encapsulated hepatocytes and fibroblasts could be generated for applications such as liver-on-a-chip and bioartificial liver. It was demonstrated that the resultant multicellular system offered significant improvements in hepatic functions, such as albumin secretion, urea synthesis, and cytochrome P450 expression. These features of our scaffolds make them highly promising for the biomimetic construction of various physiological and pathophysiological 3D tissue models, which could be used for understanding tissue level biology and in vitro drug testing applications.
Collapse
Affiliation(s)
- Changmin Shao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Junjie Chi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jie Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ze Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
25
|
Thermally-triggered fabrication of cell sheets for tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2019; 138:276-292. [PMID: 30639258 DOI: 10.1016/j.addr.2019.01.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/24/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
Cell transplantation is a promising approach for promoting tissue regeneration in the treatment of damaged tissues or organs. Although cells have conventionally been delivered by direct injection to damaged tissues, cell injection has limited efficiency to deliver therapeutic cells to the target sites. Progress in tissue engineering has moved scaffold-based cell/tissue delivery into the mainstream of tissue regeneration. A variety of scaffolds can be fabricated from natural or synthetic polymers to provide the appropriate culture conditions for cell growth and achieve in-vitro tissue formation. Tissue engineering has now become the primary approach for cell-based therapies. However, there are still serious limitations, particularly for engineering of cell-dense tissues. "Cell sheet engineering" is a scaffold-free tissue technology that holds even greater promise in the field of tissue engineering and regenerative medicine. Thermoresponsive poly(N-isopropylacrylamide)-grafted surfaces allow the fabrication of a tissue-like cell monolayer, a "cell sheet", and efficiently delivers this cell-dense tissue to damaged sites without the use of scaffolds. At present, this unique approach has been applied to human clinical studies in regenerative medicine. Furthermore, this thermally triggered cell manipulation system allows us to produce various types of 3D tissue models not only for regenerative medicine but also for tissue modeling, which can be used for drug discovery. Here, new cell sheet-based technologies are described including vascularization for scaled-up 3D tissue constructs, induced pluripotent stem (iPS) cell technology for human cell sheet fabrication and microfabrication for arranging tissue microstructures, all of which are expected to produce more complex tissues based on cell sheet tissue engineering.
Collapse
|
26
|
Primary rat LSECs preserve their characteristic phenotype after cryopreservation. Sci Rep 2018; 8:14657. [PMID: 30279440 PMCID: PMC6168544 DOI: 10.1038/s41598-018-32103-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023] Open
Abstract
Liver disease is a leading cause of morbidity and mortality worldwide. Recently, the liver non-parenchymal cells have gained increasing attention for their potential role in the development of liver disease. Liver sinusoidal endothelial cells (LSECs), a specialized type of endothelial cells that have unique morphology and function, play a fundamental role in maintaining liver homeostasis. Current protocols for LSEC isolation and cultivation rely on freshly isolated cells which can only be maintained differentiated in culture for a few days. This creates a limitation in the use of LSECs for research and a need for a consistent and reliable source of these cells. To date, no LSEC cryopreservation protocols have been reported that enable LSECs to retain their functional and morphological characteristics upon thawing and culturing. Here, we report a protocol to cryopreserve rat LSECs that, upon thawing, maintain full LSEC-signature features: fenestrations, scavenger receptor expression and endocytic function on par with freshly isolated cells. We have confirmed these features by a combination of biochemical and functional techniques, and super-resolution microscopy. Our findings offer a means to standardize research using LSECs, opening the prospects for designing pharmacological strategies for various liver diseases, and considering LSECs as a therapeutic target.
Collapse
|
27
|
Rijal G, Li W. Native-mimicking in vitro microenvironment: an elusive and seductive future for tumor modeling and tissue engineering. J Biol Eng 2018; 12:20. [PMID: 30220913 PMCID: PMC6136168 DOI: 10.1186/s13036-018-0114-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Human connective tissues are complex physiological microenvironments favorable for optimal survival, function, growth, proliferation, differentiation, migration, and death of tissue cells. Mimicking native tissue microenvironment using various three-dimensional (3D) tissue culture systems in vitro has been explored for decades, with great advances being achieved recently at material, design and application levels. These achievements are based on improved understandings about the functionalities of various tissue cells, the biocompatibility and biodegradability of scaffolding materials, the biologically functional factors within native tissues, and the pathophysiological conditions of native tissue microenvironments. Here we discuss these continuously evolving physical aspects of tissue microenvironment important for human disease modeling, with a focus on tumors, as well as for tissue repair and regeneration. The combined information about human tissue spaces reflects the necessities of considerations when configuring spatial microenvironments in vitro with native fidelity to culture cells and regenerate tissues that are beyond the formats of 2D and 3D cultures. It is important to associate tissue-specific cells with specific tissues and microenvironments therein for a better understanding of human biology and disease conditions and for the development of novel approaches to treat human diseases.
Collapse
Affiliation(s)
- Girdhari Rijal
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210 USA
| | - Weimin Li
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210 USA
| |
Collapse
|
28
|
Lee S, Ko J, Park D, Lee SR, Chung M, Lee Y, Jeon NL. Microfluidic-based vascularized microphysiological systems. LAB ON A CHIP 2018; 18:2686-2709. [PMID: 30110034 DOI: 10.1039/c8lc00285a] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microphysiological systems have emerged in the last decade to provide an alternative to in vivo models in basic science and pharmaceutical research. In the field of vascular biology, in particular, there has been a lack of a suitable in vitro model exhibiting a three-dimensional structure and the physiological function of vasculature integrated with organ-on-a-chip models. The rapid development of organ-on-a-chip technology is well positioned to fulfill unmet needs. Recently, functional integration of vasculature with diverse microphysiological systems has been increasing. This recent trend corresponds to emerging research interest in how the vascular system contributes to various physiological and pathological conditions. This innovative platform has undergone significant development, but adoption of this technology by end-users and researchers in biology is still a work in progress. Therefore, it is critical to focus on simplification and standardization to promote the distribution and acceptance of this technology by the end-users. In this review, we will introduce the latest developments in vascularized microphysiological systems and summarize their outlook in basic research and drug screening applications.
Collapse
Affiliation(s)
- Somin Lee
- Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
29
|
Guifang T, Xiangwen G, Qinhe Y, Yuanyuan L, Guanlong W, Yinji L, Yupei Z, Haizhen Y, Chunmei L, Jinwen Z. Effects of extracts from soothing-liver and invigorating-spleen formulas on the injury induced by oxidative stress in the hepatocytes of rats with non-alcoholic fatty liver disease induced by high-fat diet. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30885-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Ortega-Ribera M, Fernández-Iglesias A, Illa X, Moya A, Molina V, Maeso-Díaz R, Fondevila C, Peralta C, Bosch J, Villa R, Gracia-Sancho J. Resemblance of the human liver sinusoid in a fluidic device with biomedical and pharmaceutical applications. Biotechnol Bioeng 2018; 115:2585-2594. [PMID: 29940068 PMCID: PMC6220781 DOI: 10.1002/bit.26776] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/10/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
Maintenance of the complex phenotype of primary hepatocytes in vitro represents a limitation for developing liver support systems and reliable tools for biomedical research and drug screening. We herein aimed at developing a biosystem able to preserve human and rodent hepatocytes phenotype in vitro based on the main characteristics of the liver sinusoid: unique cellular architecture, endothelial biodynamic stimulation, and parenchymal zonation. Primary hepatocytes and liver sinusoidal endothelial cells (LSEC) were isolated from control and cirrhotic human or control rat livers and cultured in conventional in vitro platforms or within our liver‐resembling device. Hepatocytes phenotype, function, and response to hepatotoxic drugs were analyzed. Results evidenced that mimicking the in vivo sinusoidal environment within our biosystem, primary human and rat hepatocytes cocultured with functional LSEC maintained morphology and showed high albumin and urea production, enhanced cytochrome P450 family 3 subfamily A member 4 (CYP3A4) activity, and maintained expression of hepatocyte nuclear factor 4 alpha (hnf4α) and transporters, showing delayed hepatocyte dedifferentiation. In addition, differentiated hepatocytes cultured within this liver‐resembling device responded to acute treatment with known hepatotoxic drugs significantly different from those seen in conventional culture platforms. In conclusion, this study describes a new bioengineered device that mimics the human sinusoid in vitro, representing a novel method to study liver diseases and toxicology.
Collapse
Affiliation(s)
- Martí Ortega-Ribera
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain.,Biomedical Applications Group (GAB), Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain.,Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Xavi Illa
- Biomedical Applications Group (GAB), Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Madrid, Spain
| | - Ana Moya
- Biomedical Applications Group (GAB), Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Madrid, Spain
| | - Víctor Molina
- Liver Surgery and Transplantation Unit, IDIBAPS, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Raquel Maeso-Díaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Constantino Fondevila
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain.,Liver Surgery and Transplantation Unit, IDIBAPS, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Carmen Peralta
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain.,Protective Strategies Against Hepatic Ischemia-Reperfusion Group, IDIBAPS, Barcelona, Spain
| | - Jaume Bosch
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain.,Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain.,Hepatology, Department of Biomedical Research, Inselspital, Bern University, Bern, Switzerland
| | - Rosa Villa
- Biomedical Applications Group (GAB), Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Madrid, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain.,Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain.,Hepatology, Department of Biomedical Research, Inselspital, Bern University, Bern, Switzerland
| |
Collapse
|
31
|
Wang G, Zheng Y, Wang Y, Cai Z, Liao N, Liu J, Zhang W. Co-culture system of hepatocytes and endothelial cells: two in vitro approaches for enhancing liver-specific functions of hepatocytes. Cytotechnology 2018; 70:1279-1290. [PMID: 29675734 DOI: 10.1007/s10616-018-0219-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/09/2018] [Indexed: 01/16/2023] Open
Abstract
Although hepatocyte transplantation and bioartificial liver support system provide new promising opportunities for those patients waiting for liver transplantation, hepatocytes are easily losing liver-specific functions by using the common in vitro cultured methods. The co-culture strategies with mimicking the in vivo microenvironment would facilitate the maintenance of liver-specific functions of hepatocytes. Considering that hepatocytes and endothelial cells (ECs) account for 80-90% of total cell populations in the liver, hepatocytes and ECs were directly co-cultured with hepatic stellate cells (HSCs) or adipose tissue-derived stem cells (ADSCs) at a ratio of 700:150:3 or 14:3:3 in the present study, and the liver-specific functions were carefully analyzed. Our results showed that the two co-culture systems presented the enhanced liver-specific functions through promoting secretion of urea and ALB and increasing the expressions of ALB, CYP3A4 and HNF4α, and the vessel-like structure in the co-culture system consisted of hepatocytes, ECs and ADSCs. Hence, our results suggested that the directly co-culture of hepatocytes and ECs with HSCs or ADSCs could significantly improve liver-specific functions of hepatocytes, and the co-culture system could further promote angiogenesis of ECs at a later stage. Therefore, this study provides potential interesting in vitro strategies for enhancing liver-specific functions of hepatocytes.
Collapse
Affiliation(s)
- Gaoxiong Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China
| | - Wenmin Zhang
- Department of Pathology, Fujian Medical University, Fuzhou, 350004, People's Republic of China.
| |
Collapse
|
32
|
Ware BR, Durham MJ, Monckton CP, Khetani SR. A Cell Culture Platform to Maintain Long-term Phenotype of Primary Human Hepatocytes and Endothelial Cells. Cell Mol Gastroenterol Hepatol 2018; 5:187-207. [PMID: 29379855 PMCID: PMC5782488 DOI: 10.1016/j.jcmgh.2017.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Modeling interactions between primary human hepatocytes (PHHs) and primary human liver sinusoidal endothelial cells (LSECs) in vitro can help elucidate human-specific mechanisms underlying liver physiology/disease and drug responses; however, existing hepatocyte/endothelial coculture models are suboptimal because of their use of rodent cells, cancerous cell lines, and/or nonliver endothelial cells. Hence, we sought to develop a platform that could maintain the long-term phenotype of PHHs and primary human LSECs. METHODS Primary human LSECs or human umbilical vein endothelial cells as the nonliver control were cocultivated with micropatterned PHH colonies (to control homotypic interactions) followed by an assessment of PHH morphology and functions (albumin and urea secretion, and cytochrome P-450 2A6 and 3A4 enzyme activities) over 3 weeks. Endothelial phenotype was assessed via gene expression patterns and scanning electron microscopy to visualize fenestrations. Hepatic responses in PHH/endothelial cocultures were benchmarked against responses in previously developed PHH/3T3-J2 fibroblast cocultures. Finally, PHH/fibroblast/endothelial cell tricultures were created and characterized as described previously. RESULTS LSECs, but not human umbilical vein endothelial cells, induced PHH albumin secretion for ∼11 days; however, neither endothelial cell type could maintain PHH morphology and functions to the same magnitude/longevity as the fibroblasts. In contrast, both PHHs and endothelial cells displayed stable phenotype for 3 weeks in PHH/fibroblast/endothelial cell tricultures; furthermore, layered tricultures in which PHHs and endothelial cells were separated by a protein gel to mimic the space of Disse displayed similar functional levels as the coplanar tricultures. CONCLUSIONS PHH/fibroblast/endothelial tricultures constitute a robust platform to elucidate reciprocal interactions between PHHs and endothelial cells in physiology, disease, and after drug exposure.
Collapse
Key Words
- 3T3-J2 Fibroblasts
- CD31, cluster of differentiation 31
- CD54, cluster of differentiation 54
- CYP450, cytochrome P-450
- ECM, extracellular matrix
- F8, factor VIII
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- HUVECs
- HUVECs, human umbilical vein endothelial cells
- LSECs
- LSECs, liver sinusoidal endothelial cells
- Micropatterned Cocultures
- NPCs, nonparenchymal cells
- PHHs, primary human hepatocytes
- SEM, scanning electron microscope
- Tricultures
- cDNA, complementary DNA
- vWF, von Willebrand factor
Collapse
Affiliation(s)
- Brenton R. Ware
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Mitchell J. Durham
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado
| | - Chase P. Monckton
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R. Khetani
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
33
|
3D Co-Culture with Vascular Cells Supports Long-Term Hepatocyte Phenotype and Function In Vitro. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0046-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Baudequin T, Tabrizian M. Multilineage Constructs for Scaffold-Based Tissue Engineering: A Review of Tissue-Specific Challenges. Adv Healthc Mater 2018; 7. [PMID: 29193897 DOI: 10.1002/adhm.201700734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/28/2017] [Indexed: 12/11/2022]
Abstract
There is a growing interest in the regeneration of tissue in interfacial regions, where biological, physical, and chemical attributes vary across tissue type. The simultaneous use of distinct cell lineages can help in developing in vitro structures, analogous to native composite tissues. This literature review gathers the recent reports that have investigated multiple cell types of various sources and lineages in a coculture system for tissue-engineered constructs. Such studies aim at mimicking the native organization of tissues and their interfaces, and/or to improve the development of complex tissue substitutes. This paper thus distinguishes itself from those focusing on technical aspects of coculturing for a single specific tissue. The first part of this review is dedicated to variables of cocultured tissue engineering such as scaffold, cells, and in vitro culture environment. Next, tissue-specific coculture methods and approaches are covered for the most studied tissues. Finally, cross-analysis is performed to highlight emerging trends in coculture principles and to discuss how tissue-specific challenges can inspire new approaches for regeneration of different interfaces to improve the outcomes of various tissue engineering strategies.
Collapse
Affiliation(s)
- Timothée Baudequin
- Faculty of Medicine; Biomat'X Laboratory; Department of Biomedical Engineering; McGill University; 740 ave. Dr. Penfield, Room 4300 Montréal QC H3A 0G1 Québec Canada
| | - Maryam Tabrizian
- Faculty of Medicine; Biomat'X Laboratory; Department of Biomedical Engineering; McGill University; 740 ave. Dr. Penfield, Room 4300 Montréal QC H3A 0G1 Québec Canada
- Faculty of Dentistry; McGill University; 3775 rue University, Room 313/308B Montréal QC H3A 2B4 Québec Canada
| |
Collapse
|
35
|
Beckwitt CH, Clark AM, Wheeler S, Taylor DL, Stolz DB, Griffith L, Wells A. Liver 'organ on a chip'. Exp Cell Res 2018; 363:15-25. [PMID: 29291400 PMCID: PMC5944300 DOI: 10.1016/j.yexcr.2017.12.023] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
The liver plays critical roles in both homeostasis and pathology. It is the major site of drug metabolism in the body and, as such, a common target for drug-induced toxicity and is susceptible to a wide range of diseases. In contrast to other solid organs, the liver possesses the unique ability to regenerate. The physiological importance and plasticity of this organ make it a crucial system of study to better understand human physiology, disease, and response to exogenous compounds. These aspects have impelled many to develop liver tissue systems for study in isolation outside the body. Herein, we discuss these biologically engineered organoids and microphysiological systems. These aspects have impelled many to develop liver tissue systems for study in isolation outside the body. Herein, we discuss these biologically engineered organoids and microphysiological systems.
Collapse
Affiliation(s)
- Colin H Beckwitt
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute of Regenerative Medicine University of Pittsburgh, Pittsburgh, PA 15213, USA; Research and Development Service, VA Pittsburgh Health System, Pittsburgh, PA 15240, USA
| | - Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarah Wheeler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - D Lansing Taylor
- Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute of Regenerative Medicine University of Pittsburgh, Pittsburgh, PA 15213, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute of Regenerative Medicine University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Linda Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute of Regenerative Medicine University of Pittsburgh, Pittsburgh, PA 15213, USA; Research and Development Service, VA Pittsburgh Health System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
36
|
Liu Y, Xu G, Wei J, Wu Q, Li X. Cardiomyocyte coculture on layered fibrous scaffolds assembled from micropatterned electrospun mats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:500-510. [DOI: 10.1016/j.msec.2017.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/12/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
|
37
|
Agarwal T, Narayan R, Maji S, Ghosh SK, Maiti TK. Decellularized caprine liver extracellular matrix as a 2D substrate coating and 3D hydrogel platform for vascularized liver tissue engineering. J Tissue Eng Regen Med 2017; 12:e1678-e1690. [PMID: 29052367 DOI: 10.1002/term.2594] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Tarun Agarwal
- Department of BiotechnologyIndian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Rajan Narayan
- Department of BiotechnologyIndian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Somnath Maji
- Department of BiotechnologyIndian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Sudip Kumar Ghosh
- Department of BiotechnologyIndian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Tapas Kumar Maiti
- Department of BiotechnologyIndian Institute of Technology Kharagpur Kharagpur West Bengal India
| |
Collapse
|
38
|
Sart S, Tomasi RFX, Amselem G, Baroud CN. Multiscale cytometry and regulation of 3D cell cultures on a chip. Nat Commun 2017; 8:469. [PMID: 28883466 PMCID: PMC5589863 DOI: 10.1038/s41467-017-00475-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/30/2017] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional cell culture is emerging as a more relevant alternative to the traditional two-dimensional format. Yet the ability to perform cytometry at the single cell level on intact three-dimensional spheroids or together with temporal regulation of the cell microenvironment remains limited. Here we describe a microfluidic platform to perform high-density three-dimensional culture, controlled stimulation, and observation in a single chip. The method extends the capabilities of droplet microfluidics for performing long-term culture of adherent cells. Using arrays of 500 spheroids per chip, in situ immunocytochemistry and image analysis provide multiscale cytometry that we demonstrate at the population scale, on 104 single spheroids, and over 105 single cells, correlating functionality with cellular location within the spheroids. Also, an individual spheroid can be extracted for further analysis or culturing. This will enable a shift towards quantitative studies on three-dimensional cultures, under dynamic conditions, with implications for stem cells, organs-on-chips, or cancer research.3D cell culture is more relevant than the two-dimensional format, but methods for parallel analysis and temporal regulation of the microenvironment are limited. Here the authors develop a droplet microfluidics system to perform long-term culture of 3D spheroids, enabling multiscale cytometry of individual cells within the spheroid.
Collapse
Affiliation(s)
- Sébastien Sart
- Laboratory of Hydrodynamics (LadHyX)-Department of Mechanics, Ecole Polytechnique, CNRS-UMR7646, 91128, Palaiseau, France
| | - Raphaël F-X Tomasi
- Laboratory of Hydrodynamics (LadHyX)-Department of Mechanics, Ecole Polytechnique, CNRS-UMR7646, 91128, Palaiseau, France
| | - Gabriel Amselem
- Laboratory of Hydrodynamics (LadHyX)-Department of Mechanics, Ecole Polytechnique, CNRS-UMR7646, 91128, Palaiseau, France
| | - Charles N Baroud
- Laboratory of Hydrodynamics (LadHyX)-Department of Mechanics, Ecole Polytechnique, CNRS-UMR7646, 91128, Palaiseau, France.
| |
Collapse
|
39
|
Yang X, Wang X, Huang X, Hang R, Zhang X, Tang B. A hybrid co-culture model with endothelial cells designed for the hepatic tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:139. [PMID: 28812179 DOI: 10.1007/s10856-017-5950-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
The cultured hepatic cells in vitro are prone to losing their characteristic morphologies and biological functions. To avoid this problem, a hybrid co-culture system was proposed to elucidate the effect of cellular communication on the phenotype of hepatic cells. A monolayer of endothelial cells (ECs) was co-cultured on the surface of a three-dimensional (3D) scaffold embedded with HepG2 cells. In this hybrid co-culture system, the growth of encapsulated hepatic cells is barely influenced by the co-cultured ECs. However, the liver-special functions of hepatic cells, including the albumin secretion and the expression levels of hepatocyte-specific genes, are significantly improved. It is deduced that the improved liver-special functions is likely related to the paracrine mechanisms. Hence, this hybrid co-culture model may open a window for the co-cultivation of the multi-type of cells as well as the study of cell-cell signaling interaction.
Collapse
Affiliation(s)
- Xiaoning Yang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xin Wang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaobo Huang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Ruiqiang Hang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiangyu Zhang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Bin Tang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
40
|
Manipulating Living Cells to Construct a 3D Single-Cell Assembly without an Artificial Scaffold. Polymers (Basel) 2017; 9:polym9080319. [PMID: 30970994 PMCID: PMC6418816 DOI: 10.3390/polym9080319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/23/2022] Open
Abstract
Artificial scaffolds such as synthetic gels or chemically-modified glass surfaces that have often been used to achieve cell adhesion are xenobiotic and may harm cells. To enhance the value of cell studies in the fields of regenerative medicine and tissue engineering, it is becoming increasingly important to create a cell-friendly technique to promote cell–cell contact. In the present study, we developed a novel method for constructing stable cellular assemblies by using optical tweezers in a solution of a natural hydrophilic polymer, dextran. In this method, a target cell is transferred to another target cell to make cell–cell contact by optical tweezers in a culture medium containing dextran. When originally non-cohesive cells are held in contact with each other for a few minutes under laser trapping, stable cell–cell adhesion is accomplished. This method for creating cellular assemblies in the presence of a natural hydrophilic polymer may serve as a novel next-generation 3D single-cell assembly system with future applications in the growing field of regenerative medicine.
Collapse
|
41
|
Liu Y, Hu K, Wang Y. Primary Hepatocytes Cultured on a Fiber-Embedded PDMS Chip to Study Drug Metabolism. Polymers (Basel) 2017; 9:E215. [PMID: 30970894 PMCID: PMC6431835 DOI: 10.3390/polym9060215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/25/2017] [Accepted: 06/07/2017] [Indexed: 11/26/2022] Open
Abstract
In vitro drug screening using reliable and predictable liver models remains a challenge. The identification of an ideal biological substrate is essential to maintain hepatocyte functions during in vitro culture. Here, we developed a fiber-embedded polydimethylsiloxane (PDMS) chip to culture hepatocytes. Hepatocyte spheroids formed in this device were subjected to different flow rates, of which a flow rate of 50 μL/min provided the optimal microenvironment for spheroid formation, maintained significantly higher rates of albumin and urea synthesis, yielded higher CYP3A1 (cytochrome P450 3A1) and CYP2C11 (cytochrome P450 2C11) enzyme activities for metabolism, and demonstrated higher expression levels of liver-specific genes. In vitro metabolism tests on tolbutamide and testosterone by hepatocytes indicated predicted clearance rates of 1.98 ± 0.43 and 40.80 ± 10.13 mL/min/kg, respectively, which showed a good in vitro⁻in vivo correspondence. These results indicate that this system provides a strategy for the construction of functional engineered liver tissue that can be used to study drug metabolism.
Collapse
Affiliation(s)
- Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Ke Hu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yihao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
42
|
Okudaira T, Yabuta R, Mizumoto H, Kajiwara T. Fabrication of a fiber-type hepatic tissue by bottom-up method using multilayer spheroids. J Biosci Bioeng 2017; 123:739-747. [DOI: 10.1016/j.jbiosc.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 01/06/2023]
|
43
|
Fibroblasts as maestros orchestrating tissue regeneration. J Tissue Eng Regen Med 2017; 12:240-251. [DOI: 10.1002/term.2405] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 12/05/2016] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
|
44
|
Liu Y, Xia T, Wei J, Liu Q, Li X. Micropatterned co-culture of cardiac myocytes on fibrous scaffolds for predictive screening of drug cardiotoxicities. NANOSCALE 2017; 9:4950-4962. [PMID: 28382363 DOI: 10.1039/c7nr00001d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The spatial arrangement of cardiac myocytes (CMs) and other non-myocytes scaffolds, closely resembling native tissue, is essential to control the CM morphology and function for cardiac tissue regeneration. In the current study, micropatterned fibrous scaffolds were developed to establish a CM co-culture system with cardiac fibroblasts (CFs) and endothelial cells (ECs) as a potential in vitro drug screening model. To pursue a biomimetic approach to influence CM behaviors, strip, oval and wave-patterned mats were constructed by deposition of electrospun fibers on lithographic collectors, followed by precise stacking for cell co-cultures. CMs, CFs, and ECs were located on the patterned scaffolds with controlled cellular distribution in the respective regions and no across condition was found. Compared with those after strip and oval-patterned co-culture, CMs co-cultured on wave-patterned scaffolds displayed significantly greater cell viabilities, larger cell elongation ratios, stronger expressions of cardiac-specific Troponin I, connexin 43 and sarcomeric α-actinin and higher beating rates during 15 days of incubation. The responses of co-cultured CMs to quinidine, erythromycin and sotalol show good correlations with clinical observations in the beating rate and the prolongation of the contraction and relaxation time. The in vivo safety data reflected well with the concentrations for 50% of maximal effect (EC50) after drug treatment on co-cultured CMs, which was determined from the changes in the corrected field potential duration (FPDc) against the drug concentrations. During 15 days of patterned co-culture, the interbeat intervals and fluctuations of the CMs indicated quick changes in response to haloperidol treatment and sufficient restoration of the original beating profiles after drug removal. This study demonstrates the capabilities of micropatterned co-culture of CMs to establish the cardiac function as a reproducible and reliable platform for screening cardiac side effects of drugs.
Collapse
Affiliation(s)
- Yaowen Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | | | | | | | | |
Collapse
|
45
|
Ikuno T, Masumoto H, Yamamizu K, Yoshioka M, Minakata K, Ikeda T, Sakata R, Yamashita JK. Efficient and robust differentiation of endothelial cells from human induced pluripotent stem cells via lineage control with VEGF and cyclic AMP. PLoS One 2017; 12:e0173271. [PMID: 28288160 PMCID: PMC5347991 DOI: 10.1371/journal.pone.0173271] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/17/2017] [Indexed: 11/18/2022] Open
Abstract
Blood vessels are essential components for many tissues and organs. Thus, efficient induction of endothelial cells (ECs) from human pluripotent stem cells is a key method for generating higher tissue structures entirely from stem cells. We previously established an EC differentiation system with mouse pluripotent stem cells to show that vascular endothelial growth factor (VEGF) is essential to induce ECs and that cyclic adenosine monophosphate (cAMP) synergistically enhances VEGF effects. Here we report an efficient and robust EC differentiation method from human pluripotent stem cell lines based on a 2D monolayer, serum-free culture. We controlled the direction of differentiation from mesoderm to ECs using stage-specific stimulation with VEGF and cAMP combined with the elimination of non-responder cells at early EC stage. This "stimulation-elimination" method robustly achieved very high efficiency (>99%) and yield (>10 ECs from 1 hiPSC input) of EC differentiation, with no purification of ECs after differentiation. We believe this method will be a valuable technological basis broadly for regenerative medicine and 3D tissue engineering.
Collapse
Affiliation(s)
- Takeshi Ikuno
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidetoshi Masumoto
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kohei Yamamizu
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Miki Yoshioka
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Kenji Minakata
- Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tadashi Ikeda
- Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryuzo Sakata
- Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun K Yamashita
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
46
|
Narmada BC, Goh YT, Li H, Sinha S, Yu H, Cheung C. Human Stem Cell-Derived Endothelial-Hepatic Platform for Efficacy Testing of Vascular-Protective Metabolites from Nutraceuticals. Stem Cells Transl Med 2017; 6:851-863. [PMID: 28297582 PMCID: PMC5442778 DOI: 10.5966/sctm.2016-0129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis underlies many cardiovascular and cerebrovascular diseases. Nutraceuticals are emerging as a therapeutic moiety for restoring vascular health. Unlike small-molecule drugs, the complexity of ingredients in nutraceuticals often confounds evaluation of their efficacy in preclinical evaluation. It is recognized that the liver is a vital organ in processing complex compounds into bioactive metabolites. In this work, we developed a coculture system of human pluripotent stem cell-derived endothelial cells (hPSC-ECs) and human pluripotent stem cell-derived hepatocytes (hPSC-HEPs) for predicting vascular-protective effects of nutraceuticals. To validate our model, two compounds (quercetin and genistein), known to have anti-inflammatory effects on vasculatures, were selected. We found that both quercetin and genistein were ineffective at suppressing inflammatory activation by interleukin-1β owing to limited metabolic activity of hPSC-ECs. Conversely, hPSC-HEPs demonstrated metabolic capacity to break down both nutraceuticals into primary and secondary metabolites. When hPSC-HEPs were cocultured with hPSC-ECs to permit paracrine interactions, the continuous turnover of metabolites mitigated interleukin-1β stimulation on hPSC-ECs. We observed significant reductions in inflammatory gene expressions, nuclear translocation of nuclear factor κB, and interleukin-8 production. Thus, integration of hPSC-HEPs could accurately reproduce systemic effects involved in drug metabolism in vivo to unravel beneficial constituents in nutraceuticals. This physiologically relevant endothelial-hepatic platform would be a great resource in predicting the efficacy of complex nutraceuticals and mechanistic interrogation of vascular-targeting candidate compounds. Stem Cells Translational Medicine 2017;6:851-863.
Collapse
Affiliation(s)
| | - Yeek Teck Goh
- Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Huan Li
- Institute of Bioengineering and Nanotechnology, Nanos, Singapore
| | - Sanjay Sinha
- The Anne McLaren Laboratory of Regenerative Medicine, Wellcome Trust‐Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Division of Cardiovascular Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, Nanos, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Mechanobiology Institute, Singapore
- Singapore‐MIT Alliance for Research and Technology, BioSyM, Singapore
| | - Christine Cheung
- Institute of Molecular and Cell Biology, Proteos, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
47
|
Du Y, Li N, Yang H, Luo C, Gong Y, Tong C, Gao Y, Lü S, Long M. Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip. LAB ON A CHIP 2017; 17:782-794. [PMID: 28112323 DOI: 10.1039/c6lc01374k] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Physiologically, four major types of hepatic cells - the liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, and hepatocytes - reside inside liver sinusoids and interact with flowing peripheral cells under blood flow. It is hard to mimic an in vivo liver sinusoid due to its complex multiple cell-cell interactions, spatiotemporal construction, and mechanical microenvironment. Here we developed an in vitro liver sinusoid chip by integrating the four types of primary murine hepatic cells into two adjacent fluid channels separated by a porous permeable membrane, replicating liver's key structures and configurations. Each type of cells was identified with its respective markers, and the assembled chip presented the liver-specific unique morphology of fenestration. The flow field in the liver chip was quantitatively analyzed by computational fluid dynamics simulations and particle tracking visualization tests. Intriguingly, co-culture and shear flow enhance albumin secretion independently or cooperatively, while shear flow alone enhances HGF production and CYP450 metabolism. Under lipopolysaccharide (LPS) stimulations, the hepatic cell co-culture facilitated neutrophil recruitment in the liver chip. Thus, this 3D-configured in vitro liver chip integrates the two key factors of shear flow and the four types of primary hepatic cells to replicate key structures, hepatic functions, and primary immune responses and provides a new in vitro model to investigate the short-duration hepatic cellular interactions under a microenvironment mimicking the physiology of a liver.
Collapse
Affiliation(s)
- Yu Du
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. and School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Li
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. and School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Yang
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. and School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunhua Luo
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. and School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Gong
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. and School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunfang Tong
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. and School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Gao
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. and School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shouqin Lü
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. and School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mian Long
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. and School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Kook YM, Jeong Y, Lee K, Koh WG. Design of biomimetic cellular scaffolds for co-culture system and their application. J Tissue Eng 2017; 8:2041731417724640. [PMID: 29081966 PMCID: PMC5564857 DOI: 10.1177/2041731417724640] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment of in vivo metabolism than monoculture system in the past several decades. Recently, the fields of tissue engineering and regenerative medicine have primarily focused on three-dimensional co-culture systems using cellular scaffolds, because of their physical and biological relevance to the extracellular matrix of actual tissues. This review discusses several materials and methods to create co-culture systems, including hydrogels, electrospun fibers, microfluidic devices, and patterning for biomimetic co-culture system and their applications for specific tissue regeneration. Consequently, we believe that culture systems with appropriate physical and biochemical properties should be developed, and direct or indirect cell-cell interactions in the remodeled tissue must be considered to obtain an optimal tissue-specific microenvironment.
Collapse
Affiliation(s)
- Yun-Min Kook
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yoon Jeong
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Kangwon Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
- Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
49
|
Liu Y, Wang S, Wang Y. Patterned Fibers Embedded Microfluidic Chips Based on PLA and PDMS for Ag Nanoparticle Safety Testing. Polymers (Basel) 2016; 8:E402. [PMID: 30974676 PMCID: PMC6431932 DOI: 10.3390/polym8110402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 01/26/2023] Open
Abstract
A new method to integrate poly-dl-lactide (PLA) patterned electrospun fibers with a polydimethylsiloxane (PDMS) microfluidic chip was successfully developed via lithography. Hepatocyte behavior under static and dynamic conditions was investigated. Immunohistochemical analyses indicated good hepatocyte survival under the dynamic culture system with effective hepatocyte spheroid formation in the patterned microfluidic chip vs. static culture conditions and tissue culture plate (TCP). In particular, hepatocytes seeded in this microfluidic chip under a flow rate of 10 μL/min could re-establish hepatocyte polarity to support biliary excretion and were able to maintain high levels of albumin and urea secretion over 15 days. Furthermore, the optimized system could produce sensitive and consistent responses to nano-Ag-induced hepatotoxicity during culture. Thus, this microfluidic chip device provides a new means of fabricating complex liver tissue-engineered scaffolds, and may be of considerable utility in the toxicity screening of nanoparticles.
Collapse
Affiliation(s)
- Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shuyao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yihao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
50
|
Jiang W, Li M, Chen Z, Leong KW. Cell-laden microfluidic microgels for tissue regeneration. LAB ON A CHIP 2016; 16:4482-4506. [PMID: 27797383 PMCID: PMC5110393 DOI: 10.1039/c6lc01193d] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Regeneration of diseased tissue is one of the foremost concerns for millions of patients who suffer from tissue damage each year. Local delivery of cell-laden hydrogels offers an attractive approach for tissue repair. However, due to the typical macroscopic size of these cell constructs, the encapsulated cells often suffer from poor nutrient exchange. These issues can be mitigated by incorporating cells into microscopic hydrogels, or microgels, whose large surface-to-volume ratio promotes efficient mass transport and enhanced cell-matrix interactions. Using microfluidic technology, monodisperse cell-laden microgels with tunable sizes can be generated in a high-throughput manner, making them useful building blocks that can be assembled into tissue constructs with spatially controlled physicochemical properties. In this review, we examine microfluidics-generated cell-laden microgels for tissue regeneration applications. We provide a brief overview of the common biomaterials, gelation mechanisms, and microfluidic device designs that are used to generate these microgels, and summarize the most recent works on how they are applied to tissue regeneration. Finally, we discuss future applications of microfluidic cell-laden microgels as well as existing challenges that should be resolved to stimulate their clinical application.
Collapse
Affiliation(s)
- Weiqian Jiang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Zaozao Chen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|